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Abstract
Long non-coding RNAs (lncRNAs) are important regulators of biological processes. It has recently been shown that some 
lncRNAs include small open reading frames (sORFs) that can encode small peptides of no more than 100 amino acids. 
However, existing methods are commonly applied to human and animal datasets and still suffer from low feature represen-
tation capability. Thus, accurate and credible prediction of sORFs with coding ability in plant lncRNAs is imperative. This 
paper proposes a new method termed sORFPred, in which we design a model named MCSEN by combining multi-scale 
convolution and Squeeze-and-Excitation Networks to fully mine distinct information embedded in sORFs, integrate and 
optimize multiple sequence-based and physicochemical feature descriptors, and built a two-layer prediction classifier based 
on Bayesian optimization algorithm and Extra Trees. sORFPred has been evaluated on sORFs datasets of three species and 
experimentally validated sORFs dataset. Results indicate that sORFPred outperforms existing methods and achieves 97.28% 
accuracy, 97.06% precision, 97.52% recall, and 97.29% F1-score on Arabidopsis thaliana, which shows a significant improve-
ment in prediction performance compared to various conventional shallow machine learning and deep learning models.
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1 Introduction

Long non-coding RNAs (lncRNAs) with biological functions 
in animals [1–3] and plants [4–6] have been discovered in 
recent years. In addition, it has been found that lncRNAs 
play a wide range of roles in many processes of individual 
development, such as transcription and inactivation of 
chromosomes, gene expression and shutdown, and cell 
cycle [7]. Increasingly, it has been shown that a number 
of lncRNAs with small open reading frames (sORFs) of 
no more than 300 nucleotides (nt) in length can encode 
small peptides of no longer than 100 amino acids (aa) [8, 
9]. The first small peptide encoded by the sORF in plants 
lncRNAs was found to be the soybean ENOD40 peptide, 
which regulates the conversion and uptake of sucrose in 
root nodules in legumes [10]. Frank et al. identified a small 

new protein which can promote division and polarized 
growth of maize leaf epidermal cells [11]. Li et al. found 
that small peptides encoded by sORFs in plant lncRNAs can 
regulate plant organogenesis and leaf morphogenesis [12]. In 
Drosophila, a lncRNA was found to encode three 11aa and 
one 32aa small peptides that function during the epidermal 
morphogenesis of embryonic development by regulating 
the structure of the F-actin bundle [13]. According to Pauli 
and colleagues’ findings, during zebrafish gastrulation, a 
small peptide known as Toddler which is encoded by the 
sORF of lncRNA, can stimulate cell motility by activating 
APJ/Apelin receptor signaling [14]. Olson et al. identified 
a small peptide DWORF with a length of 34aa encoded 
by the sORF located on lncRNA. DWORF was shown to 
be abundantly expressed in the mouse heart and is able to 
regulate muscle contraction, and its expression was found 
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to be suppressed in human ischemic heart tissue, suggesting 
that it may be involved in heart failure [3]. Matsumoto et al. 
found that lncRNA LINC00961 has the ability to encode a 
small peptide called SPAR, which inhibits the activity of 
mTORC1 and thus regulates muscle regeneration [15].

As more and more small peptides are discovered, related 
research has attracted more and more attention. The current 
research on sORFs is mainly carried out through compu-
tational prediction and biological experiments. Biological 
experiments mainly include ribosome profiling [16–18], 
mass spectrometry [19, 20], and immunoblot assays [21]. 
Due to the short length, small relative mass, and large order 
of magnitude of sORFs and small peptides, biological exper-
iments have many limitations, such as time-consuming, inef-
ficient, inaccurate, costly, and difficult to achieve batch iden-
tification. With the speedy development of machine learning 
algorithms, it has played an important role in lncRNA-dis-
ease associations [22], cell-penetrating peptides identifi-
cation [23], lncRNA identification [24], miRNA-lncRNA 
interaction [25], and DNA–protein binding sites prediction 
[26]. Moreover, it can provide a powerful reference for bio-
logical experimental validation, saving a lot of time and cost, 
and accelerating the pace of research.

