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Abstract
Alteration of DNA methylation level in cancer diseases leads to deregulation of gene expression—silencing of tumor 
suppressor genes and enhancing of protooncogenes. There are several tools devoted to the problem of identification of 
CpG sites’ demethylation but majority of them focuses on single site level and does not allow for quantification of region 
methylation changes. The aim was to create an adaptive algorithm supporting detection of differentially methylated CpG 
sites and genomic regions specific for acute myeloid leukemia. Knowledge on AML methylation fingerprint helps in better 
understanding the epigenetics of leukemogenesis. Proposed algorithm is data driven and does not use predefined quantifica-
tion thresholds. Gaussian mixture modeling supports classification of CpG sites to several levels of demethylation. p value 
integration allows for translation from single site demethylation to the demethylation of gene promoter and body regions. 
Methylation profiles of healthy controls and AML patients were examined (GEO:GSE63409). The differences in whole 
genome methylation profiles were observed. The methylation profile differs significantly among genomic regions. The lowest 
methylation level was observed for promoter regions, while sites from intergenic regions were by average higher methylated. 
The observed number of AML related down methylated sites has not substantially exceeded the expected number by chance. 
Intergenic regions were characterized by the highest percentage of AML up methylated sites. Methylation enhancement/
diminution is the most frequent for intergenic region while methylation compensation (positive or negative) is specific for 
promoter regions. Functional analysis performed for AML down methylated or extreme high up methylated genes showed 
strong connection to the leukemic processes.

Keywords  Epigenetics · DNA methylation · Differentially methylated regions · DMR · Data driven algorithm · Gaussian 
mixture modeling · Acute myeloid leukemia · AML

Abbreviations
DNA	� Deoxyribonucleic acid
TSS	� Transcription start size
GMM	� Gaussian mixture modeling
AML	� Acute myeloid leukemia
Cdf	� Cumulative distribution function

1  Introduction

DNA methylation is one of gene expression regulatory 
mechanism, managed by epigenetic process of transfor-
mation cytosine into 5-methyl cytosine. This phenomenon 
occurs only in CpG sites, which is cytosine followed by 
guanine in a DNA strand [1]. The role of DNA methyla-
tion is best known for promoter (TSS) regions. Very high 
methylation level in this area leads to lock the initiation of 
transcription. There is also a hypothesis that high level of 
methylation in gene body region enhances elongation pro-
cess, but it is still not confirmed [2]. In cancer diseases, 
hypermethylation on promoter regions of tumor suppressor 
genes leads to inhibition of their expression and hypometh-
ylation on promoter regions of protooncogenes induces their 
higher expression [3].

The existing methylation data analysis methods base on 
parametric statistical tests for mean methylation levels [4]. 
The core of their functioning is detection of demethylated 
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CpG sites across the genome only. Demethylated regions are 
defined by amount of demethylated CpG sites in examined 
region [5]. dmpFinder in minfi package for bioconductor is 
the most popular method for identification of demethylated 
sites [6]. More advanced algorithms consider the dependen-
cies among CpG sites caused by their neighborhood [7].

The aim of the work is to develop a novel adaptive 
method of methylation data analysis that will lead to iden-
tification of demethylated both, single CpGs and regions of 
the genome. Proposed method is data driven and categorize 
methylation sites and genome regions as low, medium or 
high demethylated.

2 � Materials and Methods

The data set GSE63409 [8, 9] consists of raw methyla-
tion profiles measured by Infinium HumanMethylation450 
microarray (Illumina) from five hematopoietic stem cells’ 
samples from healthy donors (HSC) and 14 samples of 
CD34 + 38-cells from AML patients. Each data file con-
tains methylation level (defined as the fraction of methyl-
ated probes named as β value) for 485,512 CpG sites of 
human genome. β value ranges from 0 to 1, where 0 means 
no methylation and 1 means full methylation [10].

Data was normalized with R Bioconductor minfi pack-
age [6]. Following Illumina’s annotation system, each CpG 
site was assigned to its chromosome number, locus, probe 
sequence, RefGene Name and RefGene Accession (if pre-
sent), RefGene Group, and Relation to CpG Island. Since 
the whole genome is divided into several regions according 
to the gene structure: intergenic, TSS1500, TSS200, 5′UTR, 
1stExon, Body and 3′UTR regions, these classes were used 
to form RefGene Group’s options.

