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Abstract
Virtual screening (VS) is a computational strategy that uses in silico automated protein docking inter alia to rank potential 
ligands, or by extension rank protein–ligand pairs, identifying potential drug candidates. Most docking methods use preferred 
sets of physicochemical descriptors (PCDs) to model the interactions between host and guest molecules. Thus, conventional 
VS is often data-specific, method-dependent and with demonstrably differing utility in identifying candidate drugs. This 
study proposes four universality classes of novel consensus scoring (CS) algorithms that combine docking scores, derived 
from ten docking programs (ADFR, DOCK, Gemdock, Ledock, PLANTS, PSOVina, QuickVina2, Smina, Autodock Vina 
and VinaXB), using decoys from the DUD-E repository (http://​dude.​docki​ng.​org/) against 29 MRSA-oriented targets to cre-
ate a general VS formulation that can identify active ligands for any suitable protein target. Our results demonstrate that CS 
provides improved ligand–protein docking fidelity when compared to individual docking platforms. This approach requires 
only a small number of docking combinations and can serve as a viable and parsimonious alternative to more computation-
ally expensive docking approaches. Predictions from our CS algorithm are compared against independent machine learning 
evaluations using the same docking data, complementing the CS outcomes. Our method is a reliable approach for identifying 
protein targets and high-affinity ligands that can be tested as high-probability candidates for drug repositioning.
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1  Introduction

Apart from being time- and resource intensive, the success 
rate of traditional drug discovery is low [1, 2]. Drug Repur-
posing (DR), the evaluation of approved or safety-evaluated 
drugs as treatments for new or different diseases, has mostly 
relied on haphazard, trial-and-error drug discovery to match 
prospective drug candidates to cognate target proteins [2, 
3]. Next-generation DR methods involve computationally 
intensive automated screening of extant compounds against 
protein or nucleic-acid targets [4]. This method has come 
to be known as Virtual Screening (VS). Virtual Screening 
(VS) protocols can computationally map compound libraries 
against biological targets to detect compounds with poten-
tial biological activities while eliminating unsuitable com-
pounds [5–7]. Such in silico virtual screening can assess 
large numbers of compounds rapidly, including molecules 
yet to be synthesized.

Docking is a widely used computational method to 
predict the likelihood of meaningful complementarity 
between small molecule compounds and protein targets 
[8, 9]. Despite major advances in algorithms and hard-
ware, the quality of discrimination available within cur-
rent docking programs remains sub-optimal [10]. When we 
combine thousands of proteins with tens of thousands of 

ligands, the task becomes computationally challenging. To 
surmount this obstacle, efforts have been made to combine 
docking programs to derive consensus scores.

A major advance in VS began with the implementation 
of screening combining inputs from multiple VS platforms, 
a methodology popularly known as “consensus scoring” 
(CS) [11, 12]. Trial-and-error implementations of consen-
sus CS generates superior ligand–protein matching when 
compared to individual VS [11–13]. Initially conceptual-
ized by Charifson [14], consensus scoring algorithms have 
been employed in both structure-based and ligand-based 
virtual screening [15, 16] and are now becoming the norm 
[17], making contributions to the identification of drug 
candidates for Ebola [18] and Zika [19]. Recently, Scar-
dino et al [20] have employed a new consensus method 
that uses ranking and pose of the docked ligands to ensure 
more robust virtual screening. A key advantage of consen-
sus scoring over individual VS is its ability to reduce false 
positives and negatives in virtual screening [14], thereby 
optimizing the time and resources required.

Consensus scoring protocols rely on established statis-
tical (e.g. skewness-kurtosis, regression) measures [11, 
12], complemented by machine learning [21–23]. The pre-
requisite for statistical consensus scores is a homologous 
set of initial scores. For instance, the docking scores can 



133Interdisciplinary Sciences: Computational Life Sciences (2023) 15:131–145	

1 3

be uniformly generated [13] or rescored with the same 
docking engine [14]. For heterogeneous docking scores 
spanning a range of docking programs with varying units 
and ranges, the individual scores are first normalized using 
either rank transform [11, 12], minimum–maximum scal-
ing [15] or z-score scaling [24] before the combination, 
which can contribute to data loss.

The present study makes use of a different normaliza-
tion procedure that ensures convergence without data loss 
by using a three-tier approach. Tier 1 involves docking data 
from the enhanced DUD-E repository (http://​dude.​docki​ng.​
org/) (1000 ligands docked against 29 MRSA-oriented tar-
gets) using ten popular and easily accessible (open access) 
docking programs: ADFR, DOCK6, Gemdock, Ledock, 
PLANTS, PSOV-ina, QuickVina2, Smina, Autodock Vina 
and VinaXB. The choice is governed by reported individual 
success rates, e.g. DOCK6 at 73.3% [25], Autodock Vina 
at 80% [26], Gemdock at 79% [27], ADFR at 74% [28], 
Ledock at 75% [29], PLANTS at 72% [30], PSOVina 63% 
[31], QuickVina2 63% [32], Smina more than 90% [33] and 
VinaXB 46% [34]. The docking programs were randomly 
chosen focusing only on the need to use an open-sourced 
architecture that could be utilized on a terminal-based (that 
is, without a Graphical User Interface) Linux/Unix frontend, 
a requirement of the Midlands Supercomputing Cluster (now 
named SULIS) that we used for computations. Tier 2 com-
bines data from all 10 scores using statistical (linear and 
nonlinear) models belonging to four universality classes. 
Tier 3 normalizes VS data from Tier 2 through a novel 
calibration of the individual best score (Smina in our case) 
against the respective probability density functions (PDF). 
Since PDF data is non-dimensional, normalization is guar-
anteed and is without meaningful information loss.

