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Abstract Glycogen synthase kinase-3b (GSK-3b) is a

kinase family enzyme and an emerged target for the

treatment of various diseases. A total of 23 structurally

diverse flavonoid inhibitors were used to generate phar-

macophore models using HypoGen algorithm. The

hypotheses Hypo1 was considered as a best model which

consists of three features: one hydrophobic and two aro-

matic ring features. The Hypo1 pharmacophore model was

employed as a query to screen NCI and natural compound

databases to discover novel potential lead compounds. In

addition, molecular docking studies were carried out with

596 compounds from screening studies. NSC230353,

NSC66454, NSC159593, and NSC156759 from NCI

database and STOCK1N-81808, ZINC02159818, ZINC0

4042470, and ZINC72326235 from natural compound

database were identified as potential GSK-3b inhibitors.

Keywords Glycogen synthase kinase-3b � GSK-3b �
Pharmacophore � Virtual screening � Molecular docking

1 Introduction

Glycogen synthase kinase-3 (GSK-3) was discovered over

30 years ago as one of kinase protein that phosphorylates

and inactivates glycogen synthase [1]. The glycogen

synthase kinase-3 has closely related isomers which share

98 % identity, a 51 kDa GSK-3a and 47 kDa GSK-3b,
these isomers are not functionally identical and redundant

[2, 3]. GSK-3 is one of the interesting target protein in

many diseases [4], including cancer (hepatocellular car-

cinoma, prostate cancer, pancreatic cancer and colorectal

cancer) [5–9], Alzheimer’s disease [10], and diabetes [11,

12] because it regulates cell division, apoptosis, and

insulin action. Glycogen synthase kinase-3b (GSK-3b) is
a serine/threonine kinase and is a multifunctional kinase

protein; it regulates more than 40 proteins depending on

cellular pathway [13]. The inhibitors of GSK-3b have

been focused great interest in drug discovery; structurally

significant diverse compounds have been reported to

inhibit GSK-3b in recent years [14–22], but unfortunately

most of the inhibitors have cell toxicity, various side

effects, and poor ADMET which affect their clinical

potential [23], and this make us to design novel GSK-3b
inhibitors using computer-aided drug design studies.

Various computer-aided drug design studies are success-

fully employed in drug discovery research. Ligand-based

pharmacophore is a major tool in drug discovery and is

applied in virtual screening and lead identification [24].

The protein–ligand docking is applied to predict the

position and orientation of a ligand when it is bound to a

protein receptor or enzyme. In the present study, phar-

macophore modeling, virtual screening, and molecular

docking approaches were used to identify potential lead

compounds for GSK-3b.
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2 Materials and Methods

2.1 Data Set Preparation

A set of 23 structurally distinct compounds reported as

glycogen synthase kinase-3b (GSK-3b) inhibitors with

diverse experimental inhibitory activity (IC50) data was

compiled from literature, and their structures are shown in

Supplementary Figure 1 [25–27]. All compounds were

sketched in ISIS draw and converted into 3D form, and

energy minimization was performed with CHARMM force

field, and conformation models were generated by FAST

method; maximum 255 diverse conformers were generated

with energy threshold of 20 kcal mol-1. The developed

conformers were used for hypotheses generation. To form a

training set, 17 compounds were chosen with IC50 ranging

from 0.28 to 300 lM. The data set of activity was classified

into three categories, i.e., active (IC50\ 5 lM, ???),

moderately active (IC50[ 5\ 50 lM, ??), and less

active (IC50[ 50 lM, ?).

2.2 Pharmacophore Model Generation

3D QSAR module in Discovery Studio (DS) was used to

develop the pharmacophore model [28]. All 17 training

set compounds associated with their conformations were

submitted to the HypoGen module of DS with four

pharmacophore features such as hydrogen bond donors

(HBD), hydrogen bond acceptors (HBA), ring aromatic

(RA), and hydrophobic (HY). HypoGen algorithm

implemented for the pharmacophore hypotheses genera-

tion process has three phases, which are constructive,

subtractive, and optimization phases. In the constructive

phase, identification of the common features of active

compound takes place, while in subtractive phase all

pharmacophore features present in the least active com-

pound are removed, and finally in optimization phase, the

hypotheses score enhanced by regression parameters

which are used for the estimation of activity. The

uncertainty value 2 was set from default value 3, which

means the biological activity was two times higher or

lower than the true value. The quality of the HypoGen

model describes in terms of fixed cost, null cost, and total

cost [29]. The three cost components [error (E), weight

(W), and configuration (C)] multiplied by a coefficient

(default coefficient is 1.0 for each) contributed to

hypotheses cost. The fixed cost is the simplest model and

fits the data perfectly, while null cost is the cost of

hypotheses with no features that estimates every activity

to be the average activity. The developed pharmacophore

model selected based on the highest correlation coefficient

and high cost difference.

