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Abstract
Protein–protein interaction (PPI) data is essential to elucidate the complex molecular relationships in living systems, and 
thus understand the biological functions at cellular and systems levels. The complete map of PPIs that can occur in a living 
organism is called the interactome. For animals, PPI data is stored in multiple databases (e.g., BioGRID, CCSB, DroID, 
FlyBase, HIPPIE, HitPredict, HomoMINT, INstruct, Interactome3D, mentha, MINT, and PINA2) with different formats. 
This makes PPI comparisons difficult to perform, especially between species, since orthologous proteins may have different 
names. Moreover, there is only a partial overlap between databases, even when considering a single species. The EvoPPI 
(http://evopp​i.i3s.up.pt) web application presented in this paper allows comparison of data from the different databases at 
the species level, or between species using a BLAST approach. We show its usefulness by performing a comparative study 
of the interactome of the nine polyglutamine (polyQ) disease proteins, namely androgen receptor (AR), atrophin-1 (ATN1), 
ataxin 1 (ATXN1), ataxin 2 (ATXN2), ataxin 3 (ATXN3), ataxin 7 (ATXN7), calcium voltage-gated channel subunit alpha1 
A (CACNA1A), Huntingtin (HTT), and TATA-binding protein (TBP). Here we show that none of the human interactors of 
these proteins is common to all nine interactomes. Only 15 proteins are common to at least 4 of these polyQ disease proteins, 
and 40% of these are involved in ubiquitin protein ligase-binding function. The results obtained in this study suggest that 
polyQ disease proteins are involved in different functional networks. Comparisons with Mus musculus PPIs are also made 
for AR and TBP, using EvoPPI BLAST search approach (a unique feature of EvoPPI), with the goal of understanding why 
there is a significant excess of common interactors for these proteins in humans.

Keywords  Protein–protein interactions databases · Inter-specific comparisons · PolyQ disease proteins

1  Introduction

Information on the function and molecular properties of 
individual proteins is available in major databases such as 
UniProt [1]. To be functional, most proteins establish phys-
icochemical dynamic connections with other proteins. Find-
ing these interactions provides opportunities to explore their 
biological functions [2]. The map of the protein–protein 

interactions (PPIs) in a particular organism is called the 
interactome [3]. Aberrant PPIs are detected in multiple 
aggregation-related diseases, such as polyglutamine dis-
eases, Creutzfeldt–Jakob, Parkinson’s, Alzheimer’s, and can-
cer [4, 5]. The comparison of PPI networks in patients and 
controls can elucidate the molecular basis of these diseases 
and lead to the identification of possible therapeutic targets.

While several computational and experimental meth-
ods based on single or high-throughput screens have been 
implemented for detecting PPIs, all present advantages and 
disadvantages [6]. Computational methods (e.g., text min-
ing, docking, machine learning, interolog mapping, and 
so forth [7]), are able to detect thousands of PPIs in much 
less time and at a lower cost than experimental methods; 
however, since these methods are based on predictions 
and not on experimental data, accuracy is always an issue. 
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Nevertheless, computational methods can be very useful 
to understand which interactions may be missing in the 
available experimental dataset. In addition, the use of high-
throughput screen methods cannot guarantee the capture 
of all interactions, and the most used experimental high-
throughput screen techniques (i.e., mass spectrometry, two-
hybrid assays, and tandem affinity purification) can produce 
rates of false positive interactions up to 50% [2]. Finally, 
methods that are unlikely to generate false positives, such 
as X-ray crystallography, are not easy to scale up and thus 
cannot be used to study large numbers of PPIs.