This study also outlines a self-consistent mechanism of 
understanding how multiple docking combinations ensure 
better convergence, answering questions relating to a pos-
sible improvement in CS accuracy with additional docking 
entries. The study convincingly demonstrates that a finite 
number of docking programs are required for the highest 
available accuracy. The precise number required may vary 
depending on the specific choice of docking programs used.

We analyze the strength of our novel CS model against 
Methicilin Resistance Staphylococcus aureus (MRSA). 
The bacterium is a prime example of antimicrobial resist-
ance, accounting for up to 12% of hospital infections 

between 2011 and 2014 in the UK [35]; 323,700 infected 
patients in 2017 incurring an approximate cost of $1.7 
billion [36]. In this work, we focus on MRSA essential 
genes as de facto targets for potential repurposed drugs 
acting as anti-MRSA antibiotics, arguing that inhibiting 
any essential gene should impair the biological activity 
of the whole bacteria. Benchmark is done using MRSA 
targets comparing different MRSA protein structures to 
targets obtained from the Directory of Useful Decoys—
Enhanced (DUD-E).

2 � Methods

2.1 � Target and Ligand Selection

DUD-E decoys and active ligands are docked to MRSA 
structures that are structurally similar to their DUD-E tar-
gets. The idea is to evaluate the veracity of the docking 
structure used without the decoys necessarily binding to 
the targets, as in Graves, et al. [37] 351 essential genes 
from the Database of Essential Genes [38] are aligned with 
PDB structures using BLAST [39], resulting in 113 target 
structures identified in the Protein Data Bank (PDB) [40]. 
To benchmark MRSA-oriented targets effectively, instead 
of re-docking DUD-E ligands against their respective tar-
gets, we compare protein structures of MRSA proteins and 
DUD-D targets. 102 target protein structures from DUD-E 
[41] are structurally aligned with those of 113 MRSA pro-
teins using the Dali server [42] and visual inspection. 29 
pairs of structurally similar MRSA—DUD-E are recorded. 
For each DUD-E set of decoys and active ligands after 
filtering with Lipinski Rule of Five [43] for drug-like com-
pounds, 999 decoys and one active ligand are reserved for 
each target.

We docked 1000 DUD-E ligands initially against 1 
(DUD-E or MRSA) target. This is what we see in Table 1, 
the last column. While the initial docking involved DUD-E 
ligands against DUD-targets, we later substituted DUD-
targets with structurally similar MRSA targets, individu-
ally and collectively. For example, the MRSA target 4DQ1 
is reasonably similar in structure to the DUD-E target 
TYSY, or (3WQT, 5JIC) are similar to HXK4 and could 
be substituted.

Table 1   List of structurally 
similar DUD-E and MRSA 
targets

Targets in the same column share similar structures using results from the Dali server. 999 decoys and one 
active ligand DUD-E ligands were docked against MRSA targets that shared similar structures instead of 
their DUD-D targets

DUD-E targets DEF DYR ADA, ALDR GLCM, PYRD DHI1, INHA HXK4 TYSY
MRSA target 1LM4 2W9H 3M9Y, 3T05 3OSU, 4D44 3WQT, 5JIC 4DQ1

4HB7, 4TO8, 5BOE

http://dude.docking.org/
http://dude.docking.org/
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2.2 � Molecular Docking

Ten docking programs were chosen due to their ease of 
use and prominence as follows: ADFR [28], UCSF DOCK 
[29], Gemdock [27], Ledock [29], PLANTS [30], PSOVina 
[31], QuickVina2 [32], Smina [33], Autodock Vina [26] and 
VinaXB [34]. All protein structures used were downloaded 
from the Protein Data Bank (PDB) [40]. Prior to docking, 
protein structures have water and ions removed and are 
then protonated. Decoys and ligands are prepared similarly. 
Binding site prediction is carried out using FTSite server 
[43] for DOCK, Gemdock, Ledock, PLANTS, PSOVina, 
QuickVina2, Smina, Autodock Vina and VinaXB while 
ADFR uses its own package Autosite [45]. 999 decoys and 
1 active ligand are docked against all 29 MRSA targets. Each 
docking program generates various ligand conformations 
and orientations within a binding pocket (pose) and uses 
its underlying scoring function to estimate the likelihood of 
binding for each pose. The best scoring pose is retained for 
each decoy and ligand.

2.3 � Normalization

To compare with other consensus scores, common meth-
ods of normalization are applied to docking scores before 
combination. We employed the three commonly-used nor-
malization procedures. (A) Ranking: Ranks represent dock-
ing scores for each target assigned against ascending ranks. 
This implies that ligands with more negative scores rank 
higher. (B) Minimum–maximum Scale (referred to hereaf-
ter as min–max scale). Scores for each target are rescaled 
to a [0; 1] domain and then subtracted from the minimum 
score. The result is then divided by the difference between 
the maximum and the minimum score. (C) z-score. The 
min–max docking scores are mean averaged or zero-centered 
and rescaled. A drawback of these normalization methods is 
that they shift the relative distribution of scores, which may 
cause a loss of information.

2.4 � Consensus Algorithms

Molecular docking is a process that generates different con-
formations of poses of ligands and predicts the intermolec-
ular interactions using sets of physicochemical properties, 
including hydrogen bonding and hydrophobicity. Consensus 
scoring creates an overall score consistent with the ensemble 
representation of the 3D molecule rather than an individual 
pose. To avoid information loss while using normalization, 
our consensus algorithms combine information from all 
docking programs and then generate the following four inde-
pendent optimized functional ensemble data representations:

Here Sc is the combined score. Si is the docking score of 
ligands for programs i = 1, 2, …, 10. xi are coefficients of 
the docking programs i (ADFR, DOCK, Gemdock, Ledock, 
PLANTS, PSOVina, QuickVina2, Smina, Autodock Vina and 
VinaXB); these are the weights for docking outcomes. S is the 
mean of the set from program i. n represents the combinato-
rial order, real values only (n = 1 implies linear combination). 
Equations (1a–1d) were iterated over a total of 20 [9] ensem-
bles involving 10 docking programs, each weighing between 
0 and 1, incremented in steps of 0.05 each. Si represents the 
arithmetic means of the docking scores of all ligands for the 
same target for each docking program used. The rank of active 
ligands before and after combination was compared to evaluate 
the improvement produced by our consensus algorithm.

