
Vol:.(1234567890)

Metals and Materials International (2021) 27:298–305
https://doi.org/10.1007/s12540-020-00713-w

1 3

Exploration of Machine Learning to Predict Hot Ductility of Cast Steel
from Chemical Composition and Thermal Conditions

Daegeun Hong1 · Sanghum Kwon2 · Changhee Yim1

Received: 11 February 2020 / Accepted: 23 March 2020 / Published online: 3 June 2020
© The Korean Institute of Metals and Materials 2020

Abstract 
This study explores the use of machine learning (ML) as a data-driven approach to estimate hot ductility of cast steel from
literature data. Four ML algorithms were used to predict hot ductility by considering elemental composition and thermal
conditions. Experimentally-measured reduction of area (RA) values were converted to a low-temperature limit, center-
temperature, and high-temperature limit, which were represented as Gaussian curves. The prediction accuracy of the four
ML models was evaluated using RMSE for these three output variables. In a case study of three steels that had different
contents of alloying elements, only the Neural-net model predicted the RA trough more accurately in all cases. These results
demonstrate the utility of ML models to predict hot ductility of cast steels.

Keywords  Prediction model · Data-driven inverse model · Random forest · Gaussian process · Support vector machine ·
Neural network · Gaussian fitting

1  Introduction

It is difficult to measure hot ductility considering various
chemical composition ranges and continuous casting condi-
tions of all commercially produced steels [1–3], so a more
efficient hot ductility prediction method is required. As an
alternative to existing physics-based and simple regression
method, data-driven approach is significant interest to steel
fields [4–10] by providing correlations among chemical
composition, operation conditions, and mechanical proper-
ties. It helps to find out the properties of the material with-
out performing any experiments. To analyze hot ductility,
traditional forward simulation models [3, 11–13] including
dynamic simulation models and state-space models simu-
late the physical behavior of steel by equations based on
heat transfer/material transfer. These forward models require
a lot of input variables and expertise to build a model.

Uncertainty is also accompanied by assumptions and sim-
plifications in the model construction.

On the other hand, data-based inverse models have been
tried to analyze the existing ductility behavior [14, 15]. The
inverse model implements a model using the observed input
and output data. Data-driven inverse models have received
a lot of attention in the field of model predictive control
[16] because they are easy to build. The advantage of this
approach is that the model can be flexibly constructed only
by the input and output variables selected by the simula-
tion performer. The inverse model is largely divided into
a regression model and a machine learning (ML) models
[16]. In particular, the ML method to search for the optimal
model based on the learning algorithm is used like pattern
recognition and data mining in various fields including steel
and material, and can approximate nonlinear behavior.

Machine learning (ML) models use learning algo-
rithms like pattern recognition to identify the relation-
ship between the dependent and independent variables
[16, 17]. ML models can describe systems that are have
strong nonlinearities [18] and can extract knowledge from
large datasets [19, 20]. Supervised learning is a method
of ML in which the algorithm is provided input data (e.g.,
casting conditions), and a clear statement of the output
(e.g., ‘cracked’ or not), so it has a clear objective when
it derives the model and predictions future response. The

 *	 Changhee Yim
	 chyim@postech.ac.kr

1	 Graduate Institute of Ferrous Technology, Pohang
University of Science and Technology, Pohang 37673,
Republic of Korea

2	 Steel Making Research Group, POSCO Research Institute,
Pohang 37859, Republic of Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s12540-020-00713-w&domain=pdf

299Metals and Materials International (2021) 27:298–305	

1 3

properties of a steel depend on its chemical composition
and the manner in which it is processed. These parameters
are numerous and complex.

Various ML models have been used in attempts to pre-
dict the mechanical properties from these parameters.
Examples include a random forest model (RF) [4] to pre-
dict the physical features of reduced activation ferritic/
martensitic (RAFM) steels [21], a Gaussian Process (GP)
[5] meta-model to predict the tensile yield strength of
Ferrium® PH48S [5], a Support Vector Machine (SVM)
[6, 7] to predict the tensile properties and yield strength
of RAFM steels [6], and a Neural Network (NN) [8–10]
to model the effects of elemental composition and ther-
mal conditions concerning tensile strength of low carbon
steels, and to assess the strength and particle size of hot
strip mill products [8].