Kaplan–Meier estimate of empirical cumulative distribu-
tion function (ecdf) was computed for pooled samples [11]. 
Cohen’s d statistics was used to assess the effect size [12]. 
Verification of the hypothesis on consistency in methyla-
tion profiles was done by Cramer’s V coefficient [13]. The 
Hodges–Lehmann (HL) statistics was used to estimate the 
shift between the β value distributions of AML and healthy 
donors per each CpG site [14]. Its value denotes the level 
of demethylation. Significant positive value of HL statistics 
means site up methylation in AML patients, while negative 
is understood as site down methylation.

Gaussian mixture modeling (GMM) of HL distribution 
across genome was used to identify different demethyla-
tion levels. The expectation maximization (EM) algorithm 
for recursive maximization of the likelihood function was 
applied during the model fitting [15]. The initial values of 
GMM components were set according to the algorithm by 
Polanski et al. [16]. Bayesian information criterion (BIC) 
[17] was used for model selection. The data driven cutoff 

values were defined by maximum probability criterion and 
were equal to the intersection points of probability density 
functions of obtained Gaussian components.

Statistical testing was performed for each CpG site to 
detect significantly low or high methylated sites in both HSC 
and AML groups independently, and to identify up and down 
methylated sites in AML. Appropriate version of parametric 
t test or nonparametric one sample Wilcoxon or two sample 
Mann–Whitney tests were used to search for significantly 
demethylated sites (DMS) [18]. Results with p value less 
than 0.05 (in case of two-sided tests) or 0.025 (one-sided 
tests) were considered statistically significant at first step. 
In addition, using GMM based cut-off values, the hypoth-
eses on relatively low, medium and high AML up or down 
methylation were verified. Storey’s [19] technique was used 
to correct for multiple testing.

Stouffer’s method [20] for p value integration was used to 
translate demethylation p values from CpG site to genome 
region level. The procedure was applied for each gene asso-
ciated TSS and Body region. Functional analysis was per-
formed by checking on overrepresentation of Gene Ontology 
[21, 22] terms for the identified set of demethylated genes. 
TopGO package for Bioconductor was used to perform over-
representation analysis [23].

In addition, genome locations of CpG sites were exam-
ined for connection with long noncoding RNA, enhancers 
and transposable elements. Annotations for long noncod-
ing RNA were downloaded from GENCODE project [24] 
webpage, for enhancers come from FANTOM5 project [25] 
resources, and annotations for transposable elements were 
found in UCSC Genome Browser [26]. Demethylated TSS 
regions where checked for being microRNA targets with 
miRWalk2.0 tool [27, 28].

3 � Results and Discussion

3.1 � Whole Genome Methylation Profile

Pooled empirical cumulative distribution functions of whole 
genome CpG methylation level for both HSC and AML 
samples are presented in Fig. 1. The differences in whole 
genome methylation profiles between leukemia and healthy 
donors can be observed. The Cohen’s d statistics at the level 
of 0.2183 points out at small global effect size of AML on 
methylation profile. The HSC and AML distributions do not 
differ so much for small β values, but the distance between 
them increases for high methylation level (β > 0.5). The 
numbers for significantly low (β < 0.5) and high (β > 0.5) 
methylation sites in both groups presents Table 1, where 
CpG site was classified as low, medium, or high methylated 
depending on the results of Wilcoxon test with null hypoth-
esis on β = 0.5.
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The methylation profiles are in general consistent in 
both groups—majority of sites classified as low methyl-
ated in HSC were also classified as low methylated in 
AML (191,043 CpG sites), the same with high methylation 
status (213,470 CpG sites). Cramer’s V association coef-
ficient for obtained contingency table was equal to 0.6667 
(p value < 1e–6 [29]). The detailed inspection of Table 1 
reveals, that there are more CpG sites that are high meth-
ylated in AML and low methylated in HSC compared to 
the opposite situation with low methylation in AML and 
high methylation in HSC. It suggests that more genes are up 
methylated than down methylated in AML. That hypothesis 
requires further investigation.

