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Abstract
We report a combined manual annotation and deep-learning natural language processing study to make accurate entity 
extraction in hereditary disease related biomedical literature. A total of 400 full articles were manually annotated based on 
published guidelines by experienced genetic interpreters at Beijing Genomics Institute (BGI). The performance of our manual 
annotations was assessed by comparing our re-annotated results with those publicly available. The overall Jaccard index was 
calculated to be 0.866 for the four entity types—gene, variant, disease and species. Both a BERT-based large name entity 
recognition (NER) model and a DistilBERT-based simplified NER model were trained, validated and tested, respectively. 
Due to the limited manually annotated corpus, Such NER models were fine-tuned with two phases. The F1-scores of BERT-
based NER for gene, variant, disease and species are 97.28%, 93.52%, 92.54% and 95.76%, respectively, while those of 
DistilBERT-based NER are 95.14%, 86.26%, 91.37% and 89.92%, respectively. Most importantly, the entity type of variant 
has been extracted by a large language model for the first time and a comparable F1-score with the state-of-the-art variant 
extraction model tmVar has been achieved.
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1  Introduction

With the rapid development of next-generation sequencing 
technology, the cost of interpreting the clinical signifi-
cance of hundreds of thousands of genomic variants has 
become an obvious bottleneck for genetic testing [1–3]. 
There are dozens of well-established biological databases 
that are curated and maintained by researchers, which 
facilitate the interpretation of genomic variants. However, 
the knowledge provided by these valuable data resources 
is quite limited [4–9]. Literature in biomedical domain 
still serve as a huge repository to store tremendous knowl-
edge for genetic variant interpretation. As a result, it poses 
great challenge for genetic interpreters to search litera-
ture manually for relevant evidences for a given variant. 
For instance, genetic testing and interpretation are pivotal 
to understand tens of thousands of hereditary diseases. 
To our best knowledge, although about 90% hereditary 
disease related variants can be interpretated with public 
database, the rest 10% hereditary disease related variants 
still require manual literature evidence search, which is 
essentially a rate-determining step for genetic variant 
interpretation. Therefore, it is quite helpful to make litera-
ture evidence searching more efficient. In the biomedical 
domain, one primary application of natural language pro-
cessing (NLP) is to identify entities in literature [10–13], 
which is the critical step to develop literature evidence 
searching tools [14].

As the main tool of entity extraction in free texts, name 
entity recognition (NER) has long received considerable 
attention in NLP [10, 15–18]. Web-based services such as 
Pubtator, LitVar and Pubtator Central (PTC) were launched 
to automate annotations of literature by combining exist-
ing text mining tools that were developed with rule-based 
and machine-learning-based NER techniques [4, 19–22]. 
The F1-scores of NER for gene, variant, disease and spe-
cies that PTC achieved were reported as 86.70%, 86.24%, 
83.70% and 85.42%, respectively [19]. It is obvious that 
there is still room to improve the performance of such 
techniques due to their limitation of contextualized infor-
mation [23]. In the past few years, deep-learning neural 
network (DNN) such as bidirectional long and short term 
memory (BiLSTM) combined with conditional random 
field (CRF) have greatly improved performance in NER, 
but the constraints of sequential computations remain a 
problem [11–13, 24–26]. In 2018, Google proposed a new 
self-attention-based language representation model called 
BERT, which pretrained deep bidirectional representa-
tions from unannotated texts and then fine-tuned them 
on annotated texts [27]. BERT has created state-of-the-
art models for a wide range of NLP tasks [27]. In 2019, 
BioBERT was reported to pretrain and fine-tune pretrained 

BERT representations on biomedical texts, demonstrating 
that it is crucial to pretrain BERT on biomedical corpora 
when applying it to the biomedical domain [28]. However, 
owing to the scarcity of data with multiple entity types 
annotated, the fine-tuning stage of BioBERT was trained 
for each entity type individually. In particular, BioBERT 
fine-tuning was not applied to variant extraction due to 
the shortage of variant-annotated corpus, although variant 
is an extremely important entity type for genetic variant 
interpretation [28]. In the same year, BioBERT team also 
reported the web-based tool called BERN to tag entities 
in PubMed articles or raw texts, relying on tmVar 2.0 to 
extract variants and BioBERT to extract other entity types 
such as gene, species, disease and drug [29]. In 2022, 
BERN was further updated into BERN2 by simply merg-
ing its five training sets of all entity types except variant 
to support parallel inference [30].

