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Abstract
In the present study, the main purpose is to detect the most key factors of shot peening (SP) process on the microhardness, 
grain size, and residual stress of AISI 1060 high carbon steel. The specimens were treated using various types of SP process 
namely conventional shot peening and severe shot peening. Several experiments were performed to study metallurgical and 
mechanical properties of AISI 1060 steel. Almen intensity and surface coverage from one side and microhardness, grain 
size, and residual stress from the other side were considered as input and output parameters for the design of experiment 
methodology, respectively. The L18(21 and 31) mixed level of Taguchi orthogonal array design was used to study all cases. 
The test results were investigated by signal-to-noise ratio formula. It was identified that the surface coverage is the most key 
factors for shot peening process considering the affected depth. Also, the effect of this parameter on the microhardness, grain 
size and residual stress was obtained approximately 68, 89 and 57%, respectively. Eventually, the results obtained from all 
Taguchi sensitivity analysis indicated that it would be better to adjust the surface coverage factor in comparison with Almen 
intensity factor in order to create the surface compressive residual stress on the material and consequently to increase the 
fatigue lifetime of component using shot peening treatment.
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1 Introduction

AISI 1060 high carbon steels have the common use areas 
particularly cam shafts, drive train shafts and axles, crank 
shafts and velocity joints. Automotive and air-craft appli-
cations requires the material for dynamically loaded parts. 
Surface treatments such as deep rolling [1], with pre-post 
heat treatment [2], grinding-hardening processes [3] and 
laser processing [4] have been applied to improve the sur-
face characteristics. Some of the processes might adversely 
affect the surface due to very high/low temperatures dur-
ing applications. Therefore room temperature mechanical 

surface treatments (shot peening, UNSM and etc.) have the 
advantages to change the surface characteristics without any 
distortion interior by high/lwo temperature applications [5].

Shot peening, which is widely employed in different 
industries, is a cold working process caused by the impacts 
of small shots on the component surfaces with controlled 
parameters [6–8]. Generally, different parameters including 
air projection pressure, shot diameter, flow rate, and peening 
duration have to be regarded in use of the air blast shot peen-
ing equipment [9, 10]. In the SP process, to avoid too many 
variables, two parameters of Almen intensity (affected by 
projection pressure, shot diameter, and flow rate) and surface 
coverage (affected by peening duration time) are regarded 
as only major items in control [11–14]. Based on the values 
of above-mentioned parameters, the severity of applied SP 
is specified which is usually categorized into two sets of 
CSP and SSP that employs the surface coverage of 100% 
and N × 100% (N = 2, 3 …), respectively [15, 16]. Although 
both CSP and SSP processes have beneficial effects on the 
majority of materials properties, it has been proven that the 
SSP has superior effects than CSP in mechanical properties 
and high cycle fatigue life (HCFL) improvements [17–22].
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Studies on the importance of various SP parameters on 
mechanical and metallurgical properties of metallic materials 
have been carried out via applying different techniques such as 
finite element method (FEM), response surface methodology 
(RSM), multi-criteria decision making (MCDM), and artificial 
neural networks (ANN).

Jebahi et al. [23] have presented a robust methodology to 
simulate 3D random shot peening process using coupling 
model of discrete element method (DEM) and finite ele-
ment method (FEM). The representative elementary vol-
umes (REVs) have been used to reduce the target component 
geometry made of SAE 1070 spring steel in finite element 
simulation and in order to decrease computational costs, 
DEM has been utlizied to model a large number of rigid 
shots. Eventually, the residual stress distribution has been 
presented in an Al7075-T73 disk specimen which is peened 
with S230 steel shots and 200% coverage. They showed that 
the compressive residual stress due to SP process will be 
disappeared in the depths of less than 0.5 mm. Wang et al. 
have investigated the grain refinement of AISI 4340 steel 
induced by SSP process including various surface coverage 
(200, 650, and 1000%) [24]. The results of this study have 
shown that for all shot peening cases with consider different 
impact angles, the grain size will be converged in the depth 
range of 300–500 microns. On the other hand, the influ-
ence of different types of SP processes on the grain size is 
maximally up to a depth of 500 microns. Murugaratnam 
et al. [25] have optimized the shot peening parameters (shot 
diameter, nozzle distance, initial velocity, and mass flow 
rate) using a couple model of DEM-FEM. Also, normalized 
residual stress �xx∕�0 have been presented in terms of depth 
for different impact angles (35, 45, 62.5, 67.5, 75, and 90) 
of shots on the surface material. The results demonstrated 
that inaction depth of negative residual stress also increases 
by raising the impact angle so that the minimum (0.54 mm) 
and maximum (0.9 mm) inaction depth are related to the 
impact angle of 35 and 90 degrees, respectively. Moreover, 
the surface roughness generated by shot peening process has 
been studied experimentally and numerically [26]. Response 
surface method has been employed to optimize the shot 
peening parameters [27]. It has been predicted that the vari-
ables of “air pressure”, “peening duration x air pressure”, 

