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Abstract Chronic myeloid leukemia (CML) is a disease

of bone marrow stem cells caused by excessive growth and

accumulation of granulocytes in the blood. Aberrant

expression of the BCR-ABL proteins in bone marrow stem

cells have found out in 95 % cases of CML. Tyrosine

Kinase domains (SH2 and SH3) of BCR-ABL proteins are

the potent targets to inhibit the process. Initially, imatinib

is preferred as an efficient inhibitor to control functional

activity of disease. Recently, it has been reported that the

advanced stage of CML developed resistance against

imatinib. In continuation, dasatinib is the first drug to

combat against this disease by targeting multiple receptors

and proven better as compared to imatinib. Here, an

attempt has been made to identify similar analogs of

dasatinib. Virtual screening was performed against various

natural compound databases to get some potent natural

compounds which are able to inhibit more than one

receptor. Binding affinity of screened natural compounds

was compared with some of the well-known inhibitors like

imatinib, dasatinib, nilotinib etc., by analyzing their

docking score and binding efficiency with the receptor.

Stability of the best ligand–receptor complex was checked

by performing 10 ns molecular dynamics simulation.

ADMET properties of the obtained screened compounds

were analyzed to check drug like property. Based on the

aforementioned analysis, it has been suggested that these

screened potent compounds are capable to inhibit multiple

receptor proteins like ABL and SRC and consequently

combat against the deadly disease CML.
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1 Introduction

Chronic myeloid leukemia (CML) is a stem cell disorder

caused by abnormal growth of granulocytes in the bone

marrow and overruns in to the blood for accumulations [1,

2]. Three phases of disease development process of CML

are (1) transformation from initial to chronic (2) chronic to

accelerated and (3) accelerated to blast stage or fatal stage

[3]. Occurrence of CML cases are increasing day by day,

indeed number of people suffering from CML becomes

doubled since 2001 [4]. At the molecular level investiga-

tion, CML is caused due to translocation of the Abelson

(ABL) gene on chromosome 9 to the Breakpoint Cluster

Region (BCR) of chromosome 22 [5]. In the most of CML

cases, constitutive proliferation of BCR-ABL oncoproteins

is found which leads to ABL kinase as a putative drug

target [6]. Initially, CML was treated by chemotherapy,

bone marrow and stem cell transplantation which is having

many fatal side effects [7]. Nowadays, it is being treated by

targeted therapy with the help of BCR-ABL tyrosine kinase

inhibitors which led to the enhancement of survival rate of

the patients. BCR-ABL protein contains SH2 and SH3

domains, constitutively activates the ABL tyrosine kinase

protein, which participates in signal transduction mecha-

nism. It uses the ATP as co-factor to phosphorylate the

substrates present in the signal transduction mechanism

and its aberrant functioning leads to the cancer. The dis-

covery of imatinib mesylate in late 1990s as an inhibitor of

BCR-ABL protein has changed the entire treatment arena
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of CML [6, 8]. It specifically kills the cancerous cell

growth and minimally affects the normal cells [9]. imatinib

mesylate had proven as first generation and most effective

drug against this disease especially in initial stages of

CML. Later on in some cases, CML cells developed

resistant to the imatinib and reoccurrence of disease has

been seen in newly treated patients of advanced stages

[10]. Common causes of resistance are probably due to

point mutation of the kinase domain of BCR-ABL protein

or less bioavailability of the drugs which consequently

leads to the insensitivity toward drugs [10]. To overcome

these lacunas, various second generation inhibitors like

boustinib, tozaseritib, nilotinib, dasatinib, and bafatinib had

been discovered for the effective inhibition of BCR-ABL

protein. Some of them are in clinical trials or some of the

drugs are available in market [11]. Due to limitations and

side effects of the above said inhibitors, extensive study of

target-based therapy for CML is needed [12]. Effective

inhibition of oncogenic proteins, identification of the multi-

target inhibitory ligands are required to circumvent the

mutated CML cases [13]. The first multi-targeted-based

inhibitor, dasatinib had been recently approved for CML

and it acts as dual inhibitor [14]. In this work, in-silico

analysis of the natural inhibitors for tyrosine kinase protein

has been done by targeting two important non receptor

tyrosine kinase proteins like SRC and ABL [15, 16]. They

are structurally different in C-terminal region but homol-

ogous in N-terminal region where SH2 and SH3 domains

are present [17]. The SH2 and SH3 domains of the ABL

protein play a significant regulatory role to activate it, and

SH3 domain of ABL is homologous to SRC protein’s SH3

domain [18]. SH2 domain of the SRC or ABL is interacting

with the inhibitor and mediated the inhibitory reactions.

