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Abstract Protein’s posttranslational modification (PTM)

represents a major dynamic regulation of protein functions

after the translation of polypeptide chains from mRNA

molecule. Compared with the costly and labor-intensive

wet laboratory characterization of PTMs, the computer-

based detection of PTM residues has been a major com-

plementary technique in recent years. Previous studies

demonstrated that the PTM-flanking positions convey dif-

ferent contributions to the computational detection of PTM

residue, but did not directly translate this observation into

the in silico PTM prediction. We propose a weight vector

to represent the variant contributions of the PTM-flanking

positions and use an evolutionary algorithm to optimize the

vector. Even a simple nearest neighbor algorithm with the

incorporated optimal weight vector outperforms the cur-

rently available algorithms. The algorithm is implemented

as an easy-to-use computer program, jEcho version 1.0.

The implementation language, Java, makes jEcho plat-

form-independent and visually interactive. The predicted

results may be directly exported as publication-quality

images or text files. jEcho may be downloaded from http://

www.healthinformaticslab.org/supp/.
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1 Introduction

Human genome harbors 20,687 protein-coding genes and

encodes much larger number of proteins with the help of

alternative splicing [1]. After the translation from the

mature mRNA, a protein is dynamically modified through

various mechanisms and exerts its functions in the

dynamically changing modified forms. The posttransla-

tional modification (PTM) of a protein usually introduces a

biochemical group to a specific residue, and there are more

than 300 types of PTMs [2], e.g., phosphorylation and

SUMOylation. Phosphorylation is the major mechanism to

deliver the signals between the extra- and intracellular

systems [3], and SUMOylation ensures the stability of the

modified proteins [4]. Malfunction of PTMs is known to be

associated with various human diseases, including cancer

and cardiovascular diseases [5]. So a number of PTM types

have been extensively studied for their roles in the initia-

tion and development of human diseases.

The PTM residues of proteins may be detected using

two major classes of techniques. Both gel- and mass

spectrometry-based experimental techniques are widely

used to detect the mass change of a peptide after its

attachment with the PTM-specific biochemical group, e.g.,

the 80-Da phosphate group from phosphorylation [6]. Due

to the limited availability of catalytic enzymes and low

sensitivity, the experimental characterization of PTM

residues are still very costly and labor intensive for pro-

teome-wide studies. The alternative strategy is to compu-

tationally screen a query protein for residues whose
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flanking peptides are highly similar to the experimentally

verified PTM residues. The current literature supports the

assumption that two residues with the same or highly

similar flanking peptides tend to have similar probability to

be modified by the same PTM type [7]. Various scoring

strategies and machine learning algorithms were applied to

computationally detect PTM residues from protein

sequences [8, 9].

This study proposes a novel position-dependent scoring

strategy, the Echo algorithm, to measure the similarity

between two peptides. The position-dependent vector of

weights for different positions flanking the PTM residues is

optimized by an evolutionary algorithm, by simulating the

nature’s selection process of random mutation and fitting

evaluation. Even the simple nearest neighbor classification

strategy based on Echo outperforms similar computer

programs for three phosphoserine/threonine kinases, three

phosphotyrosine kinases and other three PTM types. A

computer program, jEcho, is implemented to facilitate the

biologists to easily use these optimized PTM prediction

models.

2 Materials and Methods

2.1 Data Sources

Experimentally verified phosphorylated residues were

collected from the most comprehensive phosphorylation

database Phospho.ELM version [10]. The database’s latest

version 9.0 was retrieved on July 31, 2012. This study

chooses three phosphoserine/threonine kinases (MAPK3,

MAPK8 and CDK5) and three phosphotyrosine kinases

(EGFR, Met and SYK) as examples to demonstrate how

the evolutionary optimization algorithm contributes to

PTM residue predictions. In Phospho.ELM version 9.0,

there are 91, 33 and 24 phosphorylated residues for

MAPK3, MAPK8 and CDK5, respectively. 55, 49 and 26

phosphorylated residues are collected for EGFR, Met and

SYK, respectively.

Besides phosphorylation, we also tested our system on

three other PTM types, i.e., SUMOylation, Nitrated tyr-

osine and S nitrosylation. These three PTM data were

retrieved from the database dbPTM version 3.0 [11] on

November 23, 2012. 1051, 96 and 3289 are collected for

the modification types SUMOylation, Nitrated tyrosine and

S nitrosylation, respectively.