PPI datasets of several species, obtained with differ-
ent detection methods, are publicly accessible and can be 
downloaded from databases such as BioGRID [8, 9], CCSB 
[10–14], DroID [15], FlyBase [16], HIPPIE [2], HitPredict 
[17], HomoMINT [18], INstruct [19], Interactome3D [20], 
Mentha [21], MINT [22], or PINA [23]. Although there is 
some degree of overlap between databases, every database 
reports an exclusive set of information, and since interac-
tions can be reported in different formats, the comparison 
between databases can be demanding (e.g., BioGRID, MINT 
and CCSB report interactions using gene identifiers, UniProt 
numbers, and gene names, respectively). Databases can be 
human-curated (e.g., BioGRID, HIPPIE, and MINT) and can 
report the source of each PPI (e.g., BioGRID and MINT). 
Furthermore, functionally equivalent proteins can have dis-
tinct names in different species, making the comparison 
across species difficult to achieve. Since each method and 
database presents advantages and disadvantages, interactions 
reported in several independent studies, or in distinct spe-
cies, are expected to be more reliable than those reported in 
a single study using high-throughput methods. Furthermore, 
as stated above, the comparison of interactomes obtained 
under different conditions (e.g., patients and controls) can 
be informative.

This paper presents EvoPPI (http://evopp​i.i3s.up.pt), 
an open-source web application that aims to effortlessly 
compare PPI datasets across databases and species. Since 
proteins can have different names in the species being com-
pared, a BLAST-based approach is used for across-species 
comparisons, allowing users to specify different criteria to 
select the proteins that are considered functionally equiv-
alent. It should be noted, however, that EvoPPI is not an 
application for PPI inference using homology. Four param-
eters can be adjusted by the user: (1) number of descrip-
tions to report, which controls the number of sequences to be 
reported in the output; (2) the expect value, which describes 
the number of hits expected by chance when searching a 
database of a particular size (lower E-value represents more 
“significant” match); (3) the minimum percentage of identity 
that the sequence alignment must have to be considered a 
positive match; and (4) the minimum length of the aligned 
block, which specifies the size the sequence alignment must 

have to be considered a positive match. These features are 
useful when comparing organisms such as Homo sapiens 
and Drosophila melanogaster, where two rounds of whole 
genome duplication occur in human lineage [24], implying 
that the majority of Drosophila genes have multiple paralogs 
in humans. In short, EvoPPI presents distinctive features 
such as the use of a BLAST approach for the identification 
of orthologous/paralogous genes (where the user can define 
the number of descriptions, the minimum expect value, the 
minimum length of alignment blocks, and the minimum 
identity), and the use of colour codes for an effortless detec-
tion of differences between datasets.

To demonstrate the usefulness of EvoPPI, we will com-
pare the human interactomes for ATXN1, ATXN2, CAC-
NA1A, ATXN7, TBP, ATXN3, HTT, ATN1, and AR, the 
nine polyglutamine (polyQ) proteins that are associated to 
degenerative disorders due to an expansion of the polyQ 
tract. These proteins are responsible for six spinocerebellar 
ataxias (SCA) types 1, 2, 6, 7, 17, Machado–Joseph disease 
(MJD or SCA3), Huntington’s disease (HT), dentatorubral 
pallidoluysian atrophy (DRPL), and spinal and bulbar mus-
cular atrophy X-linked 1 (SBMA), respectively [25]. We will 
begin by demonstrating that there is no protein in common 
to all the polyQ disease interactomes. We will then show 
that when considering those proteins shared between the 
interactomes of at least four of the polyQ disease proteins, 
six are found to belong to the ubiquitin pathway. Compari-
sons with Mus musculus PPIs are also made for AR and 
TBP, using the EvoPPI BLAST search approach for distinct 
species comparisons, to explore why there is a significant 
excess of common interactors for these proteins in humans.

2 � Materials and Methods

2.1 � Data

EvoPPI relies on two main types of data to perform the 
analyses: reference genomes of the species (FASTA files) 
and interactomes (TSV files with the interactions). The cur-
rent version of EvoPPI includes the reference genomes of 
ten animal species: Bos taurus, Caenorhabditis elegans, 
Danio rerio, Drosophila melanogaster, Gallus gallus, Homo 
sapiens, Mus musculus, Oryctolagus cuniculus, Rattus nor-
vegicus, and Xenopus laevis (see Supplementary Table 1 for 
more details). For each of these 10 species, more than 100 
PPIs are available in at least 1 interactome database. The ref-
erence genomes were downloaded from NCBI in GenBank 
Flat File Format (GBFF) and parsed to extract the CoDing 
sequences (CDSs) and create the FASTA files required by 
EvoPPI. In the same operation, dictionaries of gene syno-
nyms for each species were also created. These dictionaries 
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are used by EvoPPI to allow users to look for different gene 
names.