In spite of the high performance of BERT-based NER 
models, training such large models usually consumes quite a 
few of computing resources and faces significant challenges 
when it comes to limited computing resources such as on-
device real-time applications [31]. A key solution to this 
problem in artificial intelligence (AI) community is knowl-
edge distillation, in which a small model, so called the stu-
dent model, is trained to keep the same knowledge of a larger 
counterpart—the teacher model [31]. There are a bunch of 
distilled versions of BERT such as BERT-PKD [32], Distil-
BERT [33], TinyBERT [34], and BERT-EMD [35]. It was 
reported that DistilBERT reduced the size of a BERT model 
by 40%, while retaining 97% of its language understand-
ing capabilities and being 60% faster [33]. Furthermore, the 
interpretability of model distillation can be evaluated using 
various methods such as comparing the similarity of results 
between the teacher model and the student model [36].

Here we report a combined manual annotation and deep-
learning NLP study to make accurate entity extraction for 
hereditary disease related biomedical literature, which is a 
critical step to build a literature evidence tool to interpret 
the variants associated with hereditary diseases. A total of 
400 full biomedical articles were manually annotated based 
on published guidelines. The interested entity types include 
gene, variant, disease and species, which are all critical 
for genetic variant interpretation. The performance of our 
annotation was evaluated by comparing our re-annotated 
results with those publicly available [20, 21, 37–40]. Both 
a BERT-based large model and a DistilBERT-based coun-
terpart were trained and optimized for offline and online 
inference, respectively. Offline inference refers to the pro-
cess of generating prediction for all the observations at one 
time whereas online inference is to handle one observation 
at a time. The F1-scores of the DistilBERT-based NER 
model retain 97.8%, 92.2%, 98.7% and 93.9% of those of 
BERT-based NER for gene, variant, disease and species, 



335Interdisciplinary Sciences: Computational Life Sciences (2024) 16:333–344	

respectively. Most importantly, the entity type of variant has 
been extracted by a large language model for the first time. 
The three major contributions are summarized as follows:

1.	 We present a manual annotated dataset of 400 hereditary 
disease related PubMed full articles for gene, variant, 
disease and species.

2.	 We provide an optimized large BERT-basded NER 
model to extract genes, variants, diseases and species in 
hereditary disease related biomedical literatures.

3.	 We provide an optimized small DistilBERT-basded NER 
version to extract genes, variants, diseases and species 
in hereditary disease related biomedical literatures.

2 � Methods

2.1 � Annotated Data Acquisition

Annotated literature in this study were obtained in two ways: 
(1) our manual annotation, (2) downloading from public 
resources. The manually annotated and downloaded corpora 
were used for Phase II and Phase I model finetuning, respec-
tively, as is elaborated in 2.3 NER model section. The details 
about annotated data acquisition are as follows:

2.1.1 � Our Manual Annotation

Our annotation was focused on four entity types, namely, 
gene, variant, disease and species. All the annotators have 
had at least five-year experience in interpreting genetic 
testing reports at Beijing Genomics Institute (BGI). The 
annotating procedure was based on published guidelines, 
namely, GnormPlus/BioCreative II GN for gene, tmVar 
2.0 for variant, NCBI disease for disease and Linnaeus 
for species [20, 21, 38, 39]. There were two major modi-
fications with regards to disease and variant annotation. 
For one thing, previous experts were encouraged to 
use their domain knowledge, as well as any other pub-
lic resources such as UMLS and Wikipedia to annotate 
disease concepts in NCBI Disease Corpus [38] while our 
annotators required diseases to be included in profes-
sional databases such as Mondo Disease Ontology [41], 
HPO [42], Orphanet [43], Disease Ontology [44], and 
OMIM [45]. Particularly, diseases and phenotypes were 
differentiated to improve the accuracy of annotation. For 
instance, blistering, nail dystrophy and patchy alopecia in 
PMID:9457914 were annotated as diseases in NCBI Dis-
ease Corpus whereas they were annotated as phenotypes 
in our corpus because of their records in the HPO database 
as HP:0008066, HP:0008404, HP:0002232, respectively. 
For the other thing, while variant concepts in natural 
language were not annotated but those poorly described 

were included in tmVarCorpus [21], variants described in 
free texts were annotated in our corpus as long as specific 
variants can be obtained such as “Gly in the 163 site was 
replaced by Ser”. In the cases where there was insufficient 
information about variants, variants were not annotated 
to avoid ambiguous descriptions that may mislead subse-
quent analysis. In order to validate our annotations, part 
of four publicly available corpora corresponding to gene, 
variant, disease and species were re-annotated [20, 21, 38, 
39]. The details are described in Results Section.

