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Abstract
lncRNA–protein interactions (LPIs) prediction can deepen the understanding of many important biological processes. Artifi-
cial intelligence methods have reported many possible LPIs. However, most computational techniques were evaluated mainly 
on one dataset, which may produce prediction bias. More importantly, they were validated only under cross validation on 
lncRNA–protein pairs, and did not consider the performance under cross validations on lncRNAs and proteins, thus fail to 
search related proteins/lncRNAs for a new lncRNA/protein. Under an ensemble learning framework (EnANNDeep) composed 
of adaptive k-nearest neighbor classifier and Deep models, this study focuses on systematically finding underlying linkages 
between lncRNAs and proteins. First, five LPI-related datasets are arranged. Second, multiple source features are integrated 
to depict an lncRNA–protein pair. Third, adaptive k-nearest neighbor classifier, deep neural network, and deep forest are 
designed to score unknown lncRNA–protein pairs, respectively. Finally, interaction probabilities from the three predictors 
are integrated based on a soft voting technique. In comparing to five classical LPI identification models (SFPEL, PMDKN, 
CatBoost, PLIPCOM, and LPI-SKF) under fivefold cross validations on lncRNAs, proteins, and LPIs, EnANNDeep com-
putes the best average AUCs of 0.8660, 0.8775, and 0.9166, respectively, and the best average AUPRs of 0.8545, 0.8595, 
and 0.9054, respectively, indicating its superior LPI prediction ability. Case study analyses indicate that SNHG10 may have 
dense linkage with Q15717. In the ensemble framework, adaptive k-nearest neighbor classifier can separately pick the most 
appropriate k for each query lncRNA–protein pair. More importantly, deep models including deep neural network and deep 
forest can effectively learn the representative features of lncRNAs and proteins.
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1  Introduction

1.1 � Motivation

Long noncoding RNAs (lncRNAs) are a class of long endoge-
nous noncoding RNAs with poor sequence conservation [1–3]. 
lncRNAs have close association with multiple key biological 
processes [4]. More importantly, increasing works imply that 
lncRNAs also densely linking with many complex diseases 
[5, 6], for example, brachydactyly syndrome and HELLP syn-
drome [7], facioscapulohumeral muscular dystrophy [8], fat [9], 
and cancers. For example, lncRNAs HOXA-AS2 and SNHG12 
are identified as possible therapeutic targets and biomarkers in 
human cancers [10, 11], DLEU1 densely links with colorec-
tal cancer progression through the activation of KPNA3 [12], 
HOTAIR’s expression is elevated in lung cancer [13], ZFAS1 
has close relationship with cervical cancer cell chemosensitivity 
[14]. In summary, lncRNAs have been increasingly confirmed 
to be tumor-related biological molecules. However, to date, 
relationships between lncRNA and known tumor-suppressive 
entities remain largely elusive. Evidence indicates that lncR-
NAs exert their biological functions based on the linkages with 
RNA-binding proteins. Therefore, the identification of potential 
lncRNA–protein interactions (LPIs) contributes to understand 
many important biological processes and progression and 
metastasis of various complex diseases.

1.2 � Related Work

Wet-lab experiments for LPI identification are time-consuming 
and waste of sources. Computational methods have been grad-
ually explored for potential LPI discovery. Existing computa-
tion-based LPI prediction methods can be roughly categorized 
into network-based techniques and machine learning-based 
techniques. Network-based methods generally construct a few 
lncRNA/protein-related networks and then design a network 
algorithm to compute the probabilities of interactions between 
lncRNAs and proteins. Zhao et al. [15] and Ge et al. [16] 
designed two bipartite network-based recommended algorithm 
to score each lncRNA–protein pair. Zhou et al. [17] proposed a 
similarity kernel fusion method for LPI prediction (LPI-SKF). 
Zheng et al. [18] fused multiple protein similarity networks to 
uncover potential associations between lncRNAs and proteins.

Machine learning-based methods select features for 
lncRNAs and proteins to describe an lncRNA–protein pair, 
and use the extracted features as input to train a supervised 
learning model for possible LPI identification. The type 
of methods contain matrix factorization-based models, 
ensemble learning-based models, and deep learning-based 
models. To discover new LPIs, Liu et al. [19], Zhang et al. 
[20], and Ma et al. [21] explored neighborhood regularized 
logistic matrix factorization method, graph regularized non-
negative matrix factorization model, and projection-based 

neighborhood nonnegative matrix decomposition method 
(PMKDN), respectively.

Ensemble learning-based techniques have been widely 
available for LPI identification. Hu et al. [22] presented a 
unified framework combining support vector machines, 
random forests, and extreme gradient boosting. Zhang et al. 
[23] designed a feature projection ensemble learning-based 
framework (SFPEL). Deng et al. [24] picked lncRNA and 
protein information including HeteSim features and diffusion 
features and constructed a gradient tree boosting algorithm 
(PLIPCOM). Fan et al. [25] explored a broad learning sys-
tem-based ensemble classification model. Wekesa et al. [26] 
exploited a categorical boosting approach (LPI-CatBoost). Yi 
et al. [27] proposed a stacking ensemble learning algorithm.

Deep learning architectures can better learn hidden infor-
mation in raw data and characterize data in each layer based 
on nonlinear transformations [28]. Therefore, deep learning 
has been a research hotspot in the area of bioinformatics [6, 
29–31]. In LPI prediction, deep learning demonstrates also 
broad application, such as the works provided by [32–35]. 
Deng et al. [32] proposed a deep neural network for predict-
ing binding site of RNA-binding proteins. Wei et al. [35] 
fused biological feature blocks via Deep Neural Network 
(DNN). Zhang et al. [33] presented an ensemble deep learn-
ing model for identifying interaction biomolecule types for 
lncRNAs. Wekesa et al. [34] explored a graph attention-based 
deep learning model to predict plant LPIs. Zhao et al. [36] 
developed a graph convolutional network-based method to 
prioritize target protein-coding genes of lncRNAs. Shaw et al. 
[37] exploited a multimodal deep learning model to identify 
relationships between lncRNAs and protein isoforms.

Computational methods effectively discovered many 
potential relevances between lncRNAs and proteins. How-
ever, network-based techniques fail to find possible proteins/
lncRNAs for an orphan lncRNA/protein. Machine learn-
ing-based LPI prediction approaches remain the following 
problems to solve. First, most methods are measured on one 
dataset, which may result in prediction bias. Second, the 
majority of methods are validated under Cross Validation 
(CV) on lncRNA–protein pairs, ignored the performance 
under the other CVs, for example, CVs on lncRNAs or pro-
teins. Finally, features of lncRNAs and proteins are required 
to further integration. The details are summarized in Table 1.

1.3 � Study Contributions

In this manuscript, an ensemble learning framework 
(EnANNDeep) is developed to quantify the interplays 
between lncRNAs and proteins. EnANNDeep integrates 
diverse biological information, Adaptive k-nearest neighbor 
(AkNN) classifier, deep neural network, Deep forest, and 
ensemble learning theory to a unified framework. The work 
mainly has the following three contributions: 
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1.	 An ensemble learning framework, composed of AkNN 
algorithm, DNN, and deep forest, is exploited to greatly 
learn labels of unknown lncRNA–protein pairs.

2.	 The proposed AkNN classification model separately 
selects the right k for each neighborhood and provides 
an upper bound for the failure probability.

3.	 Deep models including DNN and deep forest better rep-
resent biological features for each lncRNA–protein pair.

2 � Materials and Methods

2.1 � Data Preparation

In this study, five different LPI-related datasets are arranged. 
Table 2 shows the details of the five datasets. Datasets 1, 2, 
and 3 contain human LPI data and datasets 4 and 5 contain 
plant LPI data. Dataset 1 was provided by Li et al. [38]. We 
obtain 3479 correlations from 935 lncRNAs and 59 proteins 
after removing lncRNAs and proteins whose sequence infor-
mation is unknown in the NPInter [39], NONCODE [40], 
and UniProt [41].

Dataset 2 was built by Zheng et al. [18]. We screen 3265 
relationships from 885 lncRNAs and 84 proteins after the 
preprocessing similar to dataset 1. Dataset 3 was constructed 

by Zhang et al. [42] and contains 4158 interplays from 990 
lncRNAs and 27 proteins.

Datasets 4 and 5 were from Arabidopsis thaliana and Zea 
mays, respectively. The former contains 948 interactions 
from 109 lncRNAs and 35 proteins and the latter provides 
22,133 associations from 1704 lncRNAs and 42 proteins. 
Sequence data are extracted from the PlncRNADB database 
[43] and interaction data are obtained at http://bis.zju.edu.
cn/PlncRNADB/.

We represent LPI network as a matrix Y with the element:

(1)yij =

{
1, if lncRNA li interacts with protein pj
0, otherwise

Table 1   Summarization 
of existing studies and the 
proposed method

CVl , CVp , and CVlp denote CV on lncRNAs, proteins, lncRNA–protein pairs
PLIPCOM   Gradient Tree Boosting technique, LPBNI   bipartite network, LPI-BNPRA   bipartite network 
projection recommended algorithm, HeteSim algorithm, LPI-SKF  similarity kernel fusion + Lapla-
cian regularized least squares, LPI-NRLMF    neighborhood regularization + logistic matrix factorization, 
LPGNMF    graph regularization + nonnegative matrix factorization, PMKDN    projection-based neigh-
borhood + nonnegative matrix decomposition model, SFPEL-LPI    feature projection + ensemble learn-
ing method, HLPI-Ensemble    Support Vector Machines + Random Forests + Extreme Gradient Boost-
ing, LPI-BLS   Broad Learning System + stacked ensemble classifier with a logistical regression model, 
DRPLPI  CatBoost + Extra Tree + LSTM Autoencoder, RPI-SE  SVM + Gradient Boosting Decision Tree 
+ Extremely randomized Trees algorithms, GPLPI    Graph attention-based autoencoder + CatBoost and 
Logistic regression, DeepLPI  Deep Neural Network + Conditional Random Field

Method Year Model Dataset The type of CV

Network-based methods 2016 LPBNI NPInter 2.0  CVl

2018 LPI-BNPRA dataset 3  CVlp

2017 HeteSim algorithm NPInter 2.0  CVlp

2020 LPI-SKF dataset 3  CVl , CVp , and CVlp

Machine learning-based methods 2017 LPI-NRLMF dataset 3  CVlp

2018 PLIPCOM NPInter 3.0  CVlp

2017 LPGNMF NPInter 3.0  CVlp

2019 PMKDN dataset 3  CVl , CVp , and CVlp

2018 SFPEL-LPI dataset 3  CVl , CVp , and CVlp

2018 HLPI-Ensemble NPInter 2.0  CVlp

2019 LPI-BLS NPInter 3.0  CVlp

Deep learning-based methods 2020 DRPLPI datasets 4, 5  CVlp

2020 RPI-SE NPInter 3.0  CVlp

2020 GPLPI datasets 4 ,5  CVlp

2021 DeepLPI NPInter 3.0  CVlp

Table 2   The statistics of LPI data

Dataset lncRNAs Proteins LPIs

Dataset 1 935 59 3479
Dataset 2 885 84 3265
Dataset 3 990 27 4158
Dataset 4 109 35 948
Dataset 5 1704 42 22,133
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2.2 � Overview of EnANNDeep

In this study, we develop an ensemble learning framework 
(EnANNDeep), composed of AkNN, DNN, and deep for-
est, to classify unknown lncRNA–protein pairs. Figure 1 
describes the EnANNDeep framework.

As shown in Fig. 1, EnANNDeep mainly contains three 
procedures after five different LPI datasets are arranged. (1) 
Feature selection—An ensemble method combining gapped 
k-mer [44], tri-nucleotide composition [45], reverse comple-
ment k-mer [46], and RNAfold [47] is available for lncRNA 
feature selection. SSpro [48] and binary profile are used to 

Fig. 1   The flowchart of the LPI-DLDN framework: (1) Feature selection; (2) Classification; (3) Ensemble
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chose protein features. (2) Classification—AkNN, DNN, 
and deep forest are exploited to obtain labels of unknown 
lncRNA–protein pairs, respectively. (3) Ensemble—The 
results from the above three predictors are integrated based 
on a soft voting technique.