However, few studies have been conducted to predict
reduction of area (RA). Examples include regression
model [22, 23] and a back-propagation NN [14, 15].
These methods have the limitation that the prediction
and judgment were made using one algorithm under a
narrow range of conditions. It is difficult to generalize
that the proposed methods are the best or optimal. There-
fore, this study builds four ML models (RF, GP, SVR,
NN) that analyze literature data related to hot ductility,
and compares their prediction accuracy, then explains the
characteristics and accuracy of each model and selects the
optimal ML model for hot ductility analysis.

2 � Materials and Methods

2.1 � Dataset

Data sets on hot ductility had been collected using a web-
based academic database. The terms such as hot ductility
and high temperature ductility had been employed to find out
from online scientific literature databases like ScienceDirect,
Scopus, and Springer. Hits were pruned to leave only data
from steel production. Then data that were incomplete, were
duplicates, or were of unknown origin were deleted. This
process left 4050 measurements of ductility according to
temperature with steel composition and experimental vari-
ables. A total of 4420 experimental data were collected by
adding 370 data obtained with the tensile test. The hot duc-
tility-prediction models, the dependent variables are the duc-
tility values according to temperature at 600 ≤ T ≤ 1200 °C;
independent parameters such as 16 compositions and five
process conditions (Table 1).

2.2 � Data Preprocessing

The ranges of variables were standardized using the Min-
MaxScaler [24]; this process avoids parameter distortion that
may occur in modeling due to different scales of variables.
The MinMaxScaler changes the data so that all the attrib-
utes range between 0 and 1. In an n-dimensional dataset, all
data are contained within a hyper-rectangle on a Cartesian
hyperplane, between the origin and 1 on all axes. First, the
raw data in vector x = (x1, x2, …, xn) are normalized as

Table 1   Parameters considered
in gathered data

Input variable Minimum Maximum Input variable Minimum Maximum

C 0.001 0.795 Heating temperature 1100 1600 °C
Si 0.006 3.200 Heat holding time 60 720 s
Mn 0.010 23.100 Cooling rate 0.08 40.0 °C/s
P 0.000 0.360 Cooling holding time 0.0 900.0 s
S 0.000 0.305 Strain rate 0.0001 0.5 1/s
Cu 0.000 1.420
Nb 0.000 0.200
Ni 0.000 36.220
Al 0.000 8.230
Mo 0.000 3.410
N 0.000 0.184
Cr 0.000 22.330
V 0.000 0.350
Ti 0.000 0.099
B 0.000 0.029
Sn 0.000 0.192

300	 Metals and Materials International (2021) 27:298–305

1 3

where x′
i
 represents the normalized value of xi, Max(xi) is its

highest value, and Min(xi) is its lowest value.
The goal of this study is to confirm thermal conditions that

do not put cast steels in the bending/unbending area of the
casting machine when their ductility has a low value. For the
most part of steel grades, RA is a U-shaped or V-shaped style.
Thus, even if the hot ductility follows a Gaussian curve, the
low-ductility region can be predicted easily. However, even
under the same thermal conditions, RA at each temperature
cannot be predicted using literature data because they include
variations depending on the researcher and the experimen-
tal apparatus. However, the overall trend of RA is the same
even if the accrual values different, Gaussian fitting can be
used to predict low-ductility regions. Therefore, to convert the
observed RA values into a Gaussian curve, Gaussian fitting
[25] is applied to convert them to low temperature limit (LTL),
center temperature (CT) and high temperature limit (HTL).
HTL represents the median of the maximum RA values, and
LTL is the median of the minimum values, and CT indicates
the mean of the Gaussian distribution. The ranges of LTL,
CT, and HTL calculated in this study were 510.7–918.9 °C,
677.2–977.1 °C, 740.3–1149.3 °C respectively.