Small molecules/Inhibitors act as a competitive inhibitor

for the ATP and bind to the SH2 domain of ABL or SRC

kinase protein and causes hindrance to the phosphorylation

process [19]. At the same time SH3 domain plays struc-

turally important role during inhibition of SH2. Identifi-

cation of common natural compounds which are effective

against both of the oncoproteins becomes important for the

treatment of CML.

This work is based on five steps approaches to find out

the common natural inhibitory molecules for ABL as well

as SRC protein. (a) Selected the SH2 domain of ABL and

SRC protein as a target because its structure is homologous

to each other, and investigated their active site. (b) Dataset

of natural ligands was generated by considering Lipinski

rule of five from ZINC natural database and collected some

of the already available inhibitors like imatinib, dasatinib,

boustinib, nilotinib etc as reference or control molecules.

(c) Virtual screening was performed for both the protein

against generated inhibitors datasets [20, 21]. (d) Molecu-

lar dynamic simulation study of the best protein–ligand

complex was performed for 10 ns. (e) ADMET prediction

was performed for the best screened inhibitors which are

common for both receptors.

2 Material and Methods

The entire experiments were performed on Centos 6.5 of

Linux operating systems with 12 GB RAM, NVIDIA

graphics and 1 TB Hard disk computer system. Hardware

of the system is as follows: Intel(R) Core(TM) i7-3770

CPU@3.40 GHz processor.

2.1 Target Preparation and Active Site Prediction

Inhibitors targeting to the SH2 domain could inhibit the

phosphorylation process of ABL and SRC and consequently

induce the arrest of cell cycle and apoptosis. The targeted

SH2 domain of ABL and SRC proteins were selected on the

basis of their structural similarity [22]. 3D structure of ABL

and SRC were downloaded from Protein Data Bank [PDB-

ID 2ABL and 2H8H, respectively] (Figs. 1a, b) [23, 24]. The

PDB structure of both proteins was prepared by Protein

Preparation Wizard of Maestro [25]. SiteMap, version 3.0,

was used for active site prediction of both proteins which

uses OPLS_2005 force field to detect top ranked potential

receptor binding cavity. After preparation of protein and

identification of active site, receptor grid was generated for

both proteins by Grid Generation panel of GLIDE module,

version 6.2,Maestro. Grid dimension forABL proteinwas as

follows: Inner box: X = 10, Y = 10, Z = 12, Outer box: X =

30.0, Y = 30.0, Z = 32.0, Grid contour X = 2.0, Y = 8.0, Z =

40.0. Likewise grid dimension for SRC protein is as follows:

Inner box X = 10, Y = 10, Z = 10, Outer box: X = 28.82, Y =

28.82, Z = 28.82, Grid contour X = 21.106, Y = 20.08, Z =

58.56.

2.2 Dataset Generation and Virtual Screening

A dataset of natural compounds was generated by col-

lecting compounds from ZINC natural product database.

ZINC natural product database is a collection of 12 dif-

ferent natural product dataset which contains 142131

unique molecules and their individual distributions are

described in Table 1. Datasets were converted into PHASE

database format (.phdb) of the Schrödinger software. Vir-

tual screening is a technique by which small molecules are

identified from the large dataset which are most likely to

bind the targeted protein [26]. Generated dataset was

screened against the active site of SH2 domains of both

proteins. On the basis of binding affinity of the interacting

molecule and hydrogen bond formed between them,

GLIDE assigns the glide scores to the each interacting

242 Interdiscip Sci Comput Life Sci (2016) 8:241–252

123



complex. High scoring compounds are considered to be the

highly interacting compound and placed into top position

as compared to the other screened molecules. Screening

process of GLIDE includes three steps like High

Throughput Virtual Screening (HTVS), Standard Precision

(SP) and Extra Precision (XP). Through this rigorous

docking-based in-silico filtering, we obtained some com-

pounds with significant glide and docking score [27]

2.3 Docking Studies

Some of the well-known inhibitors like imatinib, dasatinib,

nilotinib, befatinib etc, were used as reference molecules.

