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Abstract
Accounting for nine out of ten kidney cancers, kidney renal cell carcinoma (KIRC) is by far the most common type of kidney 
cancer. In view of limited and ineffective available therapies, understanding the genetic basis of disease becomes important 
for better diagnosis and treatment. The present studies are based on a single type of genomic data. These studies do not 
consider interactions between genomic data types and their underlying biological relationships in the disease. However, the 
current availability of multiple genomic data and the possibility of combining it have facilitated a better understanding 
of the cancer’s characterization. But high dimensionality and the existence of complex interactions (within and between 
genomic data types) are the two main challenges of integrative methods to analyze cancer effectively. In this paper, we 
propose a method to build an integrative model based on Bayesian model averaging procedure for improved prediction of 
clinical outcome in cancer survival. The proposed method initially uses dimensionality reduction techniques to generate 
low-dimensional latent features for the predictive models and then incorporates interactions between them. It defines the 
latent features using principal components and their sparse version. It compares the predictive performance of models based 
on these two latent features on real data. These models also validate several ccRCC-specific cancer biomarkers previously 
reported in the literature. Applied on kidney renal cell carcinoma (KIRC) dataset of The Cancer Genome Atlas (TCGA), 
the method achieves better prediction with sparse principal components model by including latent feature interactions as 
compared to without including them.
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1  Introduction

Kidney cancer or renal cell carcinoma (RCC) has been 
ranked as the seventh leading cancer type among men in 
western communities. The incidence of RCC steadily rises 
by 2–4% each year [1]. RCC is a collection of various his-
tological subtypes such as clear cell renal cell carcinomas 
(ccRCC), papillary renal cell carcinomas (pRCC), and chro-
mophobe renal cell carcinomas (crRCC). Among them, 
ccRCC is the most common (70–85%) and lethal subtype 
[1]. Surgical and targeted therapies exist to treat the kid-
ney cancer and they are also successful in improving the 
patient’s overall survival [2]. But most patients ultimately 
grow resistance toward these treatments and surrender to 
the disease.

Besides multiple discussions on cancer evolution and pro-
gression by various studies [3], cancer at its core is charac-
terized by somatic copy number alterations and unique gene 
expression profiles. Therefore, there is a need to thoroughly 
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understand the ccRCC disease for building reliable prog-
nostic and therapeutic strategies by incorporating genomic 
data. Earlier research based on a single type of genomic data 
has reported a number of molecular alterations in ccRCC at 
the mRNA, miRNA, and DNA (copy number alterations) 
level. Most of the ccRCC cases have shown alterations in the 
short arm of chromosome 3 and 30–56% have the VHL (Von 
Hippel-Lindau) gene mutated [4]. However, these studies 
have not produced sufficient results as they lack in explor-
ing the complex mechanism of multiple genomic processes 
in human diseases. Now, with emerging technologies for 
genome profiling, multiple genomic data types are available 
and analytic methods for integrating these data types provide 
a better understanding of cancer evolution and progression. 
This results in identification of targets and clinical predic-
tion of cancer by incorporating the necessary interactions 
between the data types. Many recent studies have shown 
benefits of the integrated approach in ccRCC [5–10].

However, these analytical methods for multiple data types 
are facing two challenges: high dimensionality of data and 
the presence of complex correlations and interactions both 
within and between platform-specific features [11]. The 
proposed method is driven by the dataset from TCGA (The 
Cancer Genome Atlas) Pan-Cancer Survival Prediction 
Challenge project that contains different molecular types 
of KIRC (kidney renal cell carcinoma). In the proposed 
method, principal component analysis and its sparse version 
are the machine learning approaches used to overcome the 
first challenge of high dimensionality. The second challenge 
is handled through modeling the interactions by taking the 
product of principal component score vectors [12]. Addition-
ally, it also finds important genomic variables that are linked 
to ccRCC progression.

To the best of our knowledge, very few studies of inte-
grative analysis for ccRCC are available [5–10] and none 
of them have incorporated multi-level interaction effects, 
within and between the molecular data types when fitting the 
integrative model for RCC. So the proposed work contrib-
utes significantly in ccRCC research by providing a unique 
methodology that contains data type interaction effects at 
different levels. The method achieves better prediction with 
sparse principal components model by including latent fea-
ture interactions as compared to without including them.

