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Abstract
Identifying a small subset of disease critical genes out of a large size of microarray gene expression data is a challenge in 
computational life sciences. This paper has applied four meta-heuristic algorithms, namely, honey bee mating optimization 
(HBMO), harmony search (HS), differential evolution (DE) and genetic algorithm (basic version GA) to find disease critical 
genes of preeclampsia which affects women during gestation. Two hybrid algorithms, namely, HBMO-kNN and HS-kNN 
have been newly proposed here where kNN (k nearest neighbor classifier) is used for sample classification. Performances 
of these new approaches have been compared with other two hybrid algorithms, namely, DE-kNN and SGA-kNN. Three 
datasets of different sizes have been used. In a dataset, the set of genes found common in the output of each algorithm is 
considered here as disease critical genes. In different datasets, the percentage of classification or classification accuracy of 
meta-heuristic algorithms varied between 92.46 and 100%. HBMO-kNN has the best performance (99.64–100%) in almost 
all data sets. DE-kNN secures the second position (99.42–100%). Disease critical genes obtained here match with clinically 
revealed preeclampsia genes to a large extent.

Keywords Gene selections · Harmony search · Honey bee mating optimization · K nearest neighbor · Meta-heuristics · 
Preeclampsia

1 Introduction

Identification of disease critical genes by analyzing gene 
expression datasets is important in bioinformatics. The 
number of genes in gene expression dataset may rise above 
40,000. On the other hand, a number of genes which may 
be called disease critical are considered to be limited. Oth-
erwise, close monitoring of the genes and further study for 
therapeutic intervention may not be conducted easily. Due 
to its profound impact on maternal and neonatal health all 
over the world, a disease, named preeclampsia [1] has been 

focused in this paper. Pregnant women get affected by this 
disease. As there are heredity issues behind the disease 
[2–4], identification of the disease-causing genes has gained 
importance in recent times.

Gene expression datasets are required to accomplish 
many important problems in bioinformatics. These data-
sets are obtained through microarray technology [5, 6]. The 
data presents protein production information of thousands of 
genes, either in different time steps or in different conditions 
(patients, disease type, tissues) in organisms. Gene expres-
sion data are obtained from different public repositories 
(Gene Expression Omnibus, ArrayExpress). These data are 
undergone pre-processing stages such as normalization [7, 
8] dillies. The final data is in the form of a matrix. The rows 
of the data matrix are denoted by genes and the columns 
(often termed as samples) are denoted by either time steps 
or biological conditions. Depending on the types of column, 
the data set is known either as time series or as steady state 
gene expression data, respectively. Each matrix element is a 
floating point number, mapped in a certain range depending 
on the type of normalization. Analysis of gene expression 
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data provides insight into the normal as well as disease-
related cell functioning in organisms.

In preeclampsia, some genes are likely to be differentially 
expressed in the tissues of an organ named placenta. So, for 
gene expression analysis of preeclampsia, data are collected 
from the placenta of different patients (normal/diseased). 
Using this data, meta-analysis had been performed [9–11] 
to obtain the differentially expressed genes of preeclampsia 
[12].

In recent times, meta-heuristic algorithms have wide 
applications in the domain of bioinformatics [13]. Many 
meta-heuristics have been successfully applied in the areas 
of reconstruction of gene regulatory network [14], clustering 
or bi-clustering [15] and genome-wide association studies to 
detect effective epistatic interactions among genes [16–18].

Gene selection is usually performed using sample clas-
sification. On multi-class samples of gene expression data, 
various classification techniques have been employed to 
determine disease class [19, 20]. Different paradigms of 
data science, mathematical modeling, statistical schemes 
and computational theories have been applied to this field. 
Widely used data classifiers such as k nearest neighbor 
(kNN) [21] and support vector machine (SVM) [22] have 
been used in sample/disease classification [23]. Meta-
heuristic algorithms such as genetic algorithms (GA) [24], 
particle swarm optimization (PSO) [25] have been used to 
optimize gene selection. In a well-structured algorithm, Li 
et al. (2001) [26] proposed a combination of GA and kNN 
(referred the algorithm as GA-kNN) to perform gene selec-
tion by sample classification [27]. Li et al. (2001) [26] also 
showed a direction, how using statistical analysis, genes 
may be ranked according to their impact in causing a dis-
ease. Thereafter, numerous algorithms [28–38] have been 
proposed to enrich the field of gene selection by sample 
classification. For prioritization of disease critical genes of 
preeclampsia, Tejera et al. (2013) performed co-expression 
network analysis [39] and compared their results with two 
widely used state-of-the-art classification methods, namely, 
GANN (combination of GA and a classifier named near-
est neighbor) and GADA (combination of GA and a classi-
fier named discriminant analysis). Very recently, the meta-
heuristic algorithms such as variable neighborhood search 
(VNS) [40], differential evolution (DE) [41], simulated 
annealing (SA) [42] and PSO have been combined with 
kNN to form VNS-kNN, DE-kNN, SA-kNN and PSO-kNN, 
respectively. These algorithms have been used to identify 
preeclampsia genes [43, 44].

Here, in this paper, methodologies employing meta-
heuristics, sample classification and statistical analysis 
have been developed for the selection of the disease criti-
cal genes. Four meta-heuristic algorithms, namely, honey 
bee mating optimization (HBMO) [45], harmony search 
(HS) [46], DE and GA have been used. Classifier kNN is 

embedded in each algorithm for sample classification. Two 
hybrid algorithms, HBMO-kNN, and HS-kNN have been 
newly proposed here. Other two algorithms, namely, DE-
kNN [43] and SGA-kNN (a modified version of GA-kNN 
[26]) have also been implemented to present a comparative 
study of four hybrid algorithms. From an algorithm (GA-
kNN) proposed by Li et al. (2001) [26], Li_01 we have 
taken many ideas that have been used here. A simple tra-
ditional version of GA [47] has been incorporated in SGA-
kNN. In this research, three preeclampsia datasets were 
collected for experiments. In an experiment, all (four) 
hybrid algorithms have been executed and performances 
of the algorithms have been compared. In an experiment, 
during execution of each algorithm, candidate solutions 
having classification accuracy greater than 90% have been 
saved. Later on, from each dataset, the genes commonly 
returned by all algorithms have been termed as critical 
genes. In different experiments, the classification accura-
cies of algorithms varied between 92.46 and 100%. Among 
all algorithms, HBMO-kNN was found best in classifi-
cation accuracy (99.64–100%). DE-kNN secures second 
place in classification accuracy (99.42–100%). Numbers of 
genes, common in the output of each algorithm from three 
datasets are 87, 73 and 74, respectively. Widely known 
preeclampsia genes, STS, EPHX1, LEP, LRP8, ADD1, 
INSR have been detected here. The algorithms, HBMO-
kNN and HS-kNN are newly proposed in this paper and 
the statistical approach involving different meta-heuristics 
is also newly planned and found to be reliable.