The current version of EvoPPI also includes 52 interac-
tomes for the 10 species (see Supplementary Table 1 for 
additional details). We downloaded all the available inter-
actomes from the following databases: BioGRID, CCSB, 
DroID, FlyBase, HIPPIE, HitPredict, HomoMINT, Instruct, 
Interactome3D, mentha, MINT, and PINA. We then parsed 
each database file to convert them into a unified format that 
EvoPPI can handle, that is, we converted each file into a sim-
ple TSV file with two columns that represent the Gene-ID 
identifiers of the genes involved in each reported interaction. 
It is important to note that this process requires converting 
the gene identifiers from their source formats (UniProtKB-
ID, Gene name, or FlyBase; Supplementary Table 1) into 
Gene-ID, which sometimes requires a two-step conversion: 
first converting them to UniProtKB-ID and then to Gene-ID. 
To perform this step, we used the mapping API offered by 
UniProtKB.1 However, some interactions were lost, because 
they could not be converted (see Supplementary Table 1 for 
additional details).

All the information managed by EvoPPI, including inter-
actomes, species, and gene data, is stored in a relational 
database. This allows fast information retrieval, reducing the 
time required to process user queries. The current version of 
EvoPPI also includes support for user registration, allowing 
users to keep and manage their query results.

2.2 � EvoPPI architecture

EvoPPI is composed of two different applications that act 
as the front-end and the back-end components, respectively. 

The front-end application is a web application that was 
implemented using the Angular v6 framework2 in combina-
tion with the Angular Material v6 library3 and the Material 
Dashboard Angular 5 template,4 for a richer user interface. 
The back-end application was implemented using the Java EE 
7 platform.5 This application provides a RESTful API [26] 
with resources to access data and to request PPIs calculation. 
Communication between front-end and back-end applications 
is done using Asynchronous JavaScript and XML (AJAX) 
and JavaScript Object Notation (JSON) for data encoding.

EvoPPI relies on BLAST to perform sequence alignment 
between the gene sequences of distinct species, to identify 
orthologous/paralogous genes. As explained before, this 
identification is needed to enable a comparison of interac-
tomes belonging to distinct species. To avoid installation 
and configuration issues, a Docker6 container was created 
with a BLAST v2.6.0 installation. This container is invoked 
from the back-end application using the docker-java v3.0.13 
library.7

Figure 1 represents the general architecture and deploy-
ment of EvoPPI, including the components described above. 
EvoPPI is currently running in a WildFly v10.1.0 applica-
tion server8 and uses a MySQL v5.7 database management 
system9 to store the information.

Fig. 1   Architecture of EvoPPI, 
showing its main components 
and their interactions
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1  https​://www.unipr​ot.org/help/api_idmap​ping.

2  https​://angul​ar.io/.
3  https​://mater​ial.angul​ar.io/.
4  https​://www.creat​ive-tim.com/produ​ct/mater​ial-dashb​oard-angul​
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7  https​://githu​b.com/docke​r-java/docke​r-java.
8  http://wildf​ly.org/.
9  https​://www.mysql​.com/.
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EvoPPI 1.0 is publicly accessible at http://evopp​i.i3s.up.pt. 
It is an open-source software distributed under a GPLv3 
license. The source code of the front-end application is pub-
licly available at https​://githu​b.com/sing-group​/evopp​i-front​
end, while the source code of the back-end application is 
available at https​://githu​b.com/sing-group​/evopp​i-backe​nd. 
Finally, the Docker container with the BLAST installation can 
be found at https​://hub.docke​r.com/r/singg​roup/evopp​i-blast​/.

2.3 � Interactome Comparison Algorithms

EvoPPI allows users to compare the interactions of a gene 
(i.e., the query gene) in two or more interactomes, which 
may belong to the same or distinct species. Depending on 
this aspect, the algorithm used to perform the calculations 
is different.