3 � Data‑Driven Models

3.1 � RF

RF is an ensemble learning model that combines multiple
models, and combines multiple random decision trees [26].
The RF selects n data sets in a bootstrap manner that allows
random redundancy in a given learning data, then selects d
variables without allowing duplicates in the selected data sam-
ple. d is usually the square root of the total number of variables
in the given data [27]. The process of generating a decision
tree from the selected data samples is repeated k times. Then
the mean or multiple predictions are selected of the results
from the decision trees created in this way; this is called an
ensemble technique. Bootstrap Aggregating uses an ensemble
technique that combines multiple bootstrap samples into one
classifier; this method is called ‘bagging’.

Each decision tree node t is divided into a left child node
tL and a right child node tR. The optimal node segmentation
criterion S that derives the prediction value is calculated as

where p̂(t) is the conditional probability at node, nt is the
data size at node t, and zt is the average of the output values
at node t. Then the impurity function î(t) at node t is deter-
mined as Mean Squared Error (MSE)

(1)x�
i
=

xi −Min(xi)

Max(xi) −Min(xi)

(2)S = argmaxΔî(s, t) = î(t) −
[
p̂
(
tL
)
î
(
tL
)
+ p̂

(
tR
)
î
(
tR
)]
,

The important hyper-parameters in the RF model are the
number of decision trees used for bagging, and the depth
of decision trees. In general, the learning model’s accuracy
increases as the increase in the number and depth of decision
trees [26]. RF works well without much parameter tuning
and is not sensitive to the scale of the data. RF can calcu-
late the importance of independent variables [28]. RF can
obtain the type of independent variables used in all nodes
of the RF model and the increase in the amount of informa-
tion obtained from those nodes. The relative importance of
each independent variables can be obtained by comparing
the average increase in the amount of information that each
of them contributes [16].

3.2 � GP

Gaussian process assumes that the observed values appear
with a unique normal distribution at all-time series points.
[29]. GP studies interrelation with mean and covari-
ance for input and output variables. GP represents the set
f (X) =

{
(xi), … ,

(
xn
)
} of the output function f

(
xi
)
 for the

set X of the input values xi . In this case, each f
(
xi
)
 follows

a Gaussian distribution. GP is expressed as

where m(X) is the mean function of the set of output func-
tions, k(X,X) is the covariance function of X and X, The
average function of the output function set is

and the covariance function is

which can also be obtained by the covariance matrix

where k
(
xi, xk

)
 is the covariance kernel function of

xj(j = 1 ∶ n) and xk(k = 1 ∶ n) , or the Matern kernel

Hyper-parameters r and λ determine the amplitude and
twist of the model, respectively. In this study, the maximum

(3)î(t) =
1

nt

∑
xi∈t

(
yi − zt

)2
.

(4)f (X) ∼ GP(m(X), k(X,X)),

(5)m(X) = E
[
f (X)

]
,

(6)k(X,X) = E[(f (X) − m(X))
(
f (X) − m(X))T

]
,

(7)k(X,X) =

⎛
⎜⎜⎜⎝

k
�
x1, x1

�
k
�
x1, x2

�
⋯ k

�
x1, xn

�
k
�
x2, x1

�
k
�
x2, x2

�
⋯ k

�
x2, xn

�
⋮ ⋮ ⋮

k
�
xn, x1

�
k
�
xn, x2

�
⋯ k

�
xn, xn

�

⎞
⎟⎟⎟⎠
,

(8)

kMatern

�
xi, xk

�
=

21−�

Γ(�)

�√
2���xi − xk

��
l

��

K�

�√
2���xi − xk

��
l

�

301Metals and Materials International (2021) 27:298–305	

1 3

likelihood estimation (MLE) method is applied to estimate
r and λ. The GP model has the advantage of being able
to express the probabilistic attributes of the model by the
covariance function. However, as the number of training data
increases, computation time and computer memory usage
increase exponentially [29].

