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Abstract 
This study explores the use of machine learning (ML) as a data-driven approach to estimate hot ductility of cast steel from 
literature data. Four ML algorithms were used to predict hot ductility by considering elemental composition and thermal 
conditions. Experimentally-measured reduction of area (RA) values were converted to a low-temperature limit, center-
temperature, and high-temperature limit, which were represented as Gaussian curves. The prediction accuracy of the four 
ML models was evaluated using RMSE for these three output variables. In a case study of three steels that had different 
contents of alloying elements, only the Neural-net model predicted the RA trough more accurately in all cases. These results 
demonstrate the utility of ML models to predict hot ductility of cast steels.

Keywords  Prediction model · Data-driven inverse model · Random forest · Gaussian process · Support vector machine · 
Neural network · Gaussian fitting

1  Introduction

It is difficult to measure hot ductility considering various 
chemical composition ranges and continuous casting condi-
tions of all commercially produced steels [1–3], so a more 
efficient hot ductility prediction method is required. As an 
alternative to existing physics-based and simple regression 
method, data-driven approach is significant interest to steel 
fields [4–10] by providing correlations among chemical 
composition, operation conditions, and mechanical proper-
ties. It helps to find out the properties of the material with-
out performing any experiments. To analyze hot ductility, 
traditional forward simulation models [3, 11–13] including 
dynamic simulation models and state-space models simu-
late the physical behavior of steel by equations based on 
heat transfer/material transfer. These forward models require 
a lot of input variables and expertise to build a model. 

Uncertainty is also accompanied by assumptions and sim-
plifications in the model construction.

On the other hand, data-based inverse models have been 
tried to analyze the existing ductility behavior [14, 15]. The 
inverse model implements a model using the observed input 
and output data. Data-driven inverse models have received 
a lot of attention in the field of model predictive control 
[16] because they are easy to build. The advantage of this 
approach is that the model can be flexibly constructed only 
by the input and output variables selected by the simula-
tion performer. The inverse model is largely divided into 
a regression model and a machine learning (ML) models 
[16]. In particular, the ML method to search for the optimal 
model based on the learning algorithm is used like pattern 
recognition and data mining in various fields including steel 
and material, and can approximate nonlinear behavior.

Machine learning (ML) models use learning algo-
rithms like pattern recognition to identify the relation-
ship between the dependent and independent variables 
[16, 17]. ML models can describe systems that are have 
strong nonlinearities [18] and can extract knowledge from 
large datasets [19, 20]. Supervised learning is a method 
of ML in which the algorithm is provided input data (e.g., 
casting conditions), and a clear statement of the output 
(e.g., ‘cracked’ or not), so it has a clear objective when 
it derives the model and predictions future response. The 
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properties of a steel depend on its chemical composition 
and the manner in which it is processed. These parameters 
are numerous and complex.

Various ML models have been used in attempts to pre-
dict the mechanical properties from these parameters. 
Examples include a random forest model (RF) [4] to pre-
dict the physical features of reduced activation ferritic/
martensitic (RAFM) steels [21], a Gaussian Process (GP) 
[5] meta-model to predict the tensile yield strength of 
Ferrium® PH48S [5], a Support Vector Machine (SVM) 
[6, 7] to predict the tensile properties and yield strength 
of RAFM steels [6], and a Neural Network (NN) [8–10] 
to model the effects of elemental composition and ther-
mal conditions concerning tensile strength of low carbon 
steels, and to assess the strength and particle size of hot 
strip mill products [8].

However, few studies have been conducted to predict 
reduction of area (RA). Examples include regression 
model [ 22, 23] and a back-propagation NN [14, 15]. 
These methods have the limitation that the prediction 
and judgment were made using one algorithm under a 
narrow range of conditions. It is difficult to generalize 
that the proposed methods are the best or optimal. There-
fore, this study builds four ML models (RF, GP, SVR, 
NN) that analyze literature data related to hot ductility, 
and compares their prediction accuracy, then explains the 
characteristics and accuracy of each model and selects the 
optimal ML model for hot ductility analysis.

2 � Materials and Methods

2.1 � Dataset

Data sets on hot ductility had been collected using a web-
based academic database. The terms such as hot ductility 
and high temperature ductility had been employed to find out 
from online scientific literature databases like ScienceDirect, 
Scopus, and Springer. Hits were pruned to leave only data 
from steel production. Then data that were incomplete, were 
duplicates, or were of unknown origin were deleted. This 
process left 4050 measurements of ductility according to 
temperature with steel composition and experimental vari-
ables. A total of 4420 experimental data were collected by 
adding 370 data obtained with the tensile test. The hot duc-
tility-prediction models, the dependent variables are the duc-
tility values according to temperature at 600 ≤ T ≤ 1200 °C; 
independent parameters such as 16 compositions and five 
process conditions (Table 1).

