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Abstract
Nonparametric estimation of cumulative distribution function and probability density function of continuous random vari-
ables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density 
estimation have been presented, it is still quite a challenging problem to be addressed to researchers. In this paper, we pro-
posed a new method of spline regression, in which the spline function could consist of totally different types of functions 
for each segment with the result of Monte Carlo simulation. Based on the new spline regression, a new method to estimate 
the distribution and density function was provided, which showed significant advantages over the existing methods in the 
numerical experiments. Finally, the density function estimation of high dimensional random variables was discussed. It has 
shown the potential to apply the method in classification and regression models.

Keywords  Distribution function estimation · Density function estimation · Spline regression · Smoothing spline · Bayesian 
classification · Maximum likelihood regression

1  Introduction

Estimation of cumulative distribution function (CDF) and 
probability density function (PDF) to random variables is a 
classical and basic problem in statistics, which is essential 
to describe some random phenomena and has significant 
application in signal processing [1], pattern recognition [2], 
machine learning [3] and so on. With the known distribution 
of the continuous random variable, such as Gaussian, Ray-
leigh, log-normal or exponential distribution, CDF and PDF 
can be estimated with the maximum likelihood estimation 

and Bayes estimation [4]. But nonparametric approach will 
be employed here if the distribution is not well assumed.

To estimate PDF more exactly in nonparametric approach 
is still a challenging problem to researchers. As the most 
widely used method, kernel density estimation is proposed 
by Rosenblatt [5] in 1956 and Parzen [6] in 1962. Many 
discussions have been performed to further implement such 
method via optimize the kernel function and bandwidth, 
e.g., based on the normal distribution, normal scale rules is 
proposed by Silverman [7] to determine the best bandwidth; 
Over smoothed bandwidth selection rules from Terrell [8] 
is more flexibility and larger application; Alexandre [9] pro-
vided iterative algorithm used when solve the equation and 
Plug-In estimator to give the best bandwidth corresponding 
to the least mean integrated square error. For the large sam-
ples with high complexity, fast Parzen density estimation 
by Jeon and Landgrebe [10], weighted Parzen window by 
Babich and Camps [11], optimally condensed data samples 
by Girolami and He [12], etc. are based on the subset of the 
large sample to reduce the running time without reduce the 
accuracy. What’s more, some other approaches have also 
been proposed to estimate PDF. Such as the sum of gamma 
densities [13] or a sum of exponential random variables [14] 
was used to substitute the kernel function to express the PDF 
in different fields, and orthogonal series [15], Haar’s series 
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[16], wavelets [17]. Recently, some methods based on char-
acteristic function [18, 19] were presented. However, all 
these methods are based on the series to express the PDF, in 
which the complexity of function would be increased with 
the sample size. And the accuracy of estimation was deter-
mined by the form of series, which meant one method was 
just suitable for some certain distributions. However, prior 
the process of estimation, there are little information avail-
able for us to the distribution, it will be very hard to have the 
proper series introduced in the estimation.

Spine functions have been widely applied in interpolation 
[20], smoothing of observed data [21], regression [22] and 
PDF estimation [23–25]. Inspired with the characteristics of 
spline function, which is a continuous function piecewise-
defined by polynomial functions and possesses a high degree 
of smoothness where the pieces connect, and to overcome 
such shortness, a new method to estimate CDF or PDF is 
introduced here in this paper. Spline Not as previous meth-
ods, in our proposed method of spline regression, the spline 
function was not always defined by polynomial functions or 
B-splines, but could be set freely and consisted of totally dif-
ferent types of functions in each segment. With the method 
here, a new method to estimate CDF and PDF was intro-
duced, which showed advantages in these aspects:

1.	 The PDF is expressed by piecewise functions instead of 
series. The estimated accuracy increases with the sample 
size, but the complexity of function does not increase.

2.	 The method is suitable for most types of continuous 
distributions, and the form of spline function and other 
parameters does not need to be updated unless the dis-
tribution is quite special.

3.	 The estimation is accurate for most types of distributions 
and is superior to kernel density estimation.

4.	 The PDF is always smooth and is not influenced by 
parameters.

5.	 The values of estimated CDF are less than 1, positive 
and monotone increasing. The values of estimated PDF 
are positive and the integration of PDF is about 1.

6.	 It is easy to find a subset from the large sample to reduce 
the running time and get similar accuracy simultane-
ously.

The paper is organized as below in the following sec-
tions, the new spline regression is introduced first, and 
then the application of proposed approach is described in 
the estimation of CDF and PDF. After that, comprehensive 
numerical experiments with Monte-Carlo simulation were 
made to illustrate the characteristic and advantage. At last, 
the PDF estimation of high dimensional random variables is 
discussed, and its potential application in classification and 
regression models is presented.

2 � Method

Let F(x) and f (x) denote the CDF and PDF of random vari-
able X, respectively, y(x) and y�(x) denote the estimated CDF 
and PDF, respectively.

With ascending sorted samples from random variable X,

the CDF of xi is F
(
xi
)
= P

(
X ≤ xi

)
≈ i∕(n + 1) , which 

means the probability of event 
{
X ≤ xi

}
 is almost to 

be i∕(n + 1) . If we let yi = i∕(n + 1) , the data points 
(xi, yi)i = 1⋯ n can be fitted with spline regression. Then 
the PDF of xi can be estimated with the one order deviation 
of y(x) , noted as y�(x) . Instead of spline interpolation, spline 
regression is used in the paper, which means that F

(
xi
)
 is 

not always equal to yi.
To avoid the large error, which is resulted from the pro-

cess of derivation, transformation of random variables is 
employed here in the paper.

2.1 � Spline Regression

Inspired with the characteristics of spline function, A new 
method of spline regression is introduced here, in which the 
spline function can be set freely and the basis functions may 
be totally different for each segment.

The spline function is defined as

There are u segments in this function. For each segment 
to the interval x ∈

[
si, si+1

]
, i = 1, 2,… , u , v basis functions 

�i1(x),… ,�iv(x) are set here, which are smooth for each seg-
ment and with nonzero derivate for each knot s2, s3,… , su for 
their any order derivative. With the request of smoothness 
to the spline function, the following constrained conditions 
are introduced here:

where �(k)

ij
(x) is the kth order derivative of �ij(x).