Molecular ligand docking was performed for ABL and

SRC protein individually with these molecules for com-

parative analysis by using GLIDE module of Maestro.

2.4 Molecular Dynamics (MD) Simulation

Molecular Dynamics Simulation is a computer-based

simulation of the atomic/molecular movements in the

systems for a particular time. The best conformer of ABL

and SRC proteins with ligands was subjected for Molec-

ular Dynamics Simulations. Entire MD Simulation

experiments for both the complex (ABL and SRC) were

performed with the help of Desmond software [28, 29].

Neutral territory method was used to effectively explore

the parallel computing in simulation process [30]. The

OPLS 2005 force field was used to define the interactions

of amino acids of system. Simple Point Charge (SPC)

water model was embedded [31], with dimension 10 � 10

� 10 Å to cover the protein–ligand complex. System

neutralization was done by adding the Cl� ion to maintain

the pH of the systems. Default steps and protocols of the

Desmond were selected to optimize the systems equilib-

rium, which allows them for slow relaxations and without

deviating from the initial co-ordinates. Finally, production

run was carried out for 10 ns by maintaining the normal

temperature and pressure. The structural and dynamic

behavior of both the complexes was analyzed by calcu-

lating the root-mean-square deviations (RMSD) and

potential energy [32].

Fig. 1 3D Structure of ABL

and SRC protein represented in

cartoon format a ABL (PDB-

ID: 2ABL, Resolution: 2.5 Å),

b SRC (PDB-ID: 2H8H,

Resolution: 2.2 Å). [23, 24]

Table 1 Library of natural

ligands collected from ZINC

natural product database and

their screening at all the three

levels of virtual screening

Library Input no. of ligand structures HTVS SP XP

AfroDb 885 81 9 1

AnalytiCon discovery NP 11,247 1173 123 24

Herbal ingredients 802 78 7 1

IBScreen NP 74,940 7179 648 52

Indofine natural products 144 12 3 4

NPACT database 1423 149 16 2

Nubble natural products 588 52 4 1

Princeton NP 14,084 1387 158 21

Specs natural products 1496 138 15 3

TCM database @ Taiwan 36,043 3471 324 28

UEFS natural products 473 48 4 1

Known inhibitors 6 6 6 6

Total 142,131 13,774 1317 144
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2.5 Calculation of ADME and Toxicity

ADME properties like Molecular Weight, hydrophilicity,

hydrophobicity, solvent accessible surface area, number of

rotable bonds, donor-hydrogen bonds, acceptor-hydrogen

bonds etc. of common four natural inhibitors were calcu-

lated by QuikProp v3.9, module of Maestro.

OSIRIS property explorerwas used for toxicity prediction

of common four inhibitors of ABL and SRC protein (http://

www.organic-chemistry.org/prog/peo/). It is an online tox-

icity prediction tool for the analysis of drug relevant property

like Mutagenic, Tumorigenic, Irritant, Reproductive effec-

tive, cLogP, Solubility, Molecular Weight etc.

3 Results and Discussion

3.1 Protein Preparation and Active Site Analysis

Preparation of ABL and SRC proteins included bond

order refinement and their minimization. The cavity was

selected and prepared by adding H-bonds, disulfide bonds

and water molecules beyond 5 Å were removed. Finally,

both the proteins were reviewed and modified by check-

ing the metal binding states, chains balance and pH

maintenance of the system. SiteMap has detected the

largest volume of 527.8 Å3 as an active site of ABL

protein. Likewise active site of SRC was also detected

with volume 1434.4 Å3. Active site of the ABL protein

was validated by analyzing the Hyun-Joo Nam et al. work

which showed the presence of Tyr89, Trp118, Trp128,

Asn133 and Tyr134 in the active site. Validation of the

active site of SRC protein was done by analyzing the

Laurent et al. work which showed donor H-bond with

Tyr340 and acceptor H-bond with Met341.