2.2 � Data Preprocessing

The ranges of variables were standardized using the Min-
MaxScaler [24]; this process avoids parameter distortion that 
may occur in modeling due to different scales of variables. 
The MinMaxScaler changes the data so that all the attrib-
utes range between 0 and 1. In an n-dimensional dataset, all 
data are contained within a hyper-rectangle on a Cartesian 
hyperplane, between the origin and 1 on all axes. First, the 
raw data in vector x = (x1, x2, …, xn) are normalized as

Table 1   Parameters considered 
in gathered data

Input variable Minimum Maximum Input variable Minimum Maximum

C 0.001 0.795 Heating temperature 1100 1600 °C
Si 0.006 3.200 Heat holding time 60 720 s
Mn 0.010 23.100 Cooling rate 0.08 40.0 °C/s
P 0.000 0.360 Cooling holding time 0.0 900.0 s
S 0.000 0.305 Strain rate 0.0001 0.5 1/s
Cu 0.000 1.420
Nb 0.000 0.200
Ni 0.000 36.220
Al 0.000 8.230
Mo 0.000 3.410
N 0.000 0.184
Cr 0.000 22.330
V 0.000 0.350
Ti 0.000 0.099
B 0.000 0.029
Sn 0.000 0.192
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where x′
i
 represents the normalized value of xi, Max(xi) is its 

highest value, and Min(xi) is its lowest value.
The goal of this study is to confirm thermal conditions that 

do not put cast steels in the bending/unbending area of the 
casting machine when their ductility has a low value. For the 
most part of steel grades, RA is a U-shaped or V-shaped style. 
Thus, even if the hot ductility follows a Gaussian curve, the 
low-ductility region can be predicted easily. However, even 
under the same thermal conditions, RA at each temperature 
cannot be predicted using literature data because they include 
variations depending on the researcher and the experimen-
tal apparatus. However, the overall trend of RA is the same 
even if the accrual values different, Gaussian fitting can be 
used to predict low-ductility regions. Therefore, to convert the 
observed RA values into a Gaussian curve, Gaussian fitting 
[25] is applied to convert them to low temperature limit (LTL), 
center temperature (CT) and high temperature limit (HTL). 
HTL represents the median of the maximum RA values, and 
LTL is the median of the minimum values, and CT indicates 
the mean of the Gaussian distribution. The ranges of LTL, 
CT, and HTL calculated in this study were 510.7–918.9 °C, 
677.2–977.1 °C, 740.3–1149.3 °C respectively.

3 � Data‑Driven Models

3.1 � RF

RF is an ensemble learning model that combines multiple 
models, and combines multiple random decision trees [26]. 
The RF selects n data sets in a bootstrap manner that allows 
random redundancy in a given learning data, then selects d 
variables without allowing duplicates in the selected data sam-
ple. d is usually the square root of the total number of variables 
in the given data [27]. The process of generating a decision 
tree from the selected data samples is repeated k times. Then 
the mean or multiple predictions are selected of the results 
from the decision trees created in this way; this is called an 
ensemble technique. Bootstrap Aggregating uses an ensemble 
technique that combines multiple bootstrap samples into one 
classifier; this method is called ‘bagging’.

Each decision tree node t is divided into a left child node 
tL and a right child node tR. The optimal node segmentation 
criterion S that derives the prediction value is calculated as

where p̂(t) is the conditional probability at node, nt is the 
data size at node t, and zt is the average of the output values 
at node t. Then the impurity function î(t) at node t is deter-
mined as Mean Squared Error (MSE)

(1)x�
i
=

xi −Min(xi)

Max(xi) −Min(xi)

(2)S = argmaxΔî(s, t) = î(t) −
[
p̂
(
tL
)
î
(
tL
)
+ p̂

(
tR
)
î
(
tR
)]
,

The important hyper-parameters in the RF model are the 
number of decision trees used for bagging, and the depth 
of decision trees. In general, the learning model’s accuracy 
increases as the increase in the number and depth of decision 
trees [26]. RF works well without much parameter tuning 
and is not sensitive to the scale of the data. RF can calcu-
late the importance of independent variables [28]. RF can 
obtain the type of independent variables used in all nodes 
of the RF model and the increase in the amount of informa-
tion obtained from those nodes. The relative importance of 
each independent variables can be obtained by comparing 
the average increase in the amount of information that each 
of them contributes [16].