For these u ⋅ v parameters a11,… , auv in the spline func-
tion, (u − 1) ⋅ (v − 1) linear constrained equations should be 
met, which means that there are u + v − 1 free variables in 
total, noted as I1, I2,… , Iu+v−1 . As equation set here is homo-
geneous linear equations, based on the form of solutions, all 
aij can be rewrote as

x1, x2,… , xn, where x1 ≤ x2 ≤ ⋯ ≤ xn

(1)

y(x) =

v∑
j=1

aij�ij(x) with x ∈
[
si, si+1

]
, i = 1, 2,… , u.

(2)
⎧
⎪⎨⎪⎩

∑v

j=1
aij�ij

�
si+1

�
=
∑v

j=1
ai+1,j�i+1,j

�
si+1

�
i = 1,… , u − 1

∑v

j=1
aij�

(k)

ij

�
si+1

�
=
∑v

j=1
ai+1,j�

(k)

i+1,j

�
si+1

�
i = 1,… , u − 1k = 1,… , v − 2,

(3)aij =

u+v−1∑
k=1

bijkIk.
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The spline function will be available if we can get the 
values of all bijk and Ik , which will be basis to the value of aij.

(1)	 Values of bijk

After transposition of the constrained equation set, we 
can get

in which i = 1, 2,… , u − 1.
Take note that  if  we know the values of 

a11, a12,… , a1v, a21, a31,… , au1 , all aij will be derived 
accordingly with Eq.  (4), all these u + v − 1 variables 
a11, a12,… , a1v, a21, a31,… , au1 will be set as free variables.

If some Ik = 1 and all others are 0 for the equation 
aij =

∑u+v−1

k=1
bijkIk , aij = bijk . bijk is derived as below: let one 

of a11, a12,… , a1v, a21, a31,… , au1 be 1 and the others are 
0, substitute them into Eq. (4), we can get all other aij and 
all bijk.

(2)	 Values of Ik

For each xi ∈
[
sk, sk+1

]
,

Let

Substitute it into the above equation, and then y
(
xi
)
 can 

be represented as

(4)

⎛
⎜⎜⎜⎜⎝

�i+1,2

�
si+1

�
�i+1,3

�
si+1

�
⋯ �i+1,v

�
si+1

�
�

�

i+1,2

�
si+1

�
�

�

i+1,3

�
si+1

�
⋯ �

�

i+1,v

�
si+1

�
⋮ ⋮ ⋱ ⋮

�
(v−2)

i+1,2

�
si+1

�
�
(v−2)

i+1,3

�
si+1

�
⋯ �

(v−2)

i+1,v

�
si+1

�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ai+1,2
ai+1,3
⋮

ai+1,v

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

−�i+1,1

�
si+1

�
�i1

�
si+1

�
⋯ �iv

�
si+1

�
−�

�

i+1,1

�
si+1

�
�

�

i1

�
si+1

�
⋯ �

�

iv

�
si+1

�
⋮ ⋮ ⋱ ⋮

−�
(v−2)

i+1,1

�
si+1

�
�
(v−2)

i1

�
si+1

�
⋯ �

(v−2)

iv

�
si+1

�

⎞
⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝

ai+1,1
ai1
⋮

aiv

⎞⎟⎟⎟⎠
,

(5)

y
�
xi
�
=
�
ak1 ak2 ⋯ akv

�
⎛⎜⎜⎜⎜⎜⎝

�k1

�
xi
�

�k2

�
xi
�

⋮

�kv

�
xi
�

⎞⎟⎟⎟⎟⎟⎠

=
�

I1 I2 ⋯ Iu+v−1

�
⎛⎜⎜⎜⎜⎜⎝

bk11 bk21 ⋯ bkv1

bk12 bk22 ⋯ bkv2

⋮ ⋮ ⋱ ⋮

bk1,u+v−1 bk2,u+v−1 ⋯ bkv,u+v−1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

�k1

�
xi
�

�k2

�
xi
�

⋮

�kv

�
xi
�

⎞⎟⎟⎟⎟⎟⎠

.

Bim =

v∑
j=1

bkjm�kj

(
xi
)
.

(6)
y
(
xi
)
=

u+v−1∑
m=1

BimIm.

According to the constrained equations, the v − 2 order 
derivative of spline function is continuous, but the v − 1 
order derivative is not continuous. Nevertheless, it is hoped 
there is stronger smoothness for the spline function, with De 
Boor’s smoothing spline [26] and define as

Let

Then

We should minimize both the value of G and the sum of 
squared residues, so we define

where σ is a parameter called smooth factor that we should 
set.

Based on the least square method,

After transposition

Update that into matrix form, it can be rewrote to

where B =
(
Bim

)
n×(u+v−1)

 , A =
(
Aim

)
n×(u+v−1)

 , n is the sample 
size, σ is smooth factor, I =

(
I1 I2 ⋯ Iu+v−1

)T and 
Y =

(
y1 y2 ⋯ yn

)T.
The value of Ik can be derived with the following steps:

G =
1

n

n∑
i=1

[
y(v−1)

(
xi
)]2

=
1

n

n∑
i=1

[
v∑

j=1

aij�
(v−1)

ij

(
xi
)]2

.

Aim =

v∑
j=1

bkjm�
(v−1)

kj

(
xi
)
.

(7)G =
1

n

n∑
i=1

(
u+v−1∑
m=1

AimIm

)2

.

(8)

Q =

n∑
i=1

[
yi − y

(
xi
)]2

+ �G

=

n∑
i=1

(
yi −

u+v−1∑
m=1

BimIm

)2

+
�

n

n∑
i=1

(
u+v−1∑
m=1

AimIm

)2

,

�Q

�It
= −2

n∑
i=1

Bit

(
yi −

u+v−1∑
m=1

BimIm

)

+
2�

n

n∑
i=1

Ait

(
u+v−1∑
m=1

AimIm

)
= 0 t = 1,… , u + v − 1.

n∑
i=1

Bityi =

n∑
i=1

Bit

(
u+v−1∑
m=1

BimIm

)

+
�

n

n∑
i=1

Ait

(
u+v−1∑
m=1

AimIm

)
t = 1,… , u + v − 1.