A total of 400 full hereditary disease related articles on 
PubMed were annotated. To minimize the variability in 
annotations by different annotators, the same sample articles 
were first annotated by all annotators to generate the anno-
tating standards within the team. The workflow of manual 
annotation is shown in Fig. 1. The whole annotating process 
was started with literature search on PubMed. There were 
four steps to retrieve interested articles: (1) Specific genes 
and the word of “mutation” were searched as key words on 
https://​pubmed.​ncbi.​nlm.​nih.​gov. Specific genes referred to 
the common genes such as SMN1, DMD, PAH and G6PD 
in common single gene diseases or hereditary cancers. 
(2) The results were divided into subgroups of five years 
with the “RESULTS BY YEAR” filter and only full texts 
were selected with the “Free full text” option in the “TEXT 
AVAILABILITY” category. (3) Five to eight articles were 
randomly selected in each subgroup. (4) Only the articles 
with more than one variant entity were chosen. The inter-
ested articles were then annotated with PTC [19], serving 
as the initial corpus for manual annotation to facilitate our 
annotating speed. In the early stage of our annotation, the 
strategy of three-person manual annotation was adopted. 
Specifically, the same batch of articles were assigned to two 
annotators independently. If the annotations of a full article 
agreed with each other, the annotated article would be ready 
for random inspection; otherwise, the discrepant annotations 
would go to a reviewer for correction before being added to 
the batch of articles for random inspection. It is noted that 
the reviewer also gave the feedback to the original annota-
tors to make sure their annotation strategies would be well 
aligned over time. In the middle and late stages of our anno-
tation, the strategy of two-person manual annotation was 
employed for higher efficiency, in which only one annota-
tor and one reviewer were involved for annotating. Subse-
quently, a certain number of annotated articles in a batch 
were randomly inspected. The whole batch were aggregated 
into the annotated corpus only when quality control was 
completed. In the “two-person manual annotation” strategy, 
two annotators finished a set of 22 full articles individually 
and then compared their results. The inter-annotator agree-
ment was 98.3%. In the “three-person manual annotation” 
strategy, three annotators annotated another set of 14 full 
articles, reaching 93.1% agreement.

https://pubmed.ncbi.nlm.nih.gov
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The overall annotating process is still time consuming. 
On average, it took an annotator 40–45 min to finish one 
article and 20–25 min to review one article. In practice, the 
three-person manual annotation and the two-person annota-
tion strategies were implemented on 200 articles, respec-
tively. Therefore, it took approximately 120 h per annotator 
to annotate all the 400 biomedical articles.

2.1.2 � BERN‑annotated PubMed Abstracts

Due to the small size of our manually annotated corpus, 
online machine automatically annotated corpora were also 
downloaded and trained prior to fine-tuning on our manual 
annotations, as is discussed later in 2.2.1 Section. It is 
worth noting that the downloaded corpora and our manual 
annotations should not be overlapped to prevent data leak-
age between two phases of fine-tuning. The selected data-
set was 549,587 BERN-annotated PubMed abstracts in the 
year of 1978 and 1979 corresponding to pubmed19n0001.
json ~ pubmed19n0018.json [29]. These BERN-annotated 
abstracts did not have overlap with our manually annotated 
400 articles which were published after the year of 1990. 
There were two major reasons why chose the abstracts in 
the years of 1978 and 1979 instead of choosing among all 
the years from 1978 to 2019 randomly. On one hand, we 
believe these two data selection strategies should work 
similarly because the pretrained model prior to our Phase I 

fine-tuning model was learned from the abstracts in all the 
years from 1978 to 2019. This hypothesis was confirmed 
with the comparison of model metrics between the Phase 
I models that were built on the abstracts in the years of 
1978 and 1979 and those randomly chosen among all the 
years from 1978 to 2019 (Supplementary Stable 1). On the 
other hand, practically, the current data selection strategy 
helps annotators to simplify their future annotating work 
by avoiding checking if every article they select is over-
lapped with any of the randomly selected articles. Instead, 
they only need to avoid the known years. In addition, due 
to the sparsity of the overall annotated variants in the Pub-
Med abstracts, the sentences containing the entity type of 
variant in the abstracts spanning the years from 1980 to 
2019 but not in our 400 annotated articles were also col-
lected as part of the BERN-annotated PubMed corpus to 
increase the number of variants.

2.2 � Data Preprocessing

Both 549,587 BERN-annotated abstracts and our anno-
tated 400 articles were divided into train/validation/test 
datasets at the ratio of 7:2:1 randomly for model training, 
validating and testing for Phase I and Phase II model of 
BERT, respectively. All the corpora were converted into 
CoNLL format and labeled using BIO format [46].