2.3 � Feature Selection

2.3.1 � lncRNA Feature Selection

The integration of various lncRNA and protein features con-
tributes to improve LPI prediction accuracy. In this work, 
an ensemble approach is explored to represent lncRNA fea-
tures. For given an lncRNA sequence L with length a, where 
li ∈ {A,C,G,T} and {i = 1, 2,… , a} . EnANNDeep utilizes 
gapped 3-mer [44], tri-nucleotide composition [45], reverse 
complement 2-mer [46], and RNAfold [47] to characterize 
an lncRNA.

The tri-nucleotide composition technique is used 
to obtain evolutionary features from L. The tri-nucle-
otide compositions are extracted by scanning the  
sequence using {(1, 2, 3), (2, 3, 4),… , (a − 2, a − 1, a)} , 
where {1, 2, 3,… , i,… , a} denotes the i-th nucleotide in L.

The gapped 3-mer method applies 3-mer with gap to 
obtain local and global information from L. Let b represent 
the number of non-gapped positions in L, and the number 
of gaps is g = 3 − b . A feature vector of L can be denoted 
by Eq. (2):

where ui is the number of the i-th gapped 3-mer in L, M is 

the number of all gapped 3-mers and M =

(
3

b

)
43.

The reverse complement 2-mer method is used to extract 
regulatory features from L. First, 2-mer is generated. Sec-
ond, reverse complement 2-length contiguous subsequences 
are eliminated. Finally, the computed occurrence frequencies 
of the remaining 2-length subsequences are calculated to 
build an lncRNA feature vector.

The RNA secondary structures have been validated to 
positively affect protein binding site selection. A dynamic 
programming technique, RNAfold, is used to infer RNA 
secondary structures according to its minimum free energy. 
Five features with high probability structures are extracted 
by counting occurrence frequency of each unique structure.

2.3.2 � Protein Feature Selection

To depict a protein, first, its secondary structures are 
obtained based on �-helix (H), �-sheet (E), and coil (C) 
conformation using SSpro [48]. Second, 20 amino acids are 
divided into three categories based on the computed sec-
ondary structures: �-helix contains eight amino acids (E, A, 

(2)f = [u1, u2, ..., uM]
T ,

L, M, Q, K, R, and H), �-sheet contains seven amino acids 
(V, I, Y, C, W, F, and T), and coil contains five amino acids 
(G, N, P, S, and D). Third, an amino acid can be replaced 
by its conformation and thus each protein sequence can be 
represented using H, E or C. 27 3-tuples are obtained from 
the permutation of the above three conformations. Fourth, 
3-tuple is applied to the replaced sequences and the number 
of each 3-tuple is computed. Finally, the occurrence fre-
quency of each 3-tuple can be calculated by Eq. (3):

where di is the number of the i-th 3-tuples in L.
In addition, a binary profile describes composition and 

order of residues in a protein sequence. In this study, a 
binary profile with a 20 × 16 dimensions is produced based 
on a one-hot encoding of 20 amino acids. The details for 
lncRNA and protein feature extraction are described in 
Table 3. Thus an lncRNA–protein pair can be represented 
as a 554-dimensional vector x combining lncRNA and pro-
tein features.

2.4 � Problem Description

Given an LPI training set D = (X, Y) with labels {+1,−1} , 
where a separable metric space (X, 554) denotes the sample 
space with 554 features and Y = {+1,−1} describes the label 
space. A training example x is a 554-dimensional feature vector 
applied to characterize an lncRNA–protein pair, y ∈ {+1,−1} 
denotes its label. The label of x is 1 when there is an interaction 
between the lncRNA and the protein; the label is -1, otherwise. 
For any query lncRNA–protein pair xi , we aim to construct an 
ensemble model, EnANNDeep, to obtain its label.

2.5 � Adaptive k‑Nearest Neighbor

2.5.1 � k‑Nearest Neighbor

k-Nearest Neighbor (k-NN) classifier [49] is a simple but 
effective classification model. It is very appropriate to a clas-
sification task where there is lack of prior knowledge about 
data distribution. The classifier investigates label of a test 

(3)ai =
di

a − 3 + 1
(i = 1, 2,… , 27),

Table 3   Numbers of the extracted lncRNA and protein features

Features Number

lncRNA Tri nucleotide 64
Gapped k-mer 128
Reverse complement k-mer 10
RNAfold 5

Protein Binary profile 320
SSpro 27
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sample based on the Euclidean distance between the test 
sample and all training samples.

Given n LPI samples, let xi (i = 1, 2,… , n) denote the i-th 
sample with 554 features (xi,1, xi,2,… , xi,554) . The Euclidean 
distance between two samples xi and xj is represented as:

Based on the theory provided by Voronoi [50], a Voronoi 
cell Ri for sample xi encapsulates its all nearest neighbors 
and is defined by Eq. (5):

where xa denotes all possible points (samples) within Ri , that 
is, the nearest neighbors of the example xi.

For any LPI, k-NN classifier determines the nearest samples 
through the closest edges within the Voronoi cell Ri . A test 
sample is assigned a label the same as the majority category 
label of its k nearest training samples based on k-NN classifier.

k-NN uses a fixed radius and can automatically adapt to 
the variation in marginal distribution. Therefore, it has been 
broadly applied to various areas. However, the choice of its 
nearest neighbor number k severely depends on features of 
each neighborhood and thus may greatly vary between differ-
ent points. In the input space, for the regions where conditional 
expectation of x tends to 0, larger k is required for accurate 
prediction. For other regions where the conditional expectation 
is +1 or −1 , smaller k can satisfy the requirement and larger k 
may result in incorrect classification due to the inconsistence of 
labels in the neighboring regions. Thus k-NN classifier has to 
select a single value for k to trade off the above two situations. 
To solve this problem, AkNN classifier is designed to separately 
select the right k for each neighborhood.

2.5.2 � Adaptive k‑Nearest Neighbor

Inspired by the AkNN algorithm proposed by Balsubram-
ani et al. [51], we design an AkNN algorithm to compute 
interaction probability for each lncRNA–protein pairs. For 
a training set (x1, y1), (x2, y2) , … , (xn, yn) ∈ X × Y , let all 
LPI data draw from an unobserved independent identically 
distribution P on X × Y . Let � represent the marginal dis-
tribution on X  : if (X, Y) denotes a random draw from P, let 
�(x) = E(Y|X = x) , then for any measurable set S ⊆ X :

For any given sample x ∈ X  , conditional expectation of Y 
can be denoted by Eq. (7):

For any S where 𝜇(S) > 0 and given X ∈ S , conditional 
expectation of Y can be described by Eq. (8):

(4)d(xi, xj) =

√
(xi,1 − xj,1)

2 +⋯ + (xi,554 − xj,554)
2.

(5)Ri = {xa ∈ ℝ
p ∶ d(xa, xi) ≤ d(xa, xm),∀i ≠ m},

(6)�(S) = Pr(X ∈ S).

(7)�(x) = E(Y|X = x) ∈ [−1, 1].

Thus the error risk of k-NN classifier: g ∶ X → {−1, +1} is 
the probability that it incorrectly classifies a query sample 
on the training set (X, Y) ∼ P . The risk is denoted by Eq. (9):

For x ∈ X  and r > 0 , let B(x, r) represent the closed ball 
with radius r centered at x:

For a query lncRNA–protein pair x , AkNN classifier predicts 
its label based on the training lncRNA–protein pairs closest 
to x . The empirical count is defined by Eq. (11):

The probability mass can be described by Eq. (12):

When the empirical count is non-zero, the empirical bias can 
be defined by Eq. (13).

where n indicates the number of all lncRNA–protein pairs. 
|Y| denotes the number of classes. In this manuscript, |Y| is 2.

AkNN classification model is described in Algorithm 1. The 
label of a query lncRNA–protein pair x can be predicted 
through expanding a ball around x until it produces a sig-
nificant bias based on Algorithm 1.

Algorithm 1: The adaptive k-nearest neigh-
bor classifier

Input: A training set
(x1,y1), ..., (xn,yn) ∈ X × {+1,−1}, a confident
parameter 0 ≤ δ ≤ 1
Output: The label of a query lncRNA-protein pair x

Step 1 For any integer k, assume that Bk(x)
represent the smallest ball which is centered
at x and precisely contains k training samples.

Step 2 Find the smallest 0 < k ≤ n such that Bk(x)
has a significant bias:
|ηn(Bk(x))| > ∆(n, k, δ)
where
∆(n, k, δ) = c1

√
log n+log(1/δ)

k

Step 3 Return the label argmax
y

ηn(Bk(x)) when such

a ball exists or ηn(Bk(x)) is largest.

(8)�(S) = E(Y|X ∈ S) =
1

�(S) ∫S

�(x)d�(x).

(9)R(g) = P({(x, y) ∶ g(x) ≠ y}).

(10)B(x, r) = {z ∈ X ∶ d(x, z) ≤ r}.

(11)#n(S) = |{i ∶ xi ∈ S}|.

(12)�n(S) =
#n(S)

n
.

(13)�n(S) = �y
n
(S) −

1

|Y|
,

(14)�y
n
(S) =

#n{xi ∈ S and yi = y}

#n(S)
.
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In Algorithm 1, Δ(n, k, �) denotes a confidence interval 
of average labels in the region closest to the query sample 
x . c1 represents a constant.

Algorithm 1 infinitely makes many parameter selection. 
It picks k for each query point and asks for a single failure 
probability to measure how to assign its confidence intervals. 
In comparing to standard k-NN classifier, the AkNN clas-
sification algorithm seems to merely replace the parameter 
k with another parameter � . However, it is not accurate. � , 
a customary confident level parameter, provides an upper 
bound upon the failure probability for Algorithm 1.

To simplify the parameters, we replace Δ with Δ =
A√
k
 in 

Δ(n, k, �) = c1

√
log n+log(1∕�)

k
 . The parameter A is used to con-

trol conservations in Algorithm 1 and A → 0 denotes the 
most aggressive setting where Algorithm 1 never abstains. 
The detailed discussion is provided by Balsubramani et al. 
[51].

2.5.3 � Deep Neural Network

The rapid development of machine learning models and 
computer hardware promotes the birth of DNNs. DNN is a 
feed-forward artificial neural networks. A DNN consists of 
one input layer, multiple hidden layers composed of nonlin-
ear hidden units, and one larger output layer. The input layer 
achieves the original data. Each hidden unit j in a hidden 
layer uses an activation function to map the input xj from the 
input layer to a scalar state. The output layer accommodates 
multiple hidden Markov model states.

DNNs have been already broadly applied to various asso-
ciation prediction [28]. For example, Zhao et al. [52] identi-
fied drug–target interactions combining graph convolutional 
network and DNN. Chu et al. [29] developed an optimized 
DNN to screen epidermal growth factor receptor inhibi-
tors. Wang et al. [53] exploited a deep convolutional neural 
network-based drug–target interactions algorithm. Wei et al. 
[35] designed a DNN-based lncRNA-disease association 
prediction approach.

In this study, we utilize DNN to reveal possible LPIs. The 
DNN-based LPI prediction framework is shown in Fig. 2.

In the DNN model, the input layer has 554 neurons and 
achieves the input LPI samples with 554-dimensional fea-
tures. The following two layers are hidden layers. The two 
layers are full connection layers containing 128 and 64 neu-
rons, respectively. And each hidden layer follows by a drop-
out layer with the rate of 0.5 to avoid over-fitting by setting 
the output of 50% units to 0. Exponential Linear Unit (ELU) 
is considered as an activation function in the hidden lay-
ers. ELU can alleviate gradient vanishing, make the average 
output of an activation unit closer to 0 to achieve the effect 
of batch normalization and reduce the computation time. In 
addition, ELU is only qualitative but not quantitative for the 

input characteristics because it is an exponential function 
when it is negative. More importantly, ELU contributes to 
faster learning and better generalization ability on DNNs. It 
is denoted by Eq. (15):

Our objective is to quantify how many the predicted labels 
differ from the real ones by minimizing the binary cross-
entropy in the process of training by Eq. (16):

where yi is the true label and ŷi denotes the probability that 
the i-th sample is predicted to be positive LPI. The train-
ing is implemented with 100 epochs and each epoch has a 
mini-batch with the size of 128 to update its weights. We 
use the Adam algorithm [54] as the optimization technique 
to train DNN.

