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Abstract
Neuropeptides (NPs) are short secreted peptides produced mainly in the nervous system and digestive system. They activate 
signaling cascades to control a wide range of biological functions, such as metabolism, sensation, and behavior. NPs are 
typically produced from a larger NP precursor (NPP) which includes a signal peptide sequence, one or more NP sequences, 
and other sequences. With the drastic growth of unknown protein sequences generated in the post-genomic age, it is highly 
desired to develop computational methods for identifying NPP rapidly and efficiently. In this article, we developed a pre-
dictor for NPPs based on optimized sequence composition of single amino acid, dipeptide, and tripeptide. Evaluated with 
independent data set, the predictor showed excellent performance that achieved an accuracy of 88.65% with AUC of 0.95. 
The corresponding web server was developed, which is freely available at http://i.uestc​.edu.cn/neuro​pepti​de/neuro​pp/home.
html. It can help relevant researchers to screen candidate NP precursor, shorten experimental cycle, and reduce costs.
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1  Introduction

The discovery of neuropeptides (NPs) is due to the ground-
breaking progress in physiology, endocrinology, and bio-
chemistry during the last century. NPs are widely distributed 
in both the peripheral and central nervous system [1]. The 
functions which NPs mediated cover not only neural activ-
ity, but also various aspects of non-neuronal cells, including 
food uptake, energy consumption, and social behavior [2, 
3]. Mature NPs are stored in dense-cored vesicles and con-
trolled release upon a stimulus [4]. It activates a signaling 
cascade by binding G protein-coupled receptor commonly 
[5].

In general, short bioactive NPs are generated from a 
series of cleavages of a larger neuropeptide precursor 
(NPP) which rely on proteolytic enzymes and maturation 
events, such as C-terminal amidation, post-translational 

modifications. Notably, the cleavages mostly occur at basic 
residues (Gly, Lys, and Arg) motifs that flank the NPs [6, 
7]. Meanwhile, signal peptides in N-terminal are important 
region which control the NP to the secretory pathway [8]. 
They are cleaved off during the translocation of NP through 
the endoplasmic reticulum membrane. The common feature 
of signal peptides is enrichment of hydrophobic residues.

The NP characterization depends on mass spectrometry 
which can provide high-quality data, but this approach is 
time-consuming and labor intensive [9–11]. As the complete 
genome sequence of many animals now becomes available, 
more effective and faster method is required to identify all 
potential NPs and their precursor. Several bioinformatics 
methods have been developed to identify NPPs based on 
sequence conservation traits [12, 13]. For most cases, due to 
the function of a particular peptide only depends on a short 
conserved motif, the peptide precursor sequence may show 
no significant sequence similarity [14]. In this study, we 
assume that specific monobasic, dibasic, or tribasic amino 
acid compositions which embody cleavage sites and signal 
peptides and other motifs will contribute to recognize NPPs. 
From this hypothesis, we aim to construct a predictor based 
on sequence compositions to identify NPPs and then provide 
a web server to make it easier to use.
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2 � Materials and Methods

2.1 � Data Sets

The NPP data set and protein unrelated to NPP (UnNPP) 
data set were requisite for training the model. The NPP data 
set was provided by SwissProt [15] and NeuroPedia [16]. We 
searched SwissProt with the “keyword” term “Neuropeptide 
(KW-0527)” but not “Receptor [KW-0675]” and collected 
all the results. We also downloaded all 270 human neuropep-
tide sequences from the NeuroPedia database. Then, the data 
from the two sources were merged into one data set. Those 
proteins whose sequence status is fragment were removed, 
due to they could be mature neuropeptide greatly.

For preparing a data set with high quality, the follow-
ing procedure was executed: (1) Protein sequences includ-
ing unclear residues (“B”, “J”, “X” etc.) were removed. (2) 
The CD-Hit software [17] was applied to keep the sequence 
similarity of each NPP sequence below 90%. (3) The protein 
should have a clear gene source, it means that the protein 
entry contains “GN” information.