3.2 � GP

Gaussian process assumes that the observed values appear 
with a unique normal distribution at all-time series points.
[29]. GP studies interrelation with mean and covari-
ance for input and output variables. GP represents the set 
f (X) =

{
(xi), … ,

(
xn
)
} of the output function f

(
xi
)
 for the 

set X of the input values xi . In this case, each f
(
xi
)
 follows 

a Gaussian distribution. GP is expressed as

where m(X) is the mean function of the set of output func-
tions, k(X,X) is the covariance function of X and X, The 
average function of the output function set is

and the covariance function is

which can also be obtained by the covariance matrix

where k
(
xi, xk

)
 is the covariance kernel function of 

xj(j = 1 ∶ n) and xk(k = 1 ∶ n) , or the Matern kernel

Hyper-parameters r and λ determine the amplitude and 
twist of the model, respectively. In this study, the maximum 
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likelihood estimation (MLE) method is applied to estimate 
r and λ. The GP model has the advantage of being able 
to express the probabilistic attributes of the model by the 
covariance function. However, as the number of training data 
increases, computation time and computer memory usage 
increase exponentially [29].

3.3 � SVM

SVM is a classification algorithm [30] that finds an optimal 
hyperplane that maximizes the size of the margin between 
categories and that includes as much data as possible within 
the distance between support vectors [31]. This study uses 
least-squares SVM [32]. The objective function was

where � is a weight vector that determines the size of the 
margin, � is a normalization constant, e is the error between 
the measured value and the predicted value, �(x) is a nonlin-
ear function that links the input space of the input variable x 
into a high-dimensional feature space, and b is a bias value.

Kernel SVM is a form of SVM that uses kernels such as 
Polynomial, Sigmoid, and RBF to compute in a high-dimen-
sional feature space without needing to calculate the coordi-
nates of the data in that space, but rather by easily operating 
the inner product spaces [16]. Important parameters in the 
kernel SVM are C and gamma. C determines the number 
of data samples that can be placed in different classes. The 
RBF kernel has one γ parameter, which is the inverse of the 
Gaussian kernel width. Both γ and C adjust the complexity 
of the model, and must be adjusted together. SVM can simu-
late high-dimensional nonlinear systems by using a small 
number of data. However, the process of mapping data to a 
high-dimensional plane requires a large amount of computa-
tion time and memory [32]. SVM has the disadvantage of 
requiring careful preprocessing of and setting of parameters.

3.4 � NN

NN is a structure that computers are adopting to solve 
problems in a way similar to how humans handle problems 
through the brain. In this study, a basic multilayer percep-
tron model [33, 34] is used. It comprises an input layer that 
accepts stimuli, an output layer that expresses response, and 
a hidden layer that processes input to yield output. Each 
layer consists of several nodes and is joined by weighted 
connections to nodes in other layers [35, 36]. Input to the 
input layer passes through an activation function to the hid-
den layer, which processes the input and sends it to the out-
put layer. NN model has two main processes. The first is a 

(9)
argmin(�, e) =

1

2
||�||2 + 1

2
�

n∑
i=1

e2
i

subject to yi = �T�
(
xi
)
+ b + ei, i = 1,… , n,

feed-forward process that uses a series of input variables, 
the hidden layer’s variables, the relationships (Connectiv-
ity, Weight) between each pair of variables, and Transfer 
Functions. The second process is a backpropagation process, 
which can increase the accuracy of calculations by respond-
ing to the difference between the calculated value and the 
true value.

The objective function of the NN is to reduce the differ-
ence between the output values N(ω, xi) and the measured 
value yi of NN by adjusting the weight ω between nodes:

where n is the number of data and x is the input value. In this 
study, the backpropagation learning algorithm was applied 
to find the optimal ω [37].

The main hyper-parameters of NN model are the type of 
output function, the learning rate, the number of hidden-
layers, and the number of hidden-layer nodes [38, 39]. 
The advantage of NN is that they can capture information 
embedded in large amounts of data and create very complex 
models [40, 41]. However, data preprocessing is important 
because all features work relatively well on homogeneous 
data that have the same meaning. The parameters of NN 
must be tuned carefully to avoid local optimization and over-
fitting [42].

4 � Evaluation

In this paper, the accuracy of each model is calculated by 
Root Mean-Squared Error (RMSE) [19, 43–45]

where zi is the ith real RA, yi is the i-tth predicted RA, and N 
is the number of test data. The RMSE is applied to estimates 
of LTL, CT, and HTL for all four algorithms.

