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Abstract 
Present study investigates a comparative study of lower and higher-order strain gradient plasticity (SGP) theories involving 
the size-dependent micromechanically flexural behaviors of crystalline thin plates. The investigation includes the Mechanism-
Based and the Chen–Wang SGP models established on the Taylor dislocation hardening by evoking the statistically stored 
dislocations and geometrically necessary dislocations. In addition, these models are conjugated with a multiple plastic 
work-hardening law proposed for the microstructural applications of the SGP. An analytical approach based on energy 
minimizing method is used for obtaining deflection values in terms of the length scale, exponent of the work-hardening and 
the tangential module. The obtained results indicate a meaningful dependence of the deflections to the length scale, plastic 
work hardening and other parameters as well.

Keywords Crystalline thin films · Strain gradient plasticity · Length scale · Bending · Micro-plate · MSG theory · Chen–
Wang hardening law

1 Introduction

Small-scale deformable structures have found tremendous 
applications in instrumentation and biosensors, micro-/
Nano-electromechanical systems, and the atomic force 
microscopes [1–4]. There are few micromechanical theories 
available for the plastic flexural modeling of crystalline thin 
plates. Although some delicate operations have now manipu-
lated for extremely small cases with the advent of advanced 
instruments, exploring material behaviors being possible 
at these scales are of interest for engineering design [5]. 
On the other hand, metallic and glassy thin films have been 
paid more attentions to explore their perspective properties 
in past decades. Some experiments done for understanding 
mechanical behaviors of the materials displaying significant 
size effect [6]. Some of related reports were prepared for 
micro bending [5, 7, 8], indentation process [9], wire torsion 
[10, 11] and film bulge test [12], bucking of micro plate [13] 
and bucking of micro beam [14]. In the indentation test on 

thin film, Huber [15] found that the yield stress increases by 
decreasing the film thickness. Another experimental work 
shows that for the plates with one or several holes exposed 
tension, decreasing the size of hole caused to enhancing the 
flow stress [16, 17].

Since classical plasticity do not possess the internal mate-
rial length scale, micromechanical modeling through theories 
of the classical continuum mechanics would not be success-
ful. Therefore, the large number of theories were developed 
in terms of strain gradient elasticity (SGE) and SGP frame-
works to solve the size-dependent structural problems. From 
primary research endeavors such as the work reported in [18], 
it is found that making a connection between the internal 
length scale and micro-structure may be provided through a 
multiplication term to high-order of the strain gradient terms. 
Actually, in the equations of gradient framework, the order 
gradient of necessary parameter with related coefficients 
can represent the material size-effect in such a way that two 
types of non-local continuum theories can take potentially 
opportunity to be developed. We strictly offer references of 
[5, 13] to review an encompassing literature about different 
types of the SGP theories. Here, due to diversity of the length 
scale-dependent continuum theories, we only draw reader’s 
attentions to the phenomenological types extended on the J2 
plasticity, and other continuum models derived from crystal 
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plasticity approaches such as [19–21] are not reviewed. Gen-
erally, there are two categories of SGP known as low-order 
and higher-order theories. In the lower-order SGP, the plastic 
modulus for a work hardening phenomenon is only modified 
by incorporating the plastic strain-gradients [22]. Therefore, 
the forms of boundary conditions and surface traction remain 
as the same of traditional models.

A Taylor based nonlocal theory was introduced by Gao 
and et al. [23, 24] named as Mechanism-based strain gradi-
ent (MSG) plasticity. This theory is divided in two main 
branches in the micro and mesoscales. At first, flow strength 
is suitably rearranged to accounting for simultaneously GND 
and SSD, without incorporating high order stresses. At sec-
ond, the models are somewhat large to conjoin the gradi-
ent of strain fields to notion of the GND and to construct a 
constitutive model based on the Taylor-dislocation hypoth-
eses. Recently, Darvishvand and Zajkani [14] introduced a 
size-dependent plastic buckling behavior of micro-beams 
by using the conventional mechanism-based strain gradient 
(CMSG) plasticity that were introduced firstly by Huang 
et al. [25]. They also analyzed permanent flexural deflec-
tion of MEMS actuators established on the CMSG plasticity 
[5]. Chen and Wang [26] introduced a new hardening law 
which is originated from general framework of couple stress 
theory in SGP based on the J2 deformation theory. Here, 
we abbreviate it by CWSGP. The expected efficiency of this 
model is dependent on proper adopting boundary conditions 
of the problem.