The final output layer contains a single neuron to output 
an interaction probability for each query lncRNA–protein 
pair based on a sigmoid function defined by Eq. (17):

The sigmoid function can map a real number to the inter-
val of (0,1). It is smooth and easy to derivation and is thus 
used as an activation function in the output layer of DNN 
to compute interaction score for each lncRNA–protein pair.

(15)yi =

{
a(exi−1) if (xi < 0)

xi if (xi ≥ 0)

(16)L = −
1

n

n∑

i=1

[yi log ŷi + (1 − yi) log(1 − ŷi)].

(17)yi =
1

1 + e−xi
.

1 2 3 4 554

1 2 3 128

1 2 64

...

...

...

Input layer

Hidden layer 1

Hidden layer 2

Output layer

x1 ...x2 x3 x4 x554Feature vector

W554,128

W128,64

W64,1

Interac�on probability

Fig. 2   The flowchart of DNN-based LPI prediction algorithm
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2.5.4 � Deep Forest

To tackle complicated tasks, learning models gradually go 
deep [55]. However, traditional deep algorithms are always 
designed based on neural networks. Non-neural network 
style-based deep models will demonstrate great learning 
ability if they can go deep, especially when neural networks 
are multi-layered deep models with parameterized differenti-
able nonlinear modules. Considering this feature of neural 
networks, deep forest [56, 57], a non-neural network style 
deep model, is built upon multi-grained cascade framework.

Deep forest is a novel ensemble algorithm. Its feature 
learning capability is further boosted by multi-grained scan-
ning the input data. Second, its complexity can be automati-
cally set. Third, it performs better even on small-scale data. 
Finally, the training costs can be controlled based on avail-
able computational resources. Deep forest only needs to train 
much fewer hyper-parameters in comparing to other deep 
learning models. Therefore, deep forest obtains highly com-
petitive classification ability while its training time drops 
sharply.

In this manuscript, deep forest with no more than 20 lay-
ers is utilized to classify unobserved lncRNA–protein pairs. 
Random forest [58, 59] and Extra trees [60] are chosen as 
basic classifiers. The random forest technique [58, 59] is a 
general-purpose, nonparametric, and interpretable classifica-
tion model. It is an ensemble of a few randomized decision 
trees and can return measurements of variable importance. 
It has unique characteristics in dealing with complex data 
structures, small sample size, and high-dimensional feature 

space. In particular, it demonstrates excellent performance 
when the number of variables is far more than the number 
of samples.

The Extra tree model [60] is an ensemble of unpruned 
decision trees based on the classical top–down procedure. 
Extra tree has three advantages: First, it splits nodes by 
fully randomly selecting cut-points and contributes to more 
strongly reduce variance than the weaker randomization 
algorithms. Second, it utilizes the whole learning samples 
rather than a bootstrap replicas to minimize classification 
bias. Finally, it contains a node splitting scheme to obtain 
much smaller constant factor during cut-point optimization.

In the proposed deep forest model, each cascade layer 
consists of two random forests and two Extra trees. Each 
estimator consists of 100 decision trees. In each layer, for a 
given LPI feature, each classifier calculates the ratio of the 
feature belonging to positive class or negative class. The 
predicted class probability from all classifiers forms a class 
vector. The vector is concatenated with the raw LPI feature 
vector as input in the next level.

As illustrated in Fig. 3, a 554-dimensional vector is taken 
as input of deep forest. After training four basic classifiers, 
an 8-dimensional class vector is produced and concatenated 
with the 554-dimensional vector to generate a 562-dimen-
sional feature vector. The produced vector is considered as 
input in the second layer. Similar to the first layer, the second 
layer of deep forest also generates another 562-dimensional 
vector applied to the third layer. If the estimated perfor-
mance outperforms all previously-constructed layers, deep 
forest continues to increase a new layer. The model will 
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terminate training when its performance fails to improve 
in the successive two layers. Finally, in the output layer, for 
each lncRNA–protein pair, its predicted interaction prob-
ability belonging to positive class and negative class is aver-
aged, respectively. The class that the lncRNA–protein pair 
has higher average interaction probability is chosen as the 
final class.

In particular, similar to DNN, deep forest utilizes a cas-
cade structure. In the structure, each level receives features 
from its preceding level, and outputs the results to next level. 
Therefore, although the proportion of an 8-dimensional class 
vector in the input layer may be relatively smaller, its pro-
portion in an LPI feature vector will continuing increase 
with the deepening of the number of layers. Therefore, in our 
model, the 8-dimensional class vector cannot be drown out.

2.5.5 � Ensemble Learning

Ensemble learning demonstrates better prediction accuracy 
of a single model through training multiple classifiers and 
integrating their predictions [27, 61, 62]. Chen et al. [63] 
exploited a decision tree ensemble algorithm to uncover 
possible miRNA-disease associations. Zhang et al. [23] 
designed a sequence feature projection-based ensemble 
learning model to identify LPI candidates. Yi et al. [27] 
exploited a stacking ensemble learning algorithm to discover 
ncRNA–protein interactions.

Although AkNN, DNN, and deep forest can effectively 
predict LPIs, their predictive performance remains improve-
ment. In this study, we present a soft voting-based ensemble 
learning framework, composed of AkNN, DNN, and deep 
forest, to enhance the classification ability of existing single 
model. Let SAkNN , SDNN , and SDF denote association probabil-
ity of an lncRNA–protein pair obtained by AkNN, DNN, and 
deep forest, respectively, its final relevance score is defined 
by Eq. (18) based on a soft voting technique:

An lncRNA–protein pair is labeled as positive class if its 
score is larger than 0.5 based on Eq. (18); otherwise, the 
lncRNA–protein pair is classified to negative.

3 � Results

3.1 � Evaluation Metrics

In the experiments, precision, recall, accuracy, F1 score, 
AUC and AUPR are applied to assess the performance of 
EnANNDeep. For the six measurements, higher values indi-
cate better prediction ability. The experiments are repeatedly 

(18)S =
1

3
SAkNN +

1

3
SDNN +

1

3
SDF.

implemented for 20 times and the average values on the 20 
rounds are selected as the final performance.

3.2 � Experimental Settings

We conduct grid search to find the optimal parameters in 
SFPEL, PMDKN, CatBoost, PLIPCOM, and EnANNDeep 
when the five LPI prediction approaches obtain the best per-
formance. The details are listed in Table 4. The parameters 
in LPI-SKF are set to default values provided by Zhou et al. 
[17].

In addition, to investigate the prediction performance of 
EnANNDeep for a new lncRNA or protein, three different 
fivefold CVs are designed. 

1.	 Fivefold CV on lncRNAs ( CVl ): rows in Y are randomly 
hidden for testing, that is, 80% of lncRNAs are randomly 
chosen as a training set and the remaining 20% is used as 
a testing set in each round. CVl is used to find interact-
ing proteins for a new lncRNA without any associated 
proteins.

2.	 Fivefold CV on proteins ( CVp ): columns in Y are ran-
domly hidden for testing, that is, 80% of proteins are 
randomly chosen as a training set and the remaining 20% 
is used as a testing set in each round. CVp is used to 
identify interacting lncRNAs for a new protein without 
any associated lncRNAs.

3.	 Fivefold CV on lncRNA–protein pairs ( CVlp ): lncRNA–
protein pairs in Y are randomly hidden for testing, that 
is, 80% of lncRNA–protein pairs are chosen as a training 

Table 4   Parameter settings

Method Parameter settings

SFPEL  � = 0.001, � = 0.0001, � = 4
PMDKN  � = 5, � = 1, � = 1, � = 100

 Υ = 100, � = 2,
CatBoost Iterations = 2, learning_rate = 0.5,

logging_level = None, depth = 5
PLIPCOM learning_rate = 1, n_estimators = 100,

max_depth = 3, min_samples_leaf = 10,
min_samples_split = 2, max_features = 30,
random_state = 10

EnANNDeep AkNN: log_complexity = 1.0;
DNN: number of layer = 4, dropout = 0.5,
Activation =‘elu’, epochs = 100,
Optimizer = Adam(lr = 1e−4);
Learning rate = 0.001
Deep forest: loss =‘binary_crossentropy’
max_layers = 20, n_trees = 100
max_depth = None, batch_size = 128,
n_estimators = 2
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set and the remaining 20% is used as a testing set in each 
round. CVlp is used to uncover interaction information 
based on known LPIs.

3.3 � Comparison with Five State‑of‑the‑Art LPI 
Prediction Methods

We compare the proposed EnANNDeep method with five 
representative LPI prediction methods (SFPEL, PMDKN, 
CatBoost, PLIPCOM, and LPI-SKF) to measure the predic-
tion performance of EnANNDeep. SFPEL is an ensemble 
learning method for LPI prediction based on sequence fea-
ture projection. SFPEL first extracted sequence features for 
lncRNAs and proteins and then computed lncRNA similarity 
and protein similarity. Finally, it used a feature projection-
based ensemble learning framework to predict LPIs combin-
ing the computed similarity matrices.

PMKDN is a neighborhood nonnegative matrix decom-
position model applied to possible LPI inference. PMKDN 
first selected multiple biological features of lncRNAs and 
proteins. Second, it combined protein GO ontology annota-
tion and sequences, lncRNA sequences, and modified LPI 
network to calculate lncRNA similarity and protein similar-
ity. Finally, it utilized a projection-based neighborhood non-
negative matrix decomposition algorithm to infer potential 
LPIs.

CatBoost is a new gradient boosting algorithm. CatBoost 
implemented two key techniques, that is, ordered boosting 
which is a permutation-driven alternative to a classifica-
tion model, and a categorical feature procession strategy. 
The combination of them promotes CatBoost to outperform 
the other available boosting techniques. CatBoost has been 
applied to LPI discovery and obtained better LPI classifica-
tion ability.

PLIPCOM employed two network features, diffusion 
features and HeteSim features, and built an LPI predic-
tion model integrating the Gradient Tree Boosting (GTB) 
algorithm.

LPI-SKF first computed lncRNA similarity based on 
expression profiles and sequences of lncRNAs and LPI net-
work, and protein similarity based on statistical features and 
sequences of proteins and LPI network. It then constructed a 
universal similarity kernel matrix for new LPI identification 
based on a similarity kernel fusion technique.

We evaluate the performance of our proposed 
EnANNDeep framework under three different fivefold CVs. 
During CVs, we randomly select unknown lncRNA–pro-
tein pairs as negative samples (non-LPIs). To reduce the 
overfitting problem produced by data imbalance, we set 
the ratio of negative LPIs to known LPIs as 1. That is, the 
number of the screened negative LPIs is the same as one of 
observed LPIs in the divided training set and test set. The 

best measurements are represented as bold in each row in 
Tables 5, 6 and 7.

Table 5 illustrates the prediction results from six LPI 
identification models in terms of the above six evaluation 
metrics under CVl . EnANNDeep achieves the highest aver-
age precision, recall, accuracy, F1 score, AUC, and AUPR. 
In particular, compared to SFPEL, PMDKN, CatBoost, 
PLIPCOM, and LPI-SKF, the average AUC computed by 
EnANNDeep outperforms 32.92%, 17.29%, 12.76%, 7.99%, 
and 3.94%, respectively. The average AUPR calculated by 
EnANNDeep are better 33.33%, 15.85%, 12.78%, 9.76%, 
and 5.29% than the above five methods. The result suggest 
that EnANNDeep may be suitable to linkage discovery for 
a new lncRNA.

Table 6 describes the six evaluation values under CVp . 
From Table 6, it can be found that EnANNDeep computes 
the best average precision, recall, accuracy, AUC and AUPR 
under CVp . Although EnANNDeep calculates relatively 
lower F1 score, it greatly boosts the precision, recall, accu-
racy, AUC, and AUPR performance. For example, compared 
to SFPEL, PMDKN, CatBoost, PLIPCOM, and LPI-SKF, its 
AUC boosts 42.76%, 22.23%, 31.74%, 21.79%, and 25.74%, 
respectively, AUPR improves 36.15%, 14.68%, 31.87%, 
23.25%, and 18.82%, respectively. AUC and AUPR can more 
representatively characterize the performance of classifiers 
compared to the other four measurements. EnANNDeep 
distinctly outperforms the other five algorithms in terms of 
AUC and AUPR. Therefore, it is appropriate to prioritize 
potential lncRNAs for a new protein.