(9)
(
BTB +

�

n
ATA

)
I = BTY ,
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1.	 For each xi, calculate the values of Bim =
∑v

j=1
bkjm�kj

�
xi
�
 

a n d  Aim =
∑v

j=1
bkjm�

(v−1)

kj

�
xi
�
, 

 i = 1,… , n m = 1,… , u + v − 1.

2.	 Set appropriate smooth factor σ and solute the equation (
BTB + �∕n ⋅ ATA

)
I = BTY  , values of I1, I2,… , Iu+v−1 

will be derived accordingly.
3.	 All parameters of the spline function can be derived with 

aij =
∑u+v−1

k=1
bijkIk.

Take note that we suppose all matrices above are full 
rank. If some matrix is not full rank, another group of basis 
functions or knots will be used.

2.2 � Transformation of Random Variable X

In the case of that some CDFs are not easily estimated with 
general spline function, such as, F(x) =

√
x, x ∈ [0, 1] , in 

which lim
x→0

f (x) = +∞ . CDF cannot be estimated with poly-
nomial spline function to fit the data. However, if we set 
x̂ = lnx , then F(x) = ex̂∕2, x̂ ∈ (0,+∞) , which is much easier 
to be estimated.

For random variable X, set X̂ = 𝜓(X) in which ψ is a 
monotone increasing and analytic function, and let F̂(x̂) and 
f̂ (x̂) are the distribution function and density function of X̂ , 
respectively.

Then

Using spline function to fit the data points 
(
x̂i, yi

)
i = 1… n 

in which x̂i = 𝜓
(
xi
)
 , we can get F̂(x̂) and f̂ (x̂) , and then we 

can get F(x) and f (x) based on the above equations.
In this paper, we transformed the random variables based 

on the following steps:
For ordered samples: x1, x2,… , xn

(
x1 ≤ x2 ≤ ⋯ ≤ xn

)
 , 

noted the the a quantile as xan.
Step 1:
If x0.02n−x1

x0.2n−x1
< 0.02 and xn−x0.98n

xn−x0.8n
≥ 0.02 , �1 = ln

(
x − x1

)
.

If x0.02n−x1
x0.2n−x1

≥ 0.02 and xn−x0.98n
xn−x0.8n

< 0.02 , �1 = −ln
(
xn − x

)
.

I f  x0.02n−x1

x0.2n−x1
≤ 0.02  a n d  xn−x0.98n

xn−x0.8n
≤ 0.02   , 

�1 = ln
(
x − x1

)
− ln

(
xn − x

)
.

And in else situation, we do not transform the random 
variable.

Step 2:
I f  x0.05n−x1

x0.5n−x0.05n
> 1  a n d  xn−x0.95n

x0.95n−x0.5n
> 1, 

�2 = ln

(
cx − cx0.5n +

√
1 +

(
cx − cx0.5n

)2)
.

F(x) = P(X ≤ x) = P
(
𝜓−1

(
X̂
) ≤ x

)

= P
(
X̂ ≤ 𝜓(x)

)
= P

(
X̂ ≤ x̂

)
= F̂(x̂)

(10)f (x) =
dF(x)

dx
=

dF̂(x̂)

dx̂
⋅
dx̂

dx
= f̂ (x̂)𝜓 �(x).

If x0.05n−x1

x0.5n−x0.05n
> 1 and xn−x0.95n

x0.95n−x0.5n
≤ 1, �2 = −ln

(
1 + cxn − cx

)
.

If x0.05n−x1

x0.5n−x0.05n
≤ 1 and xn−x0.95n

x0.95n−x0.5n
> 1, �2 = ln

(
1 + cx − cx1

)
.

Do the transformations again and again until x0.05n−x1

x0.5n−x0.05n
≤ 1 

and xn−x0.95n

x0.95n−x0.5n
≤ 1.

where c is the value that makes Q =
n∑
i=1

�
yi − y

�
xi
��2 get 

the minimum.
Step 3:
In all situations, do the transformation �3 =

5(x−x0.5n)
x0.95n−x0.05n

.
After the three steps, most distributions can be estimated 

by the spline function. Take note that these transformations 
focus on the discontinuity of the two ends, but if the discon-
tinuity is in the middle, we should separate the samples to 
several parts and take the spline regression for each part.

2.3 � Spline Function

To define the spline function, basis functions can be set as 
below:

With such predefined basis functions, segments from 
the middle are quartic spline function, but in the first and 
last segments, the special basis functions are employed to 
describe the asymptotic approximation of the distribution 
function.

The knots s2, s3,… , su are set as the 0.05, 0.23, 0.41, 0.59, 
0.77, 0.95 quantile of x1, x2,… , xn, respectively. If knot s is 
the a quantile of x1, x2,… , xn , then s = xk with k is as the 
approximate number of a ⋅ n . with such assumptions above, 
the first and last segment cover 5% of all sample and the 
other segments cover 18%, respectively.

Here, we assumed that u = 7 segments in all, and v = 5 
basis functions in each segment, it can easily be obtained 
that the third order derivative of these functions are still con-
tinuous. The value of u may be greater than 7 for the cases of 
that the distribution function is more complex or the sample 
size is very large, However, the complexity of function will 
not increase with the sample size when we take any other 
parameters, which is quite different from most methods.

As an important parameter, the smooth factor σ will influ-
ence the performance of estimation greatly. The proper value 
of σ to different distribution and different sample size will 
be discussed in the following sections.

�11(x) = e−x
2

,�12(x) = xe−x
2

,�13(x) = ex,�14(x) = 1,�15(x) = x,

(11)
�i1(x) = 1,�i2(x) = x,�i3(x) = x2,

�i4(x) = x3,�i5(x) = x4, i = 2,… , 6,

�71(x) = e−x
2

,�72(x) = xe−x
2

,�73(x) = e−x,�74(x) = 1,�75(x) = x.
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2.4 � Adjustment of the Spline Function

With the definition or requirement to CDF, which should 
not be more than 1, be positive or monotone increasing, and 
PDF may take negative value, some constrained require-
ments/conditions should be introduced when we try to esti-
mate CDF or PDF with spline regression, which may lead 
to much more complex in the calculation. In this paper, a 
simple method is introduced to resolve such problem by 
adjusting the spline function after regression.