By developing the principle of the virtual work, the 
higher-order SGP are conducted to conjugate higher order 
stresses with the plastic strain gradients by involving extra 
boundary conditions and traction to be interfered in the 
balance law. In the work conducted by [27], a consider-
able explanation of the model was presented to apply yield 
condition through accounting for both second and fourth-
order gradients for the equivalent plastic strain rate. Actu-
ally, they are utilized instead of conventional infinitesimal 
elasticity and the classical flow rule. By using the rotation 
gradients and couple stress concepts, a physical-based 
descriptions of the SGP introduced by [28–30]. Gudmund-
son [31] generalized the Fleck and Hutchinson (FH) model 
[29, 30] for isotropic materials in such a way that the flow 
direction becomes collinear with the sum of the deviatoric 
Cauchy stress tensor and the divergence of moment stresses 
(or higher order stresses) associated with the plastic strain 
gradient.

On the other hands, some elasto-plastic analyses have been 
found in [32–36]. Mao [37] investigated the influence of SGP 
on the flexural response of micro-beam. In addition, Chen and 
Feng [33] and Vakil and Zajkani [8] analyzed the bending 
responses of the cantilevered micro beams using the CWSGP 
theory. Vakil and Zajkani [8] produced a micromechanically 
motivated CWSGP model by implementing an intermediate 

mixture TTO law to define ductile-like plastic behavior of 
Titanium-boride/titanium functionally graded crystalline 
materials. Also, the elastoplastic behaviors of the microbeams 
were proposed based on the couple stress (CS) by [38] as well 
as the MSG theories by [39]. Recently, the CWSGP is further 
developed to consider the damage effect induced by deforma-
tion. In order to give readers a comprehensive understanding 
of CWSGP, the authors suggest reviewing the proper refer-
ences [40–42] in this area.

On the base of author’s surveying, there are not valuable 
theoretical studies for the plastic responses of the microfilms in 
such a way that are modeled among the microplate kinematic 
frameworks. On a contrary, there are some to extend a lot of 
work about elastic behaviors of micro scale structures based 
on the strain gradient elasticity. In this study, obtained results 
of the plastic bending of the microplates will be compared by 
two lower and higher-order SGP. Therefore, the MSG theory 
will be used for the highest order and the Chen–Wang model 
for the lower-order theories of the SGP. In addition, the effect 
of the elastic foundation is investigated individually.

2  Theoretical Framework

Corresponding to sizes of the plate and films, we can catego-
rize like to Fig. 1.

2.1  Structural Kinematics

The plastic bending of simply-support microplate will be stud-
ied based on both MSG and Chen–Wang (CW) theories. The 
Kirchhoff kinematics is selected to define displacement fields 
of the plate at first

So, components of linear strain can be obtained as

Moreover, the deviatoric strains are evaluated in the fol-
lowing forms:
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The effective plastic strain and stress can be equivalently 
calculated by regarding the known Von-Mises criterion:

By substituting relation (3) into (4), the effective strain 
can be produced

A schematic microplate, which is exposed under distrib-
uted transverse loading and is resting on elastic foundation, 
has been illustrated in Fig. 2.