2.3.1 � Same Species Comparison

To retrieve the interactions for a given query gene in two or 
more interactomes belonging to the same species, the fol-
lowing algorithm is applied:

1.	 Interactions calculation step: for each query interac-
tome, retrieve from the database the interactions where 
the query gene is present. EvoPPI allows specifying the 
interaction level, which is the degree of distance (up 
to a maximum of three) to retrieve transitive interac-
tions. Therefore, if the degree is greater than one, after 
retrieving the genes that interact with the query gene, 
the process is repeated and the genes that interact with 
these degree 1 genes are also retrieved. This process is 
repeated as many times as the degree specified by the 
user and it results in a set of interactions, each one con-
taining the interacting genes, the degree and the associ-
ated source query interactome.

2.	 Interactions completion step: iterate over all the interac-
tions resulting from the previous step in order to check 
if they are present in the other query interactomes but 
were not discovered in the previous step. If so, add them 
with an unknown interaction level (i.e., − 1).

For example, as Fig. 2 illustrates, the following situation 
may occur: using an interaction level of 3 in the first step of 
the algorithm, the query gene A gives interactions A → B, 
B → C, and C → D in Interactome 1, but only the interaction 
A → B is present in Interactome 2. Although the interaction 
C → D is present in Interactome 2, it cannot be discovered 
because B → C does not exist. This completion step adds 
this kind of interaction with an interaction level of − 1, to 
indicate that the interaction is present in the interactome but 
the degree is unknown.

2.3.2 � Distinct Species Comparison

Queries where interactomes belong to two distinct species 
follow a more complex process. In this case, the name refer-
ence interactomes is given to the interactomes of the species 
(i.e., reference species) to which the query gene belongs, and 
the name target interactomes is given to the interactomes of 
the second, distinct species (i.e., target species). To retrieve 
the interactions for a given query gene in two or more inter-
actomes belonging to two distinct species, the following 
algorithm is applied:

1.	 Interactions calculation step in reference interactomes: 
apply the same procedure described in the interaction 
calculation step for same species comparisons in all ref-
erence interactomes.

2.	 Interactions completion step in reference interactomes: 
apply the same procedure described in the interactions 
completion step for same species for all the interactions 
obtained in the previous step.

3.	 Query gene BLAST: perform a BLAST query of the 
query gene and all genes involved in the set of inter-
actions obtained in the previous step against the target 
genome to find their orthologous/paralogous genes.

4.	 Interactions calculation step in target interactomes: if 
the query gene has any orthologous/paralogous genes in 
the target species, apply the same procedure described 
in the interaction calculation step for same species com-
parisons to all its orthologous/paralogous genes in all 
target interactomes. As a restriction, interactions that 
do not have an orthologous/paralogous gene among the 
genes retrieved in step 1 are discarded.

5.	 Interactions completion step in reference interactomes: 
apply the same procedure described in the interactions 
completion step for same species for all the interac-
tions obtained in the previous step. In this case, the 
interactions used as reference are those obtained in 
step 1 (i.e., reference interactions), instead of those 
obtained in step 4 (i.e., target interactions). BLAST 
results obtained in step 3 are used to determine the 

A B C

A B C

Interactome 1:

Interactome 2:

D

D

1

query gene

1

2 3

-1

Fig. 2   Exemplification of the Interactions completion step. The inter-
actions set is completed by adding C → D (in red), discovered in the 
Interactome 2 by this second step
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orthologous/paralogous relationships between refer-
ence and target interactions.

It is important to note that this algorithm will only 
retrieve interactions for those genes (or their corresponding 
orthologous/paralogous) discovered in the first step.

2.4 � EvoPPI User Interface

EvoPPI provides an easy-to-use user interface specially 
designed for users without advanced bioinformatics 
skills. The landing page of EvoPPI (Fig. 3a) allows users 
to access the query interface, supporting the two types 
of analysis: one panel to perform same species compari-
sons (Fig. 3b) and another for distinct species compari-
sons (Fig. 3c). In both cases, users start by selecting the 
species, interactomes, and the query gene to perform the 
search. Despite EvoPPI using Gene-ID identifiers as the 
main identifier for the genes, it also keeps other alternative 

names. When a user starts to write a gene name, EvoPPI 
looks for that text in the gene identifier and for alternative 
names, to show a list of genes from which the user can 
select the query gene. In addition to these parameters, the 
interaction level parameter can be used in both query types 
to select the maximum degree of distance of the retrieved 
interactions.