In most cases, only the first and last segments of the 
spline function are required be adjusted. In the first segment, 
the constrained conditions are

with v unknowns in these v − 1 equations, and only one 
free variable. For simple, a11 is set as the free variable, and 
Eqs. (12) can be updated as

Values of a1j, j = 2,… , v can be derived based on the initial 
set a11 , different preset value of a11 will be repeated until we got 
the reasonable estimated CDF and PDF based on all samples 
calculated by the spline function. The last segment is adjusted 
in the same approach. In some cases of that the reasonable 
result is not available via one free value, the constrained condi-
tions should be reduced to have two free values introduced.

The algorithm to estimate of probability distribution with 
spline regression model is summarized as Algorithm 1.

2.5 � Method Evaluation and Comparison

For these 40 distributions (Table 1) with different types or 
parameters, the characteristics of these most widely used 
statistics has been considered to evaluate the performance 

(12)

⎛
⎜⎜⎜⎝

�11

�
s2
�

�12

�
s2
�

⋯ �1v

�
s2
�

�
�

11

�
s2
�

�
�

12

�
s2
�

⋯ �
�

1v

�
s2
�

⋮ ⋮ ⋱ ⋮

�
(v−2)

11

�
s2
�
�
(v−2)

12

�
s2
�
⋯ �

(v−2)

1v

�
s2
�

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a11
a12
⋮

a1v

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

y
�
s2
�

y�
�
s2
�

⋮

y(v−2)
�
s2
�

⎞
⎟⎟⎟⎠
,

(13)

⎛⎜⎜⎜⎝

�12

�
s2
�

⋯ �1v

�
s2
�

�
�

12

�
s2
�

⋯ �
�

1v

�
s2
�

⋮ ⋱ ⋮

�
(v−2)

12

�
s2
�
⋯ �

(v−2)

1v

�
s2
�

⎞⎟⎟⎟⎠

⎛⎜⎜⎝

a12
⋮

a1v

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎝

y
�
s2
�

y�
�
s2
�

⋮

y(v−2)
�
s2
�

⎞⎟⎟⎟⎠
− a11

⎛⎜⎜⎜⎝

�11

�
s2
�

�
�

11

�
s2
�

⋮

�
(v−2)

11

�
s2
�

⎞⎟⎟⎟⎠
.

of estimated CDF or PDF. However, with the increase of 
sample size, integrated square error (ISE), mean absolute 
error (MAE) and mean square error (MSE) are not valid 
statistics to evaluate the estimate PDF. For the example of 
distribution F(x) = 3

√
x and f (x) =

1

3
x
−

2

3 , x ∈ (0, 1) , sample 
data xi = (i∕n)3i = 1,… , n − 1 ,  and estimated PDF 

y�(x) =

⎧
⎪⎨⎪⎩

1.01

3
x
−

2

3 , x ∈
�
0,

1

8

�

0.99

3
x
−

2

3 , x ∈
�

1

8
, 1
� when error is 1%,

then IAE → 0.01, ISE → +∞,MAE → +∞,MSE → +∞ 
when n → ∞ . Integrated absolute error (IAE) is used as the 
statistics to evaluate the estimated PDF. Similarly, IAE and 
ISE are not convergent with the increase of sample data, root 
mean square error RMSE =

�
1

n

∑n

i=1

�
y
�
xi
�
− F

�
xi
��2 is to 

evaluate the estimated CDF.
And

For example, if random variable X follows the 
distribution:

is a set of samples taken from random variable X.
In the case of estimated error is in 1%, and the estimated 

PDF is y�(x) =

⎧⎪⎨⎪⎩

1.01

3
x
−

2

3 , x ∈
�
0,

1

8

�

0.99

3
x
−

2

3 , x ∈
�

1

8
, 1
� , for each different kind 

of statistics to evaluate the performance of PDF estimation 
as below.

integrated absolute error (IAE) =
xn∫
x1

||y�(x) − f (x)||dx = 0.01 ⋅
n − 2

n
,

integrated square error (ISE)

=
xn∫
x1

(
y�(x) − f (x)

)2
dx =

0.012

3

(
n −

n

n − 1

)
,

mean absolute error (MAE)

=
1

n

n∑
i=1

|||y
�(xi) − f

(
xi
)||| =

0.01

3
⋅

n2

n − 1

n−1∑
i=1

1

i2
,

mean square error (MSE)

=
1

n

n∑
i=1

(
y
�(xi) − f

(
xi
))2

=
0.012

9
⋅

n4

n − 1

n−1∑
i=1

1

i4
,

IAE =

xn

�
x
1

||y�(x) − f (x)||dx ≤
xn

�
x
1

(
y�(x) + f (x)

)
dx

= y
(
xn
)
− y

(
x
1

)
+ F

(
xn
)
− F

(
x
1

) ≤ 2.

F(x) = 3
√
x and f (x) =

1

3
x
−

2

3 , x ∈ (0, 1),
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Table 1   40 Distributions used 
in the method evaluation and 
comparison

No. Distribution Density function

1 Beta (2,2) f (x) = 6x(1 − x), x ∈ (0, 1)

2 Beta (2,1) f (x) = 2x, x ∈ (0, 1)

3 Beta (0.5,1) f (x) =
1

2
√
x
, x ∈ (0, 1)

4 Beta (0.5,0.5) f (x) =
1

�
√
x(1−x)

, x ∈ (0, 1)

5 Beta (1/3,2/3)
f (x) =

√
3

2�
x
−

2

3 (1 − x)−
1

3 , x ∈ (0, 1)

6 Beta (0.2,5) f (x) =
924

3125
x
−

4

5 (1 − x)4, x ∈ (0, 1)

7 Beta (5,10) f (x) = 10010x4(1 − x)9, x ∈ (0, 1)

8 Exponential (1) f (x) = e−x, x ∈ [0,+∞)

9 Exponential (0.1) f (x) = 10e−10x, x ∈ [0,+∞)

10 Exponential (10) f (x) =
1

10
e
−

x

10 , x ∈ [0,+∞)

11 Extreme value (0,1) f (x) = ex−e
x

12 Gamma (2,1) f (x) = xe−x, x ∈ (0,+∞)

13 Gamma (0.5,0.2)
f (x) =

√
5�

�
x
−

1

2 e−5x, x ∈ (0,+∞)