2.2 PTM Prediction Problem

This study investigates the PTM prediction problem, which

is defined as follows. Firstly, for a given PTM type, the

modification alphabet is defined to be the amino

acid(s) that may be modified by this PTM type. That is to

say, {S, T} and {Y} are the modification alphabets for

phosphoserine/threonine and phosphotyrosine kinases,

respectively. SUMOylation, Nitrated tyrosine and S nitro-

sylation have the modification alphabets {K}, {Y} and

{C}, respectively. The experimentally verified PTM resi-

dues of this given PTM type constitutes the positive dataset

P ¼ fP1;P2; . . .;PGg. A positive data entry is a peptide

consisting of a upstream, the modified residue and

b downstream amino acids of the given PTM residue,

defined as PSP(a, b) [7]. The negative dataset N ¼
fN1;N2; . . .;NHg are the PSP(a, b) peptides of all the other

residues belonging to the modification alphabet in the

proteins with positive residues, as similarly defined in all

the other PTM prediction programs [7]. In order to conduct

a consistent performance comparison with the program

GPS [7], this study uses the same parameters (a = 7 and

b = 7) for all the PTM types except SUMOylation. The

prediction performance of Echo on SUMOylation is com-

pared with the program SUMOsp [12], so Echo uses the

same parameters (a = 5 and b = 5) as SUMOsp.

Echo chooses the simple nearest neighbor algorithm for

the PTM prediction problem. The similarity between two

PSP(a, b) peptides A and B is defined as ScoreðA; BÞ ¼
�P

i2½1; aþ1þb�; i 6¼aþ1ðwi � BLOSUM62ðAi;BiÞÞ
o
=ðaþ bÞ;

where wi is a predefined weight for the position i, and

BLOSUM62ðAi;BiÞ is the similarity score in the matrix

BLOSUM62 [13] between the two amino acids Ai and Bi.

For the two datasets P and N, a query peptide Q is defined

to be in the same dataset with its nearest neighbor. And the

weight vector W ¼ fw1;w2; . . .;waþ1þbg is optimized by

an evolutionary algorithm described in the next section.

2.3 Evaluation Measurements and Evolutionary

Algorithm

This study evaluates a PTM prediction algorithm’s perfor-

mance by its sensitivity (Sn), specificity (Sp), accuracy (Ac)

and Matthews correlation coefficient (MCC) [7, 14]. For the

positive and negative datasets P and N, a true positive is a

positive data entry predicted to be positive, whereas a posi-

tive data entry is a false negative if it is predicted to be

negative. A negative data entry is defined to be a true nega-

tive and false positive if it is predicted correctly or incor-

rectly, respectively. The numbers of these classes of data

entries are abbreviated as TP, FN, TN and FP, respectively.

The algorithm’s prediction performance measurements

Sn ¼ TP=ðTP þ FNÞ; Sp ¼ TN= ðTN þ FPÞ; Ac ¼ ðSn þ
SpÞ=2; and MCC ¼ ðTP � TN � FP � FNÞ=sqrtððTP þ
FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞÞ; where sqrt

(X) is the squared root of X.
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Table 1 Leave-one-out prediction performances of the Echo algorithm compared with the other alternatives