Machine learning-based small peptides identification is 
still in its inception stage. CRITICA [27], CPC2 [28], and 
PhyloCSF [29], which are alignment-based methods used to 
distinguish mRNAs from lncRNAs, can be used to identify 
small peptides. The fact that these alignment-based meth-
ods heavily rely on pre-existing data is, however, a clear 
disadvantage of these approaches. If there is a significant 
gap between the fresh data and the historical data, the out-
comes of the prediction will suffer as a direct consequence. 
The other is the alignment-free method, which only depends 
on the intrinsic information of the sequence, making them 
more flexible and general than the alignment-based meth-
ods. MiPepid, a tool designed exclusively for recognizing 
micropeptides, was created by Zhu et al. [30], using 4-mers 
features to construct logistic regression (LR) models. It has 
better performance compared to tools such as CPC, CPC2, 
CPAT, not only in predicting regular-sized proteins, but also 
in identifying micropeptides well. Tong et al. [31] proposed 
a feature engineering CPPred using 8 RNA sequence-based 
features and protein sequence-based features collected from 
CPAT and CPC2 with the addition of CTD features to iden-
tify coding RNA using SVM. In addition, it does a good 
job of distinguishing between coding and non-coding RNAs 
of lengths less than 303nt. Zhang et al. [32] adopted the 
dataset of CPPred in their study, extracting and integrating 
multiple sequence basic composition features as well as the 
newly proposed nucleotide bias descriptor. The mDS feature 
selection method was then used to filter the features before 
they were fed into a CNN, and thus the CNN-based RNA 
coding potential prediction method DeepCPP was proposed. 

Notably, DeepCPP overcomes the sORF mRNA identifica-
tion barrier by not only performing well on normal data but 
also on sORF-type data in particular. In addition, the authors 
collected 8 small peptides encoded by ncRNAs that are asso-
ciated with cancers or diseases for the experiments. This 
further demonstrates the good performance of DeepCPP.

The above methods have been of great help in my 
research since they have produced outstanding results in 
identifying small peptides and discriminating between cod-
ing and non-coding RNAs. However, it is noteworthy that 
the existing methods use a low number of features, and the 
lack of research on feature representation capability hinders 
further improvement of prediction performance. If the dis-
criminative information can be fully mined from multiple 
perspectives, the prediction performance is expected to be 
further improved. Second, existing methods are generally 
single shallow machine learning models or deep learning 
models, such as XGBoost, SVM, and CNN. Single classi-
fiers have their own drawbacks, and this is where further 
improvements can be made.

For reasons such as data sample size, the current focus 
of small peptides research has been skewed toward humans 
and animals, while relatively little research has been done on 
plants. Since there are differences in the way that ncRNAs 
are produced in plants and animals [33], there may likewise 
be some differences between the small peptides encoded by 
sORFs in plant and animal lncRNAs. Thus, whether such 
predictors trained using human or animal datasets can be 
used directly for studies related to small peptides encoded 
by sORFs in plant lncRNAs is a question that needs to be 
validated. Therefore, it is imperative to develop a method 
suitable for predicting sORFs in plant lncRNAs. Accurate 
and effective prediction of sORFs with coding potential in 
plant lncRNAs will not only lay the foundation for further 
identifying small peptides with biological functions encoded 
by sORFs in lncRNAs, but also be of great importance for 
studies such as plant breeding and exploring plant biologi-
cal processes.

To address the aforementioned challenges, a brand-new 
ensemble learning-based method termed sORFPred is 
proposed. The following aspects sum up the uniqueness of 
sORFPred. (1) A model based on multi-scale convolution 
and Squeeze-and-Excitation Networks (SENet) [34] named 
MCSEN is designed to extract generative high-level 
features. (2) To fully mine the discriminative information 
of sORFs from various perspectives, a multi-feature 
integration strategy is used to fuse 16 sequence-based and 
physicochemical descriptors with generative high-level 
features to obtain 2307 dimensional features. (3) Principal 
component analysis (PCA) is utilized to optimize the 
feature space and a novel feature selection method Boruta 
[35] is adopted to remove redundant features. (4) To obtain 
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accurate and robust results, base classifiers are optimized 
by the Bayesian optimization package [36], and then are 
combined by LR to form the final predictor. sORFPred has 
verified its performance and generalization capabilities by 
comparing with several existing methods. The results show 
that sORFPred outperforms shallow machine learning as 
well as deep learning models, with an accuracy of 97.28% 
on the Arabidopsis thaliana (A. thaliana) dataset.

The rest of this paper is structured as follows. Section 2 
provides an overview of the dataset acquisition, feature 
engineering, and sORFPred’s framework. Subsequently, 

Sect. 3 analyzes and discusses the experimental results. 
Lastly, the presented work is summarized in Sect. 4 along 
with a preliminary discussion of future work.