The distinct species query form (Fig. 3b) also includes 
four parameters to configure the BLAST execution and filter 
the results. These parameters are: (1) the number of descrip-
tions (BLAST max_target_seqs parameter); (2) the expect 
value (BLAST evalue parameter); (3) the minimum length of 
alignment blocks; and (4) the minimum identity, expressed 
as a percentage.

Although queries for the same species are completed in a 
few seconds, queries across species can take minutes or even 
hours, due to the BLAST sequence alignment step. Keeping 
this in mind, EvoPPI was designed to perform the queries 
asynchronously, so that users can launch a query, leave the 

Fig. 3   Screenshots of EvoPPI: a the EvoPPI landing page, which 
gives access to the main functionalities (queries, results management 
and user login), b the query configuration panel for distinct species 

comparison, including the BLAST parameters, and c the query con-
figuration panel for same species comparisons
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application, and return later to check the execution status. To 
do so, EvoPPI implements three mechanisms: (1) it gener-
ates a unique URL for each query that users can use to return 
at any time to the query result; (2) it stores the results in the 
users’ browser storage so that they can be reopened later; and 
(3) it stores the queries in the EvoPPI database when users 
are logged in the web application.

The query results are listed in the results management 
interface (Fig. 4a). Each query result is presented in tabular 
(Fig. 4b) and graph formats (Fig. 4c). The tabular view lists 
the interactions, including the gene identifiers and names, 
and the interaction degree in each interactome, while the 
graph view represents the results as an undirected graph, 

where nodes are genes and edges are interactions. Differ-
ent colours are used to represent the presence or absence of 
genes and interactions in the interactomes, while node sizes 
are used to represent the number of interactions for each 
gene. In both views, genes can be clicked to view detailed 
information (Fig. 4d), including the gene identifier, alterna-
tive names, the protein sequence and, for distinct species 
queries, the related results of the BLAST alignment.

Finally, the results can be exported in several formats, 
including a comma-separated values (CSV) file with 
the retrieved interactions, FASTA files with the protein 
sequences of the interactomes, and the interactions graph in 
different image formats.

Fig. 4   Screenshots of the results management interfaces: a the EvoPPI results list, separated in distinct species and same species; b tabular 
results view of a distinct species query involving the gene ADH1A; c graph view for the same gene; and d additional gene information
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3 � Results and Discussion

3.1 � Databases

Currently, EvoPPI incorporates data from 12 databases for 
10 species, for which a minimum of 100 unique interac-
tions have been reported, totalling 52 PPI datasets (Sup-
plementary Table 1). EvoPPI uses Gene-ID as the main 
feature by which the corresponding proteins are identified 
in the database. Since not all publicly available databases 
use Gene-ID to identify the interacting proteins, data 
from those databases had to be converted using the Uni-
ProtKB ID mapping API, as described in the Material and 
Methods section. The average rate of conversion is high 
(87.9%), although it never reaches 100% (Supplementary 
Table 1).

The relationship between the number of unique interac-
tions and the number of unique proteins for the 52 datasets 
is presented in Fig. 5. A power function with a coefficient 
of 0.6485 fits the data well (R2 = 0.94). The six largest data-
sets, namely Caenorhabditis elegans CCSB, and H. sapiens 
PINA2, mentha, HitPredict, BioGRID, and HIPPIE, have a 
much larger number of unique interactions than what was 
expected based on the number of unique proteins. This could 
suggest that: (1) smaller datasets are biased towards proteins 
showing many interactions; (2) the largest datasets include 
an important fraction of false positive interactions; or (3) 
although all data was downloaded from the main PPI data-
bases, the largest datasets may include non-PPI interactions, 
such as gene interactions. The latter is likely the case for the 
CCSB C. elegans interactome, which integrated the WI8 
interactome with evidence for functional relationships based 

on mRNA co-expression data available in WormBase12, 
RNAi phenotypes from RNAiDB24, genetic interactions 
curated in WormBase12, interolog interactions, and pro-
tein–protein interactions from the literature curated dataset 
[10].