3.3 � SVM

SVM is a classification algorithm [30] that finds an optimal
hyperplane that maximizes the size of the margin between
categories and that includes as much data as possible within
the distance between support vectors [31]. This study uses
least-squares SVM [32]. The objective function was

where � is a weight vector that determines the size of the
margin, � is a normalization constant, e is the error between
the measured value and the predicted value, �(x) is a nonlin-
ear function that links the input space of the input variable x
into a high-dimensional feature space, and b is a bias value.

Kernel SVM is a form of SVM that uses kernels such as
Polynomial, Sigmoid, and RBF to compute in a high-dimen-
sional feature space without needing to calculate the coordi-
nates of the data in that space, but rather by easily operating
the inner product spaces [16]. Important parameters in the
kernel SVM are C and gamma. C determines the number
of data samples that can be placed in different classes. The
RBF kernel has one γ parameter, which is the inverse of the
Gaussian kernel width. Both γ and C adjust the complexity
of the model, and must be adjusted together. SVM can simu-
late high-dimensional nonlinear systems by using a small
number of data. However, the process of mapping data to a
high-dimensional plane requires a large amount of computa-
tion time and memory [32]. SVM has the disadvantage of
requiring careful preprocessing of and setting of parameters.

3.4 � NN

NN is a structure that computers are adopting to solve
problems in a way similar to how humans handle problems
through the brain. In this study, a basic multilayer percep-
tron model [33, 34] is used. It comprises an input layer that
accepts stimuli, an output layer that expresses response, and
a hidden layer that processes input to yield output. Each
layer consists of several nodes and is joined by weighted
connections to nodes in other layers [35, 36]. Input to the
input layer passes through an activation function to the hid-
den layer, which processes the input and sends it to the out-
put layer. NN model has two main processes. The first is a

(9)
argmin(�, e) =

1

2
||�||2 + 1

2
�

n∑
i=1

e2
i

subject to yi = �T�
(
xi
)
+ b + ei, i = 1,… , n,

feed-forward process that uses a series of input variables,
the hidden layer’s variables, the relationships (Connectiv-
ity, Weight) between each pair of variables, and Transfer
Functions. The second process is a backpropagation process,
which can increase the accuracy of calculations by respond-
ing to the difference between the calculated value and the
true value.

The objective function of the NN is to reduce the differ-
ence between the output values N(ω, xi) and the measured
value yi of NN by adjusting the weight ω between nodes:

where n is the number of data and x is the input value. In this
study, the backpropagation learning algorithm was applied
to find the optimal ω [37].

The main hyper-parameters of NN model are the type of
output function, the learning rate, the number of hidden-
layers, and the number of hidden-layer nodes [38, 39].
The advantage of NN is that they can capture information
embedded in large amounts of data and create very complex
models [40, 41]. However, data preprocessing is important
because all features work relatively well on homogeneous
data that have the same meaning. The parameters of NN
must be tuned carefully to avoid local optimization and over-
fitting [42].

4 � Evaluation

In this paper, the accuracy of each model is calculated by
Root Mean-Squared Error (RMSE) [19, 43–45]

where zi is the ith real RA, yi is the i-tth predicted RA, and N
is the number of test data. The RMSE is applied to estimates
of LTL, CT, and HTL for all four algorithms.

The evaluation results of ML models lead to the hyper-
parameter settings that control its complexity. Therefore, the
hyper-parameter setting should be optimized for each model
before they are compared. In this study, k-fold cross valida-
tion [19, 46] is used to optimize each model. This method
randomly divides the training data into k equal subsets, then
uses k-1 of them as training data and to predict the rest of the
data. The final average accuracy is calculated by averaging
the evaluation results obtained by repeating this process for
all k subsets.

This study used k = 10 for 80% of the training data. The
cross-validation was performed with varying hyper-param-
eters for each ML model, then they were applied to quantify

(10)argmin E(�) =
1

2

n∑
i=1

(
N
(
�, xi

)
− yi

)2
,

(11)RMSE =

�∑n

i=1

�
zi − yi

�2
N

302	 Metals and Materials International (2021) 27:298–305

1 3

their ability to predict the remaining 20% of the data. For
each ML method, the model with the highest average accu-
racy was identified as the model with the optimal hyper-
parameter setting for each ML method. Finally, optimized
model was evaluated by calculating its RMSE in predic-
tions of test data. All analyzes in this study used Scikit-learn,
Python’s ML library.