3.2 � Methylation Level in Different Genomic Region

Following information included in Infinium array annotation 
files, each site was assigned to one of three classes: transcrip-
tion start site (TSS), gene Body, and Intergenic region. Sites 
with RefGene Group values: TSS1500, TSS200 or 5′UTR 
were included into TSS class, while sites annotated as: 
1stExon, Body or 3′UTR constructed gene Body class. The 
sites do not annotated to any of these regions were considered 

as Intergenic. Due to gene overlapping, CpG site can be 
assigned to several RefGenes and/or several RefGene Groups. 
Table 2 presents the site counts for each class.

The pooled empirical cdf for each class in both, HSC and 
AML groups were estimated. Figure 2 presents the obtained 
curves. Methylation level for AMLs is slightly higher than for 
HSC in case of whole genome analysis and for region-specific 
separate analyses as well. The methylation profiles differ sig-
nificantly among genomic regions. The lowest average meth-
ylation level is observed for sites from TSS regions, while 
sites from Intergenic regions are by average higher methyl-
ated. Methylation profile for gene Body sites does not differ so 
much from whole genome profile. That phenomenon is inde-
pendent of disease status and is seen in both, HSC and AML 
samples. The association between significantly low/medium/
high HSC and AML sites remains strong independently of 
genomic region.

If HSC are considered, more than 67% of CpG sites 
(128,145 of 189,524) located inside TSS region is low methyl-
ated, while only 19% of intergenic sites are from the same class 
(17,554 of 93,520). Similar trend is observed for AMLs—65% 
for TSS versus 16% for intergenic. The consistency of meth-
ylation profiles between HSC and AML data, as measured by 
Cramer’s V, keeps but is getting lower with stepping from TSS, 
gene body to intergenic regions (V equals to 0.6692, 0.6658, 
and 0.6119, respectively) (Table 3).

3.3 � Methylation Signature of AML

Standard approach in searching for differentially demethyl-
ated sites calls for statistical testing of the hypothesis on no 
mean/median difference in β methylation level between two 
populations (HSC and AML in our case). The results of such 
approach are presented in Table 4.

The false discovery rate (FDR) for identification of AML 
down methylated sites is high independently on genomic 
region. The observed number of significantly down methyl-
ated CpG sites does not substantially exceed the expected 
number by chance (2.50%). The lowest fraction was detected 
for sites from TSS regions (2.79%), while the highest fraction 
of CpG sites distinguishing AML from HSC was revealed for 
intergenic region. FDR value decreases drastically when the 
up methylation is considered. As for the down methylation, 
the highest fraction of significantly up methylated sites was 
observed for intergenic region (21.10%) with rough FDR esti-
mate equal to 8.14%. The number of TSS region-specific AML 

Fig. 1   Whole genome pooled empirical cdf for HSC and AML sam-
ples

Table 1   Number of low, medium, and high methylated CpG sites in 
HSC and AML samples

Methylation level AML

Low Medium High Total

HSC
 Low 191,043 14,739 2985 208,767
 Medium 5668 11,286 33,931 50,885
 High 2297 10,093 213,470 225,860
 Total 199,008 36,118 250,386 485,512

Table 2   Number of CpG sites assigned to each genome region

TSS region Gene body region Intergenic region

189,524 227,032 93,520
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up methylated sites was slightly less (15.03%) but still FDR 
stays at acceptable level.

Knowing that there are CpG sites significantly up methyl-
ated in AML, it is inviting to classify them as low, medium 
or high up methylated. To obtain the data driven cut-off 
values, a novel approach was developed. Hodges-Lehmann 
(HL) estimate, representing a shift between AML and HSC 
β level distributions, was calculated for each CpG site and 
the obtained distribution of HL values was modelled as a 
mixture of Gaussian components. Figure 3 presents both, 
HL distribution and its GM model, while Table 5 gives 
the parameters of mixture components—their mean value, 
standard deviation and mixture fraction (weight).

First four components describe 87.80% of signal 
in total, and are of similar weight, but their disper-
sion increases with increasing Δβ shift (estimated by 

component location statistics—mean value). The remain-
ing part is modelled by additional four components of 
significantly lower weights. Since the HL distribution is 
right skewed (skewness γ1 = 0.1408) Gaussian component 
located close to 0 value (no difference between HSC and 
AML) is accompanied by three additional components, 
centered at Δβ equal to 0.01, 0.03, and 0.04, respectively.