PTC* is the abbreviation of Pubtator Central
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Fig. 1   the workflow of manual annotation. PTC* is the abbreviation of Pubtator Central
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2.3 � NER Model

In order to build NER predictive models for both offline 
inference and online inference, a large model and a compact 
model were designed correspondingly, namely, BERT-based 
NER and DistilBERT-based NER, as is shown in Fig. 2a. 
Both model frameworks contain two steps of training—pre-
training and fine-tuning with two phases. Due to the rich 
knowledge obtained in pretraining, fine-tuning enables 
models to deal with downstream tasks with limited samples, 
which is the intuition behind transfer learning. All models 
in this study were trained, validated and tested on NIVIDIA 
Quadro RTX 6000 GPUs.

2.3.1 � BERT‑based NER

Our NER model is a pretrained language representa-
tion model based on BERT for biomedical literature [28]. 
The details about the model architecture of BERT were 
reported [27]. Briefly, BERT is a contextualized word 
representation model featuring a multi-layer bidirectional 
Transformer encoder (Fig. 2b) as its major model architec-
ture and a marked language model for pretraining tasks. 
BioBERT was pretrained on PubMed abstracts and PubMed 

Central full-text articles using BERT weights as initial 
model weights [28]. BioBERT was demonstrated to store 
both general and biomedical knowledge [28].

In our NER model, the weights of pretrained model 
BioBERT v1.1 were loaded as the pretrained parameters. 
In the finetuning step, similar to BioBERT, wordpiece 
embeddings that divide a word into several sub-words were 
employed so as to recognize both known and out-of-vocabu-
lary words. As is displayed in Fig. 2b, the model architecture 
is characteristic by twelve encoder layers with self-attention 
multi-heads. All the encoder layers and self-attention heads 
have proven to capture different levels of input features such 
as surface, syntactic and semantic information [27].

However, there were three major modifications of our 
NER model compared to BioBERT in the fine-tuning step. 
Firstly, the labels for our NER model included the entity 
type of variant, which is extremely significant to interpret 
genetic diseases but was missing in BioBERT due to the 
shortage of an annotated dataset. Secondly, instead of pre-
dicting each entity type separately in BioBERT, our NER 
model trained all four entity types jointly in a single model, 
generating representations that captured invariant proper-
ties to tasks by sharing features. In order to demonstrate the 
performance of the joint NER model of the four entity types, 
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Fig. 2   a the schematic of BERT-based and DistilBERT-based name 
entity recognition (NER) pipelines, corresponding to the solid and 
empty arrows, respectively. The BERT-based model is much larger 
than the DistilBERT-based model so that the former better fits offline 
inference while the latter can serve online inference. The NER mod-
ule contains the steps of pretraining and finetuning with two phases 
due to the relatively small dataset size for Phase II in the finetuning 
step. b The structure of BERT the inputs are embedded into token 
vectors and position vectors and then are fed into a 12-layer encoder 

which consists of multiple self-attention heads. c The structural 
details of knowledge distillation The teacher model (BERT) contains 
12 layers while the student model (DistilBERT) has 6 layers. The 
well pretrained weights of the 2nd, 4th, 6th, 8th, 10th and 12th layers 
of the teacher model are transferred as the initialized weight of the 
student model. The output logits of the last layers of both the teacher 
and student models are used to calculate the total loss of the model 
according to Loss = 5.0 ∗ LKLDiv + 1.0 ∗ LCOS + 2.0 ∗ LCE
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both joint modeling and separate modeling were conducted. 
Finally, instead of only one phase in the fine-tuning step, our 
NER model consisted of two phases for fine-tuning. That 
is, the model was first fine-tuned on 549,587 BERN-anno-
tated PubMed abstracts so as to achieve roughly accurate 
weights before being further fine-tuned on the 400 annotated 
full articles. The advantage of two phases in fine-tuning of 
BioBERT was demonstrated by comparing it with the model 
with one phase that was only fine-tuned on the 400 annotated 
full articles.

The configuration of the critical training model hyper-
parameters for our NER model was fixed as follows: the 
maximum of sequence length, the training batch size, the 
number of self-attention heads and the learning rate were set 
to be 512, 8, 12 and 2e-5, respectively. It took about 170 h to 
train the Phase I fine-tuning step on one NIVIDIA Quadro 
RTX 6000 GPU.

2.3.2 � DistilBERT‑based NER

General-purpose pretraining distillation was adopted for 
the purpose of knowledge distillation. As a distilled ver-
sion of BERT, DistilBERT is characteristic by the overall 
same architecture as BERT with only half the number of its 
layers while the token-type embeddings and the pooler are 
removed [33]. As is seen from Fig. 2c, the architectures of 
the teacher BERT and the student DistilBERT have twelve 
and six encoder layers, respectively. The overall training 
process of DistilBERT-based NER model is the same as 
that of BERT-based model. However, the student model was 
initialized from the teacher model by taking the latter one 
layer out of two and is trained to reproduce the behavior of 
teacher model. The training loss is given by [33]

where LKLDiv is  Kullback–Leibler divergence loss between 
the soft target probabilities of the teacher and the student, 
LCOS is the cosine embedding loss between the soft target 
probabilities of the teacher and the student and LCE is the 
cross-entropy loss of the soft target probabilities of the 
student.