and “shot diameter x air pressure” are the most significant 
parameters of Almen intensity. Therefore, the air pressure 
plays a crucial role in determining Almen intensity. Also, the 
most effective parameter on surface hardness of the material 
is also the air pressure which is expressed Almen intensity 
parameter of the shot peening process. Moreover, a complex 
decision-making tool has been used to perform shot peening 
optimization by Unal and Maleki [28]. Fatigue behavior of 
shot peened mild carbon steels has been studied using axial 
fatigue testing data and artificial neural netwroks [29]. The 
results showed that in the SP process, the effect of surface 
coverage (69%) on the fatigue life of a group of mild car-
bon steels (AISI 1045 and 1050) is greater than the Almen 
intensity with a 31% influence. Regarding the parameters of 
material properties including ultimate stress, yield stress, 
and carbon content are the most effective parameters with 
a 49, 32, and 19% influence, respectively. The technique of 
ANN has been used to model the CSP and SSP effects on 
the properties of AISI 1060 steel [30]. In the mentioned 
study, different quantities such as rate of training, number of 
layers and various types of hidden and output transfer func-
tions (i.e. linear, logsig, and tansig) have been investigated in 
order to achieve the best structure for accurate modeling of 
the SP process. In addition, this technique has been used to 
model and predict the mechanical and metallurgical proper-
ties of 18CrNiMo7-6 steel [31].

Although a wide range of studies are performed in 
literature, the nature of shot peening process prevents to 
construct certain boundaries between the parameters of 
the process against hardness, residual stress and grain size 
distribution. The outputs are always to be kept under high 
precised control according to the desired purpose. Accord-
ing to the desired outputs technical inputs (air rpessure, 
surface coverage, shot size and etc.) have to be optimized 
for each process and each materials to be applied. There-
fore, in the present study, a sensitivity analysis was per-
formed on the effective parameters of SP process which 
affect hardness, grain size, and residtual stress of the sur-
face to the depth of material. Experimental data of shot 
peened carbon steel AISI 1060 were employed to create 
the Taguchi method.

Table 1  Chemical composition 
of AISI 1060 high carbon steel 
(wt%)

C Si S P Mn Ni Cr Mo Fe

0.57–0.65 0.40 0.035 0.035 0.60 0.40 0.40 0.10 Bal.
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2  Experiments

2.1  Material and Specimens

AISI 1060 high carbon steel is employed in this study and 
its chemical composition is presented in Table 1. The speci-
mens were fabricated from a hot-rolled sheet in a rectangular 
shape with dimensions of 10 × 20 mm and 6 mm thickness. 
Specimens were quenched from 850 °C in oil, tempered at 
310 °C for 1 h, and then ground by a very soft grinder.

2.2  Shot Peening Treatments

Shot peening treatments were carried out with different con-
ditions. SAE J443 standard was used for determination of 
Almen intensity [32] and the related effective parameters of 
accomplished SP treatments are presented in Table 2.

2.3  Microstructural Characterizations

Microstructural characterization was performed by VEGA\\
TESCAN-XMU scanning electron microscope (SEM) and 
field emission scanning electron microscopy (FESEM) 
using Mira 3-XMU. Specimens were etched by 2% Nital 
before microscope observations. Also, XRD measurements 
and high-resolution transmission electron microscope were 
applied to determine the grain size at the treated surfaces. 
To apply XRD analysis, X’Pert PRO MPD (PANalytical) 
X-ray diffractometer system and X’Pert High Score Plus 
(V. 3) analyzer were used with Cu Kα radiation operated at 
40 kV and 40 mA, the scanning angle of 30º–150º and irra-
diated area of 10 mm. To apply HRTEM, specimens were 
ion polished up to the thickness of about 60 µm via disc 
grinding. HRTEM was performed using JEOL JEM 2100 
High-Resolution Transmission Electron Microscope oper-
ated with 200 kV operation condition. The mean grain size 
was evaluated from layers within a vertical range of 10 µm 
with total counts of 75 measurements.