2 � Related Work

Earlier research on various types of cancer such as gene 
expression profiles in breast cancer [13], miRNA in lung 
cancer [14], copy number alterations in ovarian cancer [15], 
etc., was mainly focussed on single type of genomic data 
to derive biomarkers of prognostic significance or improve 
the clinical outcome of cancer. Although these studies 

helped in important discoveries, they were limited to one 
type of molecular data. However, a thorough and compre-
hensive understanding of cancer development and its bio-
logical mechanism requires the examination of the interplay 
between different layers of genomic data. This has motivated 
current research to integrate diverse types of genomic data. 
These studies have revealed many benefits of the integrated 
approach in different cancers [16, 17]. With the similar 
focus, various integrative studies in KIRC were conducted.

Dondeti et al. [5] identified potentially important targets 
in ccRCC by combining copy number and gene expres-
sion data. Two important chromosome 5q oncogenes are 
discovered whose overexpression play a sufficient role in 
promoting tumorigenesis in ccRCC. An integrated molecular 
analysis of ccRCC by Sato et al. [6] identified new mutated 
genes and pathways that are involved in the pathogenesis of 
ccRCC. Gene expression, DNA methylation, and copy num-
ber data for more than 100 ccRCC samples were analyzed 
using different sequencing techniques.

Multiple datasets of miRNA expression related to ccRCC 
were incorporated into an integrative framework by Chen 
et al. [7]. The study discovered 14 unique molecular path-
ways that have an important role in the production of ccRCC 
tumor. Integrative analysis for analyzing mRNA and miRNA 
interactions together was performed to build a predictive 
model for survival outcome by Chekouo et al. [8]. The 
Bayesian model proposed by them also identifies cancer 
biomarkers specific to KIRC progression.

A study by Butz et al. [9] integrated mRNA, microRNA, 
and protein expression data of ccRCC using pathway analy-
sis. They identified three new potential biomarkers that are 
linked to kidney cancer. Similarly, the work by Bluyssen 
et al. [10] reviews the recent findings in the integrative stud-
ies of ccRCC. It discusses how significant technological 
advances led to the availability of different genomic data and 
helped in understanding the complex pathology of ccRCC 
and its molecular mechanism.

3 � Dataset

In this study, the proposed method is tested using KIRC data-
set [18] from TCGA Pan-Cancer Survival Prediction Chal-
lenge project [19]. The project home page can be accessed 
on Synapse (http://dx.doi.org/10.7303/syn17​10282​). The 
data available for each cancer type on the website contain 
core sample sets, comprising overall survival time, different 
types of molecular data, etc. The core tumor sample set is 
used in this study. The core data contain the survival time, 
gene expressions, micro-RNA expressions, and copy num-
ber alterations for tumor samples of patients diagnosed with 
KIRC. Survival data contain entries about overall survival 

http://dx.doi.org/10.7303/syn1710282
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time (to death) for each patient in days. Three genomic data 
types used in the study are as follows:

1.	 mRNA Expression: Messenger RNA or mRNA is the key 
molecule to enable gene expression for the production of 
proteins. For sequencing mRNA data, RNA sequencing 
(RNA-Seq) is used. Illumina HiSeq 2000 is the instru-
ment used in RNA sequencing of the data used in this 
study.

2.	 microRNA (miRNA) Expression: miRNAs constitute a 
recently discovered class of short non-coding RNAs of 
around 22 nucleotides that have crucial roles in regu-
lating the gene expression [20]. microRNA sequencing 
(miRNA-Seq) is used for sequencing miRNA data. It 
is a type of RNA-Seq, which is also known as small 
RNA sequencing as it constitutes small RNAs. Illu-
mina Genome Analyzer/HiSeq 2000 is used as a tool or 
platform for performing small RNA sequencing for the 
miRNA data used in this study.

3.	 Somatic CNAs (Copy Number Alterations): Also referred 
as CNV (copy number variation), somatic CNA is a phe-
nomenon in which parts of the genes are duplicated or 
deleted. An SNP array is a type of DNA microarray that 
is used to detect mutations in the genomic sequence. 
Chip-based methods for SNP arrays such as compara-
tive genomic hybridization can detect genomic altera-
tions leading to the loss of heterozygosity (LOH). Such 
a chip-based method or platform by Affymetrix, known 
as the Genome-Wide Human SNP Array 6.0 is used in 
this study for the detection of copy number variations.