14 Gamma (5,0.2) f (x) =
3125

24
x4e−5x, x ∈ (0,+∞)

15 Generalized extreme value (0.2,5,0)
f (x) =

1

5

(
1 +

x

25

)−5

exp

(
−
(
1 +

x

25

)−4
)
, x ∈ (−25,+∞)

16 Generalized extreme value (− 2,5,0) f (x) =
1

5
(1 − 0.4x)−

1

2 exp
(
−(1 − 0.4x)

1

2

)
, x ∈

(
−∞,

5

2

)

17 Generalized extreme value (− 5,0.2,0) f (x) = 5(1 − 25x)−
4

5 exp
(
−(1 − 25x)

1

5

)
, x ∈

(
−∞,

1

25

)

18 Generalized extreme value (1,1,0) f (x) =
1

(1+x)2
exp

(
−

1

1+x

)
, x ∈ (−1,+∞)

19 Generalized extreme value (2,0.2,0) f (x) = 5(1 + 10x)−
3

2 exp
(
−(1 + 10x)−

1

2

)
, x ∈

(
−

1

10
,+∞

)

20 Generalized extreme value (5,5,0) f (x) =
1

5
(1 + x)−

4

5 exp
(
−(1 + x)−

1

5

)
, x ∈ (−1,+∞)

21 Generalized Pareto (1,1,0) f (x) =
1

(1+x)2
, x ∈ (0,+∞)

22 Generalized Pareto (0.2,5,0)
f (x) =

1

5

(
1 +

x

25

)−6

, x ∈ (0,+∞)

23 Generalized Pareto (− 0.2,5,0)
f (x) =

1

5

(
1 −

x

25

)4

, x ∈ (0, 25)

24 Generalized Pareto (− 5,0.2,0) f (x) = 5(1 − 25x)−
4

5 , x ∈
(
0,

1

25

)

25 Lognormal (0,1)
f (x) =

1√
2�x

e−
(lnx)2

2 ,

26 Lognormal (2,5)
f (x) =

1

5
√
2�x

e
−

(lnx−2)2

50 , x ∈ (0,+∞)

27 Lognormal (5,0.2)
f (x) =

5√
2�x

e−
25(lnx−5)2

2 , x ∈ (0,+∞)

28 Normal (0,1)
f (x) =

1√
2�
e−

x2

2

29 Rayleigh (1)
f (x) = xe−

x2

2 , x ∈ (0,+∞)

30 Weibull (2,3)
f (x) =

3x2

8
e
−

x3

8 , x ∈ (0,+∞)

31 Logistic (0,1) f (x) =
ex

(1+ex)2

32 Uniform (0,1) f (x) = 1, x ∈ [0, 1]

33 χ2 (1) f (x) =
1√
2�
x
−

1

2 e−
x

2 , x ∈ (0,+∞)

34 χ2 (3) f (x) =
1√
2�
x

3

2 e−
x

2 , x ∈ (0,+∞)
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W h e n 
IAE → 0.01, ISE → +∞,MAE → +∞,MSE → +∞ , only 
IAE is a valid statistics to evaluate the estimation. Similarly, 
IAE and ISE are not suitable to evaluate the performance of 
estimated CDF due to that they are not always convergent.

3 � Result

3.1 � Basis Functions

For distributions normal (0,1), exponential (1) and Rayleigh 
(1), 1000 random samples were generated with Monte-Carlo 
simulation. Six different sets of basis functions as below 
were employed in the estimation of CDF and PDF.

E1:

integrated absolute error(IAE) =

xn

∫
x1

||y�(x) − f (x)||dx = 0.01 ⋅
n − 2

n
,

integrated square error (ISE)

=

xn

∫
x1

(
y�(x) − f (x)

)2
dx =

0.012

3

(
n −

n

n − 1

)
,

mean absolute error (MAE)

=
1

n

n∑
i=1

|||y
�(xi) − f

(
xi
)||| =

0.01

3
⋅

n2

n − 1

n−1∑
i=1

1

i2
,

mean square error (MSE)

=
1

n

n∑
i=1

(
y
�(xi) − f

(
xi
))2

=
0.012

9
⋅

n4

n − 1

n−1∑
i=1

1

i4
.

�11(x) = e−x
2

,�12(x) = xe−x
2

,�13(x) = ex,�14(x) = 1,�15(x) = x,

�i1(x) = 1,�i2(x) = x,�i3(x) = x2,

�i4(x) = x3,�i5(x) = x4 i = 2,… , 6,

E2:

E3:

E4:

E5:

E6:

�71(x) = e−x
2

,�72(x) = xe−x
2

,�73(x) = e−x,�74(x) = 1,�75(x) = x.

�11(x) = e−x
2

,�12(x) = ex,�13(x) = 1,�14(x) = x,�15(x) = x2,

�i1(x) = 1,�i2(x) = x,�i3(x) = x2,

�i4(x) = x3,�i5(x) = x4 i = 2,… , 6,

�71(x) = e−x
2

,�72(x) = e−x,�73(x) = 1,�74(x) = x,�75(x) = x2.

�11(x) = ex,�12(x) = 1,�13(x) = x,�14(x) = x2,�15(x) = x3,

�i1(x) = 1,�i2(x) = x,�i3(x) = x2,

�i4(x) = x3,�i5(x) = x4 i = 2,… , 6,

�71(x) = e−x,�72(x) = 1,�73(x) = x,�74(x) = x2,�75(x) = x3.

�i1(x) = 1,�i2(x) = x,�i3(x) = x2,

�i4(x) = x3,�i5(x) = x4 i = 1,… , 7.

�11(x) = e−x
2

,�12(x) = xe−x
2

,�13(x) = ex,

�14(x) = xex,�15(x) = 1,�16(x) = x,

�i1(x) = 1,�i2(x) = x,�i3(x) = x2,�i4(x) = x3,

�15(x) = x4,�i6(x) = x5 i = 2,… , 6,

�71(x) = e−x
2

,�72(x) = xe−x
2

,�73(x) = e−x,

�74(x) = xe−x,�75(x) = 1,�76(x) = x.

�i1(x) = 1,�i2(x) = x,�i3(x) = x2,�i4(x) = x3,

�i5(x) = x4,�i6(x) = x5 i = 1,… , 7.