3.2 Analysis of Virtual Screening and Molecular

Docking

Screening used to perform sequential three layers of

molecular docking during final selection of ligands namely

HTVS, SP and XP. The LigPrep (module for preparation of

ligands) treated compound libraries of 142131 compounds

were flexibly docked into the active site of both the pro-

teins using GLIDE and their screening at all the three

stages have been summarized in Table 1. In first step the

ligands were rapidly screened by HTVS (High Throughput

Virtual Screening); the ligands passed out from HTVS

were subsequently analyzed in Glide SP (Standard Prepa-

ration) in second step and Glide XP (Extra Precision) in the

third step [33]. The scoring of the ligands were based on

their g-score (Glide score) and Glide e-model score.

Detailed investigation of docking scores and binding

affinity of natural screened inhibitors with both proteins

was done. Out of which, four natural compounds have

shown common inhibitory activity against both the recep-

tors and these compounds had also good binding affinities

with both receptors on the basis of their docking score and

glide e-model scores (Table 2). 2D structures of screened

molecules are shown in Fig. 2.

In Table 2, six reference molecules which are already

known for their inhibitory effect against both these recep-

tors were also listed and their scores were analyzed and

compared with the screened inhibitors. Docking scores of

ABL receptor with befatinib, boustinib, dasatinib, imatinib,

nilotinib, and tozaseritib are �4:678, �4:686, �5:126,

�5:746, �5:590, and �5:673 respectively. Whereas

docking scores of the selected top scoring molecules C1,

C2, C3, and C4 with ABL are �9:493, �8:905, �9:109,

and �7:475, respectively. Docking scores of SRC receptor

Table 2 Common natural inhibitors for both proteins with their Docking score, GLIDE score, and GLIDE e-model

S. No. Compound name Receptor ABL Receptor SRC

Docking

score

GLIDE

g-score

GLIDE

e-model

Docking

score

GLIDE

g-score

GLIDE

e-model

1 Selected ligands/natural inhibitors ZINC14437962 (C1) �9.493 �9.493 �63.274 -9.513 -9.533 �59.373

2 ZINC31169866 (C2) �8.905 �8.905 �75.597 -11.304 -11.304 �84.014

3 ZINC14645645 (C3) �9.109 �9.307 �68.312 -10.598 -10.796 �85.832

4 ZINC36470466 (C4) �7.457 �7.457 �60.204 -10.771 -10.771 �68.508

5 Reference/known inhibitors Befatinib �4.678 �4.843 �61.265 -7.085 -7.085 �75.262

6 Bosutinib �4.686 �4.874 �66.632 -5.719 -5.906 �66.266

7 Dasatinib �5.126 �5.169 �71.806 -8.794 -8.837 �87.600

8 Imatinib �5.746 �5.863 �81.188 -7.831 -7.949 �93.957

9 Nilotinib �5.590 �6.497 �87.660 -8.129 -8.273 �86.502

10 Tozaseritib �5.673 �7.248 �89.189 -7.957 -8.132 �83.633
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with befatinib, boustinib, dasatinib, imatinib, nilotinib, and

tozaseritib are �7:085, �5:719, �8:794, �7:831, �8:129,

and �7:957 respectively. Whereas docking scores of the

selected top scoring molecules C1, C2, C3, and C4 with

SRC are �9:513, �11:304, �10:598, and �10:771

respectively. Docking scores of all selected ligand are

found better as compared to the reference molecules which

indicate that these compounds can have more potent inhi-

bitory action against both ABL and SRC receptors.

Various energies like solvation energy, van der Wall

energy, and Electrostatic energy of the ABL and SRC with

these screened four common ligands were also calculated

by using MacroModel, version 10.3, Schrödinger, LLC,

New York, NY, 2014 as depicted in Table 3.

The docking studies indicated that the screened top

ranked compounds showed strong hydrogen bonding

interactions with both the receptors. The docking score of

these screened four compounds ranges from �7:457 to

�9:493 for ABL protein and �9:513 to �11:304 for SRC

receptor. The key interacting residues Gly178, Asp 83, Pro

83, 177, Glu 172, Leu 110, 141, P177, Ser 132 etc. were

conserved within active site of the receptor and contributed

to the strong binding affinity of these four top ranked

compounds for ABL protein. Whereas in SRC receptor,

key interacting residues Met 341, Asp 348, 391, Leu 273,

Lys295, Iso 336, and Phe 405 were conserved within its

active site which further contributed to the efficient and

more potent binding affinity of these four top ranked

compounds.