The four types of data (three genomic types and survival 
time) were taken for 243 patients. Initially, predictors/fea-
tures with zero variance from the three genomic data types 
were eliminated, leaving 795 features in miRNA, 20,203 
in mRNA, and 69 alterations in sCNA. The dataset is sum-
marized in Table 1.

4 � Proposed Method

The proposed method initially analyzes data that are 
obtained from different data types by reducing the dimen-
sionality using dimension reduction techniques. The 
resulting data are then integrated into a single statistical 

model by incorporating between and within interactions 
among data types, to predict clinical outcome and identify 
the clinically relevant genes. The diagram representing the 
proposed method is shown in Fig. 1.

Let X1,…, XK be the n × l1,…, n × lK matrices and Y be 
the n × 1 vector. These matrices represent the values of K 
groups (genomic data types) used in the present model 
with l1,…, lK genomic features along with the responses 
(clinical outcomes) vector taken from a random sample of 
n observations. The aim of the function is to predict the 
values in Y from the K groups of features and the interac-
tions among them.

A conceptual model integrating the interactions within 
and between the groups of features can be written as

where “A × B” is a matrix in which the ith row value cor-
responds to the Cartesian product of the values of the ith 
rows of A and B (i.e., the values of the interaction terms for 
observation i), and “A × A” is a matrix in which the ith row 
value corresponds to all pairwise products of the values in 
the ith row of A (so that there are no second-order terms in 
the model), for i = 1,…,n [11]. Here, consider {t(.), s(.)} be 
two functions of a data matrix X, which are defined below, 
and e is an n × 1 vector of error terms. The model terms are 
as follows:

•	 Term (1) denotes data type-specific effects modeled as 
main effects for each data type.

•	 Term (2) denotes within data type interaction effects and 
it represents interactions among the features from the 
similar data type.

•	 Term (3) denotes between data type interaction effects 
and it represents interactions among the features from 
the different data types.

Now, to fit the above model, one needs to define the 
functions s(.) and t(.). The function tk(Xk) can be defined 

(1)Y = t1
(

X1

)

+ t2
(

X2

)

+⋯ + tk
(

Xk

)

(2)+ s11
(

X1 × X1

)

+ s22
(

X2 × X2

)

+⋯ + sKK
(

XK × XK

)

(3)
+s12

(

X1 × X2

)

+ s13
(

X1 × X3

)

+⋯ + s(K−1)K
(

XK−1 × XK

)

+ e,

Table 1   Dataset used in the study

The first row displays the molecular type and the second row displays the platform along with the number of expressions in the data

mRNA miRNA Somatic CNA

Illumina HiSeq 2000 RNA sequencing 
V2, > 20,000 genes

Illumina Genome HiSeq 2000 miRNA 
sequencing platform, > 700 microRNAs

Affymetrix Genome-wide human SNP Array 
6.0, ~ 80 arm or focal alterations
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as a linear function Xkαk, i.e., tk(Xk) = Xkαk. The function 
skp(Xk × Xp) can be defined as a linear function (Xk × Xp)δkp, i.e., 
skp(Xk × Xp) = (Xk × Xp)δkp, where δkp is a vector of parameters 
having the identical length as (Xk × Xp) and αk is lK × 1, for k, p ∈ 
{1,…, K}. With these definitions, the model can be written as,

where Xkj is the jth column of Xk, �o the intercept, �kjthe 
member of αk, and �kji and �kpji are members of δkp for k, 
p ∈ {1, …, K} [11]. Now if there are l̄ = l1 + l2 +⋯ + lk , 
then Eq.  (4) will have l̄ + l̄

(

l̄ − 1
)

∕2 values, which will 
even surpass the total observations n. In such a scenario, 
taking higher-order interactions will further increase the 
number of values polynomially, which may result in unsta-
ble model fitting. The KIRC dataset has data for n = 243 
patients with l̄ = 21,607 predictors, that leads to (21,607)
(21,606)/2 = 233,420,421 possible two-way interactions!