The maximum probability criterion [30] allowed to con-
struct a set of conditions needed for classification of site 
up methylation level. CpG site with statistically significant 
Δβ = βAML − βHSC > 0 are classified as “AML up methyl-
ated”, with Δβ > 0.0096 as “at least medium up methyl-
ated”, those with significant Δβ > 0.0372 as “at least high 
up methylated” and those with Δβ > 0.0819 as “extreme 
high up methylated”. Table 6 presents the results of site 

Fig. 2   Empirical cdfs for a TSS, b gene body, and c intergenic regions

Table 3   Distribution of low, medium, and high methylated CpG sites in HSC and AML for different genomic regions

Methylation AML

TSS region Gene body region Intergenic region

Low Medium High Total Low Medium High Total Low Medium High Total

HSC
 Low 121,393 5693 1059 128,145 73,494 5874 1300 80,668 13,548 3295 711 17,554
 Medium 2101 3578 8643 14,322 2417 4639 16,438 23,494 1154 3065 9893 14,112
 High 614 2741 43,702 47,057 1087 4661 117,122 122,870 559 2722 58,573 61,854
 Total 124,108 12,012 53,404 189,524 76,998 15,174 134,860 227,032 15,261 9,082 69,177 93,520

Table 4   Total and region-specific number of differentially demethylated sites—unadjusted p values (one-side tests, significance level α = 0.025)

Whole genome TSS region Gene body Intergenic region

Down Up Down Up Down Up Down Up

Significantly 
AML dem-
ethylated 
sites

15,260 
(3.14%)

84,073 
(17.32%)

5287 (2.79%) 28,492 
(15.03%)

7010 (3.09%) 39,622 
(17.45%)

3075 (3.29%) 19,737 
(21.10%)
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classification depending on the strength of AML versus HSC 
up methylation.

Intergenic region is characterized by the highest percent-
age of AML up methylated CpG sites independently of the 
up methylation level. For at least medium AML up methyla-
tion, its occurrence is 1.8 times more frequent than in TSS 
region. In case of at least high AML up methylation the 
ratio between number of events within intergenic and TSS 
is very similar and it is equal to 1.7. While extreme high up 
methylation is considered, the difference between genomic 
regions vanishes and the number of differentially methylated 
sites gets closer to the expected by chance.

3.4 � Dynamics of AML Specific Demethylation 
Processes

Complete knowledge on AML related demethylation profile 
requires investigation on the relation of that process to the 

initial level of CpG methylation in healthy donors. Table 7 
presents the connection between HSC low/medium/high site 
methylation status and results of AML versus HSC com-
parison study.

While the whole genome analysis is performed, third 
part of CpG sites are of HSC low and AML unchanged 
type (35.57%). The similar percentage (36.19%) is specific 
for HSC high and AML unchanged. Next the most frequent 
response is AML up methylation of HSC high methyl-
ated sites (8.78%). Frequencies of particular classes differ 
among genomic regions. The alterations in DNA methyla-
tion of TSS region varies from similar processes in body 
and intergenic regions. The most numerous class is defined 
as HSC low methylation and no impact of AML (57.33% 
of sites), whilst is much less frequent in body (29.26%) 
and intergenic regions (13.45% of sites). Whereas 
methylation dynamics in response to AML is investi-
gated two major types can be defined: (1) methylation 

Fig. 3   Distribution of HL statistics, its GM model, and the identified classes of low, medium, high and extreme high AML up methylation

Table 5   Parameters of the HL 
related GMM components

Com-
ponent 
ID

Mean value Standard deviation Weight Com-
ponent 
ID

Mean value Standard deviation Weight

1 0.0128 0.0189 0.2645 5 0.1792 0.1269 0.0597
2 0.0019 0.0051 0.2148 6 − 0.1248 0.1107 0.0358
3 0.0348 0.0334 0.2045 7 − 0.3006 0.1940 0.0158
4 0.0427 0.0748 0.1942 9 0.3818 0.1775 0.0107

Table 6   Number of significantly 
AML up methylated CpG sites 
depending on genomic region 
and up methylation level