The evaluation results of ML models lead to the hyper-
parameter settings that control its complexity. Therefore, the 
hyper-parameter setting should be optimized for each model 
before they are compared. In this study, k-fold cross valida-
tion [19, 46] is used to optimize each model. This method 
randomly divides the training data into k equal subsets, then 
uses k-1 of them as training data and to predict the rest of the 
data. The final average accuracy is calculated by averaging 
the evaluation results obtained by repeating this process for 
all k subsets.

This study used k = 10 for 80% of the training data. The 
cross-validation was performed with varying hyper-param-
eters for each ML model, then they were applied to quantify 
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their ability to predict the remaining 20% of the data. For 
each ML method, the model with the highest average accu-
racy was identified as the model with the optimal hyper-
parameter setting for each ML method. Finally, optimized 
model was evaluated by calculating its RMSE in predic-
tions of test data. All analyzes in this study used Scikit-learn, 
Python’s ML library.

5 � Result

5.1 � Model Training

5.1.1 � RF

The important hyper-parameters in an RF model are the 
number of decision trees and the highest depth of each 
decision tree that is used for bagging. Typically, increas-
ing the number of trees and the depth of the tree improves 
model accuracy. In this study, the RMSE error of tenfold 
cross-validation decreased as the depth of decision tree was 
increased; the average RMSE reached the saturation point 
when the number of decision trees was 204 and the highest 
depth was 24. Therefore, subsequent tests used 204 decision 
trees and a model with a maximum depth of 24. Changes in 
RMSE were also observed while changing parameters such 
as the minimum number of samples needed to separate an 
inner node and the lowest number of samples that should be 
in the leaf node, the changes were not significant, so but the 
default values 2 and 1 were used respectively.

5.1.2 � GP

The Gaussian-Process-Regressor API supports several ker-
nel combinations, each of which describes several attributes 
of the data. This paper tested all combinations of kernels 
supported by the API, and a white kernel that describes 
noise in the data. The Matern kernel provided the best accu-
racy. The optimal hyper-parameter of each kernel was found 
in the same way, and the noise level of the white kernel was 
optimized to 0.0001. The Matern kernel showed the best 
accuracy when the length scale of the kernel was 40 and 
the parameter ν that controls the smoothness of the learned 
function was 2.5.

5.1.3 � SVM

In this study, the RBF kernel was used for the SVR. Poly-
nomial and sigmoid kernels were tested, but the RBF ker-
nel showed the best accuracy (Table 2). To optimize the 
accuracy of the SVR model, tenfold cross-validation was 
performed while adjusting the hyper-parameter values C and 
γ. The highest accuracy was achieved with C = 2.0 and γ with 

a “scale” option. We tested other hyper-parameters in ker-
nels, but all showed the best accuracy at the default values. 
Another hyper-parameter used in the RBF kernel is epsilon, 
with a default of 0.1. It associates the epsilon tube with no 
penalty in the training loss function with the estimated point 
within the epsilon distance from the real value.

5.1.4 � NN

NN model used in this study is a multi-layered perceptron 
containing an input layer, hidden layers, and an output layer. 
The main hyper-parameters of this model are the number of 
hidden-layers, the number of hidden-layer nodes, the acti-
vation function, the initializer, the learning rate, the drop-
out probability, and the batch size. The number of hidden 
layers was increased from 2, and the average accuracy was 
calculated by tenfold cross-validation while rising the node 
number in each layer. Accuracy was highest with four hid-
den layers and 64 nodes. Higher numbers of hidden layers 
or nodes resulted in overfitting. The activation function used 
leaky relu (α = 0.2) because it showed better accuracy than 
other activation functions. The He Initializer was selected, 
because it is suitable for leaky-Relu. Optimized learning rate 
was 0.0001 and optimal batch size was 32. For regulariza-
tion, early stopping using Dropout (keep probability = 0.75) 
and Test Set Accuracy were used.

5.2 � Accuracy of the Models

This study compared the accuracy of RF, GR, SVM, and 
NN four ML algorithms to predict LTL, CT, and HTL of 
steels (Table 2). The evaluation results of the three indica-
tors in the NN model indicated the best accuracy. RMSE of 
NN were: LTL = 20.6 °C, CT = 15.2 °C, and HTL = 27.6 °C. 
The model of RF was the next most-accurate; it has a lower 
accuracy according to the correlation between input vari-
ables than other models, which is considered to be influ-
enced by the characteristics of randomly selecting input 
variables. RMSE of RF were: LTL = 32.7 °C, CT = 24.8 °C, 
and HTL = 44.8 °C. The SVM and GP model had lower 
evaluation result. RMSE of SVM were: LTL = 44.1 °C, 
CT = 39.8  °C, and HTL = 68.3  °C. RMSE of GP were: 

Table 2   Evaluation result of four machine learning models in terms 
of accuracy

Model RMSE (standard deviation) [°C]

LTL CT HTL

RF 32.7 (3.4) 24.8 (3.4) 44.8 (3.2)
GP 46.6 (3.7) 43.7 (5.1) 80.1 (17.5)
SVM 44.1 (3.9) 39.8 (2.6) 68.3 (6.0)
NN 20.6 (1.4) 15.2 (1.8) 27.6 (2.9)
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LTL = 46.6 °C, CT = 43.7 °C, and HTL = 80.1 °C. NN seems 
best to predict the hot ductility value, but all were evaluated 
in a case study.