Rest of the paper has been organized as follows: Sect. 2 
discusses the formulation of gene selection problem as an 
optimization problem. The algorithm kNN-fit (to achieve 
fitness of a candidate solution, using classifier kNN) and 
the four meta-heuristic based algorithms for gene selection 
have been discussed in Sect. 3. Discussion regarding data 
and experimental results are presented in Sect. 4. Section 5 
concludes the paper giving some future scopes of research.

2  Gene Selection by Sample Classification

The input taken is a microarray gene expression dataset 
(say matrix X). Generally, the total number of genes pre-
sent in X is above 40,000. The objective of this work is 
to identify a very small subset (containing 30 genes) of 
genes in X, so that the subset collectively discriminate 
between normal and preeclampsia affected samples. The 
search involves nCd possibilities, where, n is the number 
of genes in the dataset and d is the number of genes in the 
subset. So, optimization techniques are applied to identify 
the subset of critical genes in the huge and diversified 
search space.
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2.1  Input Dataset X

The structure of gene expression dataset X, on which the 
study is based, is provided in Table 1. Here, as in standard 
form, gene Gi is ith row identifier. The columns contain nor-
mal samples ( Nl stands for lth sample) and diseased samples 
( Postands for oth sample). Here, i ∈ {1, 2, ..., n} , 
l ∈ {1, 2, ..., maxN} and o ∈ {1, 2, ..., maxP} , where n is 
the number of genes, maxN is the number of normal samples 
and maxP is the number of preeclampsia affected samples 
in data set X. Each entry is the normalized expression level 
gC
i,j

 of gene Gi at sample j (class C of sample j may be either 

n o r m a l  o r  d i s e a s e d ,  j ∈ {1, 2, ..., m} w h e r e 
m = maxN + maxP).

2.2  Expression Sub‑matrix  xS

A candidate solution S contains d non-repetitive gene indexes 
chosen randomly from Xindex . Here, Xindex = (1, 2, … , n) 
and n is the number of genes in the dataset. A matrix xS , 
xS ⊂ X has been obtained from X in the following way. For 
each gene index in S, the corresponding row of X has been 
copied and appended in xS . The appearance of candidate 
solution S, gene expression matrix X and expression sub-
matrix xS are shown in Fig. 1. Here, a small example has 
been shown where number of rows (genes) in gene expres-
sion matrix X is 13. Each row is denoted as G1, G2, …, G13. 
Number of elements (d) in candidate solution S is 4. Each 
randomly chosen index i, (i ∊ {1, 2, 3, …, 13}) in S, points 
to the row Gi in X. Each such row is appended in xS.

Table 1  Structure of microarray 
gene expression dataset

Gene Normal samples Preeclampsia samples

N1 N2 … NmaxN P1 P2 … PmaxP

G1 gN
1,1

gN
1,2

… gN
1,maxN

gP
1,1

gP
1,2

… gP
1,maxP

G2 gN
2,1

gN
2,2

… gN
2,maxN

gP
2,1

gP
2,2

… gP
2,maxP

G3 gN
3,1

gN
3,2

… gN
3,maxN

gP
3,1

gP
3,2

… gP
3,maxP

∙ … …
∙ … …
Gn gN

n,1
gN
n,2

gN
n,maxN

gP
n,1

gP
n,2

… gP
n,maxP

Fig. 1  An example of deriving xS from S and X 
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2.3  Sample Classification of  xS

Each sample in an expression sub-matrix xS is classified 
using kNN. If the computed class of a sample in xS conforms 
to its original class in X, the sample is termed as properly 
classified sample. Gene selection incorporates those genes 
in S, which maximizes the number of properly classified 
samples in xS. The number of samples in xS is same as the 
number of samples in X. The number of rows equals the 
number of elements in candidate solution S. Here, classifica-
tion accuracy (CA) is used to specify the quality of candidate 
solution S and it has been calculated by Eq. 1, 

3  Methods

Meta-heuristic algorithms are used here for gene selection. 
A candidate solution of length d represents the collection 
of differentially expressed disease critical genes. Each ele-
ment is a gene index, selected from gene index vector Xindex . 
To calculate the fitness of candidate solutions, the classifier 
kNN [48, 49] is used. Use of kNN in sample classification 
is explained in Sect. 3.1. Sect. 3.2 contains meta-heuristic-
based algorithms for gene selection. Uses of meta-heuristic 
algorithms, HBMO and HS have been discussed in details. 
Brief descriptions of the other two algorithms, namely DE 
and GA are also provided.

3.1  k Nearest Neighbor (kNN)

Cross-validation [50] is a kind of model validation, used to 
assess how far the set of samples in a data set are classifiable. 
Leave one out (LOO), a type of cross-validation is applied in 
this research to classify the samples in xS. Here each sample 
has two classes, normal and diseased. Generally, in cross-
validation, the dataset is partitioned into two disjoint sets, 
namely test-set and train-set. In LOO scheme, m validation 
tests are performed in a dataset having m samples. In other 

(1)

CA =
Number of properly classified samples in xS

Total number of samples in X
× 100%.

words, to test the class (normal/disease) of each sample, a 
validation test is made. In each validation test, the sample to 
be classified is kept in test-set and remaining (m − 1) samples 
are kept in train-set.

For each of m validation tests, the classifier kNN is 
used. kNN determines the class of the sample in test-set. 
In kNN, the distances (here Euclidian Distance) between 
the sample in test-set and each of (m − 1) samples in train-
set are computed. The samples in train set are ranked in 
ascending order by their distance from the test sample. Top 
k (where k = 3) samples are taken and named as nearest 
neighbors of the test sample. Among the nearest neigh-
bors, if the majority (two out of three) of samples have the 
same class as the test sample, the test sample is considered 
as properly classified.