2.4  Hardness and Residual Stress Measurements

Hardness measurements were carried out via microhardness 
tester of Qness GmbH Q10 with a load of 10 gf and duration 
of 8 s using Vickers indenter on the surface and in depth up 
to 400 µm for achievement of the hardness profile. Residual 
stresses were measured by utilizing Xstress 3000 G2/G2R 
X-ray Stress Analyzer (radiation Cr Kα, irradiated area of 
4 mm diameter, diffraction angle (2θ) ~ 156°, and ψ scanned 
between 45° and − 45°). Moreover, the operation of remov-
ing layers was done considering the intervals of 20 µm via 
electro-polishing in order to determine the residual stresses in 
the depth of SP treated component.

3  Design of Experiment Based on Taguchi 
Method

The Taguchi method was employed to determine the effect 
of different parameters of the SP process (wt%) on the metal-
lurgical and mechanical properties of SAE-AISI 1060 steel. 
Previously in this field, Sun et al. [33] have optimized laser 
shock peening via finite element method and Taguchi method. 
Parameters of laser power, pulse width, and laser shot diameter 
have been used as the input parameters and the surface residual 
stress has been regarded as an output parameter. Jamaluddin 
et al. [34] have improved the quality of the shot blasting pro-
cess by applying Taguchi approach and performing various 
tests. Pathak and Munjadas [35] have optimized parameters of 
SP process on the Al 2024 alloy specimens which the effects 
of shot size, shot velocity, impact angle, and shot distance on 
the surface residual stress and surface roughness were inves-
tigated in their study. Also, the influences of SP parameters 
(shot diameter, speed, and duration of treatment as time) have 
been investigated on the surface roughness and tensile strength 
of Aluminum 6061 as well [36]. Empirical studies have been 
done on the SP parameters for welded austenitic stainless steel 
in association with surface hardness and static strength [37]. In 
addition to the above parameters, the flow rate is also gathered 
as an effective parameter of the SP process [38]. The effects 
of SP parameters on the ultimate strength of low carbon steel 
have been explored by applying tensile tests on v-notched 
specimens (angle and depth of notch are 45 degrees and 2 mm, 
respectively) [39].

In this study, two variables with different levels (Almen 
intensity with two levels and surface coverage with three lev-
els) are used to create the Taguchi method. All measurement 
were performed in every 60 µm intervals from the surface 
to the depth of 420 µm and Taguchi sensitivity analysis was 
repeated in every depth. The most influence parameter was 
specified in every depth separately for microhardness, grain 
size, and residual stress results. Moreover, the low-effect 
parameter was determined in each depth. Generally, there 
are some well-known criteria such as nominal-the-better, 

Table 2  Effective parameters of accomplished SP treatments

Treatment no. Almen intensity 
(0.001 mm A)

Surface coverage 
(%)

SP treat-
ment 
type

1 17 100 CSP
2 17 700 SSP
3 17 1500 SSP
4 21 100 CSP
5 21 700 SSP
6 21 1500 SSP
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the smaller-the-better, and the larger-the-better ratios of S/N 
for quantifying of the quality [40–43]. Here, with a view to 
minimizing the grain size, the smaller-the-better criterion 
was employed for the calculation of S/N ratios using Eq. (1) 
[44, 45]:

and with a view to maximizing the microhardness and resid-
ual stress, the larger-the-better criterion was employed for 
the calculation of S/N ratios using Eq. (2):

(1)S/N = −10Log
[

1

n

(
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1
+ y2
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/
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]

where y1, y2,… , yn represent the measured bent angles in the 
bending process, and each bending condition is repeated for 
n times and then in each parameter level, the main effects of 
S/N ratios were analyzed and plotted.