Level of AML 
demethylation

Whole genome TSS region Gene body Intergenic

N % N % N % N %

Up methylation 84,073 17.32 28,492 15.03 39,622 17.45 19,737 21.10
At least medium 47,659 9.82 14,196 7.49 22,177 9.77 12,738 13.62
At least high 17,317 3.57 5577 2.94 7414 3.27 4734 5.06
Extreme high 8149 1.86 2716 1.43 3477 1.53 2142 2.29
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enhancement/diminution with two situations possible—
HSC low methylated site gets lower by down methylation 
in AML or HSC high methylated site is additionally up 
methylated in AML and (2) methylation compensation, 
where reverse process is observed—HSC low methylated 
site gets up methylated in AML or HSC high methylated 
gets down methylated in AML. These two reactions are 
almost balanced in whole genome analysis (9.88% in meth-
ylation enhancement/diminution versus 7.87% for methyl-
ation compensation), but they look different when separate 
regions are considered. In case of methylation enhance-
ment/diminution, the frequency equals to 6.36% for TSS 
sites, rises to 10.90% for gene Body located sites to almost 
double for intergenic region (13.46%). The reverse AML 
response process, named methylation compensation, is of 
similar frequency in Body and Intergenic regions (6.97 
and 6.92%, respectively) and 1.5 times increases for TSS 
region (9.54% if these sites).

AML up methylated sites located in TSS are primary 
low methylated in HSC. That finding is on the contrary to 
up methylation process within gene body and intergenic 
regions, where more up methylated sites is originally of 
high methylation level in HSC (56.96% for gene body region 
and 61.14% for intergenic region). From the other side, if 
only HSC low methylation sites are considered within each 
region independently, 25.38% of such sites in intergenic gets 
up methylated, and only 12.75% of TSS located sites. HSC 
high methylated sites get up methylated by AML at similar 
level, independently of genomic region (19.75% for TSS, 
18.37% for Body, and 19.51% for Intergenic). Since regions 
of high density of CpG sites (recognized as CpG island) are 
located within TSS regions, our results suggest that the most 
of modifications in DNA methylation caused by AML are 
probably inside CpG islands.

3.5 � From Demethylated Sites to Demethylated 
Genes

Translation from single site to gene level was done based 
on genomic CpG location and RefGene Name and RefGene 
Group values. The information on demethylation of all sites 
assigned to the TSS region of same gene was integrated by 
Stouffer method giving significance of up or down meth-
ylation of TSS region. Similar operation was done for gene 
Body regions. Infinium HumanMethylation450 microar-
ray covers 21,227 genes in total by having at least one site 
located in their TSS (20,852 genes) or Body region (20,527 
genes). Table 8 presents the summary of results integration. 
The complete list of demethylated genes is given in Sup-
plementary materials #1 and #2.

Among genes with extreme high up methylation of TSS 
are: SCG5, OXT, CRHBP, WDR52, RHD, MFSD6L, PCD-
HGA6, CMYA5, KRTCAP3, CCDC81, SIAH3, CYP26C1, 
LOC254559, HTRA4, ACOX2, SPACA1, RSPH10B and 
RSPH10B2, while the list of genes with down methylated 
TSS region includes among the other genes: PRF1, TRPM2, 
LOC150381, CCL3, IL10, CXCR3, CHRNA6, ESPNL, CFD, 
C17orf87, KRT17, GPR62, CD68, MIR320C1, LILRB3, 
CD19, PRDM11, CCL22, LOC387647, NKG7, TYR​ and 
ITGAX. If gene body is considered, the number of demeth-
ylated genes decreases, among extreme up methylated are: 
ELTD1, HTRA4, UCN, TMPRSS12 and C6orf146. Genes 
with down methylation in body region are: C22orf26, 
FUT4, NCF4, C1orf129, LCE3A, HCST, DNAJB5, OR9G1, 
OR9G9, OR6M1, C6orf164, GRAP2, OR8H3, and RNASE3.