If the test sample is properly classified, a score of 1 
is assigned to it. A score of 0 is assigned otherwise. The 
summation of scores in these m validation attempts, each 
on one sample, gives the total number of properly classi-
fied samples in xS. As the objective function for the search 
is to maximize the number of properly classified samples 
in xS, the summation of scores gives the fitness value of 
candidate solution. Description of kNN used for fitness 
calculation of candidate solution S in gene selection [kNN-
fit (xS)] is given in Algorithm 1.

The expression sub-matrix xS is the input to kNN-fit 
(xS). Initially, all samples in xS are kept in an empty set All. 
Each sample contains the expression levels of all genes, 
present in a candidate solution S. For each sample in All, 
a cross-validation test is performed. In a cross-validation 
test, the current sample i is placed in the test set (Test), and 
the training set (Train) contains all other samples (in All) 
excluding i. For each sample j ∊ Train, the distance of j 
from i is calculated. Here sample i, j and distance Dist_j_i 
is calculated by Eq. (2), Eq. (3) and Eq. (4), respectively, 

(2)i =
[

g
Ci

1,i_ind
, g

Ci

2,i_ind
, g

Ci

3,i_ind
,… g

Ci

d,i_ind

]

,

(3)j =
[

g
Cj

1,j_ind
, g

Cj

2,j_ind
, g

Cj

3,j_ind
, … , g

Cj

d,j_ind

]

,

(4)Dist_j_i =

√

(

g
Cj

1,j_ind
− g

Ci

1,i_ind

)2

+
(

g
Cj

2,j_ind
− g

Ci

2,i_ind

)2

+…+
(

g
Cj

d,j_ind
− g

Ci

d,i_ind

)2

.
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Here, Ci and Cj are the classes belonging to sample i and 
j, respectively. i_ind and j_ind are the indexes of samples 
i and j in xS, respectively. On the basis of their calculated 
distance using Eq. (4), all j ∊ Train are sorted in ascending 
order. k (= 3) samples with least distance from i are kept in a 
set, Neighbor_i. The class of sample i (Ci) is obtained as fol-
lows: if i_ind (index of i in xS) is less than or equal to maxN, 
Ci is called ‘normal’. Otherwise, Ci is ‘diseased’. If the class 
Cj of the most of the samples (j’s) in Neighbor_i matches 
with Ci, i is said to be properly classified. If a sample i is 
properly classified, a variable (score_i) is set to 1. Other-
wise, 0 is assigned to it. Fit_S is obtained by taking summa-
tion of the individual scores (score_i). Fit_S is returned as 
the fitness of current solution S.

3.2  Meta‑heuristics in Gene Selection

In gene selection, a state space search is conducted to obtain 
the solution. In a microarray gene expression dataset, the 
number of genes may be of the order of 40,000. In gene 
selection problem, only 30 genes are to be chosen. So, the 
search space contains 40000C30 possibilities. When an opti-
mization problem pertains a large state space or it has high 

complexities (NP-Hard or NP-complete), an advanced class 
of algorithm, called meta-heuristic algorithm is applied to 
get a near-optimal solution in reasonable time. To optimize 
gene selection, four meta-heuristic algorithms, namely, 
HBMO, HS, DE and GA (traditional version) have been 
used. Two new hybrid algorithms, namely, HBMO-kNN 
and HS-kNN have been proposed here. The other two algo-
rithms, namely, DE-kNN and SGA-kNN, (SGA—traditional 
version of GA [47]) have been implemented to match the 
current framework. Short description of different meta-
heuristic algorithms and how they have been used in gene 
selection are described below:

3.2.1  Honey Bee Mating Optimization (HBMO)

Like in other population-based meta-heuristics, HBMO 
[51] uses a population of candidate solutions to explore the 
search space. In HBMO, the behavior of honey bees dur-
ing mating is imitated to perform the state space search. A 
population of queens (candidate solutions), each named Qi 
has been initialized randomly. Qi is associated with a reposi-
tory Spi where she can store D drones (matrices, similar in 
structure as Qi). W worker bees are initialized. Each worker 
bee wi is a single element variable, initialized randomly. 
Workers are set to improve queens using local heuristics as 
follows: A queen Qi and a worker wi are chosen randomly. 
The Queen is copied into a variable named temp. A random 
element in temp is selected. The element is replaced by the 
value stored in wi. If the fitness of temp is greater than Qi, 
Qi is replaced by temp. The generation-based loop starts and 
continues until its termination condition is met. This termi-
nation criterion in HBMO is either iteration count reaches 
maxIter or highest fitness of a queen reaches to a certain 
value. In a generation, the improved queens are evaluated 
and ranked first. Each ranked queen is undergone three main 
steps: (1) choosing its mates by a process called maiden 
flight (2) crossover and (3) mutation.

In a maiden flight, each queen Qi is undergone the follow-
ing process: at energy state t = 0, Qi is assigned with initial 
energy ei(0) and initial speed sdi(0). Energy ei(0) of Qi is 
reduced in steps. At each energy state ei(t), queen Qi aims 
to fill its repository Spi with a drone drt

i
 [ drt

i
 : drone of queen 

Qi produced at her energy state ei(t)]. drti is a vector having 
the same dimension as Qi and takes values in the same range 
specified for Qi. The fitness of drt

i
 is calculated. If the fitness 
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is greater than that of Qi and number of drones in Spi is less 
than D, drt

i
 is added to Spi. If drti is less fit than Qi, it is given 

a chance to be added to Spi depending on a small probability 
( e−del∕sdi(t)). Here del is the difference between the fitness of 
Qi anddrt

i
 . sdi(t) is the speed of ith queen at tth energy state. 

Speed and energy of Qi are reduced by Eq. (5) and Eq. (6), 
respectively, 

Here, ei(t) is the energy of Qi at step t. � and � are param-
eters of HBMO.

After all the queens fill their repositories, recombina-
tion (crossover) starts. Each queen is recombined with each 
of the drones present in its repository Spi, producing 2*D 
offspring. Here, the crossover is not probability dependent. 
After crossover, each offspring is mutated with a low muta-
tion probability Pm.