Corresponding to the Fig. 2, the work due to the loading 
is obtained as [43]:

In addition, we apply a substrate layer that surrounds 
the main sheet. The surrounding elastic medium is gen-
erally modeled as Winkler-type elastic medium. The 
Winkler-type elastic foundation is approximated as a 
series of closely spaced, mutually independent, verti-
cal linear elastic springs. The elastic medium modulus 
is represented by stiffness of the springs. However, this 
model is considered as a crude approximation of the true 
mechanical behavior of the elastic material. This is due to 
inability of the model to take into account the continuity 
or cohesion of the medium. The interaction between the 
springs is not taken into account in Winkler-type elastic 
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medium. A more realistic and generalized representation 
of the elastic medium can be accomplished by the way 
of a two-parameter elastic medium model. Thus, two-
parameter elastic medium model is preferred. One such 
physical elastic medium model is the Pasternak-type elas-
tic medium model. The first parameter of Pasternak elas-
tic medium model represents the normal pressure while 
second parameter accounts for the transverse shear stress 
due to interaction of shear deformation of the surrounding 

Fig. 1  Categorization of the 
films

Fig. 2  The microplate over the elastic medium under transvers bend-
ing load
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elastic medium. Pasternak-type model is physically real-
istic representation of the elastic medium. Further, it is a 
mathematically simple model for analyzing the surround-
ing elastic medium. In this model, existence of shear inter-
action among the spring elements is accomplished by con-
necting the ends of the springs to a beam or plate that only 
undergoes transverse shear deformation. The load–deflec-
tion relationship is obtained by considering the vertical 
equilibrium of a shear layer. Successful use of the Paster-
nak-type elastic medium model for simulating the interac-
tion of the surrounding elastic medium were reported in 
[44, 45] for bending and vibration analyses of microplates 
and in [46] for nanovibration of multi-layered graphene 
sheets. Complete review of Winkler’s foundation and its 
profound influence on adhesion and soft matter applica-
tions has been introduced in [47]. For example, applicabil-
ity of Winkler’s foundations has been described by using 
morphology of tree frog toe pads showing a microstructure 
that consists of an epidermis with hexagonal epithelial 
cells. In another work, a functionalized graphene FET 
enzymatic glucose biosensor was stabilized through silk/
GOx film and silk substrate, which can be modeled by the 
Pasternak medium [48].

It is modeled through two linear elastic mediums of the 
Winkler and Pasternak formulations as follows (as shown 
in Fig. 2):

where Kw indicates the Winkler spring and KG denotes the 
Pasternak shear modules. In addition, the work of the elastic 
foundation is considered as

Accordingly, total work can be calculated as

3  Mechanism‑Based Strain Gradient (MSG) 
Plasticity

The Taylor’s dislocation-based hardening model was pro-
posed by Gao and Nix [18] through generalization of the 
Peach–Koehler force for a critical definition of resolved 
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shear stress among distance between an interacting domi-
nant moving dislocation pair 

(
L0
)
 . The model was named 

as the MSG expressed in terms of the SSD and GND, 
which these densities are denoted by �S and �G , respec-
tively (see the work produced by Darvishvand and Zajkani 
[13])

where �T  implies on the total dislocation density and 
0.1 ≤ �0 ≤ 0.5 is a material constant. Also, � and b indi-
cate the shear modulus and Burgers vector, respectively. In 
addition, the density of �G can be evaluated versus effective 
plastic strain gradient � and Nye-factor r̄ [39] as

Taylor factor M can relate flow stress �flow versus the shear 
flow stress

For FCC metals M = 3.06 [49, 50]. In the absence of the 
strain gradient, the above relation descends to the classical 
plasticity as follows

where 𝜎Y f (�̄�) provides the stress–strain curve in uniaxial 
tension ( �Y denotes initial yield stress, and f represents a 
non-dimensional function of the effective plastic strain �̄� ). 
By substitution of above relations, we have [13] 

where l shows material length scale

The following simple power law is proposed for describ-
ing the isotropic hardening behavior:

where N indicates the exponent the plastic work hardening. 
Therefore,

So, proportional to the displacement field attributed in 
Eq. (1), we can drive the strain gradients 
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According to derivations reported by Vakil and Zajkani 
[8], the deviatoric part of the strain gradient is defined as

Combining above relations leads to extract components 
of the deviatoric strain gradients as

In addition, the effective strain gradient becomes:
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Substituting elations (22) into Eq. (23) results

where

Using the Von-Mises yield surface in the deformation 
theory of the MSG plasticity gives