The number of PPI in the datasets overlaps only partially, 
as shown in Fig. 6, for the nine polyQ disease proteins and 
for the five largest datasets (PINA2, Mentha, HitPredict, 
HIPPIE, and BioGRID 3.4). Furthermore, the database with 
the highest number of PPIs differs from protein to protein. 
Therefore, the integration of all databases is needed to obtain 
all PPI available for a particular protein. This can be per-
formed easily and quickly using the EvoPPI “Compare same 
species” operation.

3.2 � Case Study

PolyQ-containing proteins are enriched in protein complexes 
[27, 29]. Moreover, polyQ regions are usually located close 
to coiled-coil regions suggesting that they play a role in 
protein interaction regulation [27–29]. Therefore, it is not 
surprising that polyQ proteins have more PPI partners than 
non-polyQ proteins, and that they have a higher tendency to 
interact with other polyQ proteins than non-polyQ proteins 
[27]. In humans, 60 polyQ proteins have been described in 
the complete proteome [30]. Of those, nine of them, when 
expanded, cause neurodegenerative polyQ diseases [25], 
namely AR, ATN1, ATXN1, ATXN2, ATXN3, ATXN7, 
CACNA1A, HTT, and TBP. These nine proteins could be 
functionally related, despite not having any sequence homol-
ogy. Therefore, our case study compares the interactors of 
these nine proteins using the EvoPPI web application.

Fig. 5   The relationship between 
the number of unique interac-
tions and the number of unique 
proteins for the 52 datasets used 
(Supplementary Table 1)
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Four interactions are found among polyQ disease pro-
teins, namely HTT/TBP, AR/TBP, ATXN1/ATXN2 and 
ATXN7/TBP, which suggests that different proteins partici-
pate in the same biological pathways. Nevertheless, none 
of the proteins reported in the databases interacts with all 
nine wild-type polyQ disease proteins (Table 1). Indeed, the 
majority of the interactors bind to a single polyQ disease 
protein. This is an interesting observation given that some of 
the datasets considered in this study may be reporting inter-
actions that were detected with proteins having an extended 

pathological polyQ only, possibly biasing the results towards 
an enrichment of common interactors. This suggests that: (1) 
these proteins participate in different biological processes, 
and/or (2) there are not many proteins that bind non-specif-
ically to polyQ disease proteins with the help of the polyQ 
region. Only Polyubiquitin-C (UBC), a protease and RNA-
binding protein, is reported to bind to eight out of the nine 
polyQ disease proteins (Supplementary Table 2). Neverthe-
less, based on the data available at the 14 H. sapiens data-
sets, UBC likely interacts with more than 50% of all human 

Fig. 6   The number of PPI in the PINA2 (in blue), Mentha (pink), 
HitPredict (green), HIPPIE (yellow), and BioGRID 3.4 (brown) data-
sets for: a androgen receptor (AR); b atrophin-1 (ATN1); c ataxin 

1 (ATXN1); d ataxin 2 (ATXN2); e ataxin 3 (ATXN3); f ataxin 7 
(ATXN7); g calcium voltage-gated channel subunit alpha1 A (CAC-
NA1A); h Huntingtin (HTT); and i TATA-binding protein (TBP)
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proteins. There are 14 other proteins that bind to at least 4 
of the 9 polyQ disease proteins, namely SUMO1, SUMO2, 
VCP, PIAS1, CREBBP, EP300, GAPDH, EFEMP2, TP53, 
TBP, UBE2I, CASP1, CASP3, and NCOR1 (Supplementary 
Table 2). The list of the 15 interactors that interact with at 
least 4 of 9 polyQ disease proteins is enriched, according to 
PANTHER10 in the molecular function “ubiquitin protein 
ligase binding” (6 proteins: SUMO1, SUMO2, UBC, PIAS1, 
TP53 and VCP; fold enrichment = 17.60; FDR = 9.07E−04). 
At least one of the six proteins that belong to the “ubiquitin 
protein ligase binding” GO term interacts with each of the 
polyQ disease proteins in this study (6, 2, 5, 3, 4, 4, 1, 5 
and 3 interacts with AR, ATN1, ATXN1, ATXN2, ATXN3, 
ATXN7, CACNA1A, HTT and TBP, respectively; Supple-
mentary Table 2). This distribution may reflect the num-
ber of large-scale studies dedicated to each of the proteins. 
Therefore, this observation suggests that ubiquitination is 
an important factor in the regulation of these nine polyQ 
disease proteins. Indeed, regulation of the ubiquitination 
machinery has been indicated as a potential therapeutic 
target in polyglutamine diseases [31–34]. These enzymes 
target proteins for degradation both by the proteasome and 
by autophagy [31–34].

