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Abstract
Non-coding RNA (ncRNA) plays an important role in regulating biological activities of animals and plants, and the rep-
resentative ones are microRNA (miRNA) and long non-coding RNA (lncRNA). Recent research has found that predicting 
the interaction between miRNA and lncRNA is the primary task for elucidating their functional mechanisms. Due to the 
small scale of data, a large amount of noise, and the limitations of human factors, the prediction accuracy and reliability of 
traditional feature-based classification methods are often affected. Besides, the structure of plant ncRNA is complex. This 
paper proposes an ensemble deep-learning model based on convolutional neural network (CNN) and independently recur-
rent neural network (IndRNN) for predicting the interaction between miRNA and lncRNA of plants, namely, CIRNN. The 
model uses CNN to explore the functional features of gene sequences automatically, leverages IndRNN to obtain the repre-
sentation of sequence features, and learns the dependencies among sequences; thus, it overcomes the inaccuracy caused by 
human factors in traditional feature engineering. The experiment results show that the proposed model is superior to shallow 
machine-learning and existing deep-learning models when dealing with large-scale data, especially for the long sequence.
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1 Introduction

Eukaryotic genomes with broad transcription features can 
produce all kinds of RNA, and the studies have found that 
only about 1–2% of transcripts are involved in protein-
coding [1], the vast majority of transcripts which are not 
involved in protein-encoding are called non-coding RNAs 
(ncRNAs) [2]. In recent years, the studies on quantity and 
function of ncRNA species are important fields in biology. 
ncRNA is divided into long non-coding RNA (lncRNA) 
and short non-coding RNA (sncRNA) according to whether 
the transcript length is greater than 200 nt [3]. lncRNA and 
microRNA (miRNA) [4] are the most two important types. 
As the gradual deepening of understanding of ncRNA, their 
function mechanism has drawn more and more people’s 
attentions. Their identification and functional inquiry have 

become a hot issue. Researchers find that the interaction 
between miRNA and lncRNA plays an important role in 
the regulation of gene expression, which is closely related 
to species’ evolution, embryonic development, material 
metabolism, and the occurrence of various diseases [5]. In-
depth study of the interaction between miRNA and lncRNA 
will revolutionize the current understanding of cell structure 
and regulation and bring great scientific and medical value. 
Therefore, it is crucial to reveal the interaction between RNA 
molecules and explain their functions.

There are two main types of interactions between miRNA 
and lncRNA in plant: (1) as the precursor of miRNA, 
lncRNA can be spliced into shorter miRNA besides play-
ing a direct role. For example, miR869a and miR160c can 
be sheared from lncRNAs npc83 and npc521 [6]; (2) as 
a target, lncRNA can be spliced by miRNA [7]. lncRNA 
regulates the balance of phosphate in vivo of plants by act-
ing as a target for miRNA, weakening the inhibitory effect 
on genes of miRNA. lncRNA can also act as the decoy of 
miRNA, competing with mRNA to bind miRNA, to regu-
late the expression of these miRNA target genes, which is 
called “sponge effect” [8]. Two lncRNAs, slylnc0195, and 
slylnc1077 are found to act as decoys for miRNAs in the 
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study of tomato yellow mosaic virus (TYMV) [9]. The 
expression of Slylnc0195 is significantly enhanced in tomato 
infected with TYMV, while miR166a is down regulated.

Studies have shown that the interaction between miRNA 
and lncRNA plays an important regulatory role in plant 
disease resistance, vernalization, cell differentiation, flow-
ering and fruiting, cold resistance, drought resistance, and 
other biotic and abiotic stresses. Compared with human 
and animal, there are relatively few studies on the interac-
tion between miRNA and lncRNA in plant. In addition, a 
few miRNAs and lncRNAs mechanism of action have been 
confirmed, which leads to insufficient experimental data on 
miRNA and lncRNA in the field of plant, making it diffi-
cult to meet the requirements of bioinformatics for in-depth 
analysis of the interaction between miRNA and lncRNA. 
Therefore, a large number of data on the interaction between 
miRNA and lncRNA related to plant growth and develop-
ment are of vital significance for in-depth study of the func-
tional mechanism of the interaction between miRNA and 
lncRNA in plant.