Cutoff Sn Sp Ac MCC Cutoff Sn Sp Ac MCC

Echo GPS 2.1

MAPK3 2.66 0.6593 0.9598 0.9558 0.3321 High 0.6437 0.9537 0.9492 0.3104

2.22 0.9451 0.9214 0.9218 0.3485 Medium 0.9310 0.8939 0.8944 0.3027

2.2 0.9560 0.9198 0.9203 0.3492 Low 0.9425 0.8451 0.8464 0.2503

MAPK8 3 0.4848 0.9781 0.9658 0.4027 High 0.3056 0.9648 0.9497 0.2032

2.08 0.9697 0.9157 0.9170 0.4490 Medium 0.9444 0.9128 0.9135 0.4150

1.82 1.0000 0.9071 0.9094 0.4438 Low 0.9444 0.8574 0.8594 0.3264

CDK5 2.3 1.0000 0.9672 0.9678 0.5931 High 0.6316 0.9627 0.9568 0.3684

Medium 1.0000 0.9206 0.9220 0.4141

Low 1.0000 0.8651 0.8675 0.3205

EGFR 1.76 0.6909 0.9471 0.9159 0.6191 High 0.6393 0.9410 0.9056 0.5610

1.53 0.7818 0.9169 0.9004 0.6108 Medium 0.7377 0.8734 0.8574 0.4934

1.44 0.8727 0.8992 0.8960 0.6374 Low 0.7705 0.8013 0.7977 0.4268

SYK 1.5 0.6735 0.9440 0.9113 0.5970 High 0.5667 0.9386 0.9086 0.4543

1.3 0.9184 0.9188 0.9187 0.7064 Medium 0.8824 0.8910 0.8900 0.6289

1.24 0.9184 0.8936 0.8966 0.6559 Low 0.9020 0.8256 0.8349 0.5408

Met 0.94 1.0000 0.9505 0.9606 0.8930 High 0.9615 0.9223 0.9302 0.8126

Medium 1.0000 0.8252 0.8605 0.6983

Low 1.0000 0.7961 0.8372 0.6636

PKA_alpha 1.9030 0.7188 0.9804 0.9767 0.4870 High 0.6541 0.9769 0.9714 0.4534

1.8350 0.8125 0.9603 0.9582 0.4154 Medium 0.8054 0.9415 0.9391 0.3775

1.8100 0.9375 0.9388 0.9388 0.3957 Low 0.8946 0.9032 0.9030 0.3310

MAPK1 2.3426 0.8333 0.9592 0.9573 0.4264 High 0.7304 0.9533 0.9500 0.3561

2.0110 0.9250 0.9250 0.9250 0.3608 Medium 0.9130 0.8990 0.8992 0.3090

2.0096 0.9333 0.9249 0.9250 0.3639 Low 0.9304 0.8470 0.8482 0.2526

Abl 1.6458 0.6250 0.9447 0.9170 0.5234 High 0.4375 0.9170 0.8745 0.3164

1.6300 0.6458 0.9328 0.9079 0.5058 Medium 0.5208 0.8644 0.8339 0.2915

1.6000 0.6667 0.9308 0.9079 0.5155 Low 0.5833 0.7854 0.7675 0.2429

PKG 2.2300 0.5909 0.9877 0.9806 0.5141 High 0.5238 0.9866 0.9783 0.4554

2.2000 0.7273 0.9770 0.9726 0.5026 Medium 0.6190 0.9641 0.9579 0.3673

2.1000 0.7273 0.9659 0.9617 0.4352 Low 0.6905 0.9360 0.9316 0.3145

Aurror_A 1.3600 0.5517 0.9836 0.9719 0.5028 High 0.3214 0.9746 0.9573 0.2657

1.3000 0.6897 0.9326 0.9260 0.3641 Medium 0.5714 0.9317 0.9221 0.2956

1.2130 0.7586 0.9123 0.9082 0.3546 Low 0.6071 0.8888 0.8813 0.2417

ATM 1.7281 0.9123 0.9641 0.9633 0.4885 High 0.8246 0.9628 0.9607 0.4389

1.7157 1.0000 0.9628 0.9633 0.5238 Medium 0.9649 0.9474 0.9477 0.4413

1.7000 1.0000 0.9617 0.9623 0.5184 Low 0.9825 0.9443 0.9448 0.4381

Echo SUMOsp

SUMO 3.1838 0.9015 0.9965 0.9923 0.9084 Medium 0.8817 0.9260 0.9243 0.5060

2.038 0.9284 0.8879 0.8897 0.4731 Low 0.9247 0.8545 0.8572 0.3933

3.237 0.8925 0.9975 0.9928 0.9138 High 0.8065 0.9670 0.9609 0.6128

Echo GPS 3.0

Nitrated Y 1.9193 0.3125 0.9260 0.8833 0.2114 High 0.2889 0.9002 0.8257 0.1884

1.7 0.5521 0.8684 0.8464 0.2912 Medium 0.4053 0.8502 0.7960 0.2171

Low 0.5009 0.8018 0.7651 0.2335

S nitro 2.65 0.3202 0.9921 0.91289 0.48727 High 0.2520 0.9117 0.8040 0.1897

2 0.48276 0.94273 0.8885 0.44309 Medium 0.3532 0.8672 0.7833 0.2175

1.69 0.54187 0.83608 0.80139 0.30003 Low 0.5357 0.8014 0.7580 0.2864

The cutoff values of Echo are tuned to match the similar specificity levels of the alternative algorithms, and the four performance measurements

are calculated for the Echo algorithm. The performances of the alternative algorithms are collected from the respective publications. Rows of