The experimental results under CVlp are listed in Table 7. 
The results illustrate the optimal LPI classification ability 
of EnANNDeep. Under CVlp , EnANNDeep obtains the best 
average recall, accuracy, F1 score, AUC, and AUPR. For 
example, it computes F1 score of 0.8569, which is 9.46%, 
30.93%, 8.51%, 3.09%, and 18.09% better than SFPEL, 
PMDKN, CatBoost, PLIPCOM, and LPI-SKF, respectively. 
The computed average AUC outperforms 7.07%, 17.53%, 
6.55%, 2.43%, and 1.13%, respectively, and AUPR is bet-
ter 4.67%, 14.98%, 4.19%, 3.74%, and 4.83%, respectively. 
SFPEL, PMDKN, CatBoost, PLIPCOM, and LPI-SKF are 
state-of-the-art LPI prediction algorithms. EnANNDeep 
greatly outperforms the five methods. The comparative 
results suggest the powerful performance of EnANNDeep 
under CVlp . That is, EnANNDeep can more accurately mine 
underlying relationships between lncRNAs and proteins 
even in the absence of some LPIs.

3.4 � Comparison of Different Voting Methods

We conduct several experiments to observe the affect of vot-
ing techniques on the classification performance. We con-
sider two voting techniques: soft voting approach and hard 
voting approach. Given an unobserved lncRNA–protein pair, 
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the hard voting method first obtains label of an lncRNA–pro-
tein pair based on classification results from AkNN, DNN, 
and deep forest, respectively. Hard voting then classifies the 
sample as positive if its classification results from no less 
than two basic predictors are positive; otherwise, the pair is 
labeled as a negative class. The comparison results of two 
voting approaches under three CVs are shown in Tables 8, 
9 and 10. From Tables 8, 9 and 10, we can find that the soft 
voting-based ensemble learning model can obtain better per-
formance compared to the hard voting method.

3.5 � The Effect of Numbers of RNA Secondary 
Structures on the Performance

Although abundant biological information contributes to 
improve LPI prediction performance, the biological fea-
tures exist information robust and increase computational 
complexity. Therefore, we select the representative features 
to describe lncRNA secondary structures. Tables 11, 12 and 
13 list the performance of EnANNDeep based on 5, 10, 64, 
and 128 RNA secondary structures with high probability. 
The results indicate that five features with high probability 

Table 5   The performance of five LPI prediction methods on CVl

Metric Dataset SFPEL PMDKN CatBoost PLIPCOM LPI-SKF EnANNDeep

Precision Dataset 1 0.5984 ± 0.0088 0.7583 ± 0.0100 0.8639 ± 0.0047 0.8335 ± 0.0185 0.8757 ± 0.0086 0.8364 ± 0.0042
Dataset 2 0.4822 ± 0.0139 0.7319 ± 0.0159 0.8607 ± 0.0054 0.8584 ± 0.0124 0.8627 ± 0.0223 0.8550 ± 0.0038
Dataset 3 0.5782 ± 0.0111 0.6581 ± 0.0167 0.7505 ±0.0114 0.6846 ± 0.0169 0.7298 ± 0.0153 0.6979 ± 0.0056
Dataset 4 0.5114 ± 0.0242 0.5396 ± 0.0108 0.5171 ± 0.0387 0.5390 ± 0.0924 0.6108 ± 0.0249 0.6882 ± 0.0126
Dataset 5 0.5908 ± 0.0028 0.6454 ± 0.0127 0.5571 ± 0.0058 0.7732 ± 0.0197 0.7517 ± 0.0098 0.8035 ± 0.0014
Ave. 0.5522 0.6667 0.7099 0.7377 0.7661 0.7762

Recall Dataset 1 0.5732 ± 0.0050 0.6763 ± 0.0074 0.8692 ± 0.0138 0.8397 ± 0.0220 0.5932 ± 0.0156 0.9700 ± 0.0030
Dataset 2 0.5125 ± 0.0079 0.6484 ± 0.0165 0.8678 ± 0.0153 0.8789 ± 0.0173 0.5212 ± 0.0107 0.9707 ± 0.0028
Dataset 3 0.5534 ± 0.0078 0.6017 ± 0.0105 0.6608 ± 0.0239 0.6680 ± 0.0226 0.6226 ± 0.0058 0.8028 ± 0.0041
Dataset 4 0.4949 ± 0.0171 0.5195 ± 0.0060 0.4173 ± 0.0475 0.3744 ± 0.0884 0.6056 ± 0.0280 0.5628 ± 0.0297
Dataset 5 0.5672 ± 0.0011 0.5975 ± 0.0100 0.5870 ± 0.0313 0.7803 ± 0.0320 0.6727 ± 0.0037 0.8616 ± 0.0024
Ave. 0.5402 0.6087 0.6804 0.7083 0.6030 0.8336

Accuracy Dataset 1 0.5752 ± 0.0059 0.6759 ± 0.0074 0.8659 ± 0.0053 0.8359 ± 0.0133 0.7254 ± 0.0032 0.8900 ± 0.0033
Dataset 2 0.5122 ± 0.0074 0.6480 ± 0.0165 0.8634 ± 0.0060 0.8670 ± 0.0099 0.7065 ± 0.0081 0.9029 ± 0.0031
Dataset 3 0.5547 ± 0.0083 0.6014 ± 0.0105 0.7190 ± 0.0043 0.6801 ± 0.0134 0.6544 ± 0.0092 0.7275 ± 0.0045
Dataset 4 0.4963 ± 0.0171 0.5181 ± 0.0060 0.5210 ± 0.0286 0.5279 ± 0.0526 0.5727 ± 0.0196 0.6530 ± 0.0122
Dataset 5 0.5639 ± 0.0021 0.5974 ± 0.0100 0.5604 ± 0.0061 0.7758 ± 0.0158 0.6726 ± 0.0036 0.8253 ± 0.0007
Ave. 0.5405 0.6082 0.7059 0.7373 0.6663 0.7997

F1 score Dataset 1 0.5272 ± 0.0056 0.6393 ± 0.0071 0.8660 ± 0.0064 0.8364 ± 0.0140 0.6298 ± 0.0070 0.8982 ± 0.0029
Dataset 2 0.4563 ± 0.0081 0.6135 ± 0.0150 0.8636 ± 0.0071 0.8684 ± 0.0104 0.5828 ± 0.0117 0.9091 ± 0.0029
Dataset 3 0.5072 ± 0.0083 0.5609 ± 0.0109 0.7007 ± 0.0097 0.6759 ± 0.0147 0.5950 ± 0.0086 0.7465 ± 0.0033
Dataset 4 0.4493 ± 0.0175 0.4739 ± 0.0064 0.4565 ± 0.0427 0.4340 ± 0.0758 0.5401 ± 0.0232 0.6149 ± 0.0202
Dataset 5 0.5181 ± 0.0018 0.5550 ± 0.0102 0.5690 ± 0.0151 0.7763 ± 0.0193 0.6345 ± 0.0041 0.8314 ± 0.0008
Ave. 0.4916 0.5685 0.6912 0.7182 0.5964 0.8000

AUC​ Dataset 1 0.6503 ± 0.0117 0.8518 ± 0.0148 0.9336 ± 0.0029 0.8972 ± 0.0222 0.9344 ± 0.0073 0.9330 ± 0.0023
Dataset 2 0.5243 ± 0.0148 0.7959 ± 0.0330 0.9250 ± 0.0036 0.9196 ± 0.0108 0.9199 ± 0.0149 0.9487 ± 0.0021
Dataset 3 0.6093 ± 0.0166 0.7028 ± 0.0210 0.8050 ± 0.0037 0.7571 ± 0.0137 0.8117 ± 0.0159 0.8199 ± 0.0030
Dataset 4 0.4927 ± 0.0342 0.5362 ± 0.0120 0.5212 ± 0.0340 0.5549 ± 0.0622 0.6479 ± 0.0379 0.7189 ± 0.0104
Dataset 5 0.6279 ± 0.0041 0.6949 ± 0.0201 0.5926 ± 0.0087 0.8551 ± 0.0149 0.8455 ± 0.0076 0.9093 ± 0.0008
Ave. 0.5809 0.7163 0.7555 0.7968 0.8319 0.8660

AUPR Dataset 1 0.6203 ± 0.0125 0.8521 ± 0.0147 0.9209 ±0.0038 0.8544 ± 0.0340 0.9196 ± 0.0092 0.9154 ± 0.0043
Dataset 2 0.4976 ± 0.0126 0.8150 ± 0.0223 0.9144 ± 0.0054 0.8832 ± 0.0189 0.8787 ± 0.0260 0.9350 ± 0.0030
Dataset 3 0.5897 ± 0.0118 0.6989 ± 0.0224 0.7907 ± 0.0053 0.7201 ± 0.0193 0.7772 ± 0.0198 0.8014 ± 0.0040
Dataset 4 0.5375 ± 0.0263 0.5487 ± 0.0122 0.5346 ± 0.0315 0.5641 ± 0.0779 0.6348 ± 0.0340 0.7133 ± 0.0092
Dataset 5 0.6033 ± 0.0033 0.6809 ± 0.0169 0.5658 ± 0.0074 0.8335 ± 0.0204 0.8364 ± 0.0170 0.9073 ± 0.0012
Ave. 0.5697 0.7191 0.7453 0.7711 0.8093 0.8545
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structures can accurately depict RNA secondary structures. 
Therefore, we chose five lncRNA secondary structures to 
reduce computation cost.

3.6 � Case Study

In this section, we implement several cases to further evalu-
ate the performance of EnANNDeep. We run the experi-
ments for ten times and compute the average performance 
from the ten time results.

3.6.1 � Finding Interacting Proteins for New lncRNAs

LncRNA Small Nucleolar RNA Host Gene 1 (SNHG1) has 
close linkage with multiple human diseases. For example, 
SNHG1 is up-regulated in gastric cancer and may serve 
as a potential therapeutic target of gastric cancer [64]. It 
promotes cell proliferation and cell cycle progression carci-
noma and inhibits cell apoptosis in hepatocellular carcinoma 
[65]. It also enhances neuroinflammation in Parkinson’s 

Table 6   The performance of six LPI prediction methods on CVp

Metric Dataset SFPEL PMDKN CatBoost PLIPCOM LPI-SKF EnANNDeep

Precision Dataset 1 0.5548 ± 0.0175 0.6814 ± 0.0407 0.2462 ± 0.1042 0.5950 ± 0.2572 0.7009 ± 0.1208 0.8758 ± 0.0547
Dataset 2 0.5277 ± 0.0263 0.6834 ± 0.0457 0.0826 ± 0.0924 0.5217 ± 0.2076 0.6138 ± 0.1316 0.8885 ± 0.0372
Dataset 3 0.5460 ± 0.0437 0.6428 ± 0.0361 0.4337 ± 0.1142 0.5476 ± 0.1361 0.6639 ± 0.1119 0.7420 ± 0.0313
Dataset 4 0.5350 ± 0.0406 0.6120 ± 0.0090 0.6636 ± 0.0158 0.7458 ± 0.0591 0.7261 ± 0.0412 0.7667 ± 0.0133
Dataset 5 0.4996 ± 0.0001 0.6957 ± 0.0180 0.7300 ± 0.0096 0.8153 ± 0.0476 0.7264 ± 0.1465 0.8381 ± 0.0053
Ave. 0.5326 0.6631 0.4312 0.6451 0.6862 0.8222

Recall Dataset 1 0.5164 ± 0.0285 0.6043 ±0.0300 0.1920 ± 0.1085 0.1925 ± 0.1052 0.5415 ± 0.0702 0.4451 ± 0.1061
Dataset 2 0.4895 ± 0.0343 0.5960 ±0.0366 0.0306 ± 0.0477 0.1063 ± 0.0883 0.4114 ± 0.0551 0.3573 ± 0.0564
Dataset 3 0.5036 ± 0.0285 0.5742 ± 0.0290 0.3430 ± 0.1116 0.4181 ± 0.1523 0.4982 ± 0.0746 0.6774 ± 0.0426
Dataset 4 0.5227 ± 0.0121 0.5572 ± 0.0077 0.6878 ± 0.0204 0.7151 ± 0.0833 0.5402 ± 0.0415 0.7495 ± 0.0233
Dataset 5 0.4586 ± 0.0106 0.6274 ± 0.0156 0.7981 ± 0.0191 0.7915 ± 0.0661 0.5811 ± 0.0589 0.8521 ± 0.0063
Ave. 0.4982 0.5918 0.4103 0.4447 0.5145 0.6163