2  Materials and Methods

2.1  Framework of sORFPred

An ensemble learning method called sORFPred is pro-
posed in this paper, and its framework is shown in Fig. 1. 
Method sORFPred consists of three phases: (1) Feature 
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Fig. 1  The overall architecture of sORFPred method. It comprises four phases: A dataset construction. B Feature extraction. C Feature optimiza-
tion. D Building ensemble model
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extraction, (2) Feature optimization, and (3) Ensemble 
classification. In phase (1), sORF sequence is encoded 
into a 168-dimensional feature vector by 9 nucleo-
tide sequence-based descriptors, while the amino acid 
sequence corresponding to each sORF sequence is encoded 
into a 1627-dimensional feature vector by 7 amino acid 
sequence-based descriptors, totally 1795-dimensional 
feature vector by manually extracting feature descriptors. 
Further, the MCSEN model is used to convert each sORF 
sequence into a 512-dimensional feature vector. In phase 
(2), the Boruta package and the PCA method will work 
together to optimize the original features. After this, the 
classifiers in phase (3) will make their predictions based 
on the final feature vectors. The predictor is a two-layer 
prediction model using the stacking strategy. The first layer 
uses Extra Trees as base classifiers which are optimized by 
the Bayesian optimization package, then the second layer 
uses LR to combine the base classifiers.

2.2  Datasets Construction

Currently, due to the lack of sORFs that have been experi-
mentally validated, the credible datasets are constructed 
with the help of available bioinformatics tools and pub-
lic databases. A. thaliana as the most widely used model 
plant has been intensively studied. Glycine max (G. max) 
and Physcomitrella patens (P. patens) also have rela-
tively abundant data, which have been commonly used 
in previous studies [37]. Therefore, the lncRNA data of 
those species were downloaded from GreeNC [38]. Then, 
sORFfinder [39] and ORF finder [40] were then used to 
obtain sORFs. After obtaining the intersection and differ-
ence sets of the results from the two tools, the sequences 
with similarities higher than 80% were removed using 
CD-HIT [41]. Since sORFfinder can predict sORFs with 
coding ability, the intersection is used as the candidate 
positive sample set while the difference set is taken as 
the candidate negative sample set. Then, based on the 
idea of logical reasoning [42], the knowledge base was 
built to further filter the candidate positive sample set and 
candidate negative sample set to improve the credibility 
of the dataset, and thus Dataset1 was obtained. In addi-
tion, Dataset2 was constructed to test the performance and 
generalization ability of sORFPred. 20 sORFs sequences 

of functional lncRNA-encoded small peptides from Dros-
ophila melanogaster (D. melanogaster), Homo sapiens (H. 
sapiens), Mus musculus (M. musculus), G. max, Zea mays 
(Z. mays), and A. thaliana were downloaded from ncEP 
[43] as the positive samples while 40 sORFs without cod-
ing potential that do not belong to Dataset 1 are picked 
at random as the negative sample set. A summary of the 
details of all datasets is presented in Table 1.

2.3  Feature Extraction

A multi-feature integration strategy is used to fuse various 
feature descriptors to fully mine the discriminative 
information of sORFs from different perspectives. Based 
on sequence categories and extraction methods, these 
feature descriptors can be divided into the following three 
major categories: nucleotide sequence-based features, 
amino acid sequence-based features, and features extracted 
by the MCSEN model. Then, the sORF sequences and 
corresponding amino acid sequences were successfully 
encoded with the 1795-dimensional manually extracted 

Table 1  Datasets information

Dataset Plant species Positive sample Negative sample

Dataset1 A. thaliana 2300 2300
P. patens 6000 6000
G. max 3500 3500

Dataset2 Validated sORFs 20 40

Table 2  Features information

Feature category Feature name Dimension

Nucleotide sequence-based features 1-mer 4
2-mer 16
3-mer 64
GC_content 1
GC_ratio 1
SN 1
SSM 48
sORF_length 1
Fickett score 1
Hexamer score 1
CTD 30

Amino acid sequence-based features AAC 20
GAAC 5
GDPC 25
GTPC 125
CTD 273
CKSAAGP (k = 0) 25
CKSAAGP (k = 1) 25
CKSAAGP (k = 2) 25
CKSAAGP (k = 3) 25
CKSAAGP (k = 4) 25
CKSAAGP (k = 5) 25
KSCTriad (k = 0) 343
KSCTriad (k = 1) 343
KSCTriad (k = 2) 343

Features extracted by MCSEN MCSEN512 512
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feature vectors and 512-dimensional MCSEN-extracted 
feature vectors. All features are summarized in Table 2. 
The details of how these feature descriptors are encoded 
can be found in the Supplementary Method S1. However, 
the performance of the model will be constrained by the 
high feature dimensionality and the superfluous features. 
Therefore, a feature selection strategy is described in the 
feature optimization part in order to optimize the feature 
space.