Table 1   (continued) No. Distribution Density function

35 t (1) f (x) =
1

�(1+x2)
36 t (3)

f (x) =
2√
3�

�
1 +

x2

3

�−2

37 t (6)
f (x) =

15

16
√
6

�
1 +

x2

6

�−
7

2

38 F (4,4) f (x) =
6x

(1+x)4
, x ∈ (0,+∞)

39 F (4,10) f (x) =
24x

5(1+0.4x)7
, x ∈ (0,+∞)

40 F (10,4) f (x) =
24x4

5(0.4+x)7
, x ∈ (0,+∞)
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With results in Table 2, we can see the RMSECDF is not 
sensitive to the basis functions but IAEPDF is influenced by 
the basis functions significantly. Based on Fig. 1, we can also 
find that the two ends of the distribution are usually hard to 
be estimated but basis function of E1 shows the best estima-
tion and successfully describes the asymptotic approxima-
tion, which has significant advantage over pure polynomial 
spline function (E4 and E6). Then we use E1 as the basis 
functions, which has been mentioned in Sect. 2.3.

3.2 � Smooth Factor

With Monte Carlo simulation, IAEs for each batch of gener-
ated random samples were repeated for 50 times and aver-
aged to evaluate the estimated PDF. In Fig. 2a, with the 
increase of smooth factor � , the averaged IAEs for most 
distributions decreases at first and increases after getting the 
minimum, but the averaged IAE to uniform distribution is 
in decreases with the increase of smooth factor � . The mini-
mum averaged IAE is for different values to smooth factor 
� . and when σ = 2, the averaged IAE to most distributions 
is in the nearby area of minimum averaged IAE. In Fig. 2b, 
σ corresponding to the minimum averaged IAE is identical 
with different sample sizes, and with the increase of sample 
size, the averaged IAE is in smaller with the increase num-
ber of simulated sample. The minimum value of averaged 
IAEs are in the nearby area of σ = 2. Then σ = 2 is chosen as 
the optimal smooth factor for each different distribution and 
different sample size.

3.3 � Evaluation for Well‑Proportioned Samples

In the extreme case of well-proportioned sam-
ples  x1, x2,… , xn

(
x1 ≤ x2 ≤ ⋯ ≤ xn

)
 ,  which means 

F
(
xi
)
= yi = i∕(n + 1) can be well estimated. With Monte 

Carlo simulation, all these 40 distributions from Sect. 2.5 
were evaluated using this well-proportioned sample. As 
Fig. 3, RMSEs to these estimated CDFs are all smaller than 
0.00016 and IAEs to these estimated PDFs are all smaller 
than 0.008, which means that the proposed method estimated 
most distributions well.

3.4 � Evaluation for Random Samples

With Monte Carlo simulation, for each distribution from 
Sect. 2.5, RMSE and IAE for each batch of generated ran-
dom samples were repeated for 50 times and averaged to 
evaluate the estimated CDF and PDF. Each batch random 
samples were constructed in the steps as below:

(1)	 Sort the sampled n random samples from standard uni-
form distribution U(0, 1).

(2)	 Calculate F−1(x) (inverse function of the distribution 
function) with these n samples, as the random samples 
for each distribution.

As the CDF is follow the standard unit distribution 
U(0, 1) , for each set of random samples,

is to evaluate the deviation from distribution of these sam-
ples, which can also be seen as the error of empirical distri-
bution function with i∕(n + 1) as the estimation of F

(
xi
)
 . In 

Fig. 4, RMSErand for our proposed method is almost always 
smaller than RMSErand for any distribution, which indi-
cates that our method is superior to empirical distribution 
function.

In PDF estimation, compared to kernel density estimation 
in Fig. 5 and Table 3, our proposed method is superior in the 
estimation of PDF for any distribution. Most of the IAE is in 
the range of 0.05–0.06 on average, while kernel density esti-
mation is generated larger error than the proposed method. 
In Fig. 6, both normal distribution and Rayleigh distribution 
can be well estimated with both kernel density estimation 
with normal kernel function and spline regression, but spline 
regression is much more accuracy than kernel density esti-
mation with normal kernel function in the estimation of PDF 
for all of these distributions.

RMSErand =

√√√√1

n
⋅

n∑
i=1

(
i

n + 1
− F

(
xi
))2

,

Table 2   The evaluation result of 
different basis functions

Basis func-
tions

Normal (0,1) Exponential (1) Rayleigh (1)

RMSECDF IAEPDF RMSECDF IAEPDF RMSECDF IAEPDF

E1 0.0116 0.0466 0.0119 0.0507 0.0117 0.0431
E2 0.0116 0.0808 0.0119 0.0553 0.0118 0.0444
E3 0.0116 0.0729 0.0119 0.0504 0.0118 0.0501
E4 0.0116 0.0816 0.0119 0.0503 0.0118 0.0495
E5 0.0116 0.0702 0.0119 0.0506 0.0117 0.0461
E6 0.0116 0.1196 0.0119 0.0572 0.0117 0.0703
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3.5 � Large Sample Size

With the much large sample size, CDF and PDF are esti-
mated by a subset of the sample. With Monte Carlo 

simulation, the similar accuracy is for both our method for 
the subset sample and the full sample. In the simulated sam-
ples, the subset sample is obtained via the every 100 data 
for this ascending sorted sample when the sample size is 

Fig. 1   Illustrations of the density functions estimated by different basis functions. a Normal distribution. b Exponential distribution. c Rayleigh 
distribution

Fig. 2   The influence of smooth factor σ to the estimated error of PDF. a With different distributions. b With different sample size



568	 Interdisciplinary Sciences: Computational Life Sciences (2019) 11:559–574

1 3

n = 100,000, then the subset sample of these 1000 obser-
vations are used to estimate CDF and PDF. With Table 4, 
the RMSE to estimated CDF and IAE to estimated PDF are 
quite similar between the full sample and the subset samples.

4 � Discussion

In this section, the PDF estimation to high dimensional 
random variables and the application in classification and 
regression models will be discussed.

4.1 � Probability Distribution of n Dimensional 
Random Variables

It is almost impossible to estimate the joint probability 
distribution of n dimensional random variables by limited 
number of samples because of the curse of dimensionality, 
but the problem can be simplified as the linear correlations 

of every variables which will be a rough but quite practical 
approach in the estimation.