The offspring produced from all queens are evaluated and 
ranked. B offspring from the top are accepted as broods. 
These broods are improved by workers using local heuris-
tics, almost in the same way as were done in the case of 
queens. The only difference is that in queen improvement, 
a queen was chosen at random but in brood improvement, 
broods are sequentially chosen for improvement. While there 
is a queen worse than any brood in brood list, the worst 
among the queens is replaced by the best brood. When the 
replacement of a queen by a brood occurs, the brood is 
deleted from brood list.

(5)ei(t + 1) = ei(t) − � ,

(6)sdi(t + 1) = sdi(t) ∗ �.
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Based on HBMO, a hybrid algorithm called HBMO-kNN 
has been proposed here for gene selection. Description of 
this algorithm is provided in Algorithm 2. Each of queen Qi 
and drone drt

i
 is a vector having d elements. Each element is 

a gene index chosen randomly from gene index vector Xindex. 
Each worker is a single element variable. The value of it is a 
gene index, randomly chosen from Xindex. Energy ei(0) and 
speed sdi(0) of queen Qi at step t = 0 is initialized randomly 
within range (0.5–1) and (14–15), respectively. Evaluation 
of a solution S (queen/drone/offspring/brood), is a two-step 
process. In the first step, a sub-matrix of X, named xS is 
prepared, as described using an example in Fig. 1. In the 
second step, kNN-fit (xS) is called with xS as an argument. 
Here an attempt is made to classify (which class it belongs 
to—normal or diseased) each sample i in xS. Number of 
properly classified samples gives the fitness of the solution. 
During iterations, global best solution q* is updated which 
is returned as output at the end.

The efficiency of a meta-heuristic algorithm mainly 
depends on the judicious mixture of two strategies—explo-
ration (diversification) and exploitation (intensification). 
Though HBMO is based on the same theory of genetic 
evolution (using crossover, mutation and selection) such 
as genetic algorithm, it incorporates some additional meas-
ures of exploration and exploitation. For more exploration, 
an annealing function 

(

e−del∕sdi(t)
)

 allows to choose a worse 
drone by a queen for mating. Improvements of queens and 
broods by workers and replacement of worse queens by bet-
ter broods are some of the measures to support exploitation. 
Also, some problem-specific changes to HBMO, especially, 
in initialization of speed (originally it was in the range 0.5–1, 
here 14–15) of the queen has been implemented. Aggrega-
tion of all these efforts in HBMO helps it find disease-caus-
ing genes more efficiently than the state-of-the-art algorithm 
GA-kNN.

3.2.2  Harmony Search (HS)

Harmony search [52] is one of the current nature-inspired 
meta-heuristic algorithms. The natural phenomenon 
behind this algorithm is the harmony improvisation pro-
cess of a musician. Initially, some harmony memory is 
there in the musician’s mind to play a certain piece of 
music, which he wants to make more accurate by enor-
mous practices. In every practice, he improvises a new har-
mony and estimates its quality and according to the qual-
ity accepts or discards that harmony. If it gets accepted, 
the musician’s memory is updated. Search for the state 

where esthetic estimation is highest leads the musician to 
improve. In practice, instead of one musician, there may 
be a number of musicians with different musical instru-
ments who are going to perform together. So they have 
to come to a state at which combination of the harmonies 
improvised from these instruments provide good esthetic 
estimation to the listeners.

The algorithm for HS [53] needs to initialize a harmony 
memory (HM), the initial population, with some random 
values hmi,j , 1 ⩽ i ⩽ HMS and 1 ⩽ j ⩽ d ; where, hmi,j is an 
element of HM, HMS is the size of the population and 
d is the number of decision variables. Now we have to 
improvise a new harmony, a new candidate solution S. An 
element of S, sj , is chosen in the following way: if a value 
rand(0,1) is less than harmony memory consideration rate 
(HMCR), the element sj under each decision variable is 
chosen randomly from hmj , the domain of jth decision 
variable 

(

hm1,j, hmHMS,j

)

 , i.e., the set of consecutive col-
umns of HM. Otherwise, the value of sj is chosen randomly 
from Xindex. The parameter HMCR lies between 0 and 1. 
If sj is selected from hmj , it implies the intensification of 
this meta-heuristic. Further sj is modified as follows: if a 
value rand(0,1) is less than pitch adjustment rate (PAR), 
a parameter of HS, then sj is modified by Eq. (7). Though 
Eq. (7) returns a float value depending on the variance of 
previous population, that float value has been converted 
here to an integer value to reflect proper characteristics of 
a decision variable (gene index) of gene selection problem. 
Moreover, the equation makes a small change to current 
gene index, 

where BW is called band width. This step implies the 
diversification of this meta-heuristic. Value of BW is cal-
culated by Eq. (8), 

where k1 is the proportionality constant. BW is propor-
tional to the standard deviation of the current population, 
which increases the exploratory power of HS [53]. If the 
fitness value of that new candidate solution S is better than 
the fitness value of the worst candidate solution in the HM, 
then the new replaces the worst. We have to continue this 
up to the number of iterations (NI). We can describe this 
NI parameter as the number of generation or the terminat-
ing criteria of the outer loop.

(7)sj = int
(

sj ± rand(0, 1) ∗ BW
)

,

(8)BW = k1 ×

√

Var
(

hmj

)

,
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Based on HS, an algorithm for gene selection has been 
proposed here, namely, HS-kNN (Algorithm 3). One har-
mony in harmony memory HM represents one candidate 
solution S, containing d genes, randomly selected from gene 
index vector Xindex. To evaluate this candidate solution S, an 
expression sub-matrix xs is created. Then xs is evaluated by 
kNN-fit (xS) and the number of properly classified samples 
of xs is given as fitness value of S. Replacing only the worst 
candidate solution by the new one delays the rate of con-
vergence. So we have modified this as follows: instead of 
replacing the worst candidate solution only, whole popula-
tion is replaced by a new HM, say newHM. Each candidate 
solution S, of newHM is formed by the process of creating 
a new harmony, newHMi. The population is taken, if the 

either the average fitness value or the best fitness value of the 
new population is better than or equal to either the average 
fitness value or the best fitness value of the current popula-
tion, respectively. Best fitness value of the population, i.e., 
the global best candidate solution is stored in hm* in every 
iteration.