‘‘SUMO’’ are for SUMOylation, rows of ‘‘Nitrated Y’’ are for Nitrated tyrosine, and rows of ‘‘S nitro’’ are for S nitrosylation
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An evolutionary algorithm simulates the nature’s ran-

dom mutation and competitive selection process, and

works well on some optimization problems with no clues

of optimal patterns [15, 16]. In this work, the weight vector

W ¼ fw1;w2; . . .;waþ1þbg is defined to be the molecule

that receives the random mutations, and the selection/op-

timization goal is to maximize the measurement accuracy

Ac. Each generation consists of 100 individuals or weight

vectors. After the random mutations, 300 pairs of parent

individuals are randomly chosen to randomly exchange

half positions of their weight vectors. Only the individuals

with top 95 Ac values survive or are kept for the next

generation. In order to avoid the decrease in Ac in the next

generation, the best five individuals are kept intact for the

next generation. All the 9 PTM types reach the best Ac

values after 1000 generations of optimizations. In case the

readers may be interested in the optimized weight vectors,

they may be found in the supplementary table S1.

3 Results and Discussion

3.1 Comparison of Leave-One-Out Performance

Firstly, we compare the Echo’s prediction accuracy on the

three phosphoserine/threonine kinases and three phospho-

tyrosine kinases with the computer program GPS version

2.1 using the same Jack-Knife validation [14]. The Jack-

Knife validation is also called the leave-one-out (LOO)

validation, which predicts each data entry’s modification

Table 2 Fourfold cross-validation performance is calculated for all the 15 PTM types

Cutoff Sn Sp Ac MCC Cutoff Sn Sp Ac MCC

MAPK3 MAPK8

2.3600 0.7473 0.9386 0.8429 0.3083 2.7600 0.4848 0.9711 0.7280 0.3626

2.1000 0.9341 0.9160 0.9251 0.3335 2.0800 0.9697 0.9188 0.9443 0.4564

1.8800 0.9560 0.8988 0.9274 0.3115 1.8200 1.0000 0.9094 0.9547 0.4488

CDK5 EGFR

2.2900 0.8750 0.9719 0.9235 0.5568 1.5400 0.5636 0.9295 0.7466 0.4785

1.7400 0.9583 0.9236 0.9409 0.4085 1.4400 0.6909 0.9068 0.7989 0.5253

1.4400 1.0000 0.8853 0.9427 0.3525 1.3200 0.7818 0.8564 0.8191 0.5027

SYK Met

1.3300 0.6327 0.9412 0.7869 0.5594 2.2800 0.6923 1.0000 0.8462 0.8009

1.2100 0.8163 0.9047 0.8605 0.6085 0.9400 0.7692 0.9505 0.8599 0.7304

1.0900 0.8571 0.8487 0.8529 0.5412 0.6800 0.8462 0.7129 0.7795 0.4601

SUMO S nitro

3.0129 0.8597 0.9939 0.9879 0.8573 2.4900 0.4019 0.8462 0.6241 0.2358

2.0380 0.9164 0.8977 0.8986 0.4857 2.1100 0.6072 0.5970 0.6021 0.1554

3.1543 0.8567 0.9968 0.9906 0.8857 1.7500 0.8614 0.2119 0.5366 0.0692

PKA_alpha MAPK1

2.4600 0.5000 0.9875 0.7437 0.4169 2.1200 0.7750 0.9409 0.8579 0.3374

1.7900 0.7500 0.9473 0.8486 0.3395 1.9000 0.9167 0.9218 0.9192 0.3505

1.7500 0.9063 0.9419 0.9241 0.3918 1.7900 0.9333 0.9133 0.9233 0.3397

Abl PKG

1.5750 0.5833 0.9269 0.7551 0.4460 2.0800 0.6591 0.9704 0.8147 0.4204

1.3900 0.6042 0.8715 0.7379 0.3565 1.5800 0.7955 0.9014 0.8484 0.2930

1.0300 0.7083 0.7233 0.7158 0.2616 1.1300 0.8409 0.7472 0.7941 0.1764

Aurror_A ATM

1.2500 0.4483 0.9345 0.6914 0.2350 1.8800 0.4737 0.9802 0.7269 0.3397

1.1800 0.6552 0.9191 0.7871 0.3162 1.2200 0.9825 0.8974 0.9399 0.3305

1.0500 0.6897 0.8767 0.7832 0.2664 1.0500 1.0000 0.8461 0.9231 0.2728

Nitrated Y

2.8214 0.1563 0.9938 0.9355 0.2981

1.7246 0.3438 0.9104 0.8710 0.2090

1.3160 0.4063 0.7189 0.6971 0.0701
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status using all the other data entries as the training dataset