By analyzing docking complexes of ABL with natural

compounds C1, C2, C3, and C4 number of hydrogen bond

formed are 6, 5, 4, and 5, respectively, in its hinge region.

Most common residues present in hydrogen bond interac-

tions were Gly 178, Asp 83, Pro 82-83, Glu172, Leu 110,

141 Ser132, 140, Ile 135 and Thr 197. The binding modes

of these four screened compounds were shown in Fig. 3a–

d, respectively, and various strong interactions such as

H-bond, Hydrophobic, Polar etc formed by these com-

pounds with ABL receptor have been depicted in Table 4.

Likewise, by analyzing docking complexes of SRC with

natural compounds C1, C2, C3, and C4 number of hydro-

gen bond formed are 4, 3, 4, and 5 respectively. Most

common residues present in the hydrogen bond interactions

were Met 341(2), Asp 348(2), 391, Leu 273, Lys295, Iso

Fig. 2 2D structure of screened natural inhibitors a ZINC14437962 =

(2S,3S)-3,5,7-trihydroxy-6-methyl-2-(3,4,5-trihydroxyphenyl)chroman-

4-one, b ZINC14645645 = (2S,3S)-2-(3,4-dihydroxyphenyl)-3,5,7-

trihydroxy-8-[(4-hydroxyphenyl)methyl]chroman-4-one, c ZINC311

69866 = (6R)-1,7-bis(3,4-dihydroxyphenyl)-6-hydroxy-heptan-3-one,

d ZINC36470466 = 2-(3-hydroxybenzyl)-3-(3,4-dihydroxybenzyl)

butane-1,4-diol

Table 3 Energy in KJ/mol for ABL and SRC complex with top scoring natural inhibitors

S. No. Natural compounds ABL SRC

Solvation energy V.D.W. Electrostatic energy Solvation energy V.D.W. Electrostatic energy

1 ZINC14437962 (C1) �142.74 63.02 -13.88 -141.17 68.60 -19.682

2 ZINC31169866 (C2) �150.5 45.21 -136.64 116.69 44.93 -210.58

3 ZINC14645645 (C3) �155.82 82.39 30.26 -156.67 81.95 47.181

4 ZINC36470466 (C4) �115.43 57.2 -62.244 -102.93 55.33 -84.82
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336, and Phe 405 (2). The binding modes of these four

screened compounds were shown in Fig. 4a–d, respec-

tively, and various strong interactions such as H-bond,

Hydrophobic, Polar etc formed by these compounds with

SRC receptor have been shown in Table 4.

3.3 MD Simulation analysis

Molecular dynamics simulation was used to explore

dynamic perturbations in the conformation of complex

structure for both receptor with four compounds. Here, we

have shown the detail analysis of MD simulation results of

only one compound (C3) with receptor ABL and SRC

(docking score = �9:109 for ABL and docking score =

�10:598 for SRC), because C3 is showing better binding

affinity for both the receptors. The Simulation process was

run for 10 ns in order to check the stability of the protein-

ligand complex. During the initial stage, there were more

fluctuations in the potential energy and RMSD of the

system. But after the equilibration phase till 5-6 ns, the

system started showing consistent behavior during the

production phase of the simulation process. The initial

energy of the complex (ABL with compound 3) was

�41; 390 kcal/mol. During the course of 10 ns simulation,

the potential energy shows a decrease and after 7 ns, it was

found that the graph shows not much significant differences

which is indicative of stabilization of the system as shown

in Fig. 5a.