The effectiveness of HS as an evolutionary meta-heuristic 
search is based on the natural phenomenon of how musicians 
use their short-term memory (here as harmony memory) to 
create notes resulting in a pleasant harmony. The process of 
selecting a new harmony from the previous harmony mem-
ory (HM) corresponds to the exploitation of the search pro-
cess as the candidates of HM are better in fitness. On the 
other hand, changing any note of the new harmony ran-
domly, or depending upon some function of the past memory 
is the exploration part. In HS-kNN, the exploration capabil-
ity of the search is further enhanced by the incorporation of 
the standard deviation in the expression of bandwidth 
(

BW = k1 ∗

√

Var
(

hmj

)

)

 of the previous harmony mem-

ory which is subsequently used in modification of candidate 
solution. Moreover, here, a new harmony memory (a set of 
new harmonies) has been taken instead of taking single new 
harmony for replacement. Here, the average and the maxi-
mum fitness of the new HM have been compared with the 
average and the maximum fitness of current HM, respec-
tively. If the new HM is better than the current HM in any of 
the two measures (average and maximum), it will replace the 
current HM. This modification enhances the exploitation of 
the search process resulting in faster convergence without 
degrading the exploration capability of the search. It can be 
concluded that, here, the balance between exploration and 
exploitation is done more effectively. This way of finding the 
new set of disease critical genes is found more accurate than 
the state-of-the-art algorithm GA/kNN.

3.2.3  Differential Evolution (DE)

DE [54] is a population-based meta-heuristics, used for 
optimizing real-valued stochastic function. Recently, in a 
hybrid algorithm named DE-kNN [43], DE and a classifier 
called kNN have been combined and used for gene selection. 
Here, DE-kNN is implemented changing parameter values 
and used in a comparative study for gene selection. In this 
algorithm, each candidate solution, an agent Ai is a vector 
having d elements. Each element aij(j ∈ {1, 2, … , d}) of Ai 
is a gene index, initially chosen randomly from gene index 
vector Xindex. In each generation, for each candidate solution 
Ai, a mutation vector Mi is obtained using a formula involv-
ing three other candidate solutions of current population and 
a parameter called differential weight, F. A trial vector Ti 
is obtained using crossover (with probability Cr) between 
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Mi and Ai. Each element of Ti is a non-repeating gene index 
from Xindex. To calculate the fitness of a candidate solution S 
(Ai or Ti), expression sub-matrix xS is created based on S and 
X. The function kNN-fit (xS) is used to calculate the fitness 
of a candidate solution S. The best solution (depending on 
fitness) in final population is returned.

3.2.4  Genetic Algorithm (GA)

GA [47, 55] is a population-based meta-heuristics which 
imitate genetic evolution in organisms. In SGA-kNN, sim-
ple/traditional version of GA is combined with kNN. GA 
is a population-based meta-heuristics. A number (Num) of 
candidate solutions, each called chromosome Ci is initial-
ized with a gene index randomly chosen from Xindex , such 
that each gene index in Ci is unique. Based on each Ci the 
gene expression sub-matrix xS is created. Fitness of Ci is 
calculated calling kNN-fit (xS) with xS as an input argument. 
In each generation, containing Num chromosomes, Num/2 
selection operations are performed. In each selection opera-
tion, two parents are chosen depending on Rowlett wheel. 
A one-point crossover is performed on selected parents with 
crossover probability Pc, producing two offspring. Muta-
tions are performed with a low probability Pm on each 
offspring. Among the pairs—parents and offspring, the fit-
ter chromosome pair is passed to next generation. During 
crossover and mutation, measures are taken, such that gene 

indices in Ci remain unique. The best solution in final popu-
lation is returned.

The final solution, produced by an algorithm has not 
been considered here as the output because the input gene 
expression data is noisy and number of samples is not suf-
ficient. Instead, a collective framework has been proposed 
here which takes a normalized gene expression dataset as 
input and encompasses all four meta-heuristic algorithms 
(HBMO-kNN, HS-kNN, DE-kNN and SGA-kNN). Figure 2 
shows how it works in a realistic environment. Multiple exe-
cutions of each algorithm (HBMO-kNN, HS-kNN, DE-kNN 
and SGA-kNN) have been separately performed on a data-
set. During each execution of an algorithm, candidate solu-
tions (termed here as good solutions) having classification 
accuracy (fitness) higher or equal to 90% has been stored 
in an algorithm specific repository. After executions of all 
algorithms, each algorithm-specific repository is processed 
to contain the unique genes. Now overlap among the genes 
in different repositories has been obtained and returned as a 
disease-causing set of genes.

Proposed framework inherits some features from the 
state-of-the-art algorithms such as GA-kNN [26], GANN 
[39] and GADA [39]. First, it contains methods (HBMO-
kNN, HS-kNN, DE-kNN and SGA-kNN) based on a 
meta-heuristic algorithm and a classifier (kNN) combina-
tion. Second, the proposed framework does not consider 
the final solution of a meta-heuristic algorithm as a final 

Fig. 2  Proposed framework
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disease-causing subset. Finally, during the execution of a 
meta-heuristic algorithm, good candidate solutions are 
stored for further statistical processing.

The state-of-the-art algorithms have following disadvan-
tages. First, the stored candidate solutions obtained from the 
executions of a single meta-heuristic algorithm is inappro-
priate for statistical processing. This is because of the fact 
that decision variables change less frequently in successive 
candidate solutions. As a result, redundant information may 
be gathered. Second, the process of prioritization of genes 
contained in intermediate candidate solutions (even good) is 
questionable as they are obtained from meta-heuristic algo-
rithms which employ inherent randomization. The proposed 
framework eliminates the first difficulty, because it collects 
candidate solutions from four meta-heuristic algorithms 
instead of one. The second disadvantage of the state-of-the-
art algorithm has been overcome using overlap, instead of 
prioritization.

4  Data and Experimental Results

Three experiments, each based on a preeclampsia dataset 
have been conducted. Hardware and software used in the 
experiments, data of preeclampsia, and parameter setting 
have been described in Sect. 4.1. The Section 4.2 contains 
results and discussion.