2.5 � Consensus Outcomes

The mean or median rank of active ligands can be used to 
compare the performance of consensus scores and individual 
docking programs. Here, we use the median rank of active 
ligands across all targets, which provides a better threshold 
than mean ranks. We dock active ligands and rank them with 
the medians as thresholds across all 29 targets. The median 
rank of active ligands is expressed as the recovery rate of vir-
tual screening performance: when 50% of active ligands are 
retrieved at a certain proportion of the ligand library. The frac-
tion of the library screened is defined as the arithmetic mean 
of the median rank over 1000 ligands.

We compared the result against other consensus scores: 
Mean (MEAN), Median (MED), Minimum (MIN), Maximum 
(MAX), Euclidean Distance (EUC), Cubic Mean (CBM), 
Exponential Consensus Rank (ECR) [46] and Deprecated Sum 
Rank (DSR) [47] across ten sets of normalized docking scores 
(Si) as follows:

(1a)Sc =

10
∑

i=1

20
∑

j=0

xi,jS
n
i,j
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(2a)MEAN = mean
{

S1, S2, S3,… , S10
}
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Models defined through Eq. (2g) and (2h) assume the 
rank of the scores, not the scores themselves. Model from 
Eq. (2h) is without the maximum of the list.

3 � Results and Discussion

29 targets were obtained from the DUD-E repository. For 
each target, 999 decoys and 1 active ligand were randomly 
chosen. These 1000 ligands were then docked against each 
target using ten docking programs (ADFR, DOCK, Gem-
dock, Ledock, PLANTS, PSOVina, QuickVina2, Autodock 
Vina and VinaXB), producing 10 matrices of 1000 × 29 
(active ligands are intentionally located at the 1000th row). 
For consensus scores, the docking results of each ligand-
target pair were combined using Eqs. (1a–1d). While 
anal***yzing a new set of combined scores, for each target, 
all combined scores were picked in descending order, start-
ing with the best binding energy. The medians of these re-
positioned values were then used to calculate the histogram 
leading to the probability distribution function.

3.1 � Statistical Ranking of Docking Scores (DUD‑E 
Database)

In this study, we used the median ranking order for evalua-
tion. First, active ligands for 29 targets were randomly cho-
sen and then ranked across a 1000 ligand (docked) arrays. A 
random selection leads to a median rank of 500. The median 
ranks obtained from 10 docking programs verified that the 

(2b)MED = median
{

S1, S2, S3,… , S10
}

(2c)MIN = minimum
{

S1, S2, S3,… , S10
}

(2d)MAX = maximum
{

S1, S2, S3,… , S10
}

(2e)EUC =

[

10
∑

i=1

S2
i

]1∕2

(2f)CBM =

[

10
∑

i=1

S3
i

]1∕3

(2g)ECR =

10
∑

i=1

exp
(

Si
)

(2h)DSR =

∑10

i=1
Si

maximum
�

Si
�

median ranks of active ligands (250 from ADFR) were bet-
ter than those obtained from a random selection, as detailed 
in Table 2.

Compared against the statistical scores defined in 
Eqs. (2a–2h), our rank-based normalization consistently 
returned low scores, complementing the predictions from 
the consensus algorithm. Table 3 tabulates the consensus 
scores against varying normalization.

After docking and calculating the ranks of active ligands 
across 29 targets, Smina returned the lowest median rank 
of 150, followed by PLANTS with median ranks of 163 
and 185 in QuickVina2. Autodock Vina and Gemdock show 
comparative median ranks of 191 and 192. Surprisingly, the 
highly popular DOCK generated the worst score (median 
rank of 423). In general, Autodock Vina show promising 
results. Based on this evaluation, Smina was the single 
best-performing docking program for the DUD-E ligands. 
Converted to recovery rate, the percentage median scores of 
the docked results are 33.7%, 42.3%, 19.2%, 38.7%, 16.3%, 
37.5%, 18.5%, 15%, 19.2% and 22.4% for ADFR, DOCK, 
Gemdock, Ledock, PLANTS, PSOVina, QuickVina2, 
Smina, Autodock Vina and VinaXB, respectively. See Fig. 1. 
The boxplot for Smina shows the ratio of the box height 
from the median to 0 (median marked by the black line) 
divided by 1000 is 15%. Thus, if we take 15% of the best-
ranked ligands for Smina, we have half of the active ligands. 
Substituting the median baseline with mean and mode did 
not change the outcome. The first plot of Fig. 2 shows the 
individual performance of docking programs while the three 
other plots illustrate the conventional consensus scores from 
ten docking programs after normalized with various nor-
malization methods.

As demonstrated in Fig. 1, these conventional consensus 
scores show no noticeable improvement compared to indi-
vidual docking programs, given the choice of normalization 
methods.

3.2 � Novel Consensus Scores

For each docking program, the median ranks of active 
ligands across 29 targets have been used and plotted using 
histograms. To establish the improved performance of con-
sensus scores (CS) over individual docking, we compared 
scores from the individual best performer Smina against 
the CS score. This was estimated from the leftward areas 
(since binding energy is negative) of our best-performing 
individual docking platform (Smina, identified by the solid 
line close to the maxima of the histograms). Greater the area, 
the better the CS score (compared to Smina).