To simplify the problem, the following assumption is to 
be hold:

If random variables Y1, Y2,… , Yn follow normal distribu-
tion, n dimensional random variable 

(
Y1, Y2,… , Yn

)
 follows 

n dimensional joint normal distribution approximately.
This approximation uses normal distribution as a 

bridge to construct high dimensional probability dis-
tribution. Then, for any n dimensional random variable (
X1,X2,… ,Xn

)
 , set the marginal distribution functions as 

F1

(
x1
)
,F2

(
x2
)
,… ,Fn

(
xn
)
 and define

T h e n  P
(
X̂i ≤ x̂i

)
= P

(
𝛷−1

(
Fi

(
Xi

)) ≤ x̂i
)

= P
(
Xi ≤ F−1

i

(
𝛷
(
x̂i
)))

= Fi

(
F−1
i

(
𝛷
(
x̂i
)))

= 𝛷
(
x̂i
)

  , 
where �(x) is the distribution function of standard normal 
distribution. And we can see X̂1, X̂2,… , X̂n follow normal 
distribution.

X̂i = 𝛷−1
(
Fi

(
Xi

))
i = 1,… , n.

Fig. 3   RMSE of estimated CDF and IAE of estimated PDF to well-proportioned samples
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Based on the previous assumption, the joint distribution 
function of n dimensional random variable 

(
X1,X2,… ,Xn

)
 

can be estimated as

And the joint density function is

where x̂ =
(
x̂1, x̂2,… , x̂n

)
 ,  R =

(
�ij
)
 is the correla-

tion coefficient matrix of 
(
X̂1, X̂2,… , X̂n

)
 , �i and �i is 

the eigenvalues and eigenvectors of R, respectively, and (
𝛽1, 𝛽2,… , 𝛽n

)
= x̂

(
𝛼1, 𝛼2,… , 𝛼n

)
.

�n(x) = (2�)−
1

2 |R|− 1

2 exp

(
−

1

2
xR−1xT

)
, x =

(
x1, x2,… , xn

)
 

is the density function of n dimensional standard normal 
distribution, and �n(x) =

x1∫
−∞

⋯

xn∫
−∞

�n

(
t1,… , tn

)
dt1 ⋯ dtn is 

the distribution function.

F
(
x1, x2,… , xn

)
= P

(
X1 ≤ x1,X2 ≤ x2,… ,Xn ≤ xn

)

= P
(
F−1
1

(
𝛷
(
X̂1

)) ≤ x1,F
−1
2

(
𝛷
(
X̂2

)) ≤ x2,… ,F−1
n

(
𝛷
(
X̂n

)) ≤ xn
)

= P
(
X̂1 ≤ 𝛷−1

(
F1

(
x1
))
, X̂2 ≤ 𝛷−1

(
F2

(
x2
))
,… , X̂n ≤ 𝛷−1

(
Fn

(
xn
)))

≈ 𝛷n

(
x̂1, x̂2,… , x̂n

)

f
(
x1, x2,… , xn

)
=

𝜕n

𝜕x1𝜕x2 … 𝜕xn
F
(
x1, x2,… , xn

)

≈
𝜕n

𝜕x1𝜕x2 … 𝜕xn
𝛷n

(
𝛷−1

(
F1

(
x1
))
,𝛷−1

(
F2

(
x2
))
,… ,𝛷−1

(
Fn

(
xn
)))

= 𝜑n

(
𝛷−1

(
F1

(
x1
))
,𝛷−1

(
F2

(
x2
))
,… ,𝛷−1

(
Fn

(
xn
)))

⋅

n∏
i=1

fi
(
xi
)

𝜑
(
𝛷−1

(
Fi

(
xi
)))

= |R|− 1

2 exp
(
−
1

2
x̂
(
R−1 − E

)
x̂T
)
⋅

n∏
i=1

fi
(
xi
)
= exp

[
−
1

2

n∑
i=1

(
ln𝜆i +

𝛽2
i

𝜆i
− 𝛽2

i
− 2lnfi

(
xi
))]

4.2 � Application in Bayesian Classification

For the sample with n features 
(
x1, x2,… , xn

)
 , based on 

Bayes’ theorem, the probability that it belongs to class Ck is

P
(
Ck|x1, x2,… , xn

)
=

P
(
Ck

)
P
(
x1, x2,… , xn|Ck

)

P
(
x1, x2,… , xn

) ,

Fig. 4   In each set of random samples, red dots are the RMSErand for 
each set of random numbers generated by step (1). Corresponding 
series of random samples to each set of random sample from step (1) 

is generated for each different distribution by step (2). RMSE to each 
estimated CDF was represented by black dots. a The sample size is 
300. b The sample size is 1000
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where P
(
Ck

)
 is the probability that any sample belongs to 

class Ck, P
(
x1, x2,… , xn|Ck

)
 is prior and P

(
Ck|x1, x2,… , xn

)
 

is posterior.
With the assumption of that, every features are independ-

ent of each other for a given class label, which is independ-
ence of conditional probability. Then

Take note that P
(
x1, x2,… , xn

)
 is independent of Ck, so 

we can get the predictive classification of 
(
x1, x2,… , xn

)

P
(
Ck|x1, x2,… , xn

)
=

P
(
Ck

)

P
(
x1, x2,… , xn

)
n∏
i=1

P
(
xi|Ck

)

ŷ = argmax
k∈1,2,…,K

P
(
Ck

) n∏
i=1

P
(
xi|Ck

)
.

This method is naïve Bayes classifier, a basic algorithm 
in machine learning and shows implausible efficacy in many 
complex real-world situations [27–29].

But release such strong assumption and based on the 
estimation of the density function of n dimensional random 
variables, the predictive classification can be calculated 
straight forwardly:

With such update, we not only include the correlation of 
features into the model prediction, but also greatly extend 
the application of Bayesian classification.

ŷ = argmax
k∈1,2,…,K

P
(
Ck

)
P
(
x1, x2,… , xn|Ck

)
.

Fig. 5   Comparision of spline regression and kernel density function with a the sample size is 300. b the sample size is 1000
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4.3 � Application in Maximum Likelihood Regression

With the proposed approach in the CDF and PDF estima-
tion, maximum likelihood estimation can be extended from 
parameter estimation [30] to regression models.