In recent years, considerable effort has been devoted to 
developing computational methods for identifying associa-
tions in multiple biological data sets [10]. At present, in the 
prediction of the interaction between miRNA and lncRNA, 
many researchers have used shallow machine-learning 
methods to construct the prediction model through feature 
selection, but there are many problems such as less train-
ing data, large noise, and more human factors, making low 
reliability of the prediction results. In this paper, an ensem-
ble deep-learning model CIRNN is proposed to predict the 
interaction between miRNA and lncRNA. This model uses 
the two-stage convolutional neural network (CNN) [11] to 
automatically learn sequence features and detect functional 
domains of nucleotide sequences, and then uses the two-
layer independently recurrent neural network (IndRNN) [12] 
to learn the long-term dependence in functional domains to 
classify data. It obtains above 96% accuracy on Zea mays 
test set and better results on other plant data sets. This shows 
its good performance and generalization ability.

The rest of this paper is organized as follows. The model 
including the architecture of CIRNN is briefly introduced in 
Sect. 2. In Sect. 3, the results of experiments are analyzed 
and compared with shallow machine-learning and other 
deep-learning models. Section 4 concludes this paper and 
makes a preliminary discussion for future work.

2  Materials and Methods

2.1  Data Acquisition

The widely used and relatively rich Zea mays data set is 
selected for the experiment. Because of no public database 

of miRNA and lncRNA interaction pairs, we download 325 
mature Zea mays miRNA sequences with high credibility 
from PNRD [13] (http://struc tural biolo gy.cau.edu.cn/PNRD/), 
and 18,110 Zea mays lncRNA sequences from GreeNC [14] 
(http://green c.scien cedes igner s.com/wiki/Main_Page). The 
same sequences are removed, and 207 miRNAs and 17,684 
lncRNAs are remained, as shown in Table 1.

2.2  Data Preprocessing

psRNATarget (http://plant grn.noble .org/psRNA Targe t/) [15] 
is used as the miRNA–lncRNA interaction prediction tool in 
this paper. By analyzing the matching degree between miRNA 
and target sequences in plant, the target gene sequences that 
can interact with miRNA are identified. The filtered miRNAs 
and lncRNAs are imported into psRNATarget software for 
prediction, and a total of 18,241 miRNA–lncRNA interaction 
pairs are obtained as the positive data set. To better verify the 
performance of the model, it is necessary to construct a nega-
tive data set with strong interference ability.

Due to the small amount and short sequence length of miR-
NAs, the proportion of miRNA is relatively small in interac-
tion pairs; therefore, the experiment mainly processes lncRNA 
sequences. Firstly, all lncRNAs are divided into two types, one 
is involved in the interaction, and another is not involved in 
interaction between lncRNA and miRNA. Then, Needleman 
Wunsch algorithm [16] is used to conduct similarity com-
parison between the two types of lncRNAs, and the lncRNA 
samples with similarity above 80% are removed [17]. Finally, 
lncRNAs which are not involved in the interaction between 
lncRNA and miRNA are randomly combined with all miRNAs 
to obtain the negative sample data set after similarity removal. 
To ensure the balance of positive and negative samples, a ran-
dom sampling method is used to obtain the same number of 
negative samples as the positive samples. The positive and 
negative data sets are randomly shuffled to form the data set 
needed for the experiment, totaling 36,482 pieces.

For the inadequacy of the data and small sample size prob-
lems, we use the SMOTE algorithm [18] to increase the sam-
ple size by generating characteristic data that resemble the 
samples. Taking positive samples as an example, we randomly 
select a positive sample eigenvalue and determine the nearest 
positive sample eigenvalue, and then generate a new positive 
sample between the two samples. Finally, we repeat the above 
operations until the sample data amount is sufficient.