(1)Loss = 5.0 × L
KLDiv

+ 1.0 × L
COS

+ 2.0 × L
E

The configuration of the critical training model hyper-
parameters for our DistilBERT-based NER model was 
selected as the same of those in BERT-based NER model. 
It took about 40 h to train the Phase I finetuning step on 
two NIVIDIA Quadro RTX 6000 GPUs, which is over 50% 
faster than its large counterpart model.

2.3.3 � Model Validation and Evaluation

In order to achieve a satisfactory performance metric, the 
hyperparameters of a trained model were tuned on validation 
dataset. Once model validation was completed, the model 
was tested with the test dataset to predict and evaluate the 
performance. Metrics such as entity-level precision, recall 
and F1 scores of each model were computed for model per-
formance evaluation.

3 � Results

3.1 � Consistency Analysis Between our Annotators 
and Experts Annotating the Publicly Available 
Corpora

Table 1 displays the statistics of our annotations, publicly 
available annotated corpora from experts previously, the 
intersection and the Jaccard index between these two par-
ties. Specifically, the annotated datasets for gene, variant, 
disease and species correspond to GnormPlus/BioCreative 
II GN, tmVar 2.0, NCBI disease and Linnaeus, respectively 
[20, 21, 38, 39]. In total, 3818 genes, variants, diseases and 
species were annotated from our annotators while the total 
number for experts previously is 3868, resulting in an overall 
Jaccard index of 0.866 between the annotated corpora from 
our annotators and previous experts, indicating that there is 
a considerable degree of overlap between the two annotated 
datasets (Table 2). Specifically, the Jaccard indexes for gene, 
variant and specie are all over 0.800, among which those 
for gene and species are both as high as 0.953 while that 
for disease is 0.688. The list of all the inconsistent cases is 
provided in Supplementary Stable 2.

Table 1   the statistics of our 
annotations, publicly available 
annotated corpora from experts 
previously, the intersection and 
the Jaccard index between these 
two parties

Entity Type Dataset Number of Annotations Jaccard Index

Ours Experts’ Intersection

Gene GnormPlus/BioCrea-
tive II GN

1269 1256 1232 0.953

Variant tmVar 2.0 509 464 437 0.815
Disease NCBI disease 844 961 736 0.688
Species Linnaeus 1196 1187 1163 0.953
Total 3818 3868 3568 0.866
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3.2 � The Statistics of Annotated Entities in Datasets 
in the Fine‑tuning Step

The statistics of all and unique annotations in datasets 
for Phase I and Phase II in the fine-tuning step of NER 
models are shown in Table 3, corresponding to 549,587 

BERN-annotated PubMed abstracts and 400 full articles 
annotated by us, respectively. Train-ratio, validation-ratio 
and test-ratio represent the percentages of the numbers of 
each entity type in train, validation and test datasets, respec-
tively. As is generally accepted, the degrees of imbalance 
are considered as mild, moderate and extreme when the 

Table 2   The statistics of inconsistent annotated entities between 
experts previously and our annotators due to three different factors 
(discrepant rules of both annotating parties, the false annotation from 

the experts and our false annotation), the total inconsistent number, 
the false annotation rate of experts and the rate of discrepant rules

The most significant factor that contributes to annotation inconsistency between experts and our annotators for each entity type is bolded

Entity type Inconsistent number due to different factors Total Experts’ false annotation rate 
(#Experts False annotation/ #Total, 
%)

The rate of discrepant rules 
(#Discrepant Rules/#Total, %)

Discrepant 
rules

Experts’ false 
annotation

Our false 
annotation

Gene 14 2 8 24 8.33 58.33
Variant 26 1 0 27 3.70 96.30
Species 19 3 2 24 12.50 79.17
Disease 160 58 7 225 25.78 71.11
Total 219 64 17 300 21.33 73.33

Table 3   The statistics of 
annotations in datasets for Phase 
I and Phase II in the fine-tuning 
step, corresponding to 549,587 
BERN-annotated PubMed 
abstracts and our 400 annotated 
full articles, respectively

Train-ratio, validation-ratio and test-ratio represent the percentages of the numbers of each entity type in 
train, validation and test datasets, respectively. The best metrics of each entity type are bolded