4  Results and Discussion

4.1  Experimental Findings

SEM, FESEM, and HRTEM methods were used for 
microstructure observation of the treated specimens. In 
Fig. 1, all images of SEM, FESEM, and HRTEM are pre-
sented. Figure 1a shows the comparison of the as-received 
and treated specimens with Almen intensity of 21A and 

Fig. 1  Microstructural observa-
tions of the as-received and 
shot-peened specimens through 
different methods of a SEM, b 
FESEM, and c HRTEM
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different coverages. It can be seen in Fig. 1b (cross-sec-
tional FESEM images), CSP treatments caused to gener-
ate a refined grain layer below the upper surface of the 
material that patently specified by work-hardened layers. It 
can be observed that by enhancing the SP process kinetic 
energy, the grain size is decreased and the surface is 
become compacted more and more. In the SSP treatments 
which in this study have 700 and 1500% coverages for 
every considered intensities including 17 and 21A, distinct 
layer isolated with sharp boundaries from the underlying 
plastically deformed layer that demonstrates dense struc-
ture layer beneath the surface, as reported by Saitoh et al. 
[46]. To specify the variations of the grain size in depth, as 
previously reported by Maleki et al. [19, 20], two different 
techniques of XRD analysis and TEM observations were 
used. In the surface of severely treated specimens, XRD 
measurements (Fig. 2) were applied and after obtaining the 
values of full width at half maximum (FWHM) and 2-theta 
for each sample, grain size was calculated by Scherer’s 
equation as follows:

where d is apparent size of the crystal, λ is the wavelength 
of the x-radiation (i.e. λCu–Kα1.54 Å), B is the corrected 
FWHM, θ is the diffraction angle, and K is a constant (its 
value is close to one; i.e. 0.94). β can be obtained from 
observed FWHM by convoluting Gaussian profile which 
models the specimen broadening βr, as follows:

where β0 is observed broadening and βi is instrumental 
broadening.

According to the XRD analysis and using Scherer’s 
equation, average sizes of crystallites of the severely 

(3)dXRD = K �∕� Cos�

(4)�2
r
= �2

0
−�2

i

shot-peened specimens are determined and presented in 
Table 3.

The grain size in the specimens treated with CSP pro-
cesses was determined via HRTEM observations. Fig-
ure 1c reveals the HRTEM images of the conventionally 
treated specimens. According to the all mentioned above 
and microstructural characterizations, the deformed, 
unblurred and properous to amorphous transformation 
layer is created and thickened by higher SP severity. The 
layer compactness, complexity and thickness bring grain 
refinement effectivity in the literature studies. The grain 
size evaluation by crsytallite size investigations pre-
sents and supports the assessment of the microstructural 
approach. According to the applied microstructural char-
acterization through different approaches, several experi-
ments, and also results of XRD measurements, the grain 
size was achieved in each shot-peened specimens at dif-
ferent depths.

In addition, from the surface to depth of 420 µm in every 
60 µm intervals, variations of microhardness and residual 
stress were determined. The interval range of 0–420 µm was 
chosen because most of the changes have occurred in the val-
ues of mentioned parameters (microhardness, residual stress, 
and grain size). In this way, variations of these parameters 
in the shot-peened specimens with different intensities of 17 
and 21A and various coverages of 100 and 1500% are shown 
in Fig. 3 and all detailed results are reported in “Appendix”. 
It is seen that by enhancing both Almen intensity and cover-
age values, more grain refinement is accomplished and also 
the values of hardness and compressive residual stress are 
increased remarkably.

4.2  Taguchi Analysis

In the present study, Almen intensity with different lev-
els of 17 and 21A and surface coverage with three levels 
including 100, 700, and 1500% were considered as input 
variables for Taguchi analysis. The L18(21 and 31) mixed 
level of Taguchi orthogonal array design was used to create 
the test algorithm as shown in Table 4. This technique is 
efficient and costs saving due to the minimum number of 
experimental specimens in comparison with the full factorial 

Fig. 2  Intensity distribution of as-received and severely treated speci-
mens

Table 3  FWHM and crystallite sizes of specimens peened with SSP 
treatments

Shot peening parameters 2 θ (°) FWHM (°) Crystallite 
size (nm)

17 A, 700% 44.653 0.117 82
17 A, 1500% 44.534 0.194 48
21 A, 700% 44.601 0.182 52
21 A, 1500% 44.588 0.210 45
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design method. As shown in “Appendix”, various experi-
ments at the material surface up to depth were performed 
for different DOE cases to study metallurgical and mechani-
cal properties of high carbon steel including measurement 
of microhardness, grain size, and residual stress. It is clear 
that compressive residual stresses induce at the surface layer 
after various types of SP process; but, in order to perform 
Taguchi analysis, all parameters should have positive values. 
Hence, instead of using negative residual stresses, the posi-
tive values of compressive residual stress were employed.