Table 1  Zea mays data set information

Data sets Original data Filtered data Database

miRNA 325 207 PNRD
lncRAN 18,110 17,684 GreeNC

http://structuralbiology.cau.edu.cn/PNRD/
http://greenc.sciencedesigners.com/wiki/Main_Page
http://plantgrn.noble.org/psRNATarget/
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Because the maximum sequence length in the data set 
is over 8000 nt, this leads to the training time is too long. 
Meanwhile, there are only 216 sequences with length 
greater than 4000 nt. Therefore, we remove the sequences 
which length is greater than 4000 nt. The results verify 
that CIRNN’s accuracy hardly changes, but greatly reduces 
the training time after removing the data with the sequence 
length greater than 4000 nt.

Data set 1 is the original data set, and Data set 2 is the 
new data set after removing the length exceeding 4000 
nt. We conduct three experiments, respectively, and the 
results are shown in Table 2. It can be seen that there is a 
small change in CIRNN’s accuracy, but the training time 
of each batch is shortened by more than half.

2.3  Model Description

Early data classification and predicting problems mainly 
use shallow machine-learning methods based on feature 
engineering, but due to its various disadvantages, research-
ers have begun to pay attention to deep-learning methods 
[19]. Recently, with the continuous development of deep 
learning, it has been widely used in image processing [20], 
sequence classification [21], natural language processing 
[22], biological information [23], computer vision [24], 
and other fields, and achieved good results.

2.3.1  CNN and IndRNN Structure

The most representative deep-learning models are CNN 
and recurrent neural network (RNN) [25]. Many existing 
deep-learning models are mostly their variants. CIRNN 
consists of CNN and IndRNN. CNN convolution layer can 
automatically extract feature information of data at differ-
ent levels [26], and then sample and process the features 
through the pooling layer to obtain the features that are 
most suitable for classification. Afterwards, the feature 
information obtained is passed into the IndRNN layer 
to further learn the dependencies between features. The 
model uses Dropout layer to prevent overfitting. At the 
same time, Relu function is used as the activation function, 
because the Relu function has the advantages over sigmoid 
function in facilitating sparse and effectively reducing the 
gradient likelihood value [27]. To better extract and fil-
trate features, the model uses two-layer CNN. The specific 
structure of CNN is shown in Fig. 1.

IndRNN can learn long-term dependence between 
sequences. To better learn the dependencies between 
sequences, the model uses two-layer IndRNN. Different 
from traditional RNN, IndRNN is simple in structure and 
can be easily extended to different network architectures. 
Neurons in the same layer are independent, so that the 
behavior of each neuron can be analyzed without consider-
ing the influence of other neurons. It can solve the gradient 
disappearance and gradient explosion problems in tradi-
tional RNN with the deepening of network level, without 
loss of trainable loop connection ability and not involving 
gate parameters [28], and maintain long-term memory. 
Therefore, the gradient can be effectively propagated at 
different time steps. The network can be more in-depth and 
persistent, which enables multiple IndRNNs to be stacked 
up to build a deeper network, to better explore the cross-
channel information and learn the dependence between 
data. The status update can be described as follows [12]:

Table 2  Training times and accuracies on two data sets

Data sets Accuracy (%) Time (min/
batch)

Experiment 1 Experiment 2 Experiment 3

Data set 1 97.25 97.42 97.57 30.30
Data set 2 97.62 97.36 97.59 13.15

Input Layer Convolution 
Layer1

Max-pooling 
Layer1

Convolution 
Layer2

Max-pooling 
Layer2

Fully-connected 
Layer

Fig. 1  CNN frame structure
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where xt and ht are the input and hidden state at time step t, 
respectively. W and U are the weights of the current input 
and the recurrent input, and b is the bias of the neuron.
where BN denotes standardized batch processing; W1, W2, 
and Recurrent + Relu represent the input weights and loop 
processing of each step with Relu as the activation function. 
By stacking this structure, a deeper IndRNN network can be 
built which is shown in Fig. 2.