Number of annotations in fine-tuning

Phase Dataset Statistic method Entity type

Gene Variant Disease Species

Phase I Train All 1,002,127 858,759 804,217 596,828
Unique 253,012 260,248 165,024 37,124

Train-ratio All 31% 26% 25% 18%
Unique 35% 36% 23% 5%

Validation All 286,716 249,472 228,937 169,618
Unique 97,179 101,572 63,490 13,849

Validation-ratio All 31% 27% 24% 18%
Unique 35% 37% 23% 5%

Test All 144,811 124,706 116,144 84,247
Unique 56,520 57,502 38,263 7,799

Test-ratio All 31% 27% 25% 18%
Unique 35% 36% 24% 5%

Phase II Train All 33,443 18,117 26,729 16,177
Unique 2186 8756 3008 380

Train-ratio All 35% 19% 28% 17%
Unique 15% 61% 21% 3%

Validation All 11,061 4985 8016 4272
Unique 512 2184 993 157

Validation-ratio All 39% 18% 28% 15%
Unique 13% 57% 26% 4%

Test All 6265 1743 4166 2176
Unique 152 703 446 99

Test-ratio All 44% 12% 29% 15%
Unique 11% 50% 32% 7%
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proportion of a minority class is 20–40%, 1–20% and < 1% 
of the dataset, respectively. The mild and moderate data-
sets are often treated as normal datasets while extreme ones 
need special treatment such as sampling techniques. As is 
shown in Table 3, all the percentages of the numbers of 
all the entity types in train, validation and test datasets in 
both phases suggest either mild or moderate data imbalance. 
Therefore, all the datasets can be treated normally. In addi-
tion, the numbers of all annotations in the train, validation 
and test datasets in Phase I in the fine-tune step are 30–50 
times, 25–50 times and 20–75 times of those in Phase II 
while the numbers of unique annotations in the train, valida-
tion and test datasets in Phase I are 30–130 times, 50–200 
times and 75–370 times of those in Phase II, respectively, 
indicating that the annotated corpus in the fine-tuning step 
was considerably enriched from our small-size dataset by 
adding publicly available machine annotated corpora. It is 
noted that the number of entities of species are smaller than 
the other three in that all the 400 annotated full articles are 
human related articles.

3.3 � Performance Comparison of BERT‑based 
NER with One Phase and Two Phases 
in the Fine‑tuning Step

In Table 4, the rows containing BERT (2 phases) and BERT 
(1 phase) in the joint entity extraction mode correspond to 
the performances of BERT-based NER to predict gene, vari-
ant, disease and species with two phases and one phase in 
the finetuning step, respectively. BERT (1 phase) represents 

the model in which only 400 annotated articles were used 
for fine-tuning. The performance of BERT-based NER in 
Phase I was validated by comparing it with different bio-
medical text mining tools such as PTC, Hunflaire [47], 
BERN and BERN2 (Supplementary Stable 3). It is obvi-
ous that the F1-scores of BERT (2 phases) to predict gene, 
variant, disease and species are 97.28%, 93.52%, 92.54% 
and 95.76%, which are improved by 0.77%, 2.46%, 0.56% 
and 1.54% upon the corresponding F1-scores of BERT (1 
phase), 96.51%, 91.06%, 91.98% and 94.21%, respectively. 
This observation suggests that BERT-based NER with two 
phases in the finetuning step outperforms the one with only 
one phase. The 2.46% F1-score increase for variant is par-
ticularly important because of the critical role that vari-
ants usually play in the interpretation of genetic diseases. 
It seems that BERT (2 phases) has a lower false positive 
rate than BERT (1 phase) by 5.17% precision value (94.31% 
versus 89.14%).

3.4 � Performance Comparison of BERT‑based NER 
in Term of Joint and Single Entity Extraction 
Methods

Both of the rows containing BERT (2 phases) show the per-
formance of BERT-based NER in the finetuning step for 
gene, variant, disease and species at the entity level in term 
of joint and single entity extraction modes in Table 4. All 
the metrics such as F1-score, precision and recall values 
corresponding to joint entity extraction are higher than those 
corresponding to single entity extraction, indicating that 

Table 4   The performance 
comparison of joint-entity-
extraction-mode BERT-based 
NER with two phases [BERT 
(2 phases)], DistilBERT-
based NER with two phases 
[DistilBERT (2 phases)], 
BERT-based NER with one 
phase [BERT (1 phase)] and 
single-entity-extraction-mode 
BERT-based NER with two 
phases [BERT (2 phases)] in 
the fine-tuning step for gene, 
variant, disease and species at 
the entity level