4.1  Data and Experimental Setting

All the experiments have been done on the same computer 
having Intel Pentium dual-core CPU with a processing speed 
of 3.0 GHz and inbuilt RAM of 2 GB. All programs are writ-
ten in Matlab 2011b Windows version 32 bit. Three gene 
expression datasets with accession number E-MEXP-1050, 
GSE60438 and GSE10588 have been employed in this 
research. The first dataset has been downloaded from Array 
Express, whereas the other two have been collected from 
Gene Expression Omnibus. Each of these datasets was pro-
duced through an underlying microarray experiment. In each 
such experiment, total RNA was extracted from normal as 
well as preeclampsia affected decidual tissues of placen-
tas. The expression profile obtained through a microarray 
experiment is like a matrix (see Table 1). Here each sample 

(column) contains expression levels of all relevant genes 
of a decidual tissue. In case of E-MEXP-1050, the expres-
sion profile contains 18 diseased and 17 normal samples. 
Each diseased samples corresponds to a decidual tissue of 
critical pregnancy (suffered by preeclampsia and/or fetal 
growth restriction). Each normal sample corresponds to a 
normal placental tissue. In either case, a sample contains 
expression levels of 8,937 identical genes. In GSE60438, 
the expression profile contains 35 preeclamptic samples and 
42 normotensive samples. Each sample contains expression 
levels of 47,323 identical genes. In GSE10588, 17 severely 
preeclamptic samples and 26 normal samples are present. 
Each sample has expression levels of 32,878 identical genes. 
Different aspects of the datasets have been summarized in 
Table 2.

Each matrix element of a gene expression dataset is a 
floating point number. A dataset is undergone a pre-process-
ing stage, called normalization. Here, normalization aims to 
map each element ( gN

i,j
/gP

i,j
 , see Table 1) of a data matrix in 

[0, 1]. To apply normalization, the maximum and minimum 
values ( GMAX

i
and GMIN

i
 , respectively) of each gene ( Gi ) over 

all samples has been calculated first. Then each element gi, j 
( gN

i,j
/gP

i,j
 ) of the matrix has been normalized using Eq. (9) 

With the normalized datasets, three experiments have 
been conducted. Each experiment is based on a dataset 
specified in Table 2. In an experiment, all (four) hybrid algo-
rithms, namely, HBMO-kNN, HS-kNN, DE-kNN and SGA-
kNN have been employed. In all population-based meta-
heuristics except HBMO-kNN, the outer loop, controlling 
terminating condition is iterated maxIter (= 200) times. In 
these algorithms, population size, Num (= 30) is also identi-
cal. So, the total number of steps in each population-based 
algorithm is 6000 (200*30). In HBMO-kNN, whenever the 
fitness value changes, the point of time is recorded. Later 
on, each recorded time instance (corresponding to a fitness 
value) is scaled in the range (1–6000). In all (four) algo-
rithms, the number of elements d in candidate solution S is 
kept 30. To set values to the important parameters in an algo-
rithm, different values of each parameter are kept in a vector. 

(9)normalize
(

gi, j
)

=
gi, j − GMIN

i

GMAX
i

− GMIN
i

.

Table 2  Microarray gene expression datasets collected for experiments

S. no. Dataset accession no. Collected from (site) Number of nor-
mal samples

Number of preec-
lampsia samples

Total number of 
samples (m)

Number of 
genes (n)

Last updated

1 E-MEXP-1050 Array Express 17 18 35 8,793 02 May, 2014
2 GSE60438 GEO, NCBI 42 35 77 47,323 Aug 05, 2015
3 GSE10588 GEO, NCBI 26 17 43 32,878 Jan 27, 2016
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Then for all possible combinations of values of the different 
parameters, the algorithm is executed. During these execu-
tions, the combination of parameters for which an algorithm 
achieves the highest fitness is saved. These saved values of 
different parameters have been assigned to the correspond-
ing parameters during experiments with the algorithm. 
The dataset taken for parameter setting of each algorithm 
is E-MEXP-1050. Table 3 shows the parameter values for 
different algorithms, used during experiments. An example 
of parameter setting is given in Fig. 3 where the parameters 
of HS-kNN are estimated. The parameters of HS have been 
taken like HMCR ∊ {0.90, 0.85, 0.80, 0.75, 0.70} and PAR ∊ 
{0.70, 0.65, 0.60, 0.55, 0.50}. Though fitness reaches to the 
highest value at HMCR = 0.70 and PAR = 0.65, but around 
HMCR = 0.80 and PAR = 0.60, the stability of high fitness 
value is being observed. So we have set the value of HMCR 
and PAR to 0.80 and 0.60, respectively.

4.2  Results and Discussion

With the algorithm parameters being set, each algorithm 
has been executed on 25 randomly generated problem 
instances. During the execution of an algorithm, aver-
age fitness, classification accuracy (%), best fitness and 
standard deviation in fitness have been recorded. The 
average has been taken over 25 solved instances. For 

example (see Table 4), in the experiment based on dataset 
E-MEXP-1050, after execution of HS-kNN, among 25 fit-
ness values, average fitness is obtained as 33.2800. Clas-
sification accuracy is calculated by Eq. (1) and the value 
is 95.0857. The best fitness obtained is 34. The standard 
deviation in fitness values is 0.5416.

As fitness (number of properly classified samples) 
depends on the number of samples in a dataset, classification 
accuracy is a better attribute for comparison. Considering 
this attribute, the performance of HBMO-kNN is observed 
as the best in all experiments. In the first and third experi-
ments, based on E-MEXP-1050 and GSE10588 datasets, 
respectively (Table 4), HBMO-kNN obtained 100% clas-
sification accuracy. In the second experiment, based on the 
GSE60438 dataset (Table 4), HBMO-kNN obtained clas-
sification accuracy of 99.6364%.

In all experiments, DE-kNN secured second place with 
respect to classification accuracy. Moreover, the research 
observes that (Table 4) DE-kNN is a stable performer as 
it has the lowest value for standard deviations of fitness as 
compared to other algorithms in all the experiments. In the 
second experiment, where HBMO-kNN has classification 
accuracy less than 100%, standard deviations of DE-kNN 
are lower than that of HBMO-kNN.