To simplify this, the dimensionality of input is reduced that 
will cover the maximum information in the data with lesser 
dimensions. If R is the dimension reduction technique that 
projects the higher dimensional features of data matrix Xk for 
k = 1,…, K into lower dimensional latent features matrix Hk 
(n × hk) containing latent feature scores, such that hk is less 
than lk, then R can be defined as follows:

(4)

Y = 𝛼o +
∑

k

lk
∑

j=1

𝛼kjXkj +

∑

k

∑

0<i<j≤lk

𝛾kjiXkjXki

+

∑

k>p

lk
∑

j=1

lp
∑

i=1

𝜂kpjiXkjXpi + e,

R
(

Xk1,… ,Xklk

)

≡

{

Hk1,… ,Hkhk

}

using R , the new feature set is hk which is of far lower 
dimensions (tens) than lk (thousands). Therefore, the model 
equation can be rewritten with new functions constituting 
lower dimensional latent feature scores and their interac-
tions, such as t̄k(Hk) = Hkαk and s̄kp(Hk × Hp) = (Hk × Hp)δkp, 
for k, p ∈ {1,…,K}.

With these definitions, the model can be rewritten as,

where Hkj is the jth column of Hk, 𝛼̄o the intercept, 𝛼̄kj the 
main effect of the jth latent feature of the kth variable group, 
𝛾̄kji the interaction effect between the ith and the jth latent 
feature from the kth variable group, and 𝜂̄kpji is the interac-
tion effect between the jth latent feature from the kth variable 
group and the ith latent feature for the pth variable group, 
for k, p ∈ {1, …, K} [11].

Therefore, for the fitting model (5), a dimensionality 
reduction approach R is needed which can be applied on 
each given data matrix Xk of actual features, resulting in 
an n × hk matrix Hk such that hk ≤ lk for k = 1,…, K and 
h̄ + h̄

(

h̄ − 1
)

∕2 is less than n . Therefore, H1,…, Hk will 
constitute of h1,…, hk latent scores for n units. If we com-
pare the number of predictors and their interactions in this 
model from the model (4), there is a substantial reduction 
in the number of main effects and interaction effects, e.g., 
if h1 = 6, h2 = 5, h3 = 6, then model (5) would contain 17 
main effects and 17(16)/2 = 136 interaction effects and 

(5)

Y = 𝛼̄o +
∑

k

lk
∑

j=1

𝛼̄kjHkj +

∑

k

∑

0<i<j≤lk

𝛾̄kjiHkjHki

+

∑

k>p

lk
∑

j=1

lp
∑

i=1

𝜂̄kpjiHkjHpi + ē,

(n x l1)

(n x l2)

(n x l3)

(n x m1)

(n x m2)

(n x m3)

(n x 1)

High
dimensional data

types

Data type 1:
mRNA

Data type 2:
miRNA

Data type 3:
sCNA

Apply Dimensionality
Reduction Techniques:

1. Principal
component
analysis

2. Sparse principal
component

Low
dimensional data

types

D1: mRNA

D2: miRNA

D3: sCNA

1. Perform model
fitting using
Bayesian Model
Averaging.

2. Perform
predictive
analysis and
variable
selection.

Clinical
Outcome

f (D1, D2, D3)

Selected
variables

Input Output

Fig. 1   High-dimensional data predictors from multiple genomic data 
like copy number and gene expression are converted into low-dimen-
sional data predictors using dimensionality reduction techniques. 
Subsequently, within and between interactions of obtained predictors 

are used to perform predictive analysis using BMA for the required 
clinical outcome like survival time, and then variable selection proce-
dure is performed
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overall 153 effects. This makes the model more scalable, 
interaction preserving and it also maintains the predictive 
accuracy.

Fitting the Model: After applying the above dimension 
reduction approach that maps the actual feature space from 
X to H space containing latent scores, next step is to perform 
model fitting (B) and variable selection procedure to evalu-
ate the parameters in (5).

4.1 � Dimensionality Reduction Techniques

For performing the function R in this work, principal com-
ponent analysis (PCA) technique and its sparse version are 
used. PCA is a technique used to transform variables from 
higher dimensional space into lower dimensional space, 
where transformed variables are a linear combination of 
original variables. These new set of transformed variables is 
called principal components. In this case, new features will 
be of the form, Hkj = �kj1Xk1 +⋯ + �kjlkXklk

 for j = 1,…,hk, 
which also helps in finding the dependencies in terms of the 
original features. Therefore, each principal component is a 
weighted average of all variables (e.g., genes) with a weight 
(called loading coefficient) assigned to each variable. The 
sparse version will take the loadings of variables that are 
ineffective in PCA as zero, which in turn helps in the vari-
able selection process.