As clearly demonstrated in Fig. 3, the linear consensus 
model was consistently the best performer, with the CS 
docking score progressively declining with increasing values 
of n. We found that three out of the four linear combinations 
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(n = 1) demonstrated higher ranks compared to the indi-
vidual best performer Smina [82, 83 and 82 for model 
(1a–1c), respectively]. Another trend was the dominance of 
the odd n values against their even counterpart. This was 
to be expected, as the docking scores were energies, hence 
negative. This could be compensated for by the absolute 
(consensus) values [as in models in Eq. (1b) and Eq. (1d)]. 
Model (1d) was the worst scorer, while linear combinations 

of models (1a–1c) showed similar behavior with approxi-
mate best ranks and comparable histograms (non-normalized 
probability density functions).

As evident from Figs. 2 and 3, linear regression (Figs. 2) 
over the set of 10 docking scores involving our ligand–pro-
tein sets returned better docking score than nonlinear regres-
sion (Figs. 3). Results for higher-ordered consensus regres-
sion are provided in the Appendix.

Table 2   Performance of docking programs across 29 targets

Each number represents the rank of 29 separate active ligands ranked against a set of 1000 ligands after docking to their targets. Best functioning 
docking programs that are capable of clearly distinguishing active ligands and decoys are identified by ranks close to 1. The median value repre-
sents the average performance of each docking program across all 29 targets

ADFR DOCK Gemdock Ledock PLANTS PSOVina QuickVina2 Smina Autodock Vina VinaXB

Target 1 761 344 712 235 446 900 838 641 637 613
Target 2 32 77 166 38 203 67 171 150 77 125
Target 3 337 826 330 514 83 685 83 62 191 224
Target 4 22 95 77 78 2 530 159 38 77 193
Target 5 769 46 137 385 178 375 332 190 242 388
Target 6 2 103 192 392 17 119 11 1 1 1
Target 7 110 445 32 98 667 388 635 497 475 521
Target 8 776 635 941 637 416 940 907 980 930 797
Target 9 334 571 331 490 94 376 250 194 231 260
Target 10 210 93 123 83 28 709 44 48 53 59
Target 11 339 64 523 387 146 376 367 299 390 374
Target 12 255 82 89 694 14 112 15 125 6 7
Target 13 861 831 316 806 646 418 696 423 438 211
Target 14 302 123 174 71 593 607 569 568 498 563
Target 15 881 523 758 843 362 837 823 922 931 877
Target 16 57 112 57 59 196 230 106 103 90 140
Target 17 275 477 666 276 169 27 143 101 139 166
Target 18 892 837 79 176 21 236 47 6 51 73
Target 19 446 669 264 312 295 338 487 383 305 338
Target 20 58 2 20 67 31 8 51 21 16 22
Target 21 688 731 456 422 360 442 406 294 583 457
Target 22 542 14 43 122 5 93 94 16 104 105
Target 23 168 123 9 403 13 194 342 227 365 387
Target 24 44 423 203 611 163 80 29 38 44 44
Target 25 842 795 84 448 382 287 157 260 185 240
Target 26 723 992 453 336 62 442 245 89 150 357
Target 27 408 41 619 782 74 17 185 43 622 100
Target 28 173 909 261 943 35 251 7 2 7 1
Target 29 646 831 138 545 422 527 636 664 476 669
Median 337 423 192 387 163 375 185 150 191 224

Table 3   Average performance 
of traditional consensus scores 
across various normalization

Mean Median Min Max EUC CBM ECR DSR

Min–max normalization 228 246.5 184 202.5 206 201 217 224
Rank normalization 191 195 271 205.5 176 174 207.5 183
z-score normalization 203 209 256 231 1000 220 191 205
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Area ratio is the area of the histogram of median ranks 
obtained from novel consensus models that show better 
ranking than that of the best individual docking program. 
Rank improvement is defined as the increment of rank 
compared to that of the best program.

3.3 � Consensus Model Accuracy Convergence

To evaluate the strength of linear combination in each model, 
we estimated the correlation between the number of docking 
programs and the consensus performance. Two following 

Fig. 1   Box plot of ranks from programs and consensus scores (From left to right: ADFR, DOCK, Gemdock, Ledock, PLANTS, Vina, scored as 
in Eqs. (2a–2h). The lines parallel to the x-axis in each box represent the median



138	 Interdisciplinary Sciences: Computational Life Sciences (2023) 15:131–145

1 3

types of measures were calculated: area ratio and rank 
improvement, relative comparisons of which are shown in 
Table 4. The model in Eq. (1a) defines an explicit correlation 
between the number of docking programs and the consensus 
outcome. The area ratio increased from 2 to 7 programs and 
then became saturated after approximately 8 docking com-
binations (Fig. 4b). Similarly, rank improvement drastically 
increased from 2 to 4 programs and flattened after 5 pro-
grams (Fig. 4f). A comparison between these two measures 
suggested that having large numbers of docking programs 
does not necessarily enhance overall performance. Models 
(1a) and (1c) showed similar saturation patterns both for area 

ratio and rank improvement. The consensus effect increases 
monotonically with combinations of two programs, reach-
ing a maximum value after 5 or 6 programs (Fig. 4a, c, e, 
g). Model (1d) showed poor improvement in both area ratio 
and rank, with the area ratio mostly remaining zero (Fig. 4d) 
while rank showed negative changes around n = 8 programs 
(Fig. 4h), indicating no improvement.