2.3.1  Nucleotide Sequence‑Based Features

In order to predict the sORFs with coding potential, the 
sequence-based features of sORFs were extracted based on 
the traditional feature extraction method of RNA, including 
k-mer [44], short sequence motifs (SSM) [45], signal-to-
noise (SN) [46], the content of base C and G (GC_content), 
the ratio of base C and G (GC_ratio), and the length of the 
sequence (sORF_length). In addition, we extracted some 
RNA features descriptors from recently published work 
[31, 47] and used them to predict sORF for the first time. 
Fickett score and Hexamer score are derived from CPAT 
[47]. Similarly, the CTD descriptor mentioned by CPPred 
[31] is also added.

A total of 168-dimensional features has been extracted for 
sORF sequences, where k-mer, as an approximate expres-
sion of codon frequencies, describes the nucleotide sequence 
composition information. GC_ratio and GC_content are also 
extracted as the genome of an organism or a specific DNA 
or RNA segment has a specific content of base C and G. SN 
descriptor can be interpreted as strength of the 3-base perio-
dicity per nucleotide and indicates the bias of base usage in 
sORFs. Since k-mer descriptor only considers the properties 
of contiguous nucleotides, SSM descriptor is introduced to 
describe the association between discontinuous nucleotides. 
The difference in the combined effect of nucleotide compo-
sition and codon use bias in sORF sequences is described 
by the Fickett score descriptor. It is calculated from the 
sORF sequences using four position values together with 

four composition values. Hexamer score descriptor distin-
guishes coding sequences from non-coding sequences based 
on hexamer usage bias, while the hexamer usage difference 
between coding and non-coding sequences is measured by 
the log-likelihood ratio. In addition, the CTD descriptor 
describes the differences in nucleotide composition, nucleo-
tide transition, and nucleotide distribution between coding 
and non-coding sequences.

2.3.2  Amino Acid Sequence‑Based Features

First, the sORFs sequences in the dataset are translated into 
amino acid sequences based on the correspondence between 
codons and amino acids. As for amino acid sequences, 
seven descriptors have been collected from iFeature [48]. 
1627-dimensional features are extracted for the amino 
acid sequences, where Amino Acid Composition (AAC) 
describes the composition frequencies of 20 amino acids. 
Based on the dipoles and side chain volumes, the 20 amino 
acids can be categorized into 7 groups. The k-Spaced Con-
joint Triad (KSCTriad) descriptor treats any three amino 
acids separated by k (k = 0, 1, 2) residues as a single unit 
when considering the properties of an amino acid and its 
neighbors. The Composition, Transition, and Distribu-
tion (CTD) descriptor categorizes the 20 amino acids into 
3 groups based on 13 physicochemical attributes, which 
indicate the amino acid distribution patterns of a certain 
structural or physicochemical feature in a peptide or pro-
tein sequence. On the basis of physical properties, such as 
hydrophobicity, charge, and molecular size, the 20 amino 
acids are further classified into 5 categories. Then, the 
frequency of each amino acid group is represented by the 
Grouped Amino Acid Composition (GAAC) descriptor. 
In addition, Grouped Dipeptide Composition (GDPC) and 
Grouped Tripeptide Composition (GTPC) descriptors are 
used to define grouped dipeptide composition and grouped 
tripeptide composition in an amino acid sequence, respec-
tively. Moreover, the Composition of k-spaced Amino Acid 
Pairs (CKSAAGP) descriptor was employed to calculate the 

A 
T 
G 
G 
T 
C 
C 
 

C 
G 
G 
T 
T 
G 
A

  0.1  0.3   ...   -0.1  0.4 
  

  0.2  -0.1  ...   0.2   0.5  
     
 

 0.6  0.7   ...    0.8  0.6

 0.5  -0.2  ...    0.4  0.3

k1

k4

k3

k2

A 

T 

G 

G 

T 

C 

C 

 

C 

G 

G 

T 

T 

G 

A

. 