Various papers [21–25] demonstrate the use of dimen-
sionality reduction techniques in case of datasets with large 
number of dimensions or features to reduce the number of 
computations and simplify the handling of data. One such 
technique is PCA, which is quite commonly used for dimen-
sionality reduction in bioinformatics [12], and it can be 
implemented using singular value decomposition on matrix 
Xk for k = 1,…,K, where hk is the rank of the decomposition. 
It results in orthogonal components that are non-collinear 
and capture most of the information of original dataset. 
These principal components are ordered as per the maximum 
possible variance of the component, with the first having the 
maximum possible variance and so on. Different methods 
are available to specify the number of principal components 
to be retained [26]. In this work, we have used the method 
of “scree plot test”. The expected pattern in a scree plot 
includes a steep curve which is followed by a bend and ends 
with a horizontal line. Those components (or factors) are 
retained in the steep curve, which are before the first point 
that starts the flat line trend. The sparse version of PCA has 
indicated various advantages over traditional PCA in cancer 
research [27].

4.2 � Model Fitting Using Bayesian Model Averaging

Here, the model Eq. (5) will be fitted with the obtained latent 
feature scores from the dimensionality reduction technique. 
Bayesian model averaging (BMA) procedure is selected as 
(B) to be used for the fitting model (5) on latent features. The 
typical model selection includes selecting a model from a 
class of models, and then continues as if the selected model 
had generated the data. But this leads to overconfident deci-
sions and inferences. Compared to these regular modeling 
methods which overlook model uncertainty, BMA considers 
uncertainty and makes inferences by averaging over the pos-
terior distributions of a range of possible models, weighted 
by their posterior model probabilities. This helps in selecting 
the most appropriate model for a given outcome variable as 
it has been shown that BMA gives a better predictive per-
formance for new observations than fitting a single assumed 
to be the best model [28].

The BMA algorithm assigns a posterior probability to 
each model and for each variable included in a given model, 
the probability that the coefficient (or parameter value) for a 
given variable is non-zero is returned. Therefore, either the 
model with the highest posterior probability can be selected 
or a model that contains every variable for which the prob-
ability that the coefficient is non-zero is above some thresh-
old can be selected. In this work, the model with the highest 
posterior probability is selected.

4.3 � Selection of Significant Variables

Having obtained the model equation, the significant varia-
bles are selected from it. A list of significant variables is as 
follows. Dimensionality reduction technique R applied on 
Xk for each k = 1,…,K data type, generates a set of hk latent 
feature score vectors making Hk matrices, which are linear 
combinations of the original column vectors Xk1,… ,Xklk

 
such that Hkj = �kj1Xk1 +⋯ + �kjlkXklk

 for j = 1,…,hk. 
Depending on the contribution of variables in the linear 
combination, R assigns higher or lower loading to that vari-
able. The model selection process B results in a set of indi-
ces L ⊂

{

(k, j) ∶ j = 1,… , hk, k = 1,… ,K
}

 such that the set 
of latent features ℕ ≡

{

Hkj ∶ (k, j) ∈ L
}

 is preserved in the 
model, where values of ℕ can occur either as main effects or 
as part of an interaction. Now, the variables Xk1,… ,Xklk

 are 
ordered as per their contributions. The maximum magnitude 
of the loadings that are assigned to each variable across all 
the latent features from group k retained by B is taken as a 
contribution.

Consider 
{

x2
k1
,… , x2

klk

}

 be the vector of maximum loading 
magnitudes arranged in non-increasing order. Now square all 
the components individually and divide each of them by the 
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sum of these squared components resulting in 
ykj = x2

kj
∕
(

x2
k1
,+⋯+, x2

klk

)

 for j = 1,… , lk . Next, consider 

the variables associated with 
(

x2
k1
,… , x2

klz

)

 to be significant if 

z = min
{

g ∶ yk1 +⋯ + ykz > ℸ

}

, for some threshold 
ℸ ∈ (0, 1) . If ℸ = 0.8 , the procedure will select variables with 
squared maximum loading magnitude that constitutes mini-
mum of 80% of the sum of squared maximum loading magni-
tudes for the variables in that group.

5 � Results and Discussion

The present study is motivated by the challenges associated 
with analyzing the multi-genomic dataset for KIRC, available 
from TCGA Pan-Cancer Survival Prediction Challenge pro-
ject. The focus of this study is on integrating gene expression 
and copy number data from the KIRC study. In this study, 
the outcome of interest is overall survival time acquired from 
n = 243 patient samples, where survival time is the time from 
initial diagnosis to death. The objective is to integrate the data 
from three genomic data types, such as mRNA, miRNA, and 
sCNA to predict the patient’s (log-transformed) survival time 
and to identify genes of biological significance in KIRC.