Of the 261 proteins that interact with at least two polyQ 
disease proteins, as many as 42.1% have at least 1 paralogous 
protein, with an average of 2.44 (Supplementary Table 2). 
Members of the histone H3 family have as many as ten par-
alogous in this list. It should be noted that there is a clear 
co-occurrence of paralogous proteins. For instance, for the 
AR, only 20% of proteins with a paralogous do not show a 
presence/absence agreement with all other paralogous pro-
teins. When comparing the interactors of the polyQ disease 
proteins, in ten cases the number of common interactors is 
lower than expected by chance, again suggesting that most 

polyQ disease proteins are involved in different functional 
networks (Table 2). For transcription factors AR/TBP, the 
number of common interactors is larger than expected by 
chance (Table 2), suggesting that either they are involved in 
the same biological pathway, or that many proteins are bind-
ing due to the presence of a polyQ region, which facilitates 
the interaction with other proteins. To address this issue, 
we used the EvoPPI BLAST search approach to identify 
orthologous/paralogous proteins in M. musculus (number of 
descriptions of 1; minimum expect value of 0.05; minimum 
length of alignment block of 40; minimum identity of 40%; 
interaction level 1). We have observed that, since the latter 
species shows shorter polyQ tracts at the N-terminal region 
of both AR and TBP proteins, as expected (Supplementary 
Fig. 1A, B), there are no common interactors when compar-
ing TBP and AR (Fig. 7). 86% of the proteins that interact 
with TBP in M. musculus interact, and were identified as 
orthologous/paralogous of proteins interacting with TBP in 
humans, interact only with TBP in humans as well. Moreo-
ver, 67% of the proteins that interact with AR in M. muscu-
lus, and were identified as orthologous/paralogous of pro-
teins interacting with AR in humans, interact only with AR 
in humans as well (Fig. 7). These observations suggest that, 
in humans, the sample size for both TBP and AR is already 
large enough to identify the majority of the proteins that 
interact with both of them. When we compare the number 
of common interactions and unique interactions in humans 
(48 vs. 479) and house mice (0 vs. 30) the proportion is 
non-significant (p = 0.10). The non-significant proportion in 
the number of common interactors and unique interactors in 
humans (where both genes encode proteins with polyQ) and 
in house mice (where there is either no polyQ or the size of 
the polyQ is shorter than in humans; Supplementary Fig. 1A, 
B), suggests that the larger number of common interactors 
between the two proteins could be attributed mainly to the 
involvement of these proteins in common biological path-
ways. Nevertheless, despite the large number of reported 
interactors for both proteins in humans, there are only 12.8% 
and 24.1% of common interactors for AR and TBP, respec-
tively. Moreover, given the much smaller number of interac-
tors reported for both M. musculus AR and TBP than for H. 
sapiens, this test may lack statistical power. This possibility 
must be considered since, for both humans and yeast, it has 
been reported that polyQ proteins have more PPI partners 
than non-polyQ proteins [27]. This tendency is observed 
in all species analysed in our case study having more than 
10,000 interactions reported in at least 1 interactome data-
base (H. sapiens, M. musculus, R. norvegicus, B. taurus, D. 
melanogaster, and C. elegans; Supplementary Fig. 2A–F, 
respectively), although only for H. sapiens, M. musculus, 
and D. melanogaster, polyQ proteins have a significantly 
larger number of interactors than non-polyQ proteins (Sup-
plementary Fig. 2). Nevertheless, polyQ proteins tend to 

Table 1   Distribution of the proteins of the nine polyQ disease inter-
actomes according to presence in one or multiple polyQ disease pro-
teins