Similarly for the complex (SRC with compound 3), the

initial energy was found to be �17; 8640 kcal/mol and the

potential energy shows a decrease during the course of 10

ns simulation (Fig. 5b). But here also the graph shows not

much significant differences after 7 ns which is indicative

of stabilization of the system. The trajectory files had been

combined using standard commands/protocol of Desmond

and were analyzed for flexibility of the backbone atoms of

the docked protein complex. The RMSD graph plotted in

Fig. 5c, d indicates the result of dynamic behavior of both

Fig. 3 Docked complex of ABL with four natural compounds in ribbon representation and their interacting residues a ZINC14437962,

b ZINC31169866, c ZINC14645645, d ZINC36470466; Dotted lines showing the hydrogen bond interaction

246 Interdiscip Sci Comput Life Sci (2016) 8:241–252

123



ABL and SRC from the initial position to final position

throughout the simulation time. First, we aligned all the

frames and then the root-mean-square deviation (RMSD)

values of the both docked protein complex’s backbone

atoms were plotted against frames obtained during simu-

lation of 10 ns using Visual Molecular Dynamics (VMD)

software. Initially there were larger fluctuations (max =

3.484 Å) in the Ca atoms of the docked ABL protein

backbone RMSD which in the production phase get

reduced and was an average of 1.724 Å as depicted in

Fig. 5c. Here, the overall standard deviation was 0.458 Å

during 10 ns simulation time. In the same manner, large

fluctuations (max = 2.820 Å) in the Ca atoms of the docked

SRC protein backbone RMSD were also observed which in

the production phase get reduced and was an average of

1.129 Å, and there also occurs a standard deviation of

0.319 Å during the course of 10 ns simulation as shown in

Fig. 5d. Rest three natural compounds were also shown

stability in course of 10 ns simulation run. Simulations

were stopped after 10 ns because after 5-7 ns all graphs

have attended the stability.

3.4 ADME Descriptors Analysis

Fifteen principal descriptors as shown in Table 5 [34] and

fourteen predicted ADME properties as shown in Table 6

were calculated for selected natural inhibitors by QikProp

module of the Schrödinger software [35, 36].

ADMET properties are significant measures for a

molecule which can serve as a drug [37] as shown in

Table 6. ADMET properties like percentage of human oral

absorption of good drug should be more than 25 %; how-

ever, ligand C4 showed highest percentage as compared to

others, i.e., 67.9 %. For aqueous solubility (logS) ligand C2

showed highest among all i.e �2:488, apparent Caco-2

permeability in nm/s (PCaco) of ligand C4 showed highest

among all i.e. 66.078, logHERG indicates the HERG Kþ

channel blockage: log IC50 which is higher in ligand C1,

i.e., �4:678. PMDCK descriptor is used for prediction of

non-active transport which is highest in case of C4, i.e.,

26.24. For polarizability (Polrz in angstrom) ligand C4

showed highest among all, i.e., 38.719, logP for hexade-

cane/gas (logPC16) is highest in ligand C3, i.e., 14.631,

logP for octanol/gas (logPoct) is highest in ligand C3, i.e.,

24.987, logP for octanol/water (logPo/w) is highest in C4,

i.e., 1.443, Lipinski rule of 5 violations (rule of 5) is

allowed till 4, whereas ligand C2 and C4 showed zero

violation and ligand C1 and C3 showed single violation.

Less violation of rule 5 indicates the higher drug likeness

of the compound [38]. Jorgensen rule of 3 violations (rule

of 3) is allowed maximum till 3, whereas ligand C2 and C4

showed 1 violation and ligand C1 and C3 showed 2

Table 4 H-bond interacting residues

S.

No.

Compounds ABL SRC

No. of

H-bonds

H-bond

interacting

residues

Other non-bonded interactions No. of

H-bonds

H-bond

interacting

residues

Other non-bonded interactions

1 ZINC14437962

(C1)

6 G178,

N83,

P83,

E172,

L110,

T197

q–ve: E142 q1ve: R180 P:
N139, S140 H: V109, Y112,
147, P137, 177, L141, F85,

Pi-Pi: R180

4 M341(2)

D348(2)

q–ve: E339, D404 q1ve: K295
P: T338, S345 H: A293, 403,
V281, 323, Y340, L393, 273

G: G344

2 ZINC31169866

(C2)

5 P177 N83

L141

S132(2)

q–ve: E142, 172 q1ve: R180
P: T136, N133, S140 H:
Y112, 147, P82, 137, I135,

F85, P150 G: G149, 178

3 F405 D404

M341

q–ve: E339 q1ve: K295 P:
T338, S342, 345 H: L273, 325,
393, 407, M314, 341, A293,