After removal of zero variance features, along with the 
survival time, the input data consists of feature matrices for 
three genomic data types as follows: lcnv = 69, lmiRNA = 795, 
and lmRNA = 20,203, summing up to l̄ = 21,607 features. On 
application of principal components (PC) and sparse principal 
components (SPC) on these matrices, each technique selected 
to keep five sCNA features, six mRNA features, and five 
miRNA latent features, i.e., hcnv = 5, hmRNA = 6, and hmiRNA = 5. 
Subsequently, these latent features and their interactions are 
used for fitting the model, wherein the best model is selected 
using the Bayesian model averaging procedure. The fitted lin-
ear regression model [29] is then used to predict the response 
variable, i.e., survival time for both with and without interac-
tion effects. Thereafter, statistical results for linear regression 
model are calculated. To choose the best predictive model for 
latent features with and without the inclusion of interactions, 
a tenfold cross-validation procedure is used. The procedure 
splits the data into ten equal-sized parts (folds). Then one part 
is retained for predicting the response time and remaining nine 
parts are used for model fitting. This is repeated ten times for 
each part of the data and the resulting mean squared error 
of prediction (MSEP) is computed by taking an average of 
mean squared errors over all the parts. Further an alternative 

method is taken to test the prediction accuracy of the models. 
Here, an independent dataset test is performed where the data 
to be tested are never exposed during the model development 
process. The dataset is split according to 80/20 rule, i.e., 80% 
of dataset form the training set and 20% form the test set. The 
obtained models from BMA (with and without interactions) 
are first trained and then tested using the corresponding split 
datasets. Subsequently, the mean square error (MSE) is calcu-
lated for measuring the prediction error in the models.

Now, to perform the significant variable selection from the 
latent features that remain in the model, a threshold of eight 
is set, such that the energy retained is 80%. Finally, a list of 
genes obtained from the individual models for PC and SPC 
with the inclusion of interactions is prepared to check their 
biological roles.

Implementation of this work is performed in R language. 
PCA technique is implemented using the singular value 
decomposition (SVD) algorithm of the standard R package. 
SPC is implemented using the R language package ‘PMA’ 
[30], which executes the algorithm described in Witten et al. 
[30]. BMA is implemented using the R language package 
BMA [31].

5.1 � Experimental Results

The Bayesian model averaging procedure selected regression 
with high posterior probability, which resulted in the selection 

Table 2   Selected models by principal components and sparse principal components

Principal components (PC) ŷ = 6.25 + 0.0028CNV
3
mRNA

3

Sparse principal components (SPC) ŷ = 6.36 − 73.90 CNV
5
mRNA

6
+ 62.96 CNV

2
miRNA

2

Table 3   Linear regression statistics obtained from principal compo-
nents and sparse principal components

Bold values are used to indicate better model fitting in SPC model 
than PC model

Regression statistics

Principal components (PC)
 Multiple R 0.185772
 R2 0.034511
 Adjusted R2 0.030505
 Standard error 1.452905
 Observations 243

Sparse principal components (SPC)
 Multiple R 0.255895
 R2 0.065482
 Adjusted R2 0.057695
 Standard error 1.432388
 Observations 243
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of CNV and mRNA interaction as the variable in case of PC. 
In the case of SPC, CNV miRNA interaction and CNV mRNA 
interaction as the variables were selected. These equations are 
given in Table 2.

It can be observed that the model obtained from PC is a 
linear regression model with only one input variable whereas 
model from SPC is a multiple linear regression model with two 
input variables, one negatively correlated and one positively 
correlated. The linear regression statistics obtained for these 
two models are displayed in Table 3. Table 3 indicates that the 
standard residual error in PC model is somewhat higher than 

SPC model. Latent variables selected are also different in both 
cases. Moreover, higher adjusted R2, multiple R, and R2 values 
in SPC than in PC show a better model fitting in SPC.