A possible reason for the lack of convergence in Fig. 4b, 
f is the use of absolute values, causing gradual increments 
(‘accumulation’ effect) as the number of docking programs 
increases, unlike in models (1a) and (1c) for which the con-
sensus accuracy converges faster by 4 or 5 programs.
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Fig. 2   Consensus scores, defined as area fraction (to the left of the best-performing individual docking score marked with a straight line) of the 
total histogram area, evaluated for linear regression, i.e. n = 1 as in Eqs. (1a–1d)
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Fig. 3   Consensus scores, defined as area fraction (to the left of the best performing individual docking score marked with a straight line) of the 
total histogram area, evaluated for n = 2 as in Eqs. (1a–1d)
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To compare our novel rank-based CS algorithm with 
more conventional statistical algorithms, such as the 
Receiver Operating Characteristic (ROC), we evaluated 
histograms of consensus models (DUD-E data) (Fig. 5) 

using CS scoring of the ROC data. The consensus results 
showed only minor improvement in the ROC area when 
compared to Smina. We found that conventional statistical 
approaches such as enrichment factor did not highlight the 

Table 4   Performance of novel 
consensus scores

Power
Sc =

10
∑

i=1

20
∑

j=1
xi,jSni,j Sc =

10
∑

i=1

20
∑

j=1
xi,jabs

[

Sni,j
]

Sc =
10
∑

i=1

20
∑

j=1
xi,j

(

Si,j − Si
)n

Sc =
10
∑

i=1

20
∑

j=1
xi,jabs

[(

Si,j − Si
)n]

Best rank Area ratio Best rank Area ratio Best rank Area ratio Best rank Area ratio

1 82 0.532 83 0.648 82 0.532 119 0.020
2 558 0 109 0.541 395 0 152 0
3 109 0.450 109 0.413 112 0.107 177 0
4 579 0 109 0.289 399 0 174 0
5 110 0.295 110 0.180 118 0.085 177 0
6 572 0 111 0.117 399 0 17 0
7 111 0.137 111 0.078 116 0.086 177 0
8 556 0 112 0.047 399 0 182 0
9 112 0.070 112 0.038 119 0.087 179 0
10 543 0 112 0.005 399 0 179 0

Fig. 4   Rank improvement versus the number of docking programs. From left to right column: area ratio of model (1a–1d); upper figures: area 
ratio versus the number of docking programs; lower figures: rank improvement versus the number of docking programs
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advantage of the CS method, unlike the previous (Figs. 2, 
3) rank-based method.

Here, we used small incremental changes to the relative 
weights and compared each against the other, retaining only 
the top-scoring ones. The quality of this prediction compares 
favorably with results from machine learning, as shown 
below. Table 5 converges to a ranking of the top DUD-E 
ligand candidates based on CS scoring.

3.4 � Complementary Machine Learning Evaluation

High-Affinity Ligands (HAL)-Prime Protein Target (PPT) 
(“High-Affinity-Ligand–Protein-Complex” or HPCs here-
after) are identified using k-Means Clustering (k-MC). See 
Table 6. The HPCs are ‘reverse mapped’ to the original 
active database using mutual “affinity scores” between 
the 40 HALs and 29 PPTs for each dataset. From the 400 
HAL-TPC datasets, three sets of test data (26 each) were 
chosen for evaluation. The first is set ‘A’, comprising the 
last 26 rows (ligands 375–400) of the original dataset. 
The second test set, set ‘B’, comprises the middle 26 

rows (ligands 251–276). The third test set is set ‘C’ and 
comprises the first 26 rows (ligands 1–26) of the original 
dataset. The test data was chosen to indicate the HPCs of 
the original dataset. The observations are shown below: 
observation-1: PPT identification, observation-2: HAL 
identification and observation-3: HPC identification. A 
summary observation describes the outcome of the com-
plementary ML model.

3.4.1 � Observation 1: Prime Protein Target (PPT) 
Identification

From k-MC, three distinct high-quality clusters were 
obtained. Using Euclidean distance measures across all 
datasets around the centroids of each cluster, Clusters 1, 2 
and 3 are found to contain 62%, 19% and 18% of the ligands, 
respectively. This information has been reversed mapped to 
indicate which ligands have high affinity to the protein tar-
gets (see Table 6a–c). k-MC identifies PPT2, PPT14 and 
PPT27 as the prime protein targets (see Table 5).
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Fig. 5   Histogram of consensus models using ROC for evaluation: 
From left to right column: area ratio of model (1a–1d) respectively; 
upper figures: power 1; lower figures: power 2. The area to the right 

of the red line represents a better ROC after combination than the 
ROC of Smina (0.623)
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Table 5   Mapping HALs to the corresponding PPTs—‘Reverse Modeling’

HAL PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9 PT10 PT11 PT12 PT13 PT14 PT15 PT16 PT17 PT18 PT19 PT20 PT21 PT22 PT23 PT24 PT25 PT26 PT27 PT28 PT29 Max affinity