2.3.2  CIRNN Structure

An ensemble deep-learning model CIRNN is proposed 
based on traditional CNN and IndRNN. The model is mainly 
divided into two parts. One part is the traditional CNN, 
which is a feedforward neural network that extracts features 
through convolution operation and then uses pooling layer 
to learn local features of data. Another part is IndRNN an 
extension of RNN. RNN has internal memory features and 
has internal feedback connection and feedforward adjust-
ment between processing elements. Therefore, it has a good 
effect on processing sequence information. However, for 
sequence data, CNN only considers the correlation between 
continuous sequences and ignores the correlation between 
non-continuous sequences. Although RNN is suitable for 
processing sequence data, it is difficult to deal with the 
problem of long-term dependence of information. Further-
more, there are gradient disappearance and gradient explo-
sion problems. CIRNN combines the advantages of CNN 
and IndRNN. In this way, feature information can be fully 
extracted and long-term dependence between sequences can 
be taken into account. The overall architecture is shown in 
Fig. 3.

2.4  Experiment

The experiments are implemented in a Keras framework [29] 
based on TensorFlow 1.12.0 written in Python3.6.5 under 
Windows 10 system. Before the model is trained, we conduct 
data preprocessing, firstly. The bases A, T, C, and G are 
encoded as 1, 2, 3, and 4, respectively. Then, the embedding 

(1)h
t
= 𝜎(Wx

i
+ U ⊙ h

t−1 + b)

layer converts data after encoding into a matrix, which is 
presented to CNN. The convolution operation is carried out 
to extract feature information through convolution layers, 
and the important local feature information is filtered out 
by the maximum pooling operation. The vector matrix is 
transformed into a feature map as the input layer of IndRNN 
after activating by the Relu function. IndRNN is utilized to 
fully learn the dependence between features. Finally, using 
the dense layer to map the feature vector of the IndRNN 
output to a concrete number, and the sigmoid function is 
used to map the number to [0, 1], the predicted results are 
obtained. According to the loss between the real value and 
the predicted value, BP algorithm [30] is used to calculate 
the loss layer by layer to update the parameters. Dropout 
layer with a parameter of 0.5 is used to prevent overfitting. 
The learning rate of the model is set to 0.01, each batch of 
data is 128, and the stochastic gradient descent (SGD) algo-
rithm is used to optimize the model.

3  Results and Discussion

3.1  Comparison with Shallow Machine‑Learning 
Models

First, CIRNN is compared with shallow machine-learning 
methods on Zea mays data set, including classical machine-
learning algorithms such as support vector machine (SVM) 
[31], logistic regression [32], random forest [33], and k-near-
est neighbor (k-NN) [34].

Although deep learning automatically extracts features, 
the significant features may not be prominent in this pro-
cess, which will result in a general but not optimal situation. 
Therefore, the performance of deep-learning methods may 

W1 Recurrent + Relu

W2Recurrent + Relu

x1, x2, , xt

y1, y2, , yt

BN

BN

Fig. 2  IndRNN frame structure

A T C G

Embedding Layer 1 2 43

Convolution Layer

Sampling Layer

Dropout

IndRNN Layer1

IndRNN Layer2

Dropout

Fully-Connection
Layer

Output Layer

Relu

Max-pooling

Relu Dropout

T C G

Fig. 3  Overall architecture of the proposed model
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not be as good as shallow machine-learning methods. To 
verify the performance of the model, CIRNN is compared 
with shallow machine-learning models and other deep-
learning models. In addition, we also applied CIRNN for 
other plants.

To ensure the accuracy and reliability of the experimental 
results, the experiments adopt ten-fold cross validation. The 
experimental data set is divided into 10 groups on average, 
9 groups are used for training, and 1 group for verification. 
Performing experiment 10 times alternately, the average 
value of 10 experiments is taken as the final result.