TRPM2 gene TSS region is down-methylated in 
AML (Fig. 4). Higher expression of TRPM2 was observed in 
several tumor family diseases such as insulinoma, hepatocel-
lular carcinoma, prostate cancer, lymphoma, leukemia, and 
lung cancer cell lines. In these cases TRPM2 could enhance 
cell death [31]. ESPNL gene shows hypomethylation in 

Table 7   AML up and down 
methylation in relation to HSC 
methylation status

AML demethylation HSC low HSC medium HSC high
N N N

Whole genome Down 5374 2373 7513
No change 172,711 37,773 175,735
Up 30,682 10,779 42,612

TSS Down 2764 774 1749
No change 109,047 10,694 36,014
Up 16,334 2864 9294

Body Down 2189 1046 3775
No change 66,433 17,439 96,528
Up 12,046 5009 22,567

Intergenic Down 523 535 2017
No change 12,575 10,364 47,769
Up 4456 3213 12,068
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MDS (Myelodysplastic syndrome), which is often precur-
sor of AML. ESPNL gene is considered crucial in epige-
netic drift related to age in the pathogenesis of MDS and 
AML [32]. Down methylated gene, CFD, is main regula-
tor of complement activation and may advantage leukemia 
aggressiveness by suppression of the immune response to 
AML and regulation of stem cell function [33]. HTRA4 was 
detect as extremely high up methylated in TSS as well as in 
gene body regions. It is confirmed to be tumor suppressor 
gene and consider as biomarker in other cancers [34]. It was 

also described as down regulated in AML. Extremely high 
up methylated OXT gene characterizes decreased activity 
in Chronic Myeloid Leukemia, in comparison to healthy 
control. In addition, it has lower activity and expression in 
CD34+ cell (which were used in presented study) than in 
CD34− [35]. UCN gene, coding protein kinase C inhibitor, 
was detected as extreme high up methylated in gene body 
region. It was described as apoptosis inducing in Human and 
Leukemia Cells Independently of p53 in treatment of human 
myeloblastic leukemia [36]. MYOD1 found hypermethylated 

Table 8   Number of 
demethylated genes after p 
value integration with respect 
to demethylated TSS and gene 
body regions

AML associated demeth-
ylation at gene level

Unadjusted p values Storey’s corrected p values

Genes with 
demethylated TSS 
region

Genes with dem-
ethylated Body 
region

Genes with 
demethylated TSS 
region

Genes with 
demethylated 
Body region

N % N % N % N %

Down methylation 90 0.43 112 0.55 22 0.11 14 0.07
Up methylation 945 4.53 948 4.62 600 2.88 598 2.91
At least medium 385 1.85 422 2.06 187 0.90 162 0.79
At least high 105 0.50 115 0.56 53 0.25 25 0.12
Extreme high 31 0.15 35 0.17 18 0.09 5 0.02

Fig. 4   Methylation profiles for exemplary genes
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in AML [37] was detected by us as up methylated in TSS 
region. CDH1 and HIC1, mentioned as AML high methyl-
ated in [38] were detected as up methylated in TSS region 
(CDH1) and up methylated in gene body region (HIC1). 
DPP6 and ID4 identified as AML up methylated in promoter 
region and with their expression being down regulated [39] 
were detected in our study as medium up methylated in TSS 
region.

3.6 � Functional Analysis of Down and Up Methylated 
Genes

Gene Ontology based functional analysis was performed on 
TSS down methylated, TSS extreme high up methylated, 
Body down methylated and TSS extreme high up methylated 
gene sets separately. Summary of GO functional analysis is 
presented in Table 9. The complete information on signifi-
cantly overrepresented GO terms in given in Supplementary 
materials #3 and #4.

A lot of GO terms detected for TSS down methyl-
ated genes were connected to calcium ion transport and 
sequestering (for example: GO:0051283, GO:0051282, 
GO:0060402, GO:0070588, GO:0060401, GO:0010857, 
GO:0009931) which is consistent with literature findings 
where the alteration in calcium processes in AML is very 
commonly reported [40]. The second group of GO terms 
detected for TSS down methylated genes are processes con-
cerning immune system, which is concordant with AML as 
an immune system disease. Examples of these processes are: 
leukocyte differentiation (GO:0002521), hematopoietic or 
lymphoid organ development (GO:0048534), regulation of 
interleukin-1 production (GO:0032652), negative regulation 
of myeloid cell differentiation (GO:0045638), regulation of 
cytokine secretion (GO:0050707) and many more [41].