375 − 5.8 − 10.9 − 6.6 − 8.3 − 5.5 − 6.9 − 9.3 − 9.1 − 7.2 − 9 − 6.3 − 7.5 − 7.9 − 11.5 − 11.1 − 8.9 − 6.1 − 7.7 − 6.1 − 6.5 − 6.4 − 7.8 − 6.1 − 7.2 − 6.7 − 8 − 6.4 − 7.6 − 9.9 − 11.5
376 − 5.5 – 10.9 − 5.9 − 7.7 − 5.6 − 6.2 − 9.2 − 8.5 − 6..6 − 8 − 6.1 − 6.9 − 7.1 − 9.2 − 10.7 − 7.9 − 6.3 − 7.8 − 5.8 − 6.4 − 6.4 − 8.6 − 6 − 7.1 − 7.3 − 6.4 − 6.7 − 7.4 − 9.7 − 10.9
377 − 5.5 − 11 − 6.6 − 7.5 − 5.4 − 7.3 − 9.5 − 8.5 − 6.8 − 8.2 − 6.3 − 8.6 − 9.3 − 11.6 − 9.4 − 8.5 − 6.4 − 7.3 − 6 − 6.8 − 6.4 − 8.3 − 6.2 − 7.2 − 7.6 − 7.6 − 7 − 7.2 − 9.3 − 11.6
378 − 6.1 − 10.6 − 6.5 − 7.6 − 5.8 − 7.1 − 9.8 − 9 − 6.9 − 7.5 − 6.2 − 7.5 − 8.1 − 11.9 − 10.6 − 7.8 − 6.4 − 7.5 − 5.7 − 6.6 − 6.6 − 7.5 − 6.5 − 7 − 7.6 − 7 − 7 − 7.3 − 10.9 − 11.9
379 − 6.4 − 10.7 − 6.6 − 6.8 − 5.6 − 6.9 − 9.3 − 9.3 − 6.8 − 8.6 − 6.7 − 7.6 − 8.5 − 12 − 9.5 − 8.3 − 6.7 − 7.4 − 5.6 − 6.2 − 6.4 − 8 − 6.3 − 6.8 − 7.3 − 7.4 − 6.6 − 6.9 − 11 − 12
380 − 5.3 − 10.8 − 6.3 − 7.3 − 5.6 − 6.7 − 9.6 − 8.4 − 6.6 − 8.6 − 6.4 − 7.5 − 8.3 − 11.9 − 11.4 − 8.3 − 6.7 − 7.6 − 5.6 − 6.4 − 6.6 − 8.1 − 6.4 − 6.7 − 7.7 − 7.5 − 6.9 − 7.2 − 11.5 − 11.9
381 − 5.9 − 10.5 − 6.7 − 8.1 − 5.7 − 7.6 − 7.1 − 9.3 − 7.4 − 9.4 − 6.6 − 7.3 − 8.3 − 9.1 − 11.4 − 9.2 − 6.7 − 8 − 5.6 − 7.2 − 6.1 − 9.6 − 6.3 − 7.9 − 7.8 − 8.3 − 6.6 − 8 − 11.2 − 11.4
382 − 6.6 − 11.2 − 6.4 − 7.9 − 5 − 8.4 − 7.7 − 9.1 − 6.1 − 9.3 − 6.7 − 9.9 − 10.4 − 10.6 − 10.4 − 9.3 − 6.3 − 7.9 − 5.7 − 8.5 − 6.4 − 8.8 − 6.2 − 8.1 − 7.4 − 8.1 − 6.8 − 9.1 − 9.9 − 11.2
383 − 6.1 − 10.4 − 5.9 − 7.5 − 5.9 − 8.6 − 7.9 − 9.1 − 5.8 − 8.2 − 6.5 − 10.3 − 9.5 − 9.5 − 11.6 − 9.1 − 5.6 − 7.8 − 5.4 − 8.6 − 6.2 − 8 − 6.8 − 8.3 − 6 − 7.3 − 6.8 − 8.5 − 10.2 − 11.6
384 − 5.9 − 10.2 − 6 − 6.7 − 5.8 − 8.9 − 7.9 − 9.2 − 6.5 − 7.3 − 6.4 − 10.1 − 7.3 − 9.5 − 9.9 − 9.2 − 5.9 − 6.6 − 5.7 − 8.1 − 6.6 − 7 − 6.2 − 9.3 − 6.2 − 7.5 − 7 − 9.3 − 8.3 − 10.2
385 − 7.1 − 10.1 − 6.5 − 7.9 − 5.7 − 8.7 − 7.1 − 8.1 − 7.5 − 9 − 6.3 − 10.1 − 8.7 − 9.4 − 8.9 − 9.2 − 7 − 7.9 − 6 − 8.6 − 6.8 − 8.5 − 6.5 − 9.8 − 7.3 − 7.8 − 6.7 − 9.4 − 9 − 10.1
386 − 6.8 − 10.6 − 5.7 − 7.4 − 5.8 − 7.4 − 8 − 7.6 − 6 − 7.7 − 6.3 − 7.9 − 7.3 − 10.5 − 8.9 − 9.4 − 5.5 − 7 − 5.7 − 7.4 − 6.1 − 7.6 − 6.4 − 7.5 − 6 − 6.8 − 7.1 − 8.8 − 8.3 − 10.6
387 − 6.2 − 10.6 − 5.4 − 7 − 5.9 − 8.1 − 9.1 − 6 − 6.2 − 8.2 − 6.7 − 7.8 − 8 − 10 − 7.4 − 9.2 − 5.3 − 6.8 − 5.7 − 7.7 − 5.6 − 7.5 − 6.5 − 8.1 − 5.9 − 7.4 − 7.2 − 8.5 − 9.4 − 10.6
388 − 6.2 − 10.4 − 5.6 − 7 − 6.3 − 7 − 8.7 − 8.7 − 6.6 − 9.1 − 6.7 − 8.5 − 7.5 − 10.3 − 10.1 − 9.3 − 5.7 − 7.9 − 5.9 − 7 − 6 − 8.2 − 6.7 − 7.9 − 6.3 − 6.7 − 6.8 − 7.9 − 9.2 − 10.4
389 − 7.2 − 10.9 − 5.8 − 7.3 − 5.7 − 7.1 − 8.6 − 9.3 − 6.6 − 9.1 − 6.6 − 8.3 − 8.3 − 11 − 10.9 − 9.1 − 5.5 − 7.8 − 5.6 − 7 − 5.9 − 8.6 − 6.3 − 7.6 − 6.2 − 7.2 − 7.1 − 7.2 − 7.5 − 11
390 − 7.4 − 9.9 − 5.8 − 7.8 − 5.8 − 8.7 − 8.4 − 5.8 − 6.6 − 9.2 − 6.2 − 9.6 − 8.1 − 10.8 − 7.5 − 8.8 − 5.7 − 7.7 − 5.7 − 8.3 − 6.4 − 8.1 − 6.3 − 8 − 6.3 − 7.1 − 6.4 − 9 − 8.7 − 10.8
391 − 7.4 − 10.4 − 5.6 − 7.7 − 7.5 − 6.3 − 8.6 − 9 − 6.6 − 9.1 − 7.5 − 7.1 − 7.2 − 10.5 − 11.9 − 8.8 − 5.3 − 7.7 − 7.4 − 6.4 − 5.8 − 8.2 − 7 − 7.3 − 6.6 − 6.9 − 6.9 − 6.7 − 8.2 − 11.9
392 − 7.3 − 8.9 − 5.8 − 8 − 7.6 − 6.6 − 8.5 − 8 − 6.6 − 7.7 − 8.7 − 6.5 − 9.2 − 10.7 − 9.9 − 8.9 − 5.4 − 7.4 − 7.2 − 6.2 − 6 − 7.5 − 7.7 − 6.9 − 6.4 − 7.9 − 8.7 − 6.7 − 8.9 − 10.7
393 − 6.7 − 8.4 − 5.4 − 6.3 − 7.4 − 7 − 7.4 − 7.7 − 6.5 − 6.8 − 7.9 − 7.9 − 7.7 − 9.8 − 8.4 − 9 − 5.6 − 6.3 − 7.2 − 6.9 − 5.6 − 6.9 − 7.4 − 8 − 5.8 − 6.2 − 7.4 − 7.3 − 9 − 9.8
394 − 6.4 − 10.8 − 5.4 − 6.2 − 7.7 − 6.9 − 7.5 − 6.7 − 6.7 − 6.9 − 8.9 − 8.5 − 7.8 − 9.6 − 9 − 6.6 − 5.4 − 6.4 − 7.4 − 6.7 − 6.2 − 7 − 7.6 − 7.8 − 6.5 − 6.5 − 8.9 − 6.9 − 9.9 − 10.8
395 − 5.9 − 10.8 − 5.8 − 6.4 − 5.8 − 7.4 − 7.3 − 7.2 − 6..6 − 7 − 6.4 − 7.5 − 8 − 9.8 − 8.4 − 6.9 − 5.8 − 6.5 − 5.8 − 6.9 − 6 − 7.2 − 5.7 − 7.2 − 6.2 − 6.3 − 6.3 − 7.7 − 9.8 − 10.8
396 − 7.9 − 11.3 − 5.9 − 6.3 − 5.4 − 6.6 − 7.7 − 9.4 − 6.5 − 7 − 6.2 − 7.2 − 8.8 − 10.1 − 10.9 − 6.6 − 5 − 6.3 − 5.6 − 6.3 − 5.8 − 7.2 − 6.2 − 7.3 − 6.6 − 6.1 − 6.7 − 7.5 − 9.9 − 11.3
397 − 7.9 − 11.2 − 5.7 − 7.9 − 5.6 − 8.5 − 7.1 − 8.9 − 6.4 − 8.1 − 6.2 − 9.6 − 8.3 − 8.5 − 10.3 − 6.6 − 5.8 − 8 − 6 − 8.3 − 6 − 8.1 − 6.1 − 8 − 6.2 − 7.8 − 6.6 − 8.8 − 9.6 − 11.2
398 − 6.7 − 11.4 − 5.6 − 7.3 − 6.1 − 8.1 − 8.9 − 7.9 − 6.4 − 7.8 − 6.5 − 10 − 8.5 − 10.8 − 9.2 − 6.8 − 5.8 − 8 − 5.7 − 8.2 − 6.1 − 8.4 − 6.1 − 8.1 − 6.3 − 8.1 − 6.5 − 9.1 − 9.1 − 11.4
399 − 7.7 − 11.4 − 5.6 − 8 − 5.7 − 8 − 8.7 − 7.9 − 6.5 − 8.7 − 6.2 − 9.2 − 8.1 − 10.9 − 9.1 − 6.6 − 6 − 8.1 − 5.1 − 8.5 − 6 − 8.1 − 6 − 8.9 − 6.9 − 7.9 − 6.1 − 8.6 − 7.6 − 11.4
400 − 5.7 − 9.5 − 5.9 − 9 − 6 − 7.4 − 8.9 − 8.2 − 6.6 − 10.3 − 5.9 − 7.9 − 7.8 − 10.2 − 9.6 − 6.6 − 6.1 − 8.5 − 5.2 − 7.8 − 5.8 − 9 − 6 − 7.2 − 6.7 − 8.6 − 6.6 − 8 − 9.8 − 10.3