Accuracy Dataset 1 0.5594 ± 0.0167 0.6037 ± 0.0300 0.4334 ± 0.0534 0.5867 ± 0.0757 0.5794 ± 0.1383 0.6968 ± 0.0505
Dataset 2 0.5317 ± 0.0278 0.5952 ± 0.0368 0.4990 ± 0.0234 0.5527 ± 0.1638 0.5220 ± 0.0482 0.6580 ± 0.0279
Dataset 3 0.5499 ± 0.0453 0.5739 ± 0.0290 0.5018 ± 0.0640 0.5443 ± 0.0760 0.5584 ± 0.0777 0.7147 ± 0.0267
Dataset 4 0.5285 ± 0.0276 0.5558 ± 0.0077 0.6685 ± 0.0146 0.7318 ± 0.0391 0.6202 ± 0.0332 0.7595 ± 0.0121
Dataset 5 0.4992 ± 0.0003 0.6274 ± 0.0156 0.7510 ± 0.0128 0.8041 ± 0.0253 0.6636 ± 0.0644 0.8433 ± 0.0029
Ave. 0.5337 0.5912 0.5707 0.6425 0.5902 0.7345

F1 score Dataset 1 0.6877 ± 0.0091 0.5686 ± 0.0312 0.2086 ± 0.1032 0.2697 ± 0.1469 0.5399 ± 0.0745 0.5436 ± 0.1086
Dataset 2 0.6770 ± 0.0134 0.5637 ± 0.0376 0.0402 ± 0.0607 0.1592 ± 0.1078 0.4092 ± 0.0634 0.4656 ± 0.0661
Dataset 3 0.6908 ± 0.0281 0.5377 ± 0.0295 0.3703 ± 0.1110 0.4435 ± 0.1063 0.4929 ± 0.0804 0.6965 ± 0.0274
Dataset 4 0.6736 ± 0.0113 0.5185 ± 0.0067 0.6737 ± 0.0143 0.7248 ± 0.0396 0.5468 ± 0.0408 0.7554 ± 0.0153
Dataset 5 0.6659 ± 0.0001 0.5878 ± 0.0152 0.7617 ± 0.0138 0.8002 ± 0.0299 0.5908 ± 0.0734 0.8446 ± 0.0030
Ave. 0.6790 0.5553 0.4109 0.4795 0.5159 0.6611

AUC​ Dataset 1 0.5361 ± 0.0538 0.7074 ± 0.0601 0.4365 ± 0.0682 0.6163 ± 0.1158 0.6293 ± 0.1142 0.9093 ± 0.0106
Dataset 2 0.4815 ± 0.0688 0.6903 ± 0.0736 0.5076 ± 0.0690 0.5525 ± 0.1253 0.5235 ± 0.0899 0.9175 ± 0.0134
Dataset 3 0.5279 ± 0.0418 0.6477 ± 0.0581 0.4971 ± 0.0740 0.5633 ± 0.0750 0.5848 ± 0.1577 0.7907 ± 0.0247
Dataset 4 0.5489 ± 0.0131 0.6116 ± 0.0154 0.7250 ± 0.0148 0.8067 ± 0.0469 0.7202 ± 0.0571 0.8422 ± 0.0090
Dataset 5 0.4173 ± 0.0213 0.7548 ± 0.0313 0.8286 ± 0.0104 0.8929 ± 0.0225 0.8000 ± 0.1136 0.9280 ± 0.0018
Ave. 0.5023 0.6824 0.5990 0.6863 0.6516 0.8775

AUPR Dataset 1 0.5642 ± 0.0491 0.7727 ± 0.0523 0.3983 ± 0.0474 0.5637 ± 0.2076 0.7347 ± 0.1155 0.8775 ± 0.0150
Dataset 2 0.5330 ± 0.0588 0.7766 ± 0.0568 0.4595 ± 0.0787 0.5028 ± 0.1684 0.5965 ± 0.1215 0.8803 ± 0.0193
Dataset 3 0.5522 ± 0.0523 0.7064 ± 0.0469 0.5484 ± 0.0683 0.5611 ± 0.1209 0.6556 ± 0.1277 0.7732 ± 0.0251
Dataset 4 0.6338 ± 0.0174 0.6458 ± 0.0111 0.7201 ± 0.0183 0.8064 ± 0.0339 0.7415 ± 0.0543 0.8444 ± 0.0118
Dataset 5 0.4610 ± 0.0201 0.7650 ± 0.0222 0.8016 ± 0.0140 0.8644 ± 0.0368 0.7600 ± 0.1657 0.9221 ± 0.0022
Ave. 0.5488 0.7333 0.5856 0.6597 0.6977 0.8595
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disease [66]. In addition, nonsmall cell lung cancer has been 
reported to associate with upregulated SNHG1 [67].

In the three human dataset, SNHG1 interacts with 6, 18, 
and 4 proteins, respectively. To find interacting proteins 
with SNHG1, all its interaction information is hidden. The 
six LPI prediction algorithms are then applied to discover 
potential proteins for SNHG1. The predicted top 5 proteins 
are shown in Table 14. It can be found that Q15717, O00425, 
Q9Y6M1, P35637, and Q9NZI8 are inferred to have the 
highest interaction probabilities with SNHG1 in dataset 1. 
Although interactions between the five proteins and SNHG1 
are unlabeled in Dataset 1, O00425 and P35637 have been 

reported to have close relationships with SNHG1 in data-
sets 3 and 2, respectively. Q15717, Q9Y6M1, and Q9NZI8 
have been shown to link with SNHG1 in both datasets 2 
and 3. In addition, all the inferred top 5 proteins linking 
with SNHG1 have higher rankings in SFPEL, PMDKN, Cat-
Boost, PLIPCOM, LPI-SKF, and EnANNDeep. The ranking 
results again demonstrate the LPI classification ability of 
EnANNDeep for a new lncRNA.

Table 7   The performance of six LPI prediction methods on CVlp

Metric Dataset SFPEL PMDKN CatBoost PLIPCOM LPI-SKF EnANNDeep

Precision Dataset 1 0.8004 ± 0.0383 0.7725 ± 0.0096 0.8638 ±0.0052 0.8551 ± 0.0106 0.7979 ± 0.0337 0.8380 ± 0.0045
Dataset 2 0.8101 ± 0.0162 0.7412 ± 0.0097 0.8576 ± 0.0083 0.8688 ±0.0115 0.7902 ± 0.0059 0.8510 ± 0.0037
Dataset 3 0.7301 ± 0.0537 0.6793 ± 0.0082 0.7547 ± 0.0105 0.7221 ± 0.0098 0.7631 ± 0.0095 0.7330 ± 0.0040
Dataset 4 0.7573 ± 0.0235 0.6167 ± 0.0101 0.6982 ± 0.0163 0.7804 ± 0.0225 0.7948 ± 0.0070 0.7706 ± 0.0124
Dataset 5 0.7935 ± 0.0110 0.7002 ± 0.0123 0.7554 ± 0.0032 0.8646 ±0.0051 0.8248 ± 0.0011 0.8555 ± 0.0015
Ave. 0.7783 0.7020 0.7859 0.8182 0.7942 0.8096

Recall Dataset 1 0.6696 ± 0.0141 0.6858 ± 0.0086 0.8708 ± 0.0132 0.8893 ± 0.0126 0.9379 ± 0.0283 0.9750 ± 0.0032
Dataset 2 0.7070 ± 0.0165 0.6514 ± 0.0104 0.8567 ± 0.0202 0.9023 ± 0.0115 0.6910 ± 0.0092 0.9783 ± 0.0017
Dataset 3 0.6541 ± 0.0314 0.6141 ± 0.0093 0.6606 ± 0.0235 0.7408 ± 0.0180 0.6745 ± 0.0065 0.8844 ± 0.0081
Dataset 4 0.6626 ± 0.0144 0.5601 ± 0.0083 0.6836 ± 0.0221 0.7644 ± 0.0308 0.7007 ± 0.0052 0.8001 ± 0.0117
Dataset 5 0.6849 ± 0.0097 0.6307 ± 0.0075 0.8618 ± 0.0071 0.8965 ± 0.0046 0.7304 ± 0.0006 0.9211 ± 0.0016
Ave. 0.6756 0.6284 0.7867 0.8433 0.7469 0.9118

Accuracy Dataset 1 0.8008 ± 0.0284 0.6855 ± 0.0086 0.8666 ± 0.0047 0.8713 ± 0.0096 0.8488 ± 0.0136 0.8932 ± 0.0027
Dataset 2 0.7076 ± 0.0173 0.6510 ± 0.0104 0.8571 ± 0.0071 0.8869 ± 0.0082 0.6965 ± 0.0057 0.9034 ± 0.0023
Dataset 3 0.7488 ± 0.0538 0.6138 ± 0.0093 0.7217 ± 0.0036 0.7285 ± 0.0085 0.6745 ± 0.0065 0.7810 ± 0.0035
Dataset 4 0.7658 ± 0.0284 0.5588 ± 0.0083 0.6930 ± 0.0127 0.7775 ± 0.0200 0.7007 ± 0.0052 0.7805 ± 0.0100
Dataset 5 0.8213 ± 0.0137 0.6306 ± 0.0075 0.7913 ± 0.0022 0.8702 ± 0.0034 0.7304 ± 0.0006 0.8828 ± 0.0009
Ave. 0.7689 0.6279 0.7859 0.8269 0.7302 0.8482

F1 score Dataset 1 0.8189 ± 0.0159 0.6498 ± 0.0081 0.8668 ± 0.0057 0.8614 ± 0.0077 0.8742 ± 0.0094 0.9013 ± 0.0023
Dataset 2 0.6740 ± 0.0158 0.6183 ± 0.0097 0.8566 ± 0.0086 0.8897 ± 0.0079 0.6565 ± 0.0071 0.9101 ± 0.0019
Dataset 3 0.7767 ± 0.0251 0.5755 ± 0.0084 0.7025 ± 0.0092 0.7323 ± 0.0091 0.6359 ± 0.0072 0.8015 ± 0.0034
Dataset 4 0.7745 ± 0.0227 0.5225 ± 0.0083 0.6892 ± 0.0133 0.7765 ± 0.0211 0.6636 ± 0.0057 0.7845 ± 0.0094
Dataset 5 0.8351 ± 0.0104 0.5933 ± 0.0080 0.8050 ± 0.0025 0.8792 ± 0.0032 0.6923 ± 0.0007 0.8871 ± 0.0008
Ave. 0.7758 0.5919 0.7840 0.8304 0.7019 0.8569

AUC​ Dataset 1 0.8393 ± 0.0288 0.8710 ± 0.0173 0.9327 ± 0.0022 0.9265 ± 0.0069 0.9293 ± 0.0120 0.9473 ± 0.0016
Dataset 2 0.9144 ± 0.0341 0.8021 ± 0.0208 0.9236 ± 0.0037 0.9385 ± 0.0058 0.8893 ± 0.0136 0.9556 ± 0.0013
Dataset 3 0.8102 ± 0.0616 0.7276 ± 0.0186 0.8076 ± 0.0046 0.8071 ± 0.0108 0.8493 ± 0.0130 0.8597 ± 0.0034
Dataset 4 0.8277 ± 0.0284 0.6175 ± 0.0165 0.7587 ± 0.0126 0.8506 ± 0.0186 0.9024 ±0.0105 0.8648 ± 0.0062
Dataset 5 0.8672 ± 0.0180 0.7613 ± 0.0149 0.8603 ± 0.0020 0.9486 ± 0.0020 0.9609 ± 0.0013 0.9557 ± 0.0005
Ave. 0.8518 0.7559 0.8566 0.8943 0.9062 0.9166

AUPR Dataset 1 0.8694 ± 0.0216 0.8755 ± 0.0147 0.9186 ± 0.0028 0.8939 ± 0.0120 0.9290 ± 0.0155 0.9283 ± 0.0039
Dataset 2 0.9437 ±0.0236 0.8310 ± 0.0134 0.9136 ± 0.0052 0.9091 ± 0.0090 0.8956 ± 0.0128 0.9408 ± 0.0018
Dataset 3 0.8287 ± 0.0475 0.7309 ± 0.0103 0.9136 ±0.0052 0.7765 ± 0.0149 0.8560 ± 0.0162 0.8356 ± 0.0054
Dataset 4 0.8209 ± 0.0187 0.6461 ± 0.0128 0.7555 ± 0.0144 0.8364 ± 0.0226 0.6683 ± 0.0061 0.8683 ± 0.0062
Dataset 5 0.8527 ± 0.0114 0.7656 ± 0.0183 0.8363 ± 0.0037 0.9416 ± 0.0030 0.9596 ± 0.0021 0.9540 ± 0.0008
Ave. 0.8631 0.7698 0.8675 0.8715 0.8617 0.9054
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3.6.2 � Finding Interacting lncRNAs for New Proteins

Q9UKV8 can inhibit translation initiation through interac-
tion with translation initiation factor EIF6 and prevent the 
recruitment from translation initiation factor EIF4-E. It up-
regulates translation under the situation of serum starvation 
by binding to the AU element. More importantly, it is also 
interrelated with transcriptional gene silencing [41].