. 

. 

W

H

 N

Fscale (• , •)

1×1×N 1×1×N

...

Fex (• , W)

Fsq (•)

Multi-scale Convolution and PoolingEmbeding LayerCodingSplitInput Dense

Output

Squeeze-and-Excitation Networks

Flatten sigmoid

2

45

33

53

W N

H

 

 

 

 

.........

. 

. 

. 

. 

Fig. 2  Overall architecture of MCSEN model. There are three main 
operations: (1) encode sORFs sequence by p-nts encoding method, 
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frequency of amino acid group pairs separated by any k resi-
dues (k = 0, 1, 2, …, 5).

2.3.3  Features Extracted by the MCSEN Model

The features in deep learning methods are automatically 
extracted by the artificial neural network, which reduces 
human intervention and provides more feature informa-
tion compared to the manually extracted features. To further 
obtain more information of sORF sequences, the MCSEN 
model combining multi-scale convolution and SENet [34] is 
constructed to extract 512-dimensional local features.

The traditional encoding methods tend to ignore the 
correlation between nucleotides. To address this problem, 
the p-nts [49] encoding method is used to encode sORF 
sequences. Instead of a single convolution kernel, a multi-
scale convolution operation is used to extract features. For 
the purpose of solving the problem of loss resulting from 
the different importance of different channels during the 
convolution and pooling process, the SENet structure is 
introduced. SENet adopts a new feature rescaling strategy, 
which automatically obtains the importance of each channel 
through learning, and then enhances the useful features and 
suppresses the features which are useless for the problem at 
hand in accordance with the importance, thus highlighting 
the key features and further optimizing the model perfor-
mance. During the training phase, different hidden neurons 
are randomly dropped by Dropout and the training time will 
be early stopped to avoid overfitting. The overall architecture 
is shown in Fig. 2. In addition, the feature extraction with 
MCSEN includes the following steps.

Step 1: The sORF sequences are split and encoded using 
p-nts (p = 3) encoding method.

Step 2: The embedding layer maps the coded sequence 
into a 128 × 101 matrix vector to facilitate convolutional 
operations and feature extraction.

Step 3: To avoid loss of effective information, convolution 
kernels of 4 different scales are used to more fully extract 
local features. The convolution pooling operation for each 
scale is performed as follows.

(a) 64 convolution kernels of scale f ( K ∈ ℜm×f  ) are 
selected for the convolution operation to obtain the con-
volved feature matrix C, where m denotes the convolution 
kernel width which is equal to the embedding dimension and 
f is the convolution kernel length.

(b) Max-pooling operation is performed on the feature 
matrix C to extract the important feature information P in the 
local region, where ci is the i-th convolution feature map, f 
denotes the convolution kernel scale and l is the length of 
the sequence. After the convolution operation with a con-
volution kernel of scale f, the output after the max-pooling 
operation with pooling size 1 ×(l-f) is as follows:

(c) After performing the convolution and pooling opera-
tion on the 4 scales of convolution kernels f1, f2, f3, and f4, 
the output results of each are concatenated to obtain the final 
result V of the multi-scale convolution operation, which is 
represented as follows:

Step 4: Input V into the SENet structure to recalibrate 
channel-wise feature responses.

First, the feature map with input size W × H × N is 
squeezed, that is, the global average pooling is performed 
(pooling size is h × w), and then the feature map is com-
pressed to 1 × 1 × N vectors. Subsequently, a two-layer fully 
connected bottleneck structure is used for the excitation 
operation to determine the weights of each channel in the 
feature map. In addition, the number of channels is reduced 
by the SERatio parameter to reduce the computation. SERa-
tio is set to 1/58 in this paper. Finally, the result is output 
after the weight value for each channel determined by the 
SENet structure has been multiplied by the 2-D matrix of the 
corresponding channel in the original feature map.

Step 5: The results obtained in step 4 are input to the 
Flatten layer, which turns the multidimensional input into 
one dimension.

Step 6: Then, the Dense layer with the parameter 1 is con-
nected, and the feature vector is mapped to [0, 1] to get the 
probability of the predicted label after the activation func-
tion sigmoid.

Step 7: Finally, the sORF sequences are fed into the 
MCSEN model to extract local features, and the output of 
the Flatten layer is then extracted to obtain 512-dimensional 
features.