We constructed candidate UnNPP pool through extract-
ing UnNPPs from SwissProt by excluding the sequences 
related to neuropeptide. After excluding peptides contain-
ing ambiguous residues, the CD-Hit with identity of 0.9 was 
also performed. We randomly selected UnNPPs with the 
same number of NPP from candidate UnNPP pool as UnNPP 
data set. During the selection of UnNPP, it is ensured that 
the UnNPP data set has the same length distribution with 
the NPP data set.

2.2 � Quantitative Features

Extracting a set of typical features is a crucial step in the 
process of pattern recognition. Single amino acid composi-
tion (AAC) [18], dipeptide composition (DPC) [19], and 
tripeptide composition (TPC) [20] have achieved excellent 
performances in the field of pattern classification. To estab-
lish the best model, each individual peptide sequence in data 
sets can be characterized by these three types of quantitative 
features. The AAC, DPC, and TPC defined as the following 
equations:

AAC(i) =
x(i)∑20

i=1
x(i)

DPC(j) =
y(j)∑400

j=1
y(j)

TPC(n) =
p(n)∑8000

n=1
p(n)

where i denote one of the 20 amino acids, j can be any 
one of the 400 dipeptides, and n represents one out of the 
8000 tripeptides. x(i), y(j), and p(n) are their counts in each 
sequence, respectively. Thus, each sequence in the data set 
is quantized by three feature encoding schemes, AAC, DPC, 
and TPC. We also constructed a combined peptide com-
position (CPC) including all 8420 features including AAC, 
DPC, and TPC. The selection of optimal combined peptide 
composition (OCPC) was accomplished as follows.

2.3 � Selecting the Optimal Feature Set

In the model building process, existence of irrelevant and 
noisy features can result in poor model performance and 
increased computational complexity. To select the optimal 
reduced subsets, feature selection technique based on analy-
sis of variance (ANOVA) [21] was performed. The follow-
ing feature optimal steps [22] were conducted to construct 
OCPC against CPC: (1) sorted each feature based on F-score 
derived from ANOVA in descending order; (2) added a fea-
ture to the feature set one by one; (3) calculated accuracy for 
each new feature set using five-fold cross validation; and (4) 
selected the feature set with the highest accuracy as OCPC 
subset.

Based on the ANOVA theory, the significance of 
sequence compositions can be illustrated by calculating the 
F-score [23] which can be expressed by

where ( S2
B
 ) and ( S2

W
 ) denote the inter-class and intra-class 

variance, respectively. They can be defined as

where dfB and dfW are degrees of freedom for sample vari-
ance between groups and within groups, defined as K-1 and 
M-K, respectively; K and M represent the number of groups 
and all samples; mi stands for the number of samples in ith 
group; f

�
(i, j) means sequence composition frequency for the 

jth sample in the ith group; and � ranges from 1 to 8420 for 
CPC. In our case, K and M are equal to 2 and 800, and both 
m1 and m2 are 300. The value of F(�) shows the relevance 
between the � th feature and variable between groups. The 
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greater value of F(�) is, the more importance it is to classify 
groups.

2.4 � Constructing Support Vector Machine Models

Support vector machine (SVM) is an effective machine-
learning methods for supervised pattern recognition, based 
on statistical learning theory, and has been widely used in 
the field of bioinformatics [24–32]. The basic idea of SVM 
is to map the low dimensional data into a high dimensional 
feature space through the kernel function, and then find the 
hyperplane with the largest separating distance between two 
groups. In general, four kernel functions, including radial basis 
function, polynomial function, sigmoid function, and linear 
function, will be selected to perform the prediction. Since the 
excellent effectiveness of radial basis function, we utilized it as 
kernel function in the current work. The two parameters as the 
kernel parameter γ and penalty parameter C were determined 
via grid search approach. In this report, the SVM model was 
implemented using the LibSVM software [33]. For the sake of 
the best optimal prediction, four models are trained with AAC, 
DPC, TPC, and OCPC, respectively.