Q9UKV8 interacts with 207, 205, and 222 lncRNAs on 
three human datasets, respectively. In this section, its associ-
ation information with lncRNAs is hidden and EnANNDeep 

is used to reveal its relevant lncRNAs. The found top 5 
human lncRNAs interacting with Q9UKV8 are shown in 
Table 15.

On dataset 1, it can be observed that DANCR, 
RPI001_1039837 and AL139819.1 are inferred to interact 
with Q9UKV8. Although the associations between the three 
lncRNAs and Q9UKV8 are unknown in dataset 1, DANCR 
has been reported to interact with Q9UKV8 in dataset 2, 
RPI001_1039837 and AL139819.1 have been validated to 
interact with Q9UKV8 in dataset 3.

Table 8   Comparison of two voting methods on CVl

Metric Dataset Hard voting method Soft voting method

Precision Dataset 1 0.8381 ±0.0052 0.8364 ± 0.0042
Dataset 2 0.8516 ± 0.0050 0.8550 ±0.0038
Dataset 3 0.6890 ± 0.0033 0.6979 ±0.0056
Dataset 4 0.6784 ± 0.0173 0.6882 ±0.0126
Dataset 5 0.7993 ± 0.0030 0.8035 ±0.0014
Ave. 0.7713 0.7762

Recall Dataset 1 0.9683 ± 0.0020 0.9700 ±0.0030
Dataset 2 0.9662 ± 0.0025 0.9707 ±0.0028
Dataset 3 0.8140 ±0.0063 0.8028 ± 0.0041
Dataset 4 0.5022 ± 0.0386 0.5628 ±0.0297
Dataset 5 0.8599 ± 0.0020 0.8616 ±0.0024
Ave. 0.8221 0.8336

Accuracy Dataset 1 0.8904 ±0.0034 0.8900 ± 0.0033
Dataset 2 0.8988 ± 0.0036 0.9029 ±0.0031
Dataset 3 0.7231 ± 0.0025 0.7275 ±0.0045
Dataset 4 0.6315 ± 0.0176 0.6530 ±0.0122
Dataset 5 0.8218 ± 0.0020 0.8253 ±0.0007
Ave. 0.7931 0.7997

F1 score Dataset 1 0.8984 ±0.0028 0.8982 ± 0.0029
Dataset 2 0.9051 ± 0.0031 0.9091 ±0.0029
Dataset 3 0.7461 ± 0.0024 0.7465 ±0.0033
Dataset 4 0.5727 ± 0.0312 0.6149 ±0.0202
Dataset 5 0.8283 ± 0.0017 0.8314 ±0.0008
Ave. 0.7901 0.8000

AUC​ Dataset 1 0.9347 ±0.0025 0.9330 ± 0.0023
Dataset 2 0.9479 ± 0.0030 0.9487 ±0.0021
Dataset 3 0.8188 ± 0.0028 0.8199 ±0.0030
Dataset 4 0.7234 ±0.0145 0.7189 ± 0.0104
Dataset 5 0.9097 ±0.0010 0.9093 ± 0.0008
Ave. 0.8669 0.8660

AUPR Dataset 1 0.9183 ±0.0035 0.9154 ± 0.0043
Dataset 2 0.9342 ± 0.0043 0.9350 ±0.0030
Dataset 3 0.8010 ± 0.0045 0.8014 ±0.0040
Dataset 4 0.7170 ±0.0122 0.7133 ± 0.0092
Dataset 5 0.9080 ±0.0013 0.9073 ± 0.0012
Ave. 0.8577 0.8545

Table 9   The performance of two voting methods on CVp

Metric Dataset Hard voting method Soft voting method

Precision Dataset 1 0.8343 ± 0.1003 0.8758 ±0.0547
Dataset 2 0.8480 ± 0.0310 0.8885 ±0.0372
Dataset 3 0.7255 ± 0.0340 0.7420 ±0.0313
Dataset 4 0.7526 ± 0.0130 0.7667 ±0.0133
Dataset 5 0.8364 ± 0.0032 0.8381 ±0.0053
Ave. 0.7994 0.8222

Recall Dataset 1 0.4069 ± 0.0600 0.4451 ±0.1061
Dataset 2 0.2995 ± 0.0528 0.3573 ±0.0564
Dataset 3 0.5876 ± 0.0687 0.6774 ±0.0426
Dataset 4 0.7373 ± 0.0202 0.7495 ±0.0233
Dataset 5 0.8582 ±0.0030 0.8521 ± 0.0063
Ave. 0.5779 0.6163

Accuracy Dataset 1 0.6754 ± 0.0264 0.6968 ±0.0505
Dataset 2 0.6260 ± 0.0254 0.6580 ±0.0279
Dataset 3 0.6776 ± 0.0262 0.7147 ±0.0267
Dataset 4 0.7451 ± 0.0112 0.7595 ±0.0121
Dataset 5 0.8445 ±0.0016 0.8433 ± 0.0029
Ave. 0.7137 0.7345

F1 score Dataset 1 0.4917 ± 0.0624 0.5436 ±0.1086
Dataset 2 0.4031 ± 0.0639 0.4656 ±0.0661
Dataset 3 0.6342 ± 0.0460 0.6965 ±0.0274
Dataset 4 0.7400 ± 0.0129 0.7554 ±0.0153
Dataset 5 0.8467 ±0.0014 0.8446 ± 0.0030
Ave. 0.6231 0.6611

AUC​ Dataset 1 0.9061 ± 0.0282 0.9093 ±0.0106
Dataset 2 0.9125 ± 0.0193 0.9175 ±0.0134
Dataset 3 0.7944 ±0.0208 0.7907 ± 0.0247
Dataset 4 0.8357 ± 0.0127 0.8422 ±0.0090
Dataset 5 0.9269 ± 0.0015 0.9280 ±0.0018
Ave. 0.8751 0.8775

AUPR Dataset 1 0.8752 ± 0.0291 0.8775 ±0.0150
Dataset 2 0.8721 ± 0.0226 0.8803 ±0.0193
Dataset 3 0.7767 ±0.0229 0.7732 ± 0.0251
Dataset 4 0.8389 ± 0.0130 0.8444 ±0.0118
Dataset 5 0.9196 ± 0.0019 0.9221 ±0.0022
Ave. 0.8565 0.8595
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On dataset 2, it can be seen that RMRP, SNORD17, 
and RPI001_483534 have been predicted to interact with 
Q9UKV8. Although the relationships between RMRP 
and SNORD17 and Q9UKV8 are unknown in dataset 2, 
the two lncRNAs have been shown to link with Q9UKV8 
in datasets 1 and 3, respectively. The interaction between 
RPI001_483534 and Q9UKV8 can not be retrieved on the 
three datasets. However, it ranks as 5, 2, 478, 183, 9, and 
86 by EnANNDeep, SPFEL, PMDKN, PLIPCOM, LPI-
CatBoost, and LPI-SKF, respectively. The higher rank-
ings in EnANNDeep, SPFEL, and PLIPCOM suggest that 

RPI001_483534 may be relative to Q9UKV8 and needs 
further validation.

On dataset 3, RPI001_84645 and EXOC3 are identified 
to interact with Q9UKV8. The associations between the two 
lncRNAs and Q9UKV8 can be searched in datasets 2.

3.6.3 � Finding New LPIs Based on Known LPIs

Potential LPIs are subsequently identified by EnANNDeep 
based on labeled LPIs. The inferred top 50 LPIs with the 
highest correlation probabilities on the five datasets are illus-
trated in Figs. 4, 5, 6, 7 and 8. The 50 associations contain 
known and unknown LPIs.

The ranking results show that interactions between 
SNHG10 and Q15717, VIM-AS1, and Q15717, RPI001_1 
01_2148 and ENSP00000385269, AthlncRNA-159 and 
22328551, and ZmalncRNA-1314 and B6SP74 are the most 
possible LPIs among unlabeled lncRNA–protein pairs on 
datasets 1–5, respectively. They are ranked as 4, 14, 5, 33, 
and 1972 among 55,165, 74,340, 26,730, 3815, and 71,568 
lncRNA–protein pairs, respectively.

lncRNA SNHG10 is a novel driver in the process of 
development and metastasis in hepatocellular carcinoma 
[68]. The lncRNA has close linkages with cell prolifera-
tion in gastric cancer [69], non-small cell lung cancer [70], 
and osteosarcoma [71]. Q15717 is an RNA-binding protein 
[72]. The protein contributes to embryonic stem cell dif-
ferentiation, and can increase the leptin mRNA’s stability, 
and mediate the CDKN2A anti-proliferative activity [41]. 
Both SNHG10 and Q15717 have dense linkages with cell 
proliferation activity. We infer that SNHG10 may interact 
with Q15717 and is worthy of further validation.

4 � Discussion

Identification of LPI candidates contributes to discover func-
tions and mechanisms of lncRNAs. In this manuscript, an 
ensemble framework combining AkNN, DNN, and deep 
forest is developed to find possible interactions between 
lncRNAs and proteins. Three different CVs are conducted 
to compare the proposed EnANNDeep model with the other 
LPI prediction methods. The experimental results indicate 
that EnANNDeep can be more accurately applied to new 
LPI discovery.

Under CVp , majority of performance achieved from 
SFPEL, PMDKN, CatBoost, PLIPCOM, and LPI-SKF is 
much lower than those of CVl and CVlp . Under CVp , 80% of 
lncRNAs are used to train the model and the remaining is 
applied to test the model. On five LPI datasets, each lncRNA 
may associate with 59, 84, 27, 35, and 42 proteins, respec-
tively. When 20% of proteins are masked their associations, 
it may shield many LPIs and thus reduce the fitting level 

Table 10   The performance of two voting methods on CVlp

Metric Dataset Hard voting method Soft voting method

Precision Dataset 1 0.8373 ± 0.0024 0.8380 ±0.0045
Dataset 2 0.8515 ±0.0024 0.8510 ± 0.0037
Dataset 3 0.7168 ± 0.0048 0.7330 ±0.0040
Dataset 4 0.7790 ±0.0122 0.7706 ± 0.0124
Dataset 5 0.8391 ± 0.0011 0.8555 ±0.0015
Ave. 0.8047 0.8096

Recall Dataset 1 0.9722 ± 0.0026 0.9750 ±0.0032
Dataset 2 0.9784 ±0.0024 0.9783 ± 0.0017
Dataset 3 0.8780 ± 0.0027 0.8844 ±0.0081
Dataset 4 0.8192 ±0.0111 0.8001 ± 0.0117
Dataset 5 0.9206 ± 0.0008 0.9211 ±0.0016
Ave. 0.9137 0.9118

Accuracy Dataset 1 0.8915 ± 0.0024 0.8932 ±0.0027
Dataset 2 0.9037 ±0.0019 0.9034 ± 0.0023
Dataset 3 0.7654 ± 0.0038 0.7810 ±0.0035
Dataset 4 0.7928 ±0.0101 0.7805 ± 0.0100
Dataset 5 0.8720 ± 0.0007 0.8828 ±0.0009
Ave. 0.8451 0.8482

F1 score Dataset 1 0.8997 ± 0.0023 0.9013 ±0.0023
Dataset 2 0.9105 ±0.0017 0.9101 ± 0.0019
Dataset 3 0.7892 ± 0.0027 0.8015 ±0.0034
Dataset 4 0.7979 ±0.0097 0.7845 ± 0.0094
Dataset 5 0.8779 ± 0.0006 0.8871 ±0.0008
Ave. 0.8550 0.8569

AUC​ Dataset 1 0.9456 ± 0.0018 0.9473 ±0.0016
Dataset 2 0.9573 ±0.0026 0.9556 ± 0.0013
Dataset 3 0.8574 ± 0.0018 0.8597 ±0.0034
Dataset 4 0.8636 ± 0.0069 0.8648 ±0.0062
Dataset 5 0.9557 ± 0.0006 0.9557 ±0.0005
Ave. 0.9159 0.9166

AUPR Dataset 1 0.9261 ± 0.0036 0.9283 ±0.0039
Dataset 2 0.9427 ±0.0042 0.9408 ± 0.0018
Dataset 3 0.8350 ± 0.0044 0.8356 ±0.0054
Dataset 4 0.8678 ± 0.0077 0.8683 ±0.0062
Dataset 5 0.9540 ± 0.0008 0.9540 ±0.0008
Ave. 0.9051 0.9054
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of a classification model to the LPI data. Therefore, abun-
dance level of data severely affects the learning capacity of 
the five models. In comparison, under CVp , the performance 
obtained from EnANNDeep keeps relatively steady or even 
outperforms ones in comparing to CVl and CVlp . The results 
demonstrate the robustness of the proposed EnANNDeep 
algorithm under CVs.