2.4  Feature Optimization

Boruta package [35] differs from the common feature selec-
tion method. It aims to pick all features which are associated 
with the dependent variable. Boruta package is based on 
the idea of shadow features and binomial distribution and 
determines the importance of features by creating synthetic 
features consisting of the target features and their randomly 
rearranged values. The process of Boruta is shown in Fig. 3. 
In addition, the specific steps are: (1) shuffle the original 
feature matrix to obtain shadow features, and then a new 
feature matrix is formed by stitching the original features 
with the shadow features. (2) The newly obtained feature 
matrix is adopted as the input to train the classifier. (3) Cal-
culate the importance values of the original features and the 

(1)
P
l−f

i
= max

(

ci, c(i+1),… , c(i+l−f−1)
)

, i ∈ (1, 2,… , f + 1)

(2)V =
[

Pl−f1 ,Pl−f2 ,Pl−f3 ,Pl−f4
]
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shadow features separately. (4) If the importance value of the 
original features is higher than the shadow features, then the 
feature is marked as “important” and retained. Otherwise, 
it is marked as “unimportant” and will be removed from the 
feature set. (5) Delete all shadow features. (6) Repeat the 
above steps until all features are marked as “important” or 
“unimportant”.

In order to investigate the effect of each feature 
importance ranking algorithms on the classification results, 
RF, XGBoost, LightGBM and GBDT were used as feature 
importance ranking algorithms for feature selection under 
the Boruta framework, respectively. For the sake of fairness 
in comparison, ‘n_estimators’ was selected to be set to 
‘auto’ in the Boruta framework, and ‘max_depth’ was 
set to 5 uniformly, and the filtered features were then fed 
into the ensemble classification model. The experimental 
results have been added to the Supplementary Table S1. 
According to the result of the experiments, it can be seen 
that using XGBoost and LightGBM as feature importance 
ranking algorithms, the number of features obtained from 
the filtering is small and the information contained in the 
features is too one-sided. Although the accuracy is improved, 
the generalization is relatively poor as seen from the two 
independent test sets. The Boruta framework using GBDT 
as the feature importance ranking algorithm can further 
remove the redundant features while retaining relatively 
comprehensive feature information compared to the RF 

feature importance ranking algorithm. Therefore, GBDT is 
adopted as the feature importance ranking algorithm under 
the Boruta framework.

To enhance the model performance and better understand 
the features of the data, the manually extracted 1795-dimen-
sional features are filtered by the Boruta package to obtain 
all features useful for prediction (Boruta1795). To remove 
redundant data as well as prevent the overfitting phenom-
enon, the features extracted by MCSEN (MCSEN512) 
are dimension-reduced by PCA to obtain a new feature 
set (MCSEN10). Then, Boruta1795 is combined with 
MCSEN10 to form the final feature set.

2.5  Bayesian Optimization Method

Bayesian optimization method [36] builds probabilistic mod-
els based on the information available from previous evalu-
ations of the objective function and finds the value of mini-
mizing or maximizing the objective function by a minimum 
number of steps. Compared with the currently used algo-
rithms such as particle swarm optimization, random search, 
genetic algorithm, and grid search, the Bayesian optimiza-
tion method considers the previous parameter information 
and constantly updates the prior, which has fewer iterations 
and better performance, and can save a lot of useless work.
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steps are: (1) shuffle the original feature matrix to obtain shadow fea-
tures, (2) calculate the corresponding importance values of shadow 

features and original features separately, and (3) filter features based 
on feature importance in an iterative process
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2.6  Ensemble Learning Construction

Ensemble models can make stronger and more accurate 
predictions compared with single classifier, because each 
classifier in the ensemble model has its own strengths. 
Ensemble models have many successful applications in 
bioinformatics [50–52], and the stacking method is a common 
integration strategy. A two-layer stacking strategy is used in 
this paper. First, the final features are input into several shallow 
machine learning models, and the performance of each model 
is measured by the five-fold cross-validation method. Then, the 
model which has the best prediction performance is selected 
and further optimized by the Bayesian optimization method 
to obtain the first layer's basic classifiers. Then, the prediction 
results of each base classifier are input into the LR model of 
the second layer to obtain the final prediction results.