5 � Result

5.1 � Model Training

5.1.1 � RF

The important hyper-parameters in an RF model are the
number of decision trees and the highest depth of each
decision tree that is used for bagging. Typically, increas-
ing the number of trees and the depth of the tree improves
model accuracy. In this study, the RMSE error of tenfold
cross-validation decreased as the depth of decision tree was
increased; the average RMSE reached the saturation point
when the number of decision trees was 204 and the highest
depth was 24. Therefore, subsequent tests used 204 decision
trees and a model with a maximum depth of 24. Changes in
RMSE were also observed while changing parameters such
as the minimum number of samples needed to separate an
inner node and the lowest number of samples that should be
in the leaf node, the changes were not significant, so but the
default values 2 and 1 were used respectively.

5.1.2 � GP

The Gaussian-Process-Regressor API supports several ker-
nel combinations, each of which describes several attributes
of the data. This paper tested all combinations of kernels
supported by the API, and a white kernel that describes
noise in the data. The Matern kernel provided the best accu-
racy. The optimal hyper-parameter of each kernel was found
in the same way, and the noise level of the white kernel was
optimized to 0.0001. The Matern kernel showed the best
accuracy when the length scale of the kernel was 40 and
the parameter ν that controls the smoothness of the learned
function was 2.5.

5.1.3 � SVM

In this study, the RBF kernel was used for the SVR. Poly-
nomial and sigmoid kernels were tested, but the RBF ker-
nel showed the best accuracy (Table 2). To optimize the
accuracy of the SVR model, tenfold cross-validation was
performed while adjusting the hyper-parameter values C and
γ. The highest accuracy was achieved with C = 2.0 and γ with

a “scale” option. We tested other hyper-parameters in ker-
nels, but all showed the best accuracy at the default values.
Another hyper-parameter used in the RBF kernel is epsilon,
with a default of 0.1. It associates the epsilon tube with no
penalty in the training loss function with the estimated point
within the epsilon distance from the real value.

5.1.4 � NN

NN model used in this study is a multi-layered perceptron
containing an input layer, hidden layers, and an output layer.
The main hyper-parameters of this model are the number of
hidden-layers, the number of hidden-layer nodes, the acti-
vation function, the initializer, the learning rate, the drop-
out probability, and the batch size. The number of hidden
layers was increased from 2, and the average accuracy was
calculated by tenfold cross-validation while rising the node
number in each layer. Accuracy was highest with four hid-
den layers and 64 nodes. Higher numbers of hidden layers
or nodes resulted in overfitting. The activation function used
leaky relu (α = 0.2) because it showed better accuracy than
other activation functions. The He Initializer was selected,
because it is suitable for leaky-Relu. Optimized learning rate
was 0.0001 and optimal batch size was 32. For regulariza-
tion, early stopping using Dropout (keep probability = 0.75)
and Test Set Accuracy were used.

5.2 � Accuracy of the Models

This study compared the accuracy of RF, GR, SVM, and
NN four ML algorithms to predict LTL, CT, and HTL of
steels (Table 2). The evaluation results of the three indica-
tors in the NN model indicated the best accuracy. RMSE of
NN were: LTL = 20.6 °C, CT = 15.2 °C, and HTL = 27.6 °C.
The model of RF was the next most-accurate; it has a lower
accuracy according to the correlation between input vari-
ables than other models, which is considered to be influ-
enced by the characteristics of randomly selecting input
variables. RMSE of RF were: LTL = 32.7 °C, CT = 24.8 °C,
and HTL = 44.8 °C. The SVM and GP model had lower
evaluation result. RMSE of SVM were: LTL = 44.1 °C,
CT = 39.8 °C, and HTL = 68.3 °C. RMSE of GP were:

Table 2   Evaluation result of four machine learning models in terms
of accuracy

Model RMSE (standard deviation) [°C]

LTL CT HTL

RF 32.7 (3.4) 24.8 (3.4) 44.8 (3.2)
GP 46.6 (3.7) 43.7 (5.1) 80.1 (17.5)
SVM 44.1 (3.9) 39.8 (2.6) 68.3 (6.0)
NN 20.6 (1.4) 15.2 (1.8) 27.6 (2.9)

303Metals and Materials International (2021) 27:298–305	

1 3

LTL = 46.6 °C, CT = 43.7 °C, and HTL = 80.1 °C. NN seems
best to predict the hot ductility value, but all were evaluated
in a case study.