Some GO Terms overrepresented in TSS extreme high 
up methylated genes are connected to hormone metabolic 
processes, especially estrogen (GO:0042445, GO:0032355, 
GO:0071391, GO:0010817, GO:0046883, GO:0009914, 
GO:0042562). Estrogen receptor gene was described as 
cancer biomarker and despite it is not highly demethylated 
in our study, processes directly connected to it were detected 
[42, 43]. Some overrepresented GO Terms for the same gene 
group concern response for drugs and steroids, ex. alkaloids, 
alcohol, cocaine (GO:0042220, GO:0008202, GO:0097305, 
GO:0045472, GO:0043279). Affective of drugs is usually 
bigger in tumors [44].

Most of GO Terms detected for gene body regions could 
be found by chance. Only for extreme high up methylated 
genes in body region are some interesting results. Big part 
of them are connected to collagen processes (GO:0032964, 
GO:0010712, GO:0032965, GO:0010714, GO:0032967).

3.7 � Investigation for Long Noncoding RNAs, 
Enhancers, Transposable Elements 
and microRNAs

Annotation file with genome location of long noncoding 
RNAs contains 51,893 lincRNAs. In 13,266 of them, at least 
one CpG site was found. While more than one CpG site was 
found across one lincRNA, p value of them were integrated, 
analogously like in TSS or Body genome regions. Number of 
demethylated lincRNAs is presented in Table 10. Analysis 
for enhancers and transposable elements was performed in 
the similar way. 1827 of 32,216 enhancers contains at least 
one CpG site, while 29,174 of 575,600 transposable ele-
ments contains at least one CpG site. Number of demethyl-
ated enhancers and transposable elements is also presented 
in Table 10. The comprehensive lists are presented in Sup-
plementary material #5.

Investigation for microRNA targets was performed for 
sets of demethylated TSS regions: TSS down methylated and 
TSS at least high up methylated. Analysis of TSS extremely 
high up methylated regions did not give any results. TSS 
down methylated regions are targets for 271 microRNAs 
and TSS at least high up methylated regions are targets for 
222 microRNAs. The details can be found in Supplementary 
materials #5.

Table 9   Number of significantly overrepresented GO terms

Gene Ontology terms TSS down TSS 
extreme 
high

Body down Body 
extreme 
high

Biological process 113 74 8 56
Molecular function 13 4 7 2
Cellular component 25 7 10 0

Table 10   Number of 
demethylated lincRNAs, 
enhancers and transposable 
elements

AML demethylation Down 
methyla-
tion

Up methylation At least medium At least high Extreme high

linc RNAs 289 1368 814 269 112
Enhancers 74 262 143 53 19
Transposable elements 838 5325 3111 727 180



41Interdisciplinary Sciences: Computational Life Sciences (2018) 10:33–42	

1 3

3.8 � Comparison to dmpFinder Based Results

dmpFinder is a commonly used algorithm implemented in 
R Bioconductor (minfi) package. We compared our find-
ings to dmpFinder results. Our nonparametric method 
detects 99,333 CpG sites as demethylated while dmp-
Finder detects 97,596 CpG sites. 71,244 of them are the 
same CpG sites. After p value correction, dmpFinder 
detects 29,609 CpG sites and our algorithms identifies 
28,089 demethylated CpG sites, 18,367 of them were the 
same as from dmpFinder. Dice index [45] is equal to 64%.

4 � Conclusions

Novel method for methylation data analysis was proposed 
allowing for not only efficient detection of demethylated 
CpG sites but also demethylated genes and genomic regions. 
AML genome wide methylation fingerprint was identified 
with the use of developed technique. The algorithm uses 
well attuned statistical methods supported by mathemati-
cal modeling. In contrary to existing approaches, it is data 
driven and does not use a priori assumed cutoffs for demeth-
ylation definition. Thanks to Gaussian mixture modelling of 
distribution of methylation shift between groups, it allows 
to classify CpG sites as low, medium or high demethylated 
with the support of probability for class membership. Due to 
p value integration our approach enables to conclude about 
demethylation of particular TSS and gene body regions.

Study confirmed that acute myeloid leukemia causes 
alterations in DNA methylation. The AML methylation 
modification is different for different genomic regions: 
TSS, gene body and intergenic. Much more CpG sites and 
regions were detected as up methylated than down meth-
ylated. Low and high methylated sites changes more than 
medium methylated. AML caused down and up methyl-
ated genes found, especially with significant modifications 
in TSS region, were confirmed as directly connected to 
leukemia. Functional analysis shows relationship between 
found genes and processes alternated in AML.
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