BERT-based NER with one phase [BERT (1 phase)] in the finetuning step means that only the 400 anno-
tated articles were used for finetuning. The best F1-scores of each entity type are bolded

Entity type Entity extrac-
tion mode

Model Precision (%) Recall (%) F1-Score (%)

Gene Joint BERT (2 phases) 97.11 97.45 97.28
DistilBERT (2 phases) 94.84 95.45 95.14
BERT (1 phase) 95.69 97.35 96.51

Single BERT (2 phases) 95.99 96.40 96.19
Variant Joint BERT (2 phases) 94.31 92.75 93.52

DistilBERT (2 phases) 85.94 86.59 86.26
BERT (1 phase) 89.14 93.06 91.06

Single BERT (2 phases) 89.94 92.23 91.07
Disease Joint BERT (2 phases) 91.22 93.90 92.54

DistilBERT (2 phases) 90.44 92.32 91.37
BERT (1 phase) 91.54 92.43 91.98

Single BERT (2 phases) 91.19 91.60 91.40
Species Joint BERT (2 phases) 98.30 93.34 95.76

DistilBERT (2 phases) 96.39 84.26 89.92
BERT (1 phase) 97.66 90.99 94.21

Single BERT (2 phases) 97.66 89.14 93.21
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training all entity types jointly makes it possible to share 
the features of all interested entities and thus provides much 
more information than a model that is trained separately. In 
addition, the comparison of the performance statistics of 
BERT-based NER in Phase I is provided in Supplementary 
Stable 4. It is noted that this comparison is less insightful 
than that in Phase II since the annotations for Phase I mod-
eling are all from BERN, whose F1-scores for gene, vari-
ant, disease and species were reported as 84.40%, 93.70%, 
89.36% and 89.81%, respectively [29]. The main purpose 
of Phase I fine-tuning is to help the model learn patterns 
through valuable information contained in the roughly accu-
rate data.

3.5 � Performance Comparison of BERT‑based NER 
and DistilBert‑based NER

The rows containing BERT (2 phases) and DistilBERT (2 
phases) in Table 4 correspond to the performance of BERT-
based NER and DistilBERT-based NER for gene, variant, 
disease and species at the entity level, respectively. The 
F1-scores of NER of gene, variant, disease and species for 
the BERT-based model are 97.28%, 93.52%, 92.54% and 
95.76%, respectively, while those for the DistilBERT-based 
model are 95.14%, 86.26%, 91.37% and 89.92%, respec-
tively. Therefore, F1 scores of the DistilBERT-based NER 
model retain 97.8%, 92.2%, 98.7% and 93.9% of those of 
BERT-based NER for gene, variant, disease and species, 
respectively. This observation demonstrated the effective-
ness of knowledge distillation of DistilBERT (2 phases) 
from BERT (2 phases). Similar to the BERT-based NER 
model, the performance of DistilBERT in Phase I was also 
validated by comparing with different lightweighted mod-
els such as DistilBERT, DistilBioBERT, CompactBioBERT 
and TinyBioBERT [48], as is provided in Supplementary 
Stable 5.

4 � Case Study

While NER models were reported to have general applica-
tions including discovery of new named entities, informa-
tion retrieval and relation extraction [29], we developed the 
NER models for hereditary disease related literature for one 
more specific purpose of genetic interpretation of heredi-
tary disease. That is, we proposed to construct an American 
College of Medical Genetics (ACMG) recommendation 
based evidence knowledge graph for hereditary disease. 
The recommendation of ACMG developed a set of criteria 
to weight variant evidence and a set of rules for combining 
criteria to arrive at one of the five classification tiers [49]. 
Genetic counselors often need to read literature and interpret 
the variants based on ACMG recommendation manually, 

which is quite time consuming. NER for hereditary disease 
literatures holds promise to accelerate genetic interpreta-
tion. For example, the criterion of PP1 (Tier 1) in ACMG 
recommendation is “Cosegregation with disease in multiple 
affected family members in a gene definitively known to 
cause the disease”, which can be described in the form of a 
triplet (variant, cosegregate, PP1) of the knowledge graph. 
We used BERT-based NER model to text mine the article 
(PMID:29271107) and identified the sentence containing a 
variant “The novel c.1232G > A is a truncating and func-
tion disrupting mutation of the CHEK2 gene, identified in 
an early onset breast cancer proband.” By searching the key 
word “cosegregate*” in its preceding, current and subse-
quent sentences, the evidence of “The high number of breast 
cancers observed in this family, cosegregation of the variant 
with the disease and its LOH in the breast cancer tissue, 
strongly suggest this is a breast cancer predisposing allele.” 
was spotted. Therefore, the conclusion that c.1232G > A is 
a pathogenic variant is supported by PP1 criterion. In this 
way, a comprehensive ACMG evidence knowledge graph 
can be constructed to automate the interpretation as much 
as possible.