Figures 4, 5 and 6 show fitness convergence graphs of 
all algorithms based on datasets E-MEXP-1050, GSE60438 

Table 3  Parameters of different 
algorithm

Algorithms Parameters

HBMO-kNN maxIter = 2, Num = 5, d = 30, W = 1000, D = 10, B = 20, 
α = 0.95, γ = 0.008

HS-kNN NI = 200, HMS = 30, d = 30, HMCR = 0.8, PAR = 0.6, K = 1.6
DE-kNN maxIter = 200, Num = 30, d = 30, F = 0.25, Cr = 0.1
SGA-kNN maxIter = 200, Num = 30, d = 30, Pc = 0.7, Pm = 0.02

Fig. 3  Parameter setting of 
HS-kNN
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and GSE10588, respectively. Here, x-axis is the logarithm 
of iteration (= 6000; 200 of maxIter *30 of Num) and 
the y-axis is fitness. In Fig. 4 (based on E-MEXP-1050), 

maximum fitness (35, classification accuracy is 100%) 
has been obtained by HBMO-kNN and DE-kNN. Other 
two algorithms obtained a fitness of 34. In Fig. 5 (based 
on GSE60438), HBMO-kNN, HS-kNN and DE-kNN have 
obtained the highest fitness of 77 (100% classification accu-
racy). SGA-kNN has obtained fitness of 76. In Fig. 6 (based 
on GSE10588), HBMO-kNN and DE-kNN have obtained 
the highest fitness of 43 (100% classification accuracy). HS-
kNN and SGA-kNN have obtained the fitness of 42 and 41, 
respectively.

In Fig. 7, comparison of relative performance of algo-
rithms in different experiments has been shown. Together 
with four meta-heuristics based algorithms, the performance 
of simple kNN is also shown here separately. Simple kNN is 
applied to random initial candidate solutions and it attains 
classification accuracies in the range of 40–80% in different 
experiments. This explains the reason why in Figs. 4, 5 and 
6 the graphs start with high initial fitness. In the graphs, the 
global best solutions of different algorithms are plotted. As 

Table 4  Performance of algorithms in different experiments; each experiment is based on a dataset

Dataset Algorithm Average fitness Classification 
accuracy (%)

Best fitness Std. dev. of fitness

E-MEXP-1050 (number of samples = 35) HBMO-kNN 35.0000 100.000 35 0.0000
HS-kNN 33.2800 95.0857 34 0.5416
DE-kNN 34.8000 99.4286 35 0.4082
SGA-kNN 32.3600 92.4571 34 0.9074

GSE60438 (number of samples = 77) HBMO-kNN 76.7200 99.6364 77 0.4583
HS-kNN 75.3600 97.8701 77 0.7572
DE-kNN 76.8800 99.8442 77 0.3317
SGA-kNN 73.9200 96.0000 76 1.2220

GSE10588 (number of samples = 43) HBMO-kNN 43.0000 100.000 43 0.0000
HS-kNN 42.2000 98.1395 43 0.5000
DE-kNN 43.0000 100.000 43 0.0000
SGA-kNN 41.6800 96.9302 43 0.9452

Fig. 4  Fitness convergence of the experiment (Table  4) based on 
E-MEXP-1050

Fig. 5  Fitness convergence of the experiment (Table  4) based on 
GSE60438

Fig. 6  Fitness convergence of the experiment (Table  4) based on 
GSE10588
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the best candidate solution (global best) of initial population 
is classified through kNN, the initial classification accuracy 
may be as high as 80%. Due to the application of meta-
heuristics rest part of accuracy has been achieved.

Figure 8 shows relative timing property of individual 
algorithms in different experiments (based on datasets 
E-MEXP-1050, GSE60438 and GSE10588). SGA-kNN took 
the least time in all experiments. DE-kNN took the second 
lowest time. Time in an experiment generally depends on 
the number of genes in the corresponding gene expression 
dataset.

In each experiment, during 25 runs of each algorithm, 
the candidate solutions that reach classification accuracy 
of 90% or above are saved. Among the saved solutions of 
different algorithms, the set of genes commonly obtained 
by all algorithms are stored. These genes have been termed 
as disease critical genes. Number of disease critical genes 
obtained from the datasets, E-MEXP-1050, GSE60438 and 
GSE10588 are 87, 73 and 74, respectively. Many widely 
known preeclampsia genes [56, 57] including STS, EPHX1, 

LEP, LRP8, ADD1, YWHAQ, INSR, CCL8 have been 
found here.

Each of the preeclampsia genes obtained in this research 
has been found to be differentially expressed (among 
preeclamptic and normal samples) in separate previous 
researches. The appearance of so many important genes 
together in this collective algorithmic study suggests that 
they may be a part of some biological pathway. This needs 
further clinical investigations. Among the important genes, 
a few such as INSR and CCL8 were previously proved to 
be associated with adult vascular and metabolic diseases. 
Later on, an association of these genes with preeclampsia 
have been established. The appearance of these genes in this 
research is a further step to establish the association. Some 
new genes such as MSX2, LOC440737 and UROS have also 
appeared in this result. No direct association of these genes 
with preeclampsia has been established so far. MSX2 had 
been observed to induce Trophoblast invasion in the placenta 
[58] whereas LOC440737 is considered to be involved in the 
endometrial–trophoblast interaction. Both of these processes 
have a complex relationship with preeclampsia [59]. On the 
other hand, UROS is found responsible for hypertension. 
Gestational hypertension (hypertension in second or third 
trimester) may lead to preeclampsia [3]. So, these new genes 
may have an indirect complex relationship with the disease 
(preeclampsia) subject to further biological investigation.

Here, one point is to be noted that though the rows in gene 
expression datasets are termed as genes so far, they are actu-
ally named as ‘probe ids’. A probe id is an entity associated 
with a gene, in context to microarray technology. We have 
used the indexes of probe ids during processing. At last, 
from an index, the probe id is obtained from the dataset and 
from probe id the gene symbol is obtained from a special 
type of data file (named platform file) supplied by NCBI 
(from where dataset was collected).