6 � Case Study

6.1 � Experimental Procedure

To test the accuracy of the four RA-prediction models,
additional high-temperature tensile tests were performed on
three steels not included in the previous training and test-
ing (Table 3). The test specimen was fabricated using steel
obtained by continuous casting (Fig. 1a). Tensile tests were
conducted by a Caster and Thermo-mechanical simulator
(40,334, Fuji Electronic Industrial, Saitama). Temperature
was elevated to 1673 K (1400 °C) at 10 K/s, kept for 300 s
at 1673 K, then reduced to 873–1273 K at 0.5 K/s (Fig. 1b).
They were kept at the temperature for 60 s, then subjected
to tensile strain of 5 × 10−4 until they broke. RA was gauged
for each fractured specimen.

6.2 � Analysis of Four Models

The models showed different accuracies in prediction of the
ductility troughs of three steels. Steel 1 is an unalloyed steel
that typically exhibits a trough shape with the lowest RA
at 1073 K (800 °C) (Fig. 2a). For this steel, all four models
predict new experimental values well. Steel 2 has a small

amount of added alloying elements, and has a wider ductil-
ity trough (Fig. 2b) than Steel 1; all models predicted this
tendency, although their predictions differ slightly. Steel 3
contains a large amount of alloy metals, and a wide ductility
trough (Fig. 2c); only the NN predicted new data adequately.

These results suggest that the NN model is more accurate
than the other models for prediction of complex cases that
can occur when a large amount of alloy is added. A current
trend in steelmaking is to increase the content and diversity
of alloying elements to meet the changing requirements of
steels. The NN model seems able to anticipate the ductility
behavior of these novel steels.

7 � Conclusion

This paper has presented development, optimization, and
evaluation of four ML models (RF, GP, SVM, and NN) to
estimate hot ductility of steel grades from its content and
thermal history. Each model was optimized by tuning its
hyper-parameters by preprocessing the data. First, all vari-
ables in the data were scaled to the range [0, 1], then the
experimentally-measured RA values were changed to LTL,
CT and HTL by applying Gaussian distribution. Then
the most accurate version of each type of ML model was
obtained by optimizing their hyper-parameters.

All four models predicted test data well after tenfold
cross-validation, although the NN model showed better
accuracy than RF, GP, and SVM in all three indicators of

Table 3   Elemental composition
(wt%) of steel

Steel Component

C Si Mn P S Nb Ti Cu Ni Cr

Steel 1 0.1 0.01 0.43 0.01 0.01 – – – – –
Steel 2 0.05 0.01 1.9 0.01 0.002 0.01 0.01 0.28 0.9 0.02
Steel 3 0.05 0.24 0.6 0.003 0.001 0.004 0.0026 0.012 9.2 0.01

Strain rate
= 5x10-4 /s

Te
m

pe
ra

tu
re

 (
K

)

Time (Sec.)

1673 K
300 Sec. Holding

0.5K/Sec.

60 Sec.
Holding10K/Sec.

(a) (b)

10φ 8

r=2

10

90mm

15 15

Fig. 1   a Specifications of test specimen, and b heat-treatment conditions of tensile test

304	 Metals and Materials International (2021) 27:298–305

1 3

LTL, CT and HTL. However, in tests on three steels that had
not been used for training and testing, only the NN model
predicted all three the ductility troughs well. The difference
in results can occur due to the non-linearity of the data and
of hot ductility. We infer that the results are influenced by
the high-diversity of the data sets, and by the large number

of characteristics compared to the number of data. Secondly,
RA varies depending on the steel composition and operating
conditions, so the correlation between the input and output
parameters is very complex. Therefore, the model of NN
that best expresses complex nonlinearity is most suitable
for predicting hot ductility from steel composition and ther-
mal history. The proposed ML model in this study is more
accurate than the physics-based models. This result shows
that the ML model is a viable method to predict hot ductility,
and to guide optimal control of secondary cooling conditions
during continuous casting.