Low R2 values found in both the models indicate the inher-
ent greater amount of unexplainable variation. Still the conclu-
sion can be drawn that when multiple variables are included 
for a regression model, latent features with interactions have 
a reliable and statistically significant role in the models and, 
therefore, leads to better predictive and variable selection 
results. Additionally, Akaike Information Criterion (AIC) 
is used to compare both the models. AIC considers both the 

Fig. 2   a and b: Variables with 
continuous horizontal bands 
are selected for our models as 
these are included regularly 
in BMA exploration models, 
sorted in non-increasing order 
from left to right as per their 
posterior probabilities. Numbers 
following data type names 
(CN copy number, mR mRNA, 
miR = miRNA) list the latent 
features with interaction effects 
for principal components (PC) 
and sparse principal compo-
nents (SPC)
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fitness of the model and the number of parameters used. We 
obtained AIC values 854 and 860 for SPC and PC models, 
respectively. A lower AIC value in case of SPC model that 
contains more parameters indicates a better fit.

The high probability fitted model and corresponding 
variable(s) selected by BMA for PC and SPC-based latent 
features are shown in Fig. 2. Each square displays a matrix, 
in which a variable is denoted by each row, and selected 
model in the BMA exploration is denoted by each column. 
The selected models are sorted in non-increasing order from 
left to right as per their posterior probabilities. The rectangle 
in the matrix is red if the variable is present in the model 

and white otherwise. The model’s posterior probability is 
relative to the thickness of each column. The plots make it 
easy to see the variables picked by the most probable models 
in BMA. The continuous horizontal bands show the con-
sistency and convergence of model selection, representing 
that a variable appears regularly in the BMA exploration. 
It can be seen in Fig. 2 that under PC decomposition, only 
one interaction between CNV and mRNA represented by 
label CN.P3 × mR.P3 is selected and it is present consist-
ently in the selected models, signifying that it is selected 
as a result of convergence. However, for SPC decomposi-
tion, two interactions, one between CNV and mRNA, and 
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one between CNV and miRNA are selected, represented by 
labels CN.SP5 × mR.SP6 and CN.SP2 × miR.SP2, respec-
tively. It can be noted that the first interaction is negatively 
associated while second is positively associated with the 
outcomes, and both appear consistently in the selected mod-
els. If only mRNA and CNV data types would have been 
considered for regression, then we would have 20,203 + 69 

+ 20,272(20,271)/2 = 205,497,264 independent variables in 
the regression model, which is computationally impractical. 
This makes the proposed method advantageous and efficient 
to deal with interactions.

Figure 3 shows the boxplots indicating (with filled circles 
and in text) the MSEP achieved by tenfold cross validation, 
performed on PC and SPC models with and without the 
inclusion of interaction effects. It can be observed that in 
the case of PC model, when including the interaction terms 
MSEP was higher, as compared to PC model without inter-
action terms. However, MSEP is lower in the case of SPC 
model that includes interaction terms as compared to with-
out interaction terms.

In the case of train/test split, datasets are split as per 80/20 
rule. Out of total 243 observations, 194 were retained as 
training dataset and 49 as testing dataset. Table 4 shows the 
MSE values obtained from the PC and SPC models with and 
without interactions. Better fitting and prediction accuracy 
in PC models are observed.

Plots of variable selection procedure conducted for the 
SPC model are shown in Fig. 4a–d. It illustrates sorted 
loading magnitudes for the 69 copy number alterations, 
795 miRNA expression levels, and 20,203 mRNA expres-
sion levels, for the terms or components obtained from the 
selected linear model. Filled circles in blue correspond to 
the selected variables on the application of variable selection 
for each term at the threshold level of ℸ = 0.8, while black 
ones are not selected.

The list of all the selected features obtained from PC and 
SPC model and the model equations for these models with 
and without the inclusion of interaction effects can be found 
in Supplementary file 1.

5.2 � Biological Significance

From the variable selection process, a list of genes (for 
probes associated with expression and copy number) is pre-
pared together with miRNAs for the PC and SPC models. 
This list is used to find the genes of biological significance 
by referring the published work. A majority of the selected 
variables are found to be associated with the KIRC cancer.

Inactivation of the Von Hippel-Lindau (VHL) tumor 
suppressor gene has been found to be responsible for the 
majority of ccRCC cases [32] and the proposed method has 
identified VHLL (Von Hippel-Lindau Tumor Suppressor 
Like) gene from the PC model. Additionally, the proposed 
method has identified significantly mutated genes from the 
models that are associated with the pathogenesis of ccRCC. 
It is evident from the findings of genes such as BAP1, 
SETD2, TCEB1, TET2 in mRNA variable analysis, which 
are reported in [6] as significant mutations in ccRCC.