According to the MSG plasticity as the same of scheme 
employed in references [13, 51], the stress tensor is evalu-
ated by adding the deviatoric and hydrostatic parts

where K denotes the elastic bulk modulus vanishing at the 
plastic area. The components of the non-vanishing parts 
(deviatoric stresses) are expressed as
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Now, by substituting the stress and strain values, we can 
evaluate

Since the main nonlinearity source of the problem comes 
from the complicated radical part of the above equation, it 
can be converted to simple expression of power functions 
by means of short expansion of the twofold Taylor series:

Thus, substituting the relation (34) into (33) and integrat-
ing at z-direction, results

where
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4  The Chen–Wang (CW) Hardening Model

Upon the material dimension decreases to the micron level, a 
strong dependency of the material behavior on the size effect 
will be evidently revealed. The influence of length scale 
parameter on the SGP approach is enough effective to inves-
tigate drastic microstructural behaviors. However, the strain 
gradient theory proposed by Chen and Wang (CWSGP) is 
derived originally from a general couple stress framework [8], 
but it incorporates a hardening law by a new phenomenologi-
cal way [26]. Since, the CWSGP is configured based on the 
J2 deformation theory, it is excepted that sufficient boundary 
conditions should be adopted to generate satisfactory accuracy, 
as compared to available experiments by Fleck et al. [10] and 
Stolken and Evans [7].

According to primary definitions, the time derivative of the 
stress is defined as
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Also, it’s constant the c1 and

Here, lcw and l1 define the intrinsic length scales devoted 
for the rotation and stretch gradients, respectively. Also, �e is 
defined as a second invariant of the curvature, as

where

Therefore, the equivalent curvature is calculated as
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The equivalent strain gradient in the CW theory is as

In addition, time integration of the relation (39) leads to 
obtain the following hardening law of the Chen–Wang (CW) 
theory:

The CW model is categorized in the lower order SGP theo-
ries established over J2 deformation theory. So

Therefore, we have

By multiplying the stresses into corresponding deviatoric 
strains, we have

By replacing relations (52) into the strain energy and using 
relations (11), and (37), we have:
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and
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Fig. 3  The comparisons of dimensionless deflections of the plate; w/h 
for MSG theory versus the normalized variable length scales l/h con-
cerning elastic medium
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5  Solution Methodology

Due to complicated nonlinear terms in the total potential 
energy, the Rayleigh–Ritz method is implemented for cal-
culating approximate solution. In this method, it is suit-
able to choose necessary functions satisfying geometrical 
boundary conditions. Then, by minimizing the functional 
of total potential energy in terms of the desirable displace-
ments, one can obtain a homogeneous set of equations. 
In many problems of elastoplastic domains, the following 
simple base function is proposed for the simply-supported 
plate:

(57)w(x, y) = wsin
(
�

a
x
)
sin

(
�

b
y
)
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Fig. 6  The comparisons of dimensionless deflections for the CW 
theory versus the normalized variable length scale l/h concerning the 
effect of elastic medium
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medium

0 0.02 0.04 0.06 0.08 0.1

0

60

120

180

240

300

ε

σ (M
Pa

)

l/h=0.3  with medium
l/h=0.3  without medium
l/h=0.6 with medium
l/h=0.6 without medium

Fig. 8  The comparisons of the effective stresses versus the effective 
strain for the CW theory related two cases with medium and without 
it for two value of the normalized length scale

0 10 20 30 40 50

0

2

4

6

x/h

w/h
l/h=0.3 C-W
l/h=0.3 MSG
l/h=0.6 C-W
l/h=0.6 MSG
l/h=0.9 C-W
l/h=0.9 MSG

Fig. 9  The comparisons of dimensionless deflections versus the nor-
malized variable length scale; l/h related two CW and MSG theories

0 0.02 0.04 0.06 0.08 0.1

0

75

150

225

300

ε

σ (M
Pa

)

C-W theory

MSG theory

Fig. 10  The comparison of the CW and MSG theories for the effec-
tive stress versus the effective strain (l/h = 0.5)



1401Metals and Materials International (2021) 27:1392–1402 

1 3

Eventually, we can obtain the displacement parameters 
by substituting relation (57) in the total potential energy 
and applying the Rayleigh–Ritz method: ��∕�w = 0.