2.5 � Evaluating Performance

To evaluate the performance of model, four common metrics 
including sensitivity (Sn), specificity (Sp), accuracy (Acc), and 
Matthews correlation coefficient (MCC) were calculated and 
defined as follows:

Sn =
TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + FN + TN + FP

Here TP, FP, TN, and FN denote true positive, false posi-
tive, true negative, and false negative, respectively.

Actually, MCC is a correlation coefficient between the 
expectation and prediction. Its value varies between − 1 and 
+ 1. The former represents an entirely opposite prediction, 
the latter indicates a perfect prediction, and 0 means no bet-
ter than random prediction.

Area under receiver operating characteristic curve (ROC), 
named AUC was also applied to measure the quality of the 
binary classification. ROC is a graphical plot that indicates 
the performance of a two-class classifier as its probability 
threshold is varied. It relates sensitivity and 1-specificity. 
The machine-learning researchers usually use AUC for 
model comparison as its performance does not depend on 
the choice of the discrimination threshold. For good model 
performance, the AUC value should be close to 1, and a 
value of 0.5 means a random guess.

3 � Results and Discussion

3.1 � Collection of Data Set

The NPP and UnNPP data sets were constructed from Swis-
sProt and NeuroPedia (Method 2.1). We removed repetitive 
sequences to construct a NPP union. After a serious of data 
cleaning, 407 NPPs were retained. The length distribution 
of NPP set showed that the lengths of majority NPPs were 
less than 500 aa, account for 96% (Fig. 1). To reduce the 
differences of sequence length, we removed the two NPPs 
longer than 1000 aa. The 405 UnNPPs less than 1000 aa 
was randomly selected to be UnNpp data set as described in 
“Materials and Methods” section.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

Fig. 1   Length distribution 
of the NPP set. The NPP set 
contains 407 NPPs. The lengths 
of majority NPPs were less 
than 500 aa account for 95.59%. 
Only two NPPs were longer 
than 1000 aa
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Finally, the NPP and UnNPP data sets both have 405 
sequences. For a comprehensive assessment, we divided all 
data into a training data set and an independent testing data 
set. We randomly selected 300 NPPs and 300 UnNPPs to 
constructed training data set. The testing data set was con-
sisted of the rest 105 NPPs and 105 UnNPPs.

3.2 � Optimization of Feature Set

Three feature encoding schemes were used in the current 
approach, including AAC, DPC, and TPC. In addition, each 
protein corresponds to a 20, 400, and 8000—dimension vec-
tor. The CPC feature set contains an 8420—dimension vec-
tor. As shown in Table 1, for five-fold cross validation, the 
model of SVM based on AAC reached accuracy of 88.83%; 
accordingly, those of DPC and TPC reached 91.83% and 
93.66%. It shows that TPC-based models are superior to 
AAC and DPC-based models in the classification. In addi-
tion, the optimized reduced OCPC subset was obtained fol-
lowing the “Materials and Methods” section. The model 
based on OCPC feature set had the highest accuracy as 
96.67% with the feature set which contains 1521 sequence 
compositions and achieved a better performance than Neu-
roPID [34]. Obviously, the feature selection technique can 
not only optimize the operation time, but also achieve better 
predictive performance.

3.3 � Evaluation of Different Models

We applied four feature sets described in Table 1 to con-
struct four models. Their performances were assessed in a 
rigorous way by the independence testing data set. No entry 
of the testing data set appeared in the training of the cur-
rent model. The results are given in Table 2. The accuracy, 
MCC, and AUC obtained by OCPC are 88.62%, 0.78, and 
0.95. They are slightly higher than corresponding values 
obtained by other models. Similarly, Fig. 2 shows that the 
AUC of red line which stands for OCPC model is higher 
than that of other three models. Finally, the OCPC feature 
set in training data set was chosen to construct model for 
further application.

3.4 � Analysis of Sequence Composition

We performed a feature analysis for sequence composi-
tion. Figure 3 shows a histogram for F-scores of AACs. 
The x-axis represents the 20 single amino acids, and the 
y-axis stands for the F-score for the corresponding AAC. 
As shown in Fig. 3, the residues I (Ile), V (Val), S (Ser), and 
R (Arg) have more variances between NPP and UnNPP. In 
those residues, I and V are hydrophobic residues which are 
enriched in signal peptide. In addition, R is the basic residue 
of cleavage sites [6].