Taguchi sensitivity analysis was performed at differ-
ent depths and the plots of signal-to-noise (S/N) ratios for 
Almen intensity and surface coverage in all of the consid-
ered outputs are presented in Fig. 4. For microhardness, 

it is clear that the effect of SP goes to zero by increasing 
of depth from the surface which is seen in both images of 
Fig. 4a and the system responses to a certain value, when 
the measured depth is greater than 420 µm. In the analysis 
of grain size variations, according to Fig. 4b, all lines related 
to the parameter of Almen intensity are almost straight. This 
subject expresses that different levels of Almen intensity 
factor have a very low effect on the grain size of shot peened 
samples. Also, the same result can be extended to the surface 
coverage factor for measured depths of more than 300 µm. 
For residual stress analysis, according to Fig. 4c, when the 
measured depth is lower than 60 micrometers, different lev-
els of surface coverage factor have not affected the compres-
sive residual stress. On the other hand, the residual stress 

Fig. 3  Variations of microhardness, grain size, and residual stress in 
depth for the shot-peened specimens with different treatments includ-
ing a Almen intensity of 17 A and coverage of 100%, b Almen inten-

sity of 17 A and coverage of 1500%, c Almen intensity of 21 A and 
coverage of 100%, and d Almen intensity of 21 A and coverage of 
1500%
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value on the surface and in the depth near the surface only 
depends on the value of Almen intensity.

The creation of compressive residual stress on the sur-
face of the materials is the main reason for applying SP 
in various industries besides the other structural integri-
ties (such as mechanical properties improvements). The 
fatigue life of materials can be increased by raising the 
compressive residual stress at the component surfaces 
[7, 29, 47–49]. Hence, Taguchi sensitivity analysis was 
performed for different shot peening parameters to deter-
mine the most effective parameter on the value of surface 

compressive residual stress. In Fig. 5a–c, efficiency per-
centage of both Almen intensity and surface coverage are 
presented in every depth. Eventually, it can be concluded 
that the surface coverage factor of shot peening process 
has the most influences on the microhardness and grain 
size at different depths. However, residual stress in differ-
ent depths has different behavior so that on the top surface 
to the depth of less than 120 µm, the parameter of Almen 
intensity is more effective and in the range of 120–420 µm 
depths, coverage factor has more importance. Also, the 
overall effects of intensity and coverage in the whole con-
sidered depths from 0 to 420 µm are determined and illus-
trated in Fig. 5d that shows coverage has more efficiency 
than intensity.

Based on the investigation of whole obtained experimen-
tal results and Taguchi analysis, schematic diagram of effects 
of different applied SP treatments on AISI 1060 on grain 
refinements as well as the influences of Almen intensity and 
coverage on the material properties such as hardness, grain 
size, and residual stress at different depths is illustrated in 
Fig. 6. The colored boxes in the table presented in Fig. 6 
show the more efficient parameter in each considered depth 
on the output parameters of microhardness, grain size, and 
residual stress.

5  Conclusion

In the present study, the influences of shot peening param-
eters on properties of high carbon steel were investigated 
by using the Taguchi method. In order to develop a Tagu-
chi approach, Almen intensity and surface coverage were 
considered as inputs and the microhardness, grain size, and 

Table 4  The L18(21 and 31) 
mixed level of Taguchi 
orthogonal array design

Experiment no. Factor

A B

1 1 1
2 1 1
3 1 1
4 1 2
5 1 2
6 1 2
7 1 3
8 1 3
9 1 3
10 2 1
11 2 1
12 2 1
13 2 2
14 2 2
15 2 2
16 2 3
17 2 3
18 2 3
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residual stress were gathered as output parameters. After-
ward, various types of tests were performed for several cases 
of shot peened AISI 1060 steel. Achieved results show that:

• Surface coverage is the most key factors for shot peening 
process. And its weight values are 68, 89 and 57% for 
microhardness, grain size, and residual stress, respec-
tively.

• Shot peening influence goes to zero by depth increasing 
more than 420 micrometers in AISI 1060 high carbon 
steel.

• Different levels of Almen intensity factor will not effect 
on the grain size of shot peened samples. The same result 
can be extended to the surface coverage factor for meas-
ured depths of more than 300 micrometers.

• Almen intensity factor is more efficient to create the com-
pressive residual stress on the top surface layer.

Fig. 4  Effects of Almen intensity and surface coverage on the a microhardness, b grain size, and c residual stress of shot peened AISI 1060 steel 
subjected to different treatments
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