References

	 1.	 Z. Li, P. La, J. Sheng, Met. Mater. Int. (2020). https​://doi.
org/10.1007/s1254​0-020-00662​-4

	 2.	 S.C. Seo, K.S. Son, S.K. Lee, Met. Mater. Int. 14, 559 (2008)
	 3.	 B. Kim, S. Jeong, S. Park, Met. Mater. Int. 25, 201 (2019)
	 4.	 C. Wang, C. Shen, X. Huo, C. Zhang, W. Xu, Nucl. Eng. Technol.

(2020). https​://doi.org/10.1016/j.net.2019.10.014
	 5.	 F. Yan, Y.C. Chan, A. Saboo, J. Shah, G.B. Olson, W. Chen,

CMES. 117(3), 343–366 (2018)
	 6.	 S.F. Long, M. Zhao, X.F. He, Comput. Mater. Continua (CMC)

58, 727–760 (2019)
	 7.	 L. Wang, Z. Mu, H. Guo, J. Univ. Sci. Technol. Beijing Miner.

Metall. Mater. 13(6), 512–515 (2006)
	 8.	 M.R. Toroghinejad, M.B. Esfahani, Rijeka: Artificial Neural Net-

works: Industrial and Control Engineering Applications (Intech,
London, 2011)

	 9.	 P.Y. Chou, J.T. Tsai, J.H. Chou, IEEE Access. 4, 585–593 (2016)
	10.	 T. Thankachan, K. Sooryaprakash, Arab. J. Sci. Eng. 43(3), 1335–

1343 (2018)
	11.	 S.I. Hong, Met. Mater. 6, 275–279 (2000)
	12.	 X.P. Li, J.K. Park, J. Choi, Met. Mater. 5, 25–32 (1999)
	13.	 S.C. Seo, H.J. Kim, B.H. Park, Met. Mater. Int. 12, 273 (2006)
	14.	 Z. Sterjovski, D. Nolan, K.R. Carpenter, J. Mater. Process. Tech-

nol. 170, 536–544 (2005)
	15.	 S.H. Kwon, D.G. Hong, C.H. Yim, Ironmak. Steelmak. 22, 1–2

(2019). https​://doi.org/10.1080/03019​233.2019.16993​58
	16.	 A. Muller, S. Guido, Sebastopol (O’Reilly Media, California,

2016)
	17.	 K. Ažman, J. Kocijan, ISA Trans. 46(4), 443–457 (2007)
	18.	 D. Michie, D.J. Spiegelhalter, C.C. Taylor, Machine Learning,

Neural and Statistical Classification (Ellis Horwood, New York,
1994)

	19.	 A. Agrawal, P.D. Deshpande, A. Cecen, G.P. Basavarsu, A.N.
Choudhary, S.R. Kalidindi, Integr. Mater. Manuf. Innov. 3, 8
(2014)

	20.	 A. Muller, S. Guido, Sebastopol (O’Reilly Media, California,
2016)

	21.	 Q. Liu, X. Zhang, B. Wang, in Science and Technology of Casting
Processes, ed. by M. Srinivasan (InTech, London, 2012)

	22.	 C. Spradbery, B. Mintz, Ironmak. Steelmak. 32, 319–324 (2005)
	23.	 Q. Liu, X. Zhang, B. Wang, in Science and Technology of Casting

Processes, ed. by M. Srinivasan (InTech, London, 2012)
	24.	 Z.W. Xu, X.M. Liu, K. Zhang, IEEE Access. 7, 47068–47078