More importantly, similar to EnANNDeep, SFPEL, 
CatBoost, and PLIPCOM are three ensemble learning-
based algorithms. The four ensemble learning-based LPI 

prediction methods integrate sequence information related 
to lncRNAs and proteins. SFPEL is a feature projection-
based technique. CatBoost and PLIPCOM are gradient tree 
boosting and categorical boosting algorithms, respectively. 
EnANNDeep outperforms the three ensemble learning mod-
els, demonstrating the superior classification ability of basic 
predictors. That is, AkNN, DNN, and deep forest can be 
more effectively integrated to find possible LPIs. In addi-
tion, a few case analysis further suggest that EnANNDeep 
can mine useful information for a new lncRNA or protein.

Table 11   The effect of the 
number of RNA secondary 
structures on performance under 
CVl

Metric Dataset 128 64 10 5

Precision Dataset 1 0.8357 ± 0.0027 0.8388 ± 0.0056 0.8393 ± 0.0053 0.8381 ± 0.0052
Dataset 2 0.8528 ± 0.0058 0.8545 ± 0.0032 0.8533 ± 0.0044 0.8516 ± 0.0050
Dataset 3 0.6919 ± 0.0060 0.6880 ± 0.0033 0.6923 ± 0.0030 0.6890 ± 0.0033
Dataset 4 0.6752 ± 0.0192 0.6623 ± 0.0148 0.6657 ± 0.0213 0.6784 ± 0.0173
Dataset 5 0.8008 ± 0.0026 0.7995 ± 0.0031 0.7990 ± 0.0024 0.7993 ± 0.0030
Ave. 0.7713 0.7686 0.7699 0.7713

Recall Dataset 1 0.9680 ± 0.0029 0.9660 ± 0.0023 0.9679 ± 0.0033 0.9683 ± 0.0020
Dataset 2 0.9665 ± 0.0032 0.9618 ± 0.0028 0.9649 ± 0.0030 0.9662 ± 0.0025
Dataset 3 0.8033 ± 0.0068 0.8220 ± 0.0062 0.8128 ± 0.0063 0.8140 ± 0.0063
Dataset 4 0.5030 ± 0.0306 0.4848 ± 0.0270 0.4821 ± 0.0428 0.5022 ± 0.0386
Dataset 5 0.8619 ± 0.0039 0.8587 ± 0.0035 0.8585 ± 0.0022 0.8599 ± 0.0020
Ave. 0.8205 0.8187 0.8172 0.8221

Accuracy Dataset 1 0.8887 ± 0.0020 0.8901 ± 0.0042 0.8912 ± 0.0041 0.8904 ± 0.0034
Dataset 2 0.9001 ± 0.0037 0.8990 ± 0.0025 0.8994 ± 0.0032 0.8988 ± 0.0036
Dataset 3 0.7241 ± 0.0050 0.7245 ± 0.0036 0.7255 ± 0.0026 0.7231 ± 0.0025
Dataset 4 0.6202 ± 0.0149 0.6182 ± 0.0119 0.6188 ± 0.0168 0.6315 ± 0.0176
Dataset 5 0.8243 ± 0.0013 0.8216 ± 0.0023 0.8211 ± 0.0024 0.8218 ± 0.0020
Ave. 0.7915 0.7907 0.7912 0.7931

F1 score Dataset 1 0.8969 ± 0.0018 0.8979 ± 0.0036 0.8990 ± 0.0036 0.8984 ± 0.0028
Dataset 2 0.9059 ± 0.0032 0.9049 ± 0.0023 0.9056 ± 0.0029 0.9051 ± 0.0031
Dataset 3 0.7450 ± 0.0040 0.7489 ± 0.0036 0.7475 ± 0.0027 0.7461 ± 0.0024
Dataset 4 0.5726 ± 0.0203 0.5552 ± 0.0195 0.5548 ± 0.0316 0.5727 ± 0.0312
Dataset 5 0.8306 ± 0.0014 0.8280 ± 0.0022 0.8276 ± 0.0015 0.8283 ± 0.0017
Ave. 0.7902 0.7870 0.7869 0.7901

AUC​ Dataset 1 0.9329 ± 0.0021 0.9327 ± 0.0030 0.9341 ± 0.0021 0.9347 ± 0.0025
Dataset 2 0.9473 ± 0.0023 0.9475 ± 0.0017 0.9469 ± 0.0022 0.9479 ± 0.0030
Dataset 3 0.8188 ± 0.0044 0.9469 ± 0.0022 0.8189 ± 0.0023 0.8188 ± 0.0028
Dataset 4 0.7188 ± 0.0160 0.7154 ± 0.0079 0.7136 ± 0.0142 0.7234 ± 0.0145
Dataset 5 0.9087 ± 0.0012 0.9091 ± 0.0017 0.9089 ± 0.0015 0.9097 ± 0.0010
Ave. 0.8653 0.8648 0.8645 0.8669

AUPR Dataset 1 0.9148 ± 0.0041 0.9142 ± 0.0038 0.9159 ± 0.0039 0.9183 ± 0.0035
Dataset 2 0.9329 ± 0.0044 0.9338 ± 0.0026 0.9325 ± 0.0033 0.9342 ± 0.0043
Dataset 3 0.8000 ± 0.0054 0.7990 ± 0.0044 0.7995 ± 0.0022 0.8010 ± 0.0045
Dataset 4 0.7135 ± 0.0147 0.7090 ± 0.0108 0.7071 ± 0.0131 0.7170 ± 0.0122
Dataset 5 0.9073 ± 0.0014 0.9072 ± 0.0018 0.9065 ± 0.0017 0.9080 ± 0.0013
Ave. 0.8537 0.8526 0.8523 0.8557
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The EnANNDeep framework demonstrates the powerful 
LPI discovery ability, especially under CVlp . It may be attrib-
uted to the following characteristics. First, a deep model 
composed of DNN and deep forest exhibits the optimal fea-
ture representation ability. In particular, deep forest works 
well even on small-scale data. Second, the proposed AkNN 
classifier can separately pick the most appropriate k for each 
query point so that the algorithm can better set the confi-
dence intervals. Third, the ensemble framework from AkNN, 

DNN, and deep forest can effectively integrate the prediction 
results from the three predictors and thus improves the clas-
sification performance of EnANNDeep. Finally, it integrates 
multiple biological information related to LPI.

Although EnANNDeep can precisely identify new LPIs, 
it has one limitation: we select negative LPIs from unlabeled 
lncRNA–protein pairs. Indeed, unknown lncRNA–protein 
pairs may contain positive LPIs, thereby affecting the predic-
tion ability of a model.

Table 12   The effect of the 
number of RNA secondary 
structures on performance under 
CVp

Metric Dataset 128 64 10  5

Precision Dataset 1 0.8376 ± 0.0728 0.8368 ± 0.0955 0.8529 ± 0.0806 0.8343 ± 0.1003
Dataset 2 0.8853 ± 0.0201 0.8821 ± 0.0201 0.8816 ± 0.0284 0.8480 ± 0.0310
Dataset 3 0.7275 ± 0.0166 0.7039 ± 0.0244 0.6729 ± 0.0245 0.7255 ± 0.0340
Dataset 4 0.7581 ± 0.0166 0.7527 ± 0.0115 0.7566 ± 0.0152 0.7526 ± 0.0130
Dataset 5 0.8212 ± 0.0041 0.8183 ± 0.0047 0.8256 ± 0.0032 0.8364 ± 0.0032
Ave. 0.8059 0.7988 0.7979 0.7994

Recall Dataset 1 0.3072 ± 0.0825 0.2897 ± 0.1123 0.3668 ± 0.0573 0.4069 ± 0.0600
Dataset 2 0.2415 ± 0.0698 0.3698 ± 0.0586 0.4136 ± 0.0549 0.2995 ± 0.0528
Dataset 3 0.5811 ± 0.0363 0.5778 ± 0.0401 0.5828 ± 0.0371 0.5876 ± 0.0687
Dataset 4 0.7495 ± 0.0206 0.7552 ± 0.0244 0.7618 ± 0.0202 0.7373 ± 0.0202
Dataset 5 0.8546 ± 0.0041 0.8874 ± 0.0056 0.8696 ± 0.0045 0.8582 ± 0.0030
Ave. 0.5468 0.5760 0.5989 0.5779

Accuracy Dataset 1 0.6222 ± 0.0387 0.6258 ± 0.0521 0.6609 ± 0.0271 0.6754 ± 0.0264
Dataset 2 0.6046 ± 0.0325 0.6632 ± 0.0285 0.6818 ± 0.0300 0.6260 ± 0.0254
Dataset 3 0.6610 ± 0.0154 0.6626 ± 0.0223 0.6485 ± 0.0196 0.6776 ± 0.0262
Dataset 4 0.7500 ± 0.0118 0.7514 ± 0.0086 0.7567 ± 0.0112 0.7451 ± 0.0112
Dataset 5 0.8471 ± 0.0026 0.8447 ± 0.0024 0.8424 ± 0.0025 0.8445 ± 0.0016
Ave. 0.6970 0.7095 0.7181 0.7137

F1 score Dataset 1 0.4095 ± 0.0837 0.3745 ± 0.1170 0.4555 ± 0.0658 0.4917 ± 0.0624
Dataset 2 0.3442 ± 0.0783 0.4839 ± 0.0588 0.5275 ± 0.0526 0.4031 ± 0.0639
Dataset 3 0.6159 ± 0.0265 0.6145 ± 0.0316 0.6128 ± 0.0274 0.6342 ± 0.0460
Dataset 4 0.7413 ± 0.0117 0.7502 ± 0.0118 0.7562 ± 0.0121 0.7400 ± 0.0129
Dataset 5 0.8450 ± 0.0022 0.8510 ± 0.0022 0.8466 ± 0.0025 0.8467 ± 0.0014
Ave. 0.5912 0.6148 0.6397 0.6231

AUC​ Dataset 1 0.9054 ± 0.0304 0.8886 ± 0.0450 0.9011 ± 0.0347 0.9061 ± 0.0282
Dataset 2 0.9169 ± 0.0143 0.9270 ± 0.0060 0.9248 ± 0.0104 0.9125 ± 0.0193
Dataset 3 0.7900 ± 0.0097 0.7930 ± 0.0205 0.7726 ± 0.0171 0.7944 ± 0.0208
Dataset 4 0.8410 ± 0.0115 0.8436 ± 0.0072 0.8496 ± 0.0097 0.8357 ± 0.0127
Dataset 5 0.9279 ± 0.0018 0.9345 ± 0.0018 0.9267 ± 0.0016 0.9269 ± 0.0015
Ave. 0.8762 0.8773 0.8750 0.8751