2.7  Implementation of sORFPred

MCSEN is implemented by Keras 2.2.4 with the backend 
of TensorFlow 1.12.2. The scripts are written by Python 
3.6.5. While sORFPred is implemented by Keras 2.7.0 with 
the backend of TensorFlow 2.7.0. The scripts are written by 
Python 3.8.5. The hardware experiment environment is a PC 
equipped with 16 GB of RAM, the GPU is AMD Radeon 
R7 200 series, and the CPU is 4 cores of Intel Core i5-6500 
3.2 GHz.

2.8  Evaluation Criteria

In this paper, four commonly used evaluation criteria are used 
to evaluate the performance of sORFPred. They are formulated 
as follows:

where TP, TN, FP, and FN stand for the corresponding totals 
of true-positive, true-negative, false-positive, and false-
negative samples, respectively. As for all the metrics listed 
above, the better the model performs, the higher the score 
it receives.

3  Results

3.1  Performance Analysis of the Model in Different 
Feature Spaces

This section analyzes the performance of various types of 
features on the A. thaliana dataset. In the feature represen-
tation stage, three categories of features were extracted for 
encoding sORF sequences, namely nucleotide sequence-
based features (nt168), amino acid sequence-based fea-
tures (aa1627), and features extracted by the MCSEN 
model (MCSEN512), respectively. Further, the dimension 
of MCSEN512 is reduced using PCA to obtain a new fea-
ture set (MCSEN10). The nucleotide sequence-based and 
amino acid sequence-based features are fused to obtain 
extracted features of 1795 dimensions (original1795). 

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Recall =
TP

TP + FN

(5)Precision =
TP

TP + FP

(6)F1 - score =
2TP

2TP + FP + FN

Fig. 4  Results of the proposed sORFPred with different types of features on A. thaliana dataset. A The performances of sORFPred with different 
types of features. B ROC curves and AUC values of sORFPred with different types of features
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Then, original1795 is filtered using Boruta package and 
fused with MCSEN10 to obtain the final feature set (final-
feature). In this section, it will be discussed which type of 
feature is more discriminative in predicting sORFs with 
coding potential and sORFs without coding ability. For a 
fair comparison, the nt168, aa1627, and the original1795 
feature are processed separately by the Boruta package to 
obtain the optimized feature subsets Boruta168, Boruta1627, 
and Boruta1795. In addition, five-fold cross-validation is 
conducted to compare the performance of ensemble model 
with different types of features. The performance is shown in 
Fig. 4A. In addition, receiver-operating characteristic (ROC) 
curves is further plotted as shown in Fig. 4B in order to 
present the comparison results more clearly. Detailed results 
are shown in Supplementary Table S2. It is clear that all five 
types of features are effective in predicting sORFs. Nota-
bly, the fused feature Boruta1795 achieved better results 
than the single feature Boruta168 and Boruta1627, while 
the final-feature after fusing MCSEN10 achieved an aver-
age accuracy of 97.28% for the prediction of sORFs, which 
was higher than the manually extracted features (Boruta168, 
Boruta1627, and Boruta1795) of 6.67~9.17%. This suggests 
that the MCSEN model can successfully learn the local fea-
tures of sORF sequences. It can also be seen that the features 
optimized by Boruta package (Boruta1795) achieved better 
performance compared with the original features (origi-
nal795), while reducing the feature dimensionality and run-
ning time.

3.2  Selection of Base Classifiers

In order to obtain the optimal base classifiers, Gaussi-
anNB, kNN [53] SVM [54], RF [55], and Extra Trees 
[56] are selected as candidate classifiers. Then, the per-
formance of each classifier is evaluated using the five-fold 

cross-validation method on A. thaliana dataset. As shown in 
Supplementary Table S3, Extra Trees achieved the best per-
formance compared to other models with 96.09% Accuracy, 
95.31% Precision, 97.26% Recall, and 96.32% F1-score. 
In terms of Accuracy, Extra Trees is higher than the other 
models by 0.24–9.57% and the standard deviation (SD) is 
only 0.51%, indicating that the stability of the Extra Trees 
is better. Overall, RF, Extra Trees, and kNN outperformed 
the other models by a large margin. Although RF is slightly 
higher than Extra trees in terms of precision, Extra Trees 
outperforms RF in terms of Accuracy, Recall, and F1-score 
by 0.31%, 2.74%, and 1.4%, respectively. Therefore, Extra 
Trees with relatively better performance is identified as the 
base classifiers.