Table 6   Evaluation of relationships among HAL test data ‘A’, ‘B’, ‘C’ and PPTs based on clusters
Test HAL L-set #Sum Cluster % HPC %

(A)

A (26 x 29)

PPT2 (13), PPT14 (10), PPT15 (3) PPT2 (50%), PPT14 (38.4%), PPT15 (11.6%)
374-377, 379, 380, 383, 384, 

386-400 

22 1 84.6

378, 379, 381, 382 4 3 15.4

(B)

C (26 x 29) PPT2(8), PPT14(10), PPT15(7), PPT12(1)

PPT2 (31%), PPT14 (38%), PPT15 (27%),

PPT12(2%)
251-254, 256, 258, 264-276 19 1

255, 257, 259-263, 7 3

(C)

B (26 x 29) PPT2(11), PPT15(8), PPT25 (2), PPT29(1), PPT14 

(2), PPT27(2)
PPT2(42.30%), PPT15(30.77%)23 1 1 3.85

1-22, 24-26 25 2 96.15
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3.4.2 � Observation 2: High Affinity Ligand (HAL) 
Identification

From the test sets, observed by reverse mapping, it can be 
noticed that in Test set ‘A’: ligand numbers 379, 380, 381 
and 392 (15%) have a maximum affinity towards PPT 14. 
Test set ‘B’: ligand numbers 259, 260, 261 (11%) have a 
maximum affinity towards PPT 14. Test set ‘C’: ligand num-
bers 12, 14 and 17 (11%) have a maximum affinity towards 
PPT27, PPT27 and PPT2, respectively.