(2019)
	25.	 L. Lawrence, J. Mach. Learn. Res. 6, 1783–1816 (2005)
	26.	 N. Brieman, Mach. Learn. 45(1), 5–32 (2001)
	27.	 L. Breiman, Mach. Learn. 24(20), 123–140 (1996)

Fig. 2   Comparison of experimental (points) and modeling results
(lines) of a Steel 1, b Steel 2 and c Steel 3

https://doi.org/10.1007/s12540-020-00662-4
https://doi.org/10.1007/s12540-020-00662-4
https://doi.org/10.1016/j.net.2019.10.014
https://doi.org/10.1080/03019233.2019.1699358

305Metals and Materials International (2021) 27:298–305	

1 3

	28.	 G. Louppe, Doctoral dissertation, University of Liège Liège, Bel-
gium, 2014

	29.	 C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for
Machine Learning (MIT Press, Cambridge, 2006)

	30.	 E. Ceperic, V. Ceperic, A. Baric, IEEE Trans. Power Syst. 28(4),
4356–4364 (2013)

	31.	 H. Wang, D. Hu, in Proceedings of the International Conference
on Neural Networks and Brain, vol. 1 (2005)

	32.	 L. Bottou, C.J. Lin, Large Scale Kernel Machines (MIT press,
Cambridge, 2007)

	33.	 N. Buduma, Sebastopol (O’Reilly Media, California, 2017)
	34.	 E. Maleki, O. Unal, Met. Mater. Int. (2019). https​://doi.

org/10.1007/s1254​0-019-00448​-3
	35.	 C.H. Park, D. Cha, M. Kim, Met. Mater. Int. 25, 768–778 (2019)
	36.	 P.L. Narayana, C. Li, J. Hong, Met. Mater. Int. 25, 1063–1071

(2019)
	37.	 S. Singh, H. Bhadeshia, D. MacKay, H. Carey, I. Martin, Ironmak.

Steelmak. 25, 355–365 (1998)
	38.	 F.D. Foresee, M.T. Hagan, in Proceedings of the International

Conference on Neural Networks (1997)
	39.	 M. Mesbah, A. Fattahi, A.R. Bushroa, Met. Mater. Int. (2019).

https​://doi.org/10.1007/s1254​0-019-00495​-w

	40.	 Y.C. Lin, H. Yang, D. Chen, Met. Mater. Int. (2019). https​://doi.
org/10.1007/s1254​0-019-00435​-8

	41.	 P.J. Angeline, G.M. Saunders, J.B. Pollack, IEEE Trans. Neural
Netw. 5(1), 54–65 (1994)

	42.	 X. Yao, Proc. IEEE 87(9), 1423–1447 (1999)
	43.	 N. Sandhya, V. Sowmya, C.R. Bandaru, G.R. Babu, Int. J. Recent

Technol. Eng. 8(3), 235–241 (2019)
	44.	 I. Santos, J. Nieves, Y.K. Penya, P.G. Bringas, in ICCAS-SICE

2009: ICROS-SICE International Joint Conference 2009 (2009)
	45.	 S. Guoa, J. Yub, X. Liuc, C. Wang, Q. Jiang, Comput. Mater. Sci.

160, 1–8 (2019)
	46.	 J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, NPJ

Comput. Mater. 5, 1–36 (2019)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12540-019-00448-3
https://doi.org/10.1007/s12540-019-00448-3
https://doi.org/10.1007/s12540-019-00495-w
https://doi.org/10.1007/s12540-019-00435-8
https://doi.org/10.1007/s12540-019-00435-8

	Exploration of Machine Learning to Predict Hot Ductility of Cast Steel from Chemical Composition and Thermal Conditions
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Data Preprocessing

	3 Data-Driven Models
	3.1 RF
	3.2 GP
	3.3 SVM
	3.4 NN

	4 Evaluation
	5 Result
	5.1 Model Training
	5.1.1 RF
	5.1.2 GP
	5.1.3 SVM
	5.1.4 NN

	5.2 Accuracy of the Models

	6 Case Study
	6.1 Experimental Procedure
	6.2 Analysis of Four Models

	7 Conclusion
	References