Fig. 5  Performance of the proposed sORFPred and other models on A. thaliana dataset in terms of A accuracy, B precision, C recall, D F1-score 
and E ROC curve
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3.3  Comparison with Other Models

To more impartially verify the effectiveness of sORFPred, 
on the A. thaliana dataset, it was compared with com-
monly used deep learning models, namely CNN, BiLSTM, 
CNN + BiLSTM, CapsNet, and MConvMCaps [42], as 
well as the state-of-the-art methods, namely MiPepid, 
CPPred, and DeepCPP. The performance of each model is 
presented in Fig. 5 and more specific data are available in 
Supplementary Table S4. As can be seen in Fig. 5, sORF-
Pred performs obviously better than those models. The 
mean of Accuracy, Precision, and F1-score are 97.28%, 
97.06%, and 97.29%, respectively, which are 5.98~26.63%, 
6.71~28.94%, and 5.88~24.7% higher than the compared 
models. Although sORFPred is slightly lower than CNN in 
terms of Recall, the high recall value of CNN is obtained 
at the expense of the precision of prediction. Overall, 
sORFPred is more powerful in distinguishing whether 
sORFs have coding ability or not than those commonly 
used deep learning models and the state-of-the-art meth-
ods. From Fig. 5E, it is clear that area under the curve 
of sORFPred is significantly larger than the area under 
the other curves. This indicates that the proposed method 
has high sensitivity and a low false-positive rate. In other 
words, sORFPred can better learn the information embed-
ded in the original data so as to achieve a robust and cred-
ible prediction of sORFs.

3.4  Prediction Performance on Other Species

In order to validate the generalization capability of sORF-
Pred, experiments are conducted on P. patens and G. max 
datasets, respectively. As shown in Fig.  6, the model 
trained on A. thaliana datasets was then tested on P. patens 

and G. max, respectively, with accuracies of 76.72% and 
81.01%, indicating that sORFPred generalizes well to 
other plants.

3.5  Comparison with the State‑of‑the‑Art Methods

In order to further validate the performance of sORFPred, 
it has been compared with commonly used methods such 
as MiPepid, CPPred, and DeepCPP on Dataset2, which is 
composed of sORFs with validated coding capabilities. Two 
experiments were conducted on Dataset2. One was a direct 
prediction of Dataset2 using the three existing tools. The 
other was to retrain the existing tool on the A. thaliana data-
set before making predictions on the sORFs in Dataset2. As 
can be seen in Fig. 7, without retraining, although MiPepid 
and sORFPred correctly predicted the highest number of 
samples out of a total of 20 positive samples (Dataset2), 
MiPepid has a false-positive rate of 40%. As for the predic-
tion of negative samples, DeepCPP predicted 39 out of a 
total of 40 negative samples (Dataset2). It was slightly bet-
ter than sORFPred, but it was a poor predictor of positive 
samples with a high false-negative rate. After retraining the 
three tools mentioned above, although their performance 
improved significantly, sORFPred's performance remained 
relatively good. It is also clear from the comparison of the 
two experiments that the existing tools before being retrained 
do not perform well in predicting sORFs in lncRNAs due to 
their original datasets, and further demonstrates that sORF-
Pred is a good method in predicting sORFs in lncRNAs.

4  Conclusions

According to our best knowledge, this research is the first to 
predict sORFs with coding potential in plant lncRNAs using 
such comprehensive and detailed features and an ensemble 
learning model based on the Bayesian optimization method. 
In comparison to existing methods, it achieves greater per-
formance and generalization capability. We expect that 
sORFPred will become a potent method for the large-scale 
prediction of sORFs. The prediction of sORFs with coding 
ability in plant lncRNAs will not only lay the foundation for 
the discovery of lncRNA-encoded small peptides, but also 
provide an important reference for biological experimental 
validation, which is conducive to revealing the molecular 
mechanisms of life-form traits and disease resistance, and 
is of great value in agriculture and forestry production and 
other fields. In this research area, the majority of techniques 
currently used to construct predictors using a single clas-
sification algorithm, such as RF or SVM. In fact, it has been 
demonstrated that well-established ensemble classifiers can 
increase the prediction quality in protein fold classification, 
DNA-binding protein prediction, and other applications. Our 

Fig. 7  Performance of sORFPred compared to the state-of-the-art 
methods
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future research will primarily concentrate on investigating 
more effective feature selection techniques and more potent 
classification algorithms.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12539- 023- 00552-4.
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