For shallow machine-learning methods, we first conduct 
feature extraction. The main features extracted in this experi-
ment are the primary structural features and secondary struc-
tural features of the sequence. k-mer is the common primary 
structural feature. A k-mer has k nucleotides, each of which 
can be one of A, T, C, and G. 1-mer (4 dimensions), 2-mer 
(16 dimensions), and 3-mer (64 dimensions) features of the 
sequence are extracted in the experiment. The sliding win-
dow with a length of k is used to match the above k-mer, 
with a sliding step size of 1. In addition to the k-mer fea-
tures, the experiment also extracted the gap features of the 
sequence, including the first gap features (A*A, 64 dimen-
sions) and the second gap features (A**A, 256 dimensions).

Secondary structure features determine the important 
functions of RNA molecules. Studies have shown that the 
more stable the structure of the RNA sequence is, the more 
free energy will be released when it folds itself to form the 
secondary structure; the more stable the secondary struc-
ture is, the more complementary base pairs it forms, and 
the higher the content of G and C. The base complementary 
pairing ratio (E1), G and C contents (E2) and the normalized 
minimum free energy (DM) of the sequences are extracted 
in the experiment. The experiment uses the ViennaRNA 
[35] toolkit to obtain the dot bracket form of the sequence 
secondary structure and the minimum free energy released 
by the formation of these secondary structures, specifically 
defined as follows:

where n_pairs represents the number of pairs of bases that 
can be paired in a sequence, L represents the sequence 
length, n_G and n_C represent the frequency of occurrence 
of G and C, and MFE represents the minimum free energy 
of a sequence.

A total of 407 dimensions are obtained including both 
primary structural features and secondary structural features. 
These features are fused to form 407 dimensional feature 

(2)E1=n_pairs∕(L∕2)

(3)E2= (n_G+n_C)∕L

(4)DM = MFE∕L,

vectors. All feature vectors are combined into a vector set 
for model training and testing. The detail feature information 
is shown in Table 3.

In this paper, the four values of accuracy (ACC), Pre-
cision, Recall and F1 value (F1_score) are used as evalua-
tion criteria for experimental results, which are defined as 
follows:

where TP represents the number of positive classes predicted 
to be positive classes, TN represents the number of negative 
classes predicted to be negative, FN represents the number 
of positive classes predicted to be negative, and FP repre-
sents the number of negative classes predicted to be posi-
tive. The experiments also adopt ten-fold cross validation, 
using 90% data as training data and 10% data as test data. 
The experimental results of CIRNN and shallow machine-
learning models are shown in Fig. 4.

It can be seen from Fig. 4 that CIRNN reaches above 95% 
on both the four evaluation indicators; obviously, it is higher 
than other models, which proves CIRNN is superior to the 
shallow machine-learning models. Experimental results 
show that CIRNN performs better than shallow machine 
learning in the classification of miRNA–lncRNA interaction.

3.2  Comparison with Other Deep‑Learning Models

In addition to comparisons with shallow machine-learning 
models, CIRNN is also compared with other deep-learning 

(5)ACC =
TP

TN + FP + TP + FN

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F1_score =
2TP

2TP + FP + FN
,

Table 3  Feature information

Feature category Feature name Number

Primary structural feature 1-mer 4
2-mer 16
3-mer 64
First gap feature 64
Second gap feature 256

Secondary structural feature E1 1
E2 1
DM 1
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models, such as CNN, LSTM, CNN + LSTM, and IndRNN. 
We divide the Zea mays data set to 6 groups, and the maxi-
mum sequence length of each group, respectively, is 500 
nt, 1000 nt, 1500 nt, 2000 nt, 2500 nt, and 3000 nt. Data 
distribution is shown in Fig. 5. 6 groups of data are put 
into each model for training and testing, and ten-fold cross 
validation is adopted; ACC is used as the evaluation indi-
cator. The classification results are shown in Table 4. 