AUPR Dataset 1 0.8719 ± 0.0325 0.8540 ± 0.0467 0.8672 ± 0.0310 0.8752 ± 0.0291
Dataset 2 0.8743 ± 0.0163 0.8910 ± 0.0093 0.8913 ± 0.0142 0.8721 ± 0.0226
Dataset 3 0.7715 ± 0.0131 0.7714 ± 0.0204 0.7546 ± 0.0183 0.7767 ± 0.0229
Dataset 4 0.8414 ± 0.0150 0.8474 ± 0.0079 0.8494 ± 0.0111 0.8389 ± 0.0130
Dataset 5 0.9226 ± 0.0022 0.9292 ± 0.0024 0.9208 ± 0.0019 0.9196 ± 0.0019
Ave. 0.8563 0.8586 0.8567 0.8565
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5 � Conclusions

lncRNAs play pivotal roles in regulating many hallmarks 
of cancer biology. To decipher the lncRNA functions, we 
focus on new LPI mining. First, five LPI-related datasets 
are arranged. Second, the lncRNA and protein features 

are fused to depict each lncRNA–protein pair. Third, an 
ensemble model, composed of AkNN, DNN, and deep 
forest, is developed to classify unlabeled lncRNA–protein 
pairs, respectively. Finally, interaction probabilities of each 
lncRNA–protein pair from three predictors are integrated 
based on a soft voting technique to obtain the final clas-
sification. The results from comparative experiments and 

Table 13   The effect of the 
number of RNA secondary 
structures on performance under 
CVlp

Metric Dataset 128 64 10  5

Precision Dataset 1 0.8373 ± 0.0050 0.8410 ± 0.0046 0.8399 ± 0.0042 0.8373 ± 0.0024
Dataset 2 0.8514 ± 0.0046 0.8528 ± 0.0039 0.8549 ± 0.0038 0.8515 ± 0.0024
Dataset 3 0.7149 ± 0.0054 0.7100 ± 0.0077 0.7102 ± 0.0042 0.7168 ± 0.0048
Dataset 4 0.7773 ± 0.0093 0.7737 ± 0.0110 0.7769 ± 0.0087 0.7790 ± 0.0122
Dataset 5 0.8442 ± 0.0025 0.8406 ± 0.0021 0.8397 ± 0.0011 0.8391 ± 0.0011
Ave. 0.8050 0.8036 0.8043 0.8153

Recall Dataset 1 0.9737 ± 0.0026 0.9697 ± 0.0025 0.9710 ± 0.0034 0.9722 ± 0.0026
Dataset 2 0.9772 ± 0.0018 0.9775 ± 0.0025 0.9777 ± 0.0019 0.9784 ± 0.0024
Dataset 3 0.8729 ± 0.0075 0.8765 ± 0.0122 0.8767 ± 0.0118 0.8780 ± 0.0027
Dataset 4 0.8065 ± 0.0121 0.8230 ± 0.0077 0.8198 ± 0.0095 0.8192 ± 0.0111
Dataset 5 0.9241 ± 0.0016 0.9207 ± 0.0025 0.9185 ± 0.0015 0.9206 ± 0.0008
Ave. 0.9109 0.9135 0.9127 0.9137

Accuracy Dataset 1 0.8921 ± 0.0031 0.8931 ± 0.0033 0.8929 ± 0.0026 0.8915 ± 0.0024
Dataset 2 0.9036 ± 0.0031 0.9043 ± 0.0024 0.9058 ± 0.0027 0.9037 ± 0.0019
Dataset 3 0.7638 ± 0.0048 0.7589 ± 0.0046 0.7592 ± 0.0030 0.7654 ± 0.0038
Dataset 4 0.7874 ± 0.0086 0.7903 ± 0.0072 0.7904 ± 0.0059 0.7928 ± 0.0101
Dataset 5 0.8731 ± 0.0014 0.8730 ± 0.0012 0.8715 ± 0.0009 0.8720 ± 0.0007
Ave. 0.8440 0.8439 0.8440 0.8451

F1 score Dataset 1 0.9003 ± 0.0026 0.9007 ± 0.0028 0.9007 ± 0.0022 0.8997 ± 0.0023
Dataset 2 0.9101 ± 0.0026 0.9109 ± 0.0021 0.9121 ± 0.0023 0.9105 ± 0.0017
Dataset 3 0.7860 ± 0.0041 0.7843 ± 0.0033 0.7845 ± 0.0037 0.7892 ± 0.0027
Dataset 4 0.7912 ± 0.0086 0.7968 ± 0.0059 0.7949 ± 0.0054 0.7979 ± 0.0097
Dataset 5 0.8777 ± 0.0012 0.8788 ± 0.0011 0.8773 ± 0.0009 0.8779 ± 0.0006
Ave. 0.8531 0.8543 0.8539 0.8550

AUC​ Dataset 1 0.9455 ± 0.0028 0.9454 ± 0.0019 0.9470 ± 0.0019 0.9456 ± 0.0018
Dataset 2 0.9563 ± 0.0023 0.9579 ± 0.0018 0.9567 ± 0.0022 0.9573 ± 0.0026
Dataset 3 0.8551 ± 0.0028 0.8583 ± 0.0026 0.8569 ± 0.0019 0.8574 ± 0.0018
Dataset 4 0.8602 ± 0.0067 0.8629 ± 0.0054 0.8630 ± 0.0089 0.8636 ± 0.0069
Dataset 5 0.9561 ± 0.0007 0.9560 ± 0.0003 0.9553 ± 0.0004 0.9557 ± 0.0006
Ave. 0.9146 0.9161 0.9158 0.9159

AUPR Dataset 1 0.9250 ± 0.0057 0.9246 ± 0.0040 0.9277 ± 0.0036 0.9261 ± 0.0036
Dataset 2 0.9411 ± 0.0031 0.9435 ± 0.0034 0.9422 ± 0.0036 0.9427 ± 0.0042
Dataset 3 0.8314 ± 0.0041 0.8353 ± 0.0038 0.8338 ± 0.0043 0.8350 ± 0.0044
Dataset 4 0.8731 ± 0.0074 0.8715 ± 0.0067 0.8648 ± 0.0091 0.8678 ± 0.0077
Dataset 5 0.9543 ± 0.0008 0.9546 ± 0.0004 0.9537 ± 0.0005 0.9540 ± 0.0008
Ave. 0.9050 0.9059 0.9044 0.9051
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case analyses demonstrate that EnANNDeep can optimize 
the interplays between lncRNAs and proteins. Case analy-
ses suggest that there probably exists an interaction between 
SNHG10 and Q15717.

In the future researches, first we will integrate various 
lncRNA-related datasets from different data sources to 

investigate the interaction biomolecules for lncRNAs, for 
example, lncRNA-miRNA interactions [73] and lncRNA-
DNA interactions [36]. Second, more biological informa-
tion from lncRNAs and proteins, for example, secondary 
structures of lncRNAs, secondary and tertiary structures of 
proteins, will be fused to represent an lncRNA–protein pair. 
Finally, we will develop a negative sample selection method 

Table 14   The predicted top 
5 proteins interacting with 
SNHG1

Dataset Proteins Confirmed EnANNDeep SPFEL PMDKN PLIPCOM CatBoost LPI-SKF

Dataset 1 Q15717 NO 1 1 1 3 1 7
O00425 NO 2 2 2 10 3 8
Q9Y6M1 NO 3 3 4 1 2 9
P35637 NO 4 5 59 2 5 11
Q9NZI8 NO 5 4 3 12 4 10

Dataset 2 Q15717 YES 1 1 2 2 2 6
Q9Y6M1 YES 2 2 1 9 1 8
Q9NZI8 YES 3 3 16 3 3 4
Q13148 YES 4 6 11 4 8 10
P35637 YES 5 4 20 1 4 7

Dataset 3 Q15717 YES 1 1 1 1 1 4
Q9Y6M1 YES 2 3 5 5 4 1
O00425 YES 3 2 6 2 2 3
Q9NZI8 YES 4 4 4 3 3 2
P35637 NO 5 5 8 11 5 5

Table 15   The predicted top 5 lncRNAs interacting with Q9UKV8

Dataset lncRNAs Confirmed EnANNDeep SPFEL PMDKN PLIPCOM CatBoost LPI-SKF

Dataset 1 RPI001_448664 YES 1 157 58 262 138 543
DANCR NO 2 145 132 1 7 114
RPI001_1039837 NO 3 59 196 5 2 123
RPI001_124004 YES 4 307 46 236 27 35
AL139819.1 NO 5 538 129 129 114 178

Dataset 2 RMRP NO 1 14 305 8 6 69
SNORA53 YES 2 53 59 177 15 638
RPI001_84645 YES 3 313 864 59 54 317
SNORD17 NO 4 401 785 22 17 205
RPI001_483534 NO 5 2 478 183 9 86

Dataset 3 RMRP YES 1 63 196 79 92 30
AC010890.1 YES 2 7 115 1 3 109
RPI001_1001088 YES 3 24 15 10 2 217
RPI001_84645 NO 4 86 888 62 52 185
EXOC3 NO 5 604 276 297 140 841



229Interdisciplinary Sciences: Computational Life Sciences (2022) 14:209–232	

1 3

NONHSAT021853

NONHSAT097499

NONHSAT078782

NONHSAT048175

Q15717
NONHSAT012566

NONHSAT077462

NONHSAT024858

NONHSAT089678

NONHSAT030153

NONHSAT039455
NONHSAT063875

NONHSAT038064

NONHSAT138147

NONHSAT068218

NONHSAT145965

NONHSAT098625

NONHSAT044208

NONHSAT009599

NONHSAT094312

NONHSAT083172

NONHSAT039745

NONHSAT037642

NONHSAT066972

NONHSAT126113

NONHSAT140501

NONHSAT144573

NONHSAT032361

NONHSAT133935

NONHSAT036719

NONHSAT023656

NONHSAT083214

NONHSAT029339

NONHSAT129647

NONHSAT082353

NONHSAT021887

NONHSAT039558

NONHSAT030969

NONHSAT006480

NONHSAT037814

NONHSAT017355

NONHSAT077414

NONHSAT077466

NONHSAT034878

NONHSAT037576

NONHSAT115641

NONHSAT063977

NONHSAT097985

NONHSAT054526

NONHSAT013600

NONHSAT001463

Fig. 4   The predicted top 50 LPIs on dataset 1

n335544
n340108

n335106
n367422

n369876

n338758

n340002

n340535

n4541

n341017

n342666

n342195

Q9NZI8

n408051

n345686

n387266

n339984

n378520 n377717

n341049

n342010

n342358

n381464

n337671

n342353

n345175

n383509

n3891

n342544

n406847

n339741

n342861

n381585

n342846

n376473

n387722
n342704

n341449

n342056 n340240

n336975

n328168

Q15717

n381216

n340549

n344814

n340203

n339073

n369419

n344457

n341592

Fig. 5   The predicted top 50 LPIs on dataset 2

NONHSAT138818

NONHSAT014009

NONHSAT105070

NONHSAT075752

NONHSAT112767

NONHSAT087418

NONHSAT011558

NONHSAT137589
NONHSAT010724

ENSP00000290341

NONHSAT034667
NONHSAT130962

ENSP00000362300NONHSAT032173

NONHSAT000092

NONHSAT086890

ENSP00000385269

NONHSAT034313

NONHSAT040814

NONHSAT138143

NONHSAT074544

NONHSAT124436

NONHSAT135851

NONHSAT122865

NONHSAT031708

NONHSAT068218

NONHSAT137303

NONHSAT127292

NONHSAT000091

NONHSAT076682

NONHSAT071769

NONHSAT114756

NONHSAT034093

NONHSAT007037

ENSP00000371634

NONHSAT064003

NONHSAT092997

NONHSAT070699

NONHSAT032361

NONHSAT033822

NONHSAT007429

NONHSAT066144

NONHSAT123693

NONHSAT042032

ENSP00000258729

NONHSAT029652

NONHSAT016689

NONHSAT101350

NONHSAT054793

NONHSAT033191

NONHSAT035663

NONHSAT072980

Fig. 6   The predicted top 50 LPIs on dataset 3
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based on positive-unlabeled learning to screen reliable nega-
tive LPIs.
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