Further, various new genes such as ACHANK, CUL7, 
MLL2 that are reported in [10] that have played a potential 
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Fig. 3   Boxplots of mean squared error prediction resulted from ten-
fold cross validation for the proposed method in case of SPC- and 
PC-based dimensionality reduction models with and without the 
inclusion of latent feature interactions. Obtained MSEP is shown 
above each box

Table 4   MSE values achieved in case of 80/20 split test for PC and 
SPC based models with and without interactions

Model MSE value

PC model with interactions 49.80
SPC model with interactions 57.22
PC model without interactions 46.60
SPC model without interactions 51.72
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role in renal cell tumorigenesis, are identified by the mod-
els. The miRNAs variable selected by SPC model discov-
ered miR-21 and miR-10b, which are stated in [18] to have 
strong regulatory interactions with ccRCC. Alterations 
of chromosomal regions in ccRCC have resulted in new 
candidate tumor suppressor genes (TSGs) and oncogenes. 

The proposed model identified copy number alteration (or 
CNV) at 1q24.1 that is reported in [32] as a potential risk 
factor for RCC. Other significant regions that were stated 
for ccRCC in [18] are at 3p25.3, 6q26, 9p23 for oncogenes 
VHL, QKI, and PTPRD, respectively. Supplementary file 
2 lists all the significant markers based on the cited litera-
ture that are found from both the models.

Fig. 4   Plots of variable selec-
tion conducted for SPC model
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5.3 � Discussion

The present study is motivated by TCGA pan-cancer sur-
vival prediction project [19] that provides open access to 
well curated, computable datasets to analyze TCGA data 
for improving prognostic models. Unlike other such com-
munity-based project [33] that mainly deals with a specific 
type of cancer and data, the above project is chosen as it 
includes different types of cancer and their molecular data 
types from TCGA.

We have proposed a method for integrative analysis 
of different genomic data types available for KIRC data-
set from the Pan-Cancer Survival Prediction project. The 
method incorporates interactions within and between these 
data types to build the model that predicts survival time 
of patients and identify significant tumor biomarkers. The 
model has the ability to simultaneously model all type of 
relations in the data in a single model and may be used for 
clinical diagnosis in future with further improvement in 
accuracy.

For a fair comparison with a work which employs similar 
predictive evaluation metric to measure the performance of 
linear regression-based survival model, we used the latent 
feature decomposition (LFD) study [11] applied on glioblas-
toma multiforme (GBM) dataset.

The LFD study integrated the data from four genomic 
platforms—mRNA, miRNA, DNA methylation, and CNV. 
It used several dimensionality reduction techniques to build 
the survival model and reported principal components and 
sparse principal components techniques to achieve the best 
results.

In case of both PC and SPC-based model in LFD, 
obtained mean squared error of prediction with interactions 
is 1.20. This seems to suggest that model fitting is better in 
LFD than the model used in this study. However, the pro-
posed model brings new insights with reliable accuracy and 
variable selection into the integrative study based on KIRC.

Some of the limitations in the integrative study involve 
time intensive calculations for large-scale datasets while 
modeling interactions. Therefore, above discussion suggests 
that there is a plenty of room for methodological improve-
ments in the study by incorporating more data types, other 
dimensionality reduction techniques and/or model selection 
criteria.

6 � Conclusion and Future Work

In this paper, high-dimensional genomic (sCNAs) and 
transcriptomic (mRNA and miRNA)  data from TCGA 
KIRC dataset are integrated, to predict survivals and iden-
tify significant genes whose expression levels affect the 

clinical outcome. Incorporating interactions among different 
genomic data types and using the dimensionality reduction 
techniques helps not only to reduce the large computations 
but also leads to an effective way of making predictions and 
identifying significant variables from the original featured 
dataset. The proposed method used two-dimension reduction 
techniques, PCA and SPCA to generate the latent features 
that were used to build the predictive models and carry out 
the variable selection. Among the methods, SPCA with a 
lower MSEP of 2.07 than MSEP of 2.11 with PCA performs 
better for the prediction on including interactions. However, 
both the models help in achieving improved and convenient 
model fitting in the BMA procedure with lesser computa-
tions and also included interaction effects for identifying 
potential markers in the integrative study of KIRC dataset. 
As future work, the proposed method can be extended to 
include more biological data types like DNA methyla-
tion and their interactions that may improve the predictive 
power of the model. In addition, we are planning to use other 
dimensionality reduction techniques that may lower the pre-
diction error and lead to more sophisticated modeling for the 
proposed method.
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