6  Results and Discussions

At the previous section, we obtained the government rela-
tions for the plastic bending of microplate in two ways of 
MSG theory and CW hardening model. Now, the results of 
present study are introduced as well as comparison between 
two theories. Figure 3 shows that how vertical displacement 
may effect from the length scale for N = 0.2 by the MSG 
theory. Figures 4 illustrates the dimensionless deflections 
of the beam for the l∕h = 0.5 versus the variable exponents 
of the plastic work hardening.

The comparisons of the effective stress for the MSG the-
ory in terms of the effective strain are plotted in Fig. 5. The 
results include elastic medium for two value of the normal-
ized length scale for N = 0.2.

According to the Ref. [33], the value of c1 is so small 
due to being small amounts of the length scale as com-
pared to the rotation gradient length scale so we consid-
ered it to h∕c1 = 20 . In Fig. 6 the normalized deflections 
have been illustrated versus the normalized length scale for 
Ep = 0.45 Gpa with the Chen–Wang model. In Fig. 7, the 
normalized deflection is plotted versus the variable values of 
the tangency module;Ep and for this case we have l∕h = 0.5 . 
Curves in the Fig. 8 show the effect of length scale on stress 
for Ep = 0.45 Gpa. Also in all mentioned figures, the effect 
of medium is showed. These results are for a∕h = 10 and 
a∕b = 1 and q∕�Yhb = 0.001 . For the medium value of the 
parameter Kw = 2.5 MPa and KG = 5 nN.

Corroding to the Figs. 3 and 6 in two model by increas-
ing the length scale, vertical displacement is decreasing. In 
addition, the effect of length scale and medium on deflec-
tion in MSG theory is more significant. At the end, we 
present comparisons between two mentioned theories in 
Fig. 9 for normalized deflection and Fig. 10 for the effec-
tive stress–strain. Also,

For comparison of the critical force between two theo-
ries, we should consider the plastic work hardening expo-
nent N = 1 and a plastic module for � = 45.

It is clear that the effect of length scale on deflection 
for the CW model is more tangible than the MSG model. 
These comparisons have been performed for b∕h = 10 , 
a∕b = 1 and q∕�Yhb = 0.001.

(58)Ep =
d𝜎

d�̄�
= tan𝜃 = N�̄�N−1

7  Conclusion

In this paper, plastic bending analysis of the microplates 
was predicted by using two Chen–Wang and Mechanism-
Based strain gradient plasticity theories. The kinemat-
ics of the model was established on Kirchhoff formula-
tion. Because of being many nonlinear terms in potential 
energy, analytical solution was impossible and we had 
to use Ritz method to obtain deflection. We showed the 
effect of length scale, work hardening exponent and plastic 
module on vertical displacement. Moreover, the influence 
of the Pasternak and Winkler foundations were regarded 
accounting for the elastic medium on deflection and stress 
fields.

For the similar geometry and material properties, we 
concluded that the MSG theory anticipated values of 
deflections of the micro plates more rather than the CW 
model. While the influence of material length scale in the 
CW theory was more important than MSG theory. In addi-
tion, the CW theory predicted the effective stress higher 
than the MSG. It is indicates that there is more tangible 
internal resistance for deflection.

The difference found in results is primarily due to the 
difference between CW theory and MSG/CMSG theory, 
not the difference between a lower-order theory and a 
higher-order SGP theory. In other words, the authors found 
similar differences between the lower-order CMSG and 
lower-order CW SGP.

This comparative study offer a simple benchmark model 
to examine permanent plastic behavior of the small size 
structures. These considerations can be developed in other 
aspects of the plasticity in metal forming process and plas-
tic instability investigations that are interest of research 
in future.
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