5 � Discussion

Supervised deep learning usually depends on the datasets 
with high quality. Problematic cases that are often unpredict-
able, not well-represented or outliers of the majority of the 
data pose significant challenges such as misclassification or 
prediction errors, generalization issues and reduced model 
robustness. However, in practice, it is often difficult to obtain 
such ideal corpus due to the limitation of knowledge of 
annotators. In this work, experienced genetic interpreters in 
hereditary diseases at BGI were selected as annotators. The 
very few false annotations we observed in the datasets of 
gene, variant and species annotated by previous experts vali-
dated the reliability of these datasets. However, there were 
many more false annotations in the previously annotated 
disease dataset, suggesting that there is room to improve 
this dataset. Moreover, the fact that discrepant rules are the 
dominant factor that caused the inconsistency between our 
annotations and those from previous experts actually implied 
different purposes of the annotations. It seems that previous 
experts annotated for general audience while ours empha-
sized on accuracy for professional purposes such as genetic 
interpretation.

Supervised deep learning also highly depends on the 
datasets with large quantity but is often limited by the labor 
of annotators. Our study well demonstrated that annotat-
ing biomedical literature was both time consuming and 
knowledge-intensive. Meanwhile, it also proved that it was 
feasible to insert one more finetuning phase trained with 
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roughly accurately annotated corpus before a very accurately 
annotated but small one. Although the roughly accurate data 
may introduce random noise and uncertainty to the model, 
it can also be very helpful to supplement considerable label 
information to improve the predictive ability of the model, 
especially when the model is robust.

Notably, our manually annotated corpus enabled us to 
train all the four entity types jointly instead of being limited 
by scattered annotated corpora that were publicly available, 
as the challenge BioBERT was faced. In addition to the con-
venience to perform a downstream task within one model 
instead of separating the task into sub-tasks for sub-models, 
an obvious advantage is that the joint model can be easily 
extended to relationship extraction tasks where at least two 
entity types should be included. It is also noted that our 
manually annotated corpus enables us to extract the entity 
type of variant using a large language model for the first 
time. Due to the shortage of a high-quality public dataset of 
variants, BERN used tmVar 2.0 as a variant NER model and 
the reported F1-score was 93.70% [29]. The key to achieve a 
high F1-score of tmvar 2.0 was to apply regular expression 
rules in the post-processing step after CRF modeling. Our 
study demonstrated that BERT-based NER model without 
applying regular expression rules had comparable predictive 
ability of machine learning and rule-based modeling.

Furthermore, training deep-learning NN models often 
requires tremendous resources and time. Fortunately, pre-
trained models based on huge corpora are often readily 
reused in NLP community. For instance, in order to adapt 
BERT to biomedical texts, BioBERT was re-pretrained 
with PubMed abstracts and PubMed central full-text arti-
cles based on the BERT pretrained model [28]. We started 
our model by loading pretrained BioBERT v1.1 model 
weights and distilled the  model to transfer the knowledge 
of the teacher model to the student model, which signifi-
cantly reduced the number of parameters in the student 
model, thereby reducing the storage space and computa-
tional resources required by the model. The well-trained 
DistilBERT-based NER model should be able to be applied 
to online inference. In practice, online inference can be used 
to build interactive prediction tools while offline inference is 
applied to large knowledge base construction.

Several directions for future work can be proposed based 
on this study. Firstly, automated algorithms can be explored 
to accelerate the process since manually annotating is a time-
consuming process. Secondly, a highly accurate web-based 
platform for entity tagging is likely to be built by applying 
optimized BERT-based NER models to a large number of 
literature. Thirdly, the DistilBERT-based NER model can be 
used for real-time entity extraction on a web-based tagging 
platform. The last but not the least, the model framework 
in this study is essentially supervised learning of a very 
specific biomedical field, which poses great challenge for 

generalizing the model to a broader field. In near future, a 
large foundation model coupled with limited human feed-
back reinforcement learning can be attempted to solve the 
generalization problem.

6 � Conclusions

We report a combined manual annotation and deep-learning 
NLP study to make accurate NER for biomedical literature. 
A total of 400 full articles from PubMed were annotated. 
Both a BERT-based large model and a DistilBERT-based 
simplified model were constructed, trained and optimized 
for offline and online inference, respectively. Both of them 
outperform the state-of-art model—BioBERT, indicating the 
significance to train an NER model on biomedical literature 
jointly with annotated datasets. It is quite promising for the 
models to be applied to the construction of a useful and 
efficient entity-tagging platform.
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