[17]. Echo outperforms the GPS 2.1 algorithm in all the

four prediction performance measurements in the corre-

sponding cutoff levels for all the six kinases, as shown in

Table 1. Even more than 10 % improvements in the

overall accuracy Ac values are achieved by Echo for

phosphoserine/threonine kinase CDK5 and phosphoty-

rosine Met, compared with the low cutoff values of the

algorithm GPS 2.1. More than 0.20 gain in the Matthews

correlation coefficient (MCC) values by Echo for CDK5,

EGFR and Met also suggests that Echo performs consis-

tently well on both the positive and negative datasets for

these kinases. For example, Echo achieves 100 % accuracy

for the positive dataset (Sn) and more than 95 % speci-

ficity for the kinases CDK5 and Met, as shown in Table 1.

We further evaluate Echo’s performance on identifying

phosphorylation residues of six more common kinases,

PKA_alpha, MAPK1, Abl, PKG, Aurror_A and ATM.

Echo outperforms GPS 2.1 on all the cases with all the

threshold values. The maximum improvement 14.04 % in

accuracy is achieved by Echo on the low threshold value of

kinase Abl.

Echo also outperforms the alternative algorithms in any

performance measurements for the other three PTM types,

i.e., SUMOylation, Nitrated tyrosine and S nitrosylation, as

shown in Table 1. A significant improvement has been

achieved for S nitrosylation residue predictions. 10.89 %

improved Ac and 0.2976 improved MCC for the high

cutoff level of S nitrosylation suggest that Echo performs

more consistently in both Sn and Sp. Echo improves the

overall accuracy Ac by more than 5 % for both SUMOy-

lation and Nitrated tyrosine, and even improves the MCC

by 0.4024 for the high cutoff level of SUMOylation. The

performance of Sn ¼ 90:15 % and Sp ¼ 99:65 % for

SUMOylation suggests that the annotations of Echo may be

reasonably applied to the large-scale characterization of

cellular SUMOylation dynamics.

3.2 Fourfold Cross-Validation Performance

of jEcho

Reasonable detection performance is also achieved by

Echo on all the 15 PTM types using the fourfold cross-

validation, as shown in Table 2. As expected, the data of

Fig. 1 User interface of jEcho version 1.0. The left tree box gives the

hierarchical list of PTM types. The top right box waits for the input of

query sequences in FASTA format. The parameters may be tuned in

the right middle box. The result box is in the bottom right table. The

illustrated data are the predicted from the example proteins by

clicking the button ‘‘Example’’
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fourfold cross-validation of Echo is slightly smaller than

the leave-one-out validation in the above section. But most

PTM types receive over 90 % in accuracy by Echo. Echo

performs best on the detection of SUMOylation residues,

with 99.06 % in the overall accuracy and 0.8857 in MCC,

which is even better than the leave-one-out validation of

both Echo and GPS on SUMOylation.

3.3 Prediction and Visualization of PTM Residues

The Echo algorithm is implemented as an easy-to-use PTM

prediction software, jEcho v1, using the Java programming

language, as shown in Fig. 1 and Supplementary Figure S1.

Firstly, jEcho may be used in any operating systems with a

Java running environment. And jEcho is packaged as an JAR

file, which contains all the required external libraries. A user

may run jEcho directly after downloading it. Secondly, jEcho

has an all-in-one user interface (UI), so that a user may get any

information from the UI, as the standard of a PTM prediction

server/program [8]. Thirdly, after a user generates the PTM

predictions for a specific catalytic enzyme, the distribution of

all the predicted PTM residues may be visualized in the cur-

rent protein by clicking the prediction in the right bottom

result area, as in Supplementary Figure S1 (d) and (e). Lastly,

the predicted results may be exported as a text file or an image

file, by clicking a button in Fig. 1 right top area.
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