The heat map analysis was also performed, as given in 
Fig. 4. The row of the heat map denotes the first amino acid 
of dipeptides, and the column represents the second one 
of that, respectively. Each square stands for one of the 400 
dipeptide composition and the color is quantized according 
to its F-score. The features in blue boxes are different in 
NPPs and UnNPPs, while those in red boxes are the same 
in two classes. It was observed that most of the F-score for 
the dipeptide composition are near 0 (in red box), indicating 
that a large proportion of features is redundant and irrelevant 
for NPP predictions. The top four significant DPCs were LL 

Table 1   Accuracy of SVM-based models trained with different fea-
tures via five-fold cross validation

Feature set Feature size Acc (%)

Single amino acid composition (AAC) 20 88.83
Dipeptide composition (DPC) 400 91.83
Tripeptide composition (TPC) 8000 93.66
Optimal combined peptide composition 

(OCPC)
1521 96.67

Table 2   Prediction performances of models with different feature sets 
for independent testing data set

Feature set Sn (%) Sp (%) Acc (%) MCC AUC​

AAC​ 89.52 84.76 87.14 0.7437 0.9403
DPC 83.81 90.48 87.14 0.7445 0.9453
TPC 83.81 92.38 88.10 0.7647 0.9452
OCPC 93.40 83.81 88.62 0.7759 0.9540

Fig. 2   ROC for models with different feature sets for independ-
ent testing data set. The curves with different colors stand for ROC 
of four SVM models. The AUC of red line which stands for OCPC 
model is 0.9540 and higher than that of other three models
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(Leu–Leu), RS (Arg-Ser), IK (Ile-Lys), and KR (Lys-Arg). 
Interestingly, KR is apt to be cleavage site. For CPC features, 
the most significant feature was GKR (Gly-Lys-Arg), which 
is the most common known consensus cleavage site [6]. The 
significant features that are not basic residues may provide 
new idea about sequence characteristics in NPPs.

3.5 � Web‑Server Guide

For the convenience of other researchers, a web-server 
publicly accessible named NeuroPP has been developed. 
The web interface of NeuroPP was coded with Perl and 
is very friendly to use. The home page of web-server is 
shown in Fig. 5. In the prediction page, user can submit 
protein sequences in FASTA format in the textbox directly, 
or upload a local sequence file to the server. After clicking 
the predict button, the prediction results will be returned as 
an online table. The “view more” and “download” options 

can be chosen to obtain more information. The users should 
notice that the web server aims to recognize NPPs less than 
1000 aa. At the result page, user can rank the results by 
length or probability to get more intuitive observation. The 
web server provides a useful interface to recognize unknown 
NPP.

4 � Conclusions

To identify the NPPs from poorly annotated proteomes, 
several tools have been explored using machine-learning 
methods. However, only models and methods are far from 
satisfactory. User-friendly web servers or stand-alone pro-
grams are urgently needed. Dan et al. [34] had developed a 
predictor called NeuroPID to predict the NPPs from meta-
zoan proteomes. This NeuroPID achieved 89–94% accu-
racy in cross validation, and this method did yield quite 

Fig. 3   Histogram for F-scores 
of 20 single amino acid com-
positions

Fig. 4   Heat map for F-scores of 
400 dipeptide compositions
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encouraging results. However, the prediction performance 
was not evaluated by an independent data set. Moreover, no 
online web server of the predictor is available now. In this 
study, we develop a predictor—NeuroPP to identify NPPs. 
In cross validation, NeuroPP achieved a higher accuracy 
with 96.67%. More than that, it showed better performance 
with accuracy of 88.62% and AUC of 0.9540 for an inde-
pendent testing data set. The tripeptide composition which 
is not considered in NeuroPID may contribute to slightly 
increased accuracy for identifying NPPs. In brief, NeuroPP 
can perform splendidly in recognition NPPs, save time and 
cost for relevant experimental biologist, and improve the 
annotation of proteomes.
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