We can see from Table 4, with the increase of sequence 
length, the accuracy of LSTM decreases significantly, and 
the accuracy of CNN + LSTM also decreases slightly. Only 
the accuracy of CIRNN and CNN remain unchanged, but 
the accuracy of CIRNN is significantly higher than CNN. 
The results show that CIRNN has a better performance in 
the accuracy of miRNA–lncRNA interaction than other deep 
learning models, especially when the sequence length is rel-
atively long, the model shows good performance.

To further verify the performance of the model, we also 
compare the loss convergence rate of each model when the 
sequence length is 3000 nt. Figure 6 shows the comparison 
of the loss convergence rate in 25 iterations. We can see that 
CIRNN is superior to existing deep-learning models in both 
the convergence rate and the degree of convergence.

Fig. 4  Performance of CIRNN compared with shallow machine-
learning models

Fig. 5  Data distribution

Table 4  Accuracy of CIRNN 
compared with existing deep-
learning models (%)

Model Length of sequence

500 nt 1000 nt 1500 nt 2000 nt 2500 nt 3000 nt

CIRNN 96.08 95.33 95.85 96.21 95.60 96.45
CNN 94.37 93.53 93.82 94.36 93.24 94.18
LSTM 82.60 78.38 75.85 72.71 70.26 66.43
CNN + LSTM 96.23 94.87 95.21 94.35 94.86 94.36
IndRNN 75.47 75.82 75.39 75.45 75.28 75.36

Fig. 6  Loss ratio of different models

Table 5  Details of miRNA–lncRNA interaction data sets

Species Positive set Negative set

Arabidopsis Iyrata 9027 9027
Glycine max 30,980 30,980
Sorghum bicolor 18,248 18,248
Solanum tuberosum 17,657 17,657
Setaria italica 7827 7827
Brachypodium distachyon 18,254 18,254
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To verify the generalization ability of CIRNN, experi-
ments are carried out on other several plants, including 
Arabidopsis Iyrata, Glycine Max, Setaria italica, Sorghum 
bicolor, Solanum tuberosum, and Brachypodium distachyon. 
miRNA and lncRNA data sets of these species are collected, 
in which miRNA is from PNRD database and lncRNA is 
from GreeNC database. The positive data set is obtained by 
psRNATarget software, and the negative data set is obtained 
by randomly binding miRNA with lncRNA without involv-
ing in the interaction of miRNA and lncRNA, and the simi-
larity between the selected lncRNA and the positive set is 
greater than 70%. Samples with the same number of positive 
simples are randomly selected to form the final dat aset, 
which is put into the model for training and testing. Detailed 
information on experimental data sets and experimental 
results is shown in Tables 5 and 6.

As can be seen from Table 6, CIRNN has the highest 
accuracy. Its accuracy is better than other deep-learning 
models, indicating that the model has a good generalization 
ability and is suitable for most plants.

4  Conclusion

A deep-learning model CIRNN is proposed to predict the 
interaction between miRNA and lncRNA,based on the RNA 
sequence features of plant. The model can effectively solve 
the problems of gradient disappearance and explosion in the 
process of gradient propagation, and ensure the accuracy of 
classification. Moreover, the model is simple in structure, 
convenient to use and easy to expand. Meanwhile, CIRNN 
performs well in classification of the interactions between 
miRNA and lncRNA in plant. Compared with shallow 
machine-learning and other deep-learning models, the model 
has obvious advantages, that can be applied to other plants, 
and achieve good results. Meanwhile, the model has supe-
rior performance and good generalization ability, and can be 
widely used in the classification of plant miRNA–lncRNA 
interaction. To further explore the interaction mechanism 
of miRNA and lncRNA in plant, this research has laid the 
foundation. The accuracy of model classification can be 

further improved by adjusting the level of model structure 
and increasing the amount of data in the future.
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