The performance of proposed algorithms of this research, 
HBMO-kNN and HS-kNN has been compared with three 
state-of-the-art methods. They are GANN and GADA, both 
implemented by Tejera et al. (2013) [39], and GA-kNN was 
proposed by Li et al. (2001) [26]. Tejera et al. (2013) have 
executed the algorithms (GANN and GADA) on two (out of 
five used in [39]) datasets (E-MEXP-1050 and GSE10588) 
which have also been used in this research. The average and 
best classification accuracies of the algorithms published by 
Tejera et al. (2013) [39], have been used in the comparative 
study (see Fig. 9) of this research. The other state-of-the-art 
algorithm, GA-kNN has been downloaded (executable ver-
sion) from the website [60] of its originator Li et al. (2001) 
and executed 25 times on E-MEXP-1050 obeying the condi-
tions provided. The parameters, such as number of niches, 
number of generations, population size, chromosome length, 
ermination fitness cut-off and number of solutions speci-
fied have been set as arguments during executions of the 
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Fig. 7  Relative performance of kNN, HBMO-kNN, HS-kNN, DE-
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algorithm are 3, 50, 50, 30, 34 and 200, respectively. Though 
in a run of GA-kNN, the maximum number of generations is 
50, if the given highest cut-off fitness (34) out of 35 samples 
in E-MEXP-1050 has been achieved in fewer generations, 
the program terminates. The output of an execution of GA-
kNN is the number of properly classified samples. The out-
put of each run is stored and classification accuracy (%) has 
been calculated using Eq. (1).

Observation shows (see Fig. 9), HBMO-kNN outper-
forms all other algorithms in both average (100) and best 
(100) classification accuracies. HS-kNN is similar to GADA 
in average (95.2) classification accuracy but wins in best 
classification rate (99.4).

Change of the fitness value of each algorithm (HBMO-
kNN, HS-kNN and GA-kNN) in successive generations 
(iterations) has been plotted in Fig. 10. The run (among 25 
runs of the algorithm) in which the highest fitness has been 
achieved by an algorithm has been considered. It has been 
observed that HBMO-kNN is better than GA-kNN and HS-
kNN is as good as GA-kNN in achieving highest fitness. 

In addition, both HBMO-kNN and HS-kNN show a higher 
rate of improvement than GA-kNN. These two important 
observations signify that the newly proposed algorithms 
have outperformed the existing state-of-the-art algorithm 
(GA-kNN) to obtain the subset of disease-causing genes 
(i.e., maximizing number of properly classified samples).

Some recent gene selection algorithms, not executed on 
the same dataset as the proposed algorithms, have also been 
compared with the proposed algorithms on the basis of their 
overall average classification accuracies in different data-
sets (see Table 5). Average classification accuracy of two 
recent gene selection algorithms such as χ2 DC and IVPSO 
have been obtained from the results reported by Zang et al. 
(2014) [36] and Ramyachitra et al. (2015) [37], respec-
tively. Average classification accuracy (CA) of a proposed 
algorithm, e.g., HBMO-kNN has been calculated by taking 
the arithmetic mean of the classification accuracies of the 
algorithm over the three datasets (E-MEXP-1050–100%, 
GSE60438–99.6364% and GSE10588–100%, see Tables 4, 
5). Here also HBMO-kNN is the best with average clas-
sification accuracy 99.87% followed by HS-kNN (97.03%).

5  Conclusion

Identification of a small subset of genes responsible for a 
disease by comparing characteristics of normal and dis-
eased gene expression dataset is an important task in bio-
informatics. In this paper, three preeclampsia datasets have 
been collected and identification of disease critical genes 
out of these datasets has been formulated as an optimiza-
tion problem. Meta-heuristic algorisms such as HBMO, 
HS, DE and GA have been used for this purpose. To obtain 
the fitness of a candidate solution, classifier kNN has been 
used. Two algorithms, namely, HBMO-kNN and HS-kNN 
have been proposed here and implemented on three dif-
ferent datasets of preeclampsia. In each experiment, apart 
from the proposed algorithms HBMO-kNN, HS-kNN, other 
two algorithms, namely, DE-kNN and SGA-kNN have also 
been implemented. The performance of these four algo-
rithms has been compared with respect to some standard 
metrics, such as average fitness, classification accuracy, best 
fitness and standard deviation of fitness and execution time. 
The experimental study shows that HBMO-kNN outper-
formed all other algorithms with a classification accuracy 
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kNN) with three state-of-the-art methods (GADA and GANN [39], 
and GA-kNN [26]) in terms of average and best classification accu-
racy (%)

Fig. 10  Comparison of fitness convergence among HBMO-kNN, HS-
kNN and GA-kNN [26]

Table 5  Comparison among proposed and current gene selection 
algorithms depending upon overall classification accuracy in different 
datasets

Method HBMO-kNN HS-kNN χ2 DC IVPSO

CA (%) 99.87 97.03 85.51 96.88
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of 99.64–100% followed by DE-kNN (99.42–100%). The 
proposed algorithms (HBMO-kNN and HS-kNN) also have 
been compared with the state-of-the-art algorithms, giving 
better results. During execution of each of the algorithms, 
candidate solutions having classification accuracy above 
90% have been saved separately. From the good solutions 
obtained by an experiment, the genes commonly found by 
all algorithms are considered to be disease critical. The num-
bers of disease critical in the three datasets E-MEXP-1050, 
GSE60438 and GSE10588 are 87, 73 and 74, respectively. 
Genes such as STS, LEP, LRP8 which are well known as 
preeclampsia genes have appeared in our findings.

Many algorithms have been proposed so far for gene 
selection using sample classification. But this research work 
is important because of implementing a large number of 
meta-heuristics and compiling their results together. This 
experimental approach is also important in a sense that it 
provides a comparative as well as a collective analysis of 
results. The comparative study shows that one of our pro-
posed algorithms, HBMO-kNN, is the best in performance 
among all algorithms implemented here. On the other hand, 
the collective study visualizes that the grouping of solutions 
of all algorithms and search for common genes achieved sig-
nificant overlap (87, 73 and 74 in E-MEXP-1050, GSE60438 
and GSE10588, respectively).

There are some future scopes. The kNN-based fitness cal-
culation algorithm, kNN_fit, can be easily used in any other 
meta-heuristic to serve similar purposes. Use of collective 
strategy using a number of meta-heuristics may be helpful 
to solve similar problems. New meta-heuristic algorithms 
may be found to be more appropriate in this context. Identi-
fication of disease critical genes of any other disease can be 
performed using aforesaid methods. Incorporation of other 
classifiers such as SVM and multilayer perceptron, as a sub-
stitute of kNN, may further improve the accuracy of gene 
selection. As the dataset that can be used for positive control 
involves more than two classes, kNN_fit may be modified 
accordingly to facilitate multi-class (more than two) clas-
sification. Application of this modified version to such a 
dataset will be useful to reveal which other diseases play role 
in increasing the risk of preeclampsia or how preeclampsia 
may trigger some other disease.
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