Number of polyQ disease proteins Number of 
interacting 
proteins

1 1213
2 196
3 50
4 10
5 3
6 1
7 0
8 1

10  http://panth​erdb.org.

http://pantherdb.org
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be transcription factors [27, 29] and these could have more 
interactors than the remaining protein categories. There-
fore, we also addressed whether the proteins that function 
as transcription factors have more interactions than those 
that (1) are not transcription factors and (2) have, or not, 
a polyQ region. When this is taken into account, a clear 
effect of the polyQ on the number of interactors is observed 
in humans only. Therefore, we cannot exclude the effect of 
the polyQ region on the large number of common interac-
tors between AR and TBP in humans, despite the surprising 
result obtained for the other species.

4 � Conclusions

This paper has presented EvoPPI, an open-source web appli-
cation tool that enables users to compare the interactions 
of a protein across interactomes from the same or different 
species. To compare interactomes from different species, 
EvoPPI uses a versatile BLAST search approach, which, we 

Table 2   Comparisons of the interactors of the polyQ disease proteins

Significant comparisons are highlighted in bold (Fisher’s exact test; p < 0.05). Significant comparisons where the number of common interactors 
is lower than expected by chance are in italics, and the significant comparison where the number of common interactors is higher than expected 
are in bold. The number of proteins that interact with at least two reference proteins is indicated in parentheses
*Status: C common, OO only in one, N in none

Proteins Status* ATN1 ATXN1 ATXN2 ATXN3 ATXN7 CACNA1A HTT TBP (68)

AR (112) C 10 28 9 15 8 7 40 48
OO 102/45 84/66 103/18 97/28 104/49 105/39 72/69 64/20
N 104 83 131 121 100 110 80 129

ATN1 (56) C 23 7 7 14 17 11 1
OO 32/71 48/20 48/36 41/43 38/29 44/98 54/67
N 135 186 170 163 177 108 139

ATXN1 (94) C 10 7 21 6 39 10
OO 84/17 87/36 73/36 88/40 55/70 84/58
N 150 131 131 127 97 109

ATXN2 (29) C 5 4 4 5 4
OO 22/38 23/53 24/43 22/104 23/64
N 196 181 190 130 170

ATXN3 (43) C 8 4 26 6
OO 35/49 39/42 17/83 37/62
N 169 176 135 156

ATXN7 (57) C 18 20 9
OO 39/28 37/89 48/59
N 176 115 145

CACNA1A (47) C 8 3
OO 38/101 43/65
N 114 148

HTT (109) C 18
OO 91/50
N 102

Fig. 7   H. sapiens (in blue) and M. musculus (in green) AR and TBP 
interactors
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believe, is a distinctive feature of EvoPPI, since comparable 
tools only identify orthologs with the same name across spe-
cies. The current version of EvoPPI also includes support 
user registration, allowing users to retain their query results 
for future management.

We have also shown the use of EvoPPI to compare the 
interactomes of the 9 human polyQ disease genes (those 
proteins that, when the polyQ tract is expanded, cause neu-
rodegenerative disorders) in 14 datasets. Although polyQ 
genes show a large number of protein interactions, we found 
only a small set (15) that are common to at least four of these 
polyQ disease genes. Of these 15 proteins, 40% are involved 
in ubiquitin protein ligase-binding function. Ubiquitin/pro-
teasome system dysfunction has been suggested in a range 
of polyglutamine neurodegenerative diseases [31–34]. Using 
the unique EvoPPI feature Compare different species, the 
comparisons of the human and mouse AR and TBP interac-
tomes revealed a significant excess of common proteins. In 
humans, and for AR and TBP only, we cannot confidently 
discard the polyQ region as the cause of the observed excess 
of common interactions. For the other seven polyQ disease 
proteins, no excess of common interactors was observed.

The current development of EvoPPI includes, but it is 
not limited to: (1) the creation of a management interface to 
enable users to include new interactomes and species in the 
EvoPPI database, (2) the addition of new data visualization 
and analysis options, and (3) an improvement of the distinct 
species comparison algorithm to make it more complete and 
efficient.
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