6 � Case Study

6.1 � Experimental Procedure

To test the accuracy of the four RA-prediction models, 
additional high-temperature tensile tests were performed on 
three steels not included in the previous training and test-
ing (Table 3). The test specimen was fabricated using steel 
obtained by continuous casting (Fig. 1a). Tensile tests were 
conducted by a Caster and Thermo-mechanical simulator 
(40,334, Fuji Electronic Industrial, Saitama). Temperature 
was elevated to 1673 K (1400 °C) at 10 K/s, kept for 300 s 
at 1673 K, then reduced to 873–1273 K at 0.5 K/s (Fig. 1b). 
They were kept at the temperature for 60 s, then subjected 
to tensile strain of 5 × 10−4 until they broke. RA was gauged 
for each fractured specimen.

6.2 � Analysis of Four Models

The models showed different accuracies in prediction of the 
ductility troughs of three steels. Steel 1 is an unalloyed steel 
that typically exhibits a trough shape with the lowest RA 
at 1073 K (800 °C) (Fig. 2a). For this steel, all four models 
predict new experimental values well. Steel 2 has a small 

amount of added alloying elements, and has a wider ductil-
ity trough (Fig. 2b) than Steel 1; all models predicted this 
tendency, although their predictions differ slightly. Steel 3 
contains a large amount of alloy metals, and a wide ductility 
trough (Fig. 2c); only the NN predicted new data adequately.

These results suggest that the NN model is more accurate 
than the other models for prediction of complex cases that 
can occur when a large amount of alloy is added. A current 
trend in steelmaking is to increase the content and diversity 
of alloying elements to meet the changing requirements of 
steels. The NN model seems able to anticipate the ductility 
behavior of these novel steels.

7 � Conclusion

This paper has presented development, optimization, and 
evaluation of four ML models (RF, GP, SVM, and NN) to 
estimate hot ductility of steel grades from its content and 
thermal history. Each model was optimized by tuning its 
hyper-parameters by preprocessing the data. First, all vari-
ables in the data were scaled to the range [0, 1], then the 
experimentally-measured RA values were changed to LTL, 
CT and HTL by applying Gaussian distribution. Then 
the most accurate version of each type of ML model was 
obtained by optimizing their hyper-parameters.

All four models predicted test data well after tenfold 
cross-validation, although the NN model showed better 
accuracy than RF, GP, and SVM in all three indicators of 

Table 3   Elemental composition 
(wt%) of steel

Steel Component

C Si Mn P S Nb Ti Cu Ni Cr

Steel 1 0.1 0.01 0.43 0.01 0.01 – – – – –
Steel 2 0.05 0.01 1.9 0.01 0.002 0.01 0.01 0.28 0.9 0.02
Steel 3 0.05 0.24 0.6 0.003 0.001 0.004 0.0026 0.012 9.2 0.01

Strain rate 
= 5x10-4 /s

Te
m

pe
ra

tu
re

 (
K

)

Time (Sec.)

1673 K
300 Sec. Holding 

0.5K/Sec.

60 Sec. 
Holding10K/Sec.

(a) (b)

10φ 8

r=2

10

90mm

15 15

Fig. 1   a Specifications of test specimen, and b heat-treatment conditions of tensile test
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LTL, CT and HTL. However, in tests on three steels that had 
not been used for training and testing, only the NN model 
predicted all three the ductility troughs well. The difference 
in results can occur due to the non-linearity of the data and 
of hot ductility. We infer that the results are influenced by 
the high-diversity of the data sets, and by the large number 

of characteristics compared to the number of data. Secondly, 
RA varies depending on the steel composition and operating 
conditions, so the correlation between the input and output 
parameters is very complex. Therefore, the model of NN 
that best expresses complex nonlinearity is most suitable 
for predicting hot ductility from steel composition and ther-
mal history. The proposed ML model in this study is more 
accurate than the physics-based models. This result shows 
that the ML model is a viable method to predict hot ductility, 
and to guide optimal control of secondary cooling conditions 
during continuous casting.
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