403, Y340, I336, F405 Pi-Pi:
F405 G: G344

3 ZINC14645645

(C3)

4 L141(2)

S132

S140

q–ve: E142, 172 q1ve: R180
P: N83, 133, 139, T136 H:
L110, V109, F85, P82, 137,

150, 177, I135, Y147 G:
G111, 149, 178

4 M341

L273

N391

K295

q–ve: D404 P: T338, S342, 345,
Q275 H: A403, L393, 407,
I336, Y340, V281 G: G274,
344

4 ZINC364470466

(C4)

5 P82(2)

I135

E172(2)

q–ve: E142 q1ve: R180 P:
N83, 133, 139, S140, T136,

S132 H: Y112, 147, P137,
150, 177, L141, F85, C119 G:
G149

5 M341(2)

I336

F405(2)

q–ve: E339, D404 q1ve: L295
P: T338 H: Y340, L273, 393,
325, 407, V281, 337, 323, I294,

A293, 403 Pi-Pi: F405

q-ve negative charge, q?ve positive charge, P polar, Pi-Pi pi-pi stacking, G glycine
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Fig. 4 Docked complex of SRC with four natural compounds in ribbon representation and their interacting residues a ZINC14437962,

b ZINC31169866, c ZINC14645645, d ZINC36470466; dotted lines shows the hydrogen bond interaction

Fig. 5 Simulation results during 10 ns MD simulation a potential

energy plot of docked ABL protein complex with ZINC31169866,

b potential energy plot of docked SRC protein complex with

ZINC31169866, c RMSD plot of ABL complex with ZINC31169866,

d RMSD plot of SRC complex with ZINC31169866
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violations. Likewise less violations of the rule three shows

higher oral bioavailability of the ligand [39].

3.5 Toxicity Analysis

Toxicity Risk Assessment panel of the Osiris Property

Explorer (OPE) was used to predict toxic property of

selected natural inhibitors as summarized in Table 7. OPE

use to predict toxic property by analyzing available

molecular toxic property in the Registry of Toxic Effects of

Chemical Substances (RTECS) database. RTECS, a

Accelrys database which is a repository of chemical

structures and their toxic property. These properties are

mutagenic, tumorigenic, irritating effect, reproductive

effect etc. Some of other descriptors were also predicted

like cLogP, Solubility, Drug likeness, Drug Score, Topo-

logical Polar Surface Area (TPSA) etc. Predicted results

are color coded like red which shows high risk, whereas

green confirms the drug likeness.

By analyzing the results of toxicity predictor, all four

compounds were non mutagenic, non-tumorigenic, nonir-

ritant, non-reproductive, etc. Other descriptor values of all

drugs were also in acceptable range. cLogP is used to

measure the hydrophilicity of the drugs which ensures the

drugs absorbance probability and it should not be greater

than 5.0. LogS is used to measure the solubility of drugs

which affects the absorption and distribution property of

the drugs and it should be greater than �4. Drug likeness

property of the drugs is calculated on the basis of numerous

properties, and it should be in range of �4 to ?4. Drug

Table 5 ADME principal descriptors of natural inhibitory molecules

S. No. Principal

descriptors

ZINC14437962

(C1)

ZINC31169866

(C2)

ZINC14645645

(C3)

ZINC36470466

(C4)

Range 95 % of drugs

1 MWa 334 346 410 318 130/725

2 DMb 4 2.6 4.75 2.9 1/12

3 SASAc 551 602 617 565 300/1000

4 FOSAd 101 120 57 119 0.0/750

5 FISAe 306 272 313 234 7/330

6 PISAf 143 208 246 211 0/450

7 WPSAg 0.00 0.00 0.00 0.00 0/175

8 MVh 950 1088 1146 1011 500/2000

9 PSAi 160 133 157 107 7/200

10 donorHBj 5.00 5.00 5.00 5.00 0/6

11 accptHBk 7.20 6.70 7.20 5.65 2/20

12 Globl 0.80 0.80 0.80 0.80 0.75/0.95

13 RotBondm 6 13 8 12 0/15

14 IP(ev)n 9.145 8.810 8.861 8.893 7.9/10.5

15 EA(ev)o 0.826 0.097 0.505 �0.133 �0.9/1.7

a Molecular Weight
b Dipole Moment
c Solvent Accessible Surface Area
d Hydrophobic SASA
e Hydrophilic SASA
f Carbon Pi SASA
g Weakly Polar SASA
h Molecular Volume
i van der Waals Polar SA
j Donor-Hydrogen Bonds
k Acceptor-Hydrogen Bonds
l Globularity
m Rotable Bond
n Ionization Potential
o Electron Potential
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score is calculated on the basis of cLogP, LogS, drug