3.4.3 � Observation 3: HPC Identification

•	 PPT14 ⟷ HAL #259–261, #379–381, #392
•	 PPT27 ⟷ HAL #12, #14
•	 PPT2 ⟷ HAL #17

The Machine Learning (ML) protocols used to iden-
tify the 14th protein target as a good match against ligands 
259–261, 379–381 and 392, respectively, followed by the 
27th protein target matching ligands 12 and 14, and finally 
the 2nd protein target finding a good match with ligand num-
ber 17. These are the top drug candidates identified within 
the ML landscape that offers an independent assessment of 
possibilities. Note, this is not to suggest that any approach, 
e.g. consensus is necessarily better or inferior to the other, 
e.g. ML. While not within the scope of this study, we are 
considering stage-wise comparison of both predictions, 
consensus and ML, versus molecular dynamics predictions 
that should provide insight into the stability of the proposed 
drug candidates.

3.4.4 � Summary Observation (Table 6)

Therefore, from 72 Test ligands, 14% are found to be HALs, 
whereas out of 29 Protein targets, 3 PPTs (10%) are HPCs. 
These HPCs can be proposed as candidates for experimen-
tal analysis and subsequent drug design. The method used 
can only explore the important HPCs numerically and is not 
suitable for ranking, which requires in vitro experiments and 
empirical evaluation of individual HPCs.

Based on these experiments, we conclude that PPT2 
(average HPC is 41.1%) is the highest-ranked protein can-
didate, as most HALs show high affinity towards it, fol-
lowed by PPT14 (average 25.46%), and then PPT15 (aver-
age 23.12%).

3.4.5 � Reverse Mapping (Table 6)

In this table, ‘HALs’, ‘PPTs’**, and their respective 
‘Affinity scores’ are ‘green’, ‘yellow’, and ‘magenta’ 
colored boxes. Table 6 also shows HPCs obtained from 
test data ‘B’ and ‘C’ similarly. Figure  6 explains our 

clustering-to-reverse-mapping approach to HAL-PPT affin-
ity evaluation.

4 � Conclusions

We investigated consensus scoring algorithms using MRSA 
datasets and ten docking programs (ADFR, DOCK, Gem-
dock, Ledock, PLANTS, PSOVina, QuickVina2, Smina, 
Autodock Vina and VinaXB). Our performance benchmark 
was the median rank of active ligands. We also compared 
the individual docking programs with conventional consen-
sus scores (minimum, maximum, mean, median, reciprocal 
rank and Euclidean distance). We also included the newly 
reported Exponential Consensus Rank score [45].

Prior to consensus scoring, we altered the distribution 
of docking scores with 12 pre-normalization (with molecu-
lar weight and number of heavy atoms) and normalization 
(rank, min–max scaling, and z-scores) thresholds to offer a 
direct comparison with commonly used statistical consensus 
scores. Comparisons indicate that our dataset is not sensitive 
to conventional consensus scores, showing no improved rank 
compared to 150 in Smina. Nonetheless, our novel consensus 
scores consistently perform better than individual docking 

Fig. 6   The ML evaluation technique using KMC and reverse mapping
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programs on the MRSA benchmark dataset. In this work, 
we used raw docking scores from ten docking programs 
(ADFR, DOCK, Gemdock, Ledock, PLANTS, PSOVina, 
QuickVina2, Smina, Autodock Vina and VinaXB). Due to 
the exhaustive search of possible combinations, there was 
no requirement for data normalization. Results suggest that 
our model gives better rankings of active ligands across this 
benchmark dataset.

A key outcome is the preponderance of linear combina-
tions of docking scores showing improved active ligand 
ranking over non-linear consensus approaches. Given 
that such complex systems are known to be inherently 
nonlinear, such linear mapping is interesting and poten-
tially more useful than nonlinear scores. In Eqs. (1a–1d), 
odd-ordered combinations show consistently better per-
formance than their even-ordered counterparts. Our find-
ings also indicate that linear combinations using absolute 
values (model 1b) converge towards a better functional 
relationship linking the number of docking programs and 
consensus performance. While consensus prediction accu-
racy is proportional to the increasing number of docking 
programs (see Fig. 4), it is not a monotonically diverging 
quantity. Rather, it saturates beyond a finite number of 
combinations, typically 5–7 for our sets of ligands and 
MRSA proteins. This is a remarkable feature of the con-
sensus approach. It should allow for the systematic substi-
tution of weaker docking programs with programs exhib-
iting a higher scoring accuracy, as they arise over time 
since consensus scoring will always outperform even the 
best-performing individual docking program.

Both as a benchmarking exercise and from the perspec-
tive of complementing extant consensus predictions, we 
used machine learning (k-means clustering) to identify 
the prime protein targets (PPTs) and high-affinity ligands 
(HALs). While CS offers a probabilistic list of ideal com-
binatorial candidates between the given ligand and protein 
sets, clustering methods can identify the principal PPTs 
and HALs. This is a key outcome of this study, as we can 
now suggest a self-consistent algorithm capable of find-
ing the correct MRSA drug candidates suitable for wet 
lab experiments.

The combination of CS and ML offers a straightforward 
approach able to combine docking scores from diverse dock-
ing platforms with higher overall efficiency than any indi-
vidual docking program (CS) and predict PPTS and HALs 
(ML). This model can also be used in ligand-based virtual 
screening, where normalization usually requires data fusion. 
We will expand our study to include a greater range of dock-
ing programs as well as targets other than MRSA. We also 
plan to explore other descriptors, such as negative and/or 
fractional statistics. Our algorithm can lead to repositioned 
drug candidates while simultaneously offering a comple-
mentary prediction platform based on machine learning. We 

note that machine learning and our algorithm are comple-
mentary protocols; they should not be expected to bench-
mark any strategy, but rather assist in identifying overlap 
in prediction.
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