The maximum likelihood function to sample (
x1, x2,… , xn

)
 is L(y) = P

(
Y = y|x1, x2,… , xn

)
 with L(y) 

get the maximum value at the point y.
Then

Table 3   The evaluation result 
of spline regression and kernel 
density estimation by random 
samples

Distribution RMSE of CDF with spline 
regression

IAE of PDF

Spline regression Kernel density estima-
tion

n = 300 n = 1000 n = 300 n = 1000 n = 300 n = 1000

2 0.0175 0.0100 0.0801 0.0477 0.1166 0.0884
3 0.0176 0.0100 0.0938 0.0512 0.2346 0.2052
4 0.0184 0.0103 0.1205 0.0615 0.3077 0.2806
5 0.0183 0.0103 0.1183 0.0657 0.3419 0.3105
6 0.0181 0.0100 0.1219 0.0545 0.5562 0.4813
7 0.0170 0.0099 0.0806 0.0521 0.0817 0.0566
8 0.0173 0.0101 0.0810 0.0510 0.1682 0.1257
9 0.0172 0.0100 0.0772 0.0503 0.1682 0.1257
10 0.0173 0.0100 0.0820 0.0519 0.1682 0.1257
11 0.0175 0.0099 0.0990 0.0557 0.0970 0.0639
12 0.0175 0.0100 0.0988 0.0549 0.1064 0.0748
13 0.0179 0.0101 0.1153 0.0597 0.2922 0.2445
14 0.0171 0.0099 0.0856 0.0534 0.0907 0.0637
15 0.0171 0.0099 0.0826 0.0524 0.0834 0.0573
16 0.0175 0.0100 0.0985 0.0583 0.3797 0.3132
17 0.0175 0.0101 0.0985 0.0608 0.8881 0.7874
18 0.0175 0.0100 0.0946 0.0556 0.2693 0.2024
19 0.0176 0.0103 0.0956 0.0700 0.5089 0.4144
20 0.0178 0.0101 0.1050 0.0643 0.9175 0.8182
21 0.0174 0.0101 0.0841 0.0529 0.3142 0.2432
22 0.0175 0.0100 0.0852 0.0515 0.1930 0.1441
23 0.0171 0.0100 0.0766 0.0506 0.1459 0.1102
24 0.0174 0.0101 0.0818 0.0528 0.4998 0.4354
25 0.0173 0.0100 0.0880 0.0542 0.1726 0.1239
26 0.0172 0.0099 0.0832 0.0524 0.8488 0.7589
27 0.0173 0.0100 0.0872 0.0560 0.0876 0.0607
28 0.0172 0.0098 0.0832 0.0521 0.0840 0.0568
29 0.0170 0.0099 0.0829 0.0539 0.0814 0.0565
30 0.0171 0.0099 0.0814 0.0519 0.0801 0.0549
31 0.0174 0.0101 0.0749 0.0458 0.1218 0.0977
32 0.0178 0.0102 0.0947 0.0570 0.0929 0.0622
33 0.0178 0.0101 0.1120 0.0594 0.2922 0.2445
34 0.0174 0.0100 0.0951 0.0568 0.1230 0.0870
35 0.0180 0.0103 0.0968 0.0577 0.2114 0.1522
36 0.0179 0.0102 0.0967 0.0575 0.1123 0.0748
37 0.0179 0.0101 0.0979 0.0567 0.0954 0.0640
38 0.0174 0.0100 0.0903 0.0546 0.1882 0.1344
39 0.0173 0.0099 0.0895 0.0546 0.1377 0.0969
40 0.0173 0.0100 0.0892 0.0545 0.1778 0.1282
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Fig. 6   Illustrations of the density functions estimated by spline regression and kernel density function with different distributions

Table 4   The evaluation result of the subsets of large samples

Sample Size RMSE of CDF IAE of PDF

1 100,000 0.000957 0.0109
2 10,000 0.000932 0.0116
3 1000 0.000920 0.0111
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where FY (y) and fY (y) is the distribution and density func-
tion of Y, respectively, x̂ =

(
x̂1, x̂2,… , x̂n

)
 , ŷ = 𝛷−1

(
FY (y)

)
 , 

R is the correlation coefficient matrix of 
(
X̂1, X̂2,… , X̂n

)
 

and r is the correlation coefficient vector between Ŷ  and 
X̂1, X̂2,… , X̂n.

With 
(
R rT

r 1

)−1

=

( (
R − rTr

)−1
−
(
R − rTr

)−1
rT

−r
(
R − rTr

)−1
1 + r

(
R − rTr

)−1
rT

)
 , 

the log-likelihood function can be rewritten as

MLE y will be derived with equation as below.

If Y follows normal distribution N (μ, σ), the above equa-
tion can be simplified as

Then

which is the value ŷ as we got for linear regression.

5 � Conclusion

In this study, we proposed a new method to estimate CDF 
and PDF based on a new spline regression, in which the 
spline function is not always defined by polynomial func-
tions or B-splines, but can be set freely and consists of 
totally different types of functions in each segment. In this 
method, the PDF is expressed by piecewise functions instead 
of series, and with the increase of sample size, the estimated 
accuracy increases but the complexity of function does not 

L(y) =
P
�
X1 = x1,X2 = x2,… ,Xn = xn, Y = y

�

P
�
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1

2

{
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− R−1
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(
R − rTr

)−1
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(
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d ln L(y)
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r
(
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x̂T − rT𝛷−1(F(y))
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increase. This method is suitable for most types of continu-
ous distributions, and the form of spline function and other 
parameters does not need to be changed unless the distribu-
tion is quite special. The estimation is accurate for various 
types of distributions and is superior to kernel density esti-
mation. The PDF is always smooth and is not influenced by 
parameters. The values of estimated CDF are less than 1, 
positive and monotone increasing. The values of estimated 
PDF are positive and the integration of PDF is about 1. And 
it is easy to find a subset from the large sample to reduce the 
running time and get similar accuracy simultaneously. PDF 
estimation of high dimensional random variables was also 
discussed and its potential application in Bayesian classifi-
cation models and maximum likelihood regression models 
was presented.
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