likeness values and predicts the overall potential of the

compound to be a drug. Acceptable ranges are 0.60 –1.0,

\0.60 indicates high risk, whereas toward 1 indicated no

risk. The TPSA is associated with blood–brain barrier and

oral bioavailability of the drugs and its acceptable range is

about 140 Å.

4 Conclusion

To the best of our knowledge, none of the reported work

explored the in-silico identification of natural inhibitors for

Chronic myeloid leukemia. In this work, we have identified

four multi-targeted natural compounds by virtual screen-

ing, molecular docking, and MD simulation studies.

Table 7 Toxic properties of screened natural inhibitors

S. No. Toxic property ZINC14437962 (C1) ZINC31169866 (C2) ZINC14645645 (C3) ZINC36470466 (C4)

1 Mutagenic NO NO NO NO

2 Tumorigenic NO NO NO NO

3 Irritant NO NO NO NO

4 Reproductive effect NO NO NO NO

5 cLogP 0.96 2.68 2.43 2.32

6 LogS �1.99 �2.67 �3.36 �2.21

7 Drug likeness 1.2 0.97 2.48 �1.49

8 Drug Score 0.9 0.83 0.74 0.63

9 TPSA 140.0 118.2 142.6 101.1

Table 6 ADME descriptors of top scoring screened natural inhibitors

S. No. ADME descriptors ZINC14437962 (C1) ZINC31169866 (C2) ZINC14645645 (C3) ZINC36470466 (C4)

1 Human oral absorption 32.5 % 58.5 % 39.101 % 67.9 %

2 LogP(o/w)a �0.165 1.095 1.218 1.443

3 LogSb �2.832 �2.488 �4.59 �2.604

4 PCacoc 12.326 25.658 10.113 66.078

5 LogHERGd �4.678 �4.964 �6.008 �5.282

6 PMDCKe 4.273 9.449 3.450 26.240

7 Polrzf 29.418 31.062 38.719 29.873

8 LogPC16g 11.327 12.876 14.631 12.280

9 LogPocth 21.443 21.451 24.987 20.322

10 Metabi 8 9 8 7

11 LogKhsaj �0.460 �0.411 �0.101 �0.393

12 Rule of 5 1 0 1 0

13 Rule of 3 2 1 2 1

14 Pot. energy OPLS2005 94.3 32.6 118.6 73.763

a log P for octanol/water (logPo/w)
b logS for aqueous solubility (logS)
c apparent Caco-2 permeability in nm/sec (PCaco)
d HERG K? channel blockage: log IC50 (logHERG)
e apparent MDCK permeability in nm/sec (PMDCK)
f Polarizability in cubic angstroms (Polrz)
g logP for hexadecane/gas(logPC)
h logP for octanol/gas (logPoct)
i No. of primary metabolites (Metab)
j log Khsa serum protein binding (logKhsa)
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Bioavailability, drug likeness, and toxicity of the selected

compounds were also calculated by ADMET analysis. The

ADMET score of these screened ligands suggest an overall

favorable pharmacokinetics to be accepted as lead mole-

cule. Molecular docking studies showed that these four

screened natural compounds are expected to bind the

inactive form of ABL as imatinib and dasatinib do,

although requiring a lower conformational stringency, with

the ability of binding more intermediate conformations

than known inhibitors. The improved binding affinity score

and number of hydrogen bonds suggest better interactions

in active site of candidate receptors. Taken together, these

observations raised the possibility that the small-molecule

inhibitors with dual activity could act against ABL and

SRC, proving its effectiveness in CML patients resistant to

known drugs. Thus, we can safely conclude that these four

natural compounds individually can be used as potential

lead to synthesize new drug molecules for multiple targets

involved in chronic myeloid leukemia.
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