2.3 Pharmacophore Validation and Database

Screening

The generated quantitative pharmacophore model was vali-

dated by cost analysis, test set prediction, Fischer’s random-

ization test, and enrichment factor calculation to find out

whether it is capable of identifying the active structures and

estimating their activity values accurately. The HypoGen

ranks 10 generated pharmacophoremodels based on their cost

values. The quality of the pharmacophore model is described

in terms of total cost, fixed cost, and null cost. The model was

selected based on the cost difference between the fixed cost

and null cost. In simple terms, the large difference between

these two costs gives the best model. If the cost difference is

greater than 60, it would imply above 90 % probability for

correlating the experimental and predicted activity. If the cost

difference is in between40and 60, the probability is 75–90 %,

and if the difference below 40, it is difficult to predict the

model. Second approach to validate the model is a test set

prediction. Six test set compounds were mapped on to the

pharmacophore model using Ligand Pharmacophore Map-

pingmodule in Discovery Studio and were used to predict the

activity of test set compounds. A third approach is Fischer’s

randomization (Cat-Scramble) in which the 95 % confidence

level was selected for the study and 19 spread sheets were

constructed. The correlation between the chemical structure

and biological activitywas checked in this validation study. In

thismethod, the same parameters were used in developing the

pharmacophore hypotheses by randomizing the activity data

of training set compounds. The last validation method is

enrichment factor calculation (E value), which calculated

using a database containing active and inactive compounds.

In order to identify new potential lead compounds, the

selected pharmacophore model was used as a 3D structural

query to screen the National Cancer Institute (NCI) and

natural database containing 265242 and 53299 molecules,

respectively. All queries performed using Ligand Pharma-

cophore Mapping protocol running with Best/Flexible

search method in DS. To be retrieved as a hit, the molecule

must fit all pharmacophore features of hypotheses. The hits

obtained through database screening were further filtered by

estimated activity less than 1 lM and those further

screening by Lipinski rule of five—compound has (1)

molecular weight less than 500, (2) hydrogen donors less

than 5, (3) hydrogen acceptors less than 10, (4) an octanol/

water partition coefficient (Log P) value less than 5, and

ADMET (absorption, distribution, metabolism, excretion

and toxicity) properties were predicted using ADMET

descriptors for the selection of the effective and bioavail-

able compounds. Further screening using similarity analysis

with reference compound 679 [2-chloro-5-(4-(3-chlor-

ophenyl)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-ylamino)ben-

zoic acid] is based on Tanimoto coefficient which is used to
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quantify the similarity between molecules and is the ratio of

the number of features common to both molecules to the

total number of features. The coefficients varied between 0

and 1, where 0 meant maximally dissimilar and 1 coded for

maximally similar. A total of 234 compounds hits from NCI

and 362 compounds from natural database were retrieved.

2.4 Molecular Docking

Docking calculations were carried out using the LigandFit

program in Discovery Studio [30]. The crystal structure of

glycogen synthase kinase-3b (GSK-3b) protein (PDB Id:

1Q4L) was downloaded from the protein data bank (http://

www.rcsb.org/pdb). The crystal structure of 1Q4L has two

chains such as chain A and B. The chain A has the highest

docking score with reference compound 679 [2-chloro-5-(4-

(3-chlorophenyl)-2, 5-dioxo-2, 5-dihydro-1H-pyrrol-3-yla-

mino) benzoic acid] than chain B, so chain A was selected

for docking studies. The protein preparation involves dele-

tion of water molecules and Het atoms and addition of

hydrogen atoms; CHARMM force field was applied on

macromolecule. After protein preparation, the active sites

were searched using flood-filling algorithm. In the active site

of 1Q4L, 596 screened compounds (234 from NCI database

and 362 from Natural database) were docked.

3 Results and Discussion

3.1 Pharmacophore Model

A training set of 17 compounds with diverse structural

features was selected for generating pharmacophore model.

This diverse training set includes well-known natural potent

inhibitors of GSK-3b. 3D QSAR pharmacophore generation

module was used to construct a pharmacophore model using

hydrogen bond acceptor (HBA), hydrogen bond donor

(HBD), hydrophobic (HY), and ring aromatic (RA) chemi-

cal features. It produces ten hypotheses based on the activity

of the training set compounds. The best hypotheses have

three features: HY, RA, and RA. Hypo1 consists of one

hydrophobic (HY) and two ring aromatic (RA) which has

the highest cost difference of 82.3, best correlation coeffi-

cient of 0.78 and maximum fit value of 8.2. The fixed and

null cost values are 70.29, 217.4, respectively.

In our results expect 3–5 hypotheses, all other hypotheses

were having HY and RA group, which implies that HY and

RA groups play an important role in GSK-3b inhibition. The

cost difference between the null cost and fixed cost was

found to be 82.3, and it is more than 60 bits. All hypotheses

had correlation coefficient of higher than 0.7, but Hypo1

shows the highest correlation coefficient of 0.78, demon-

strating good predicted ability of the Hypo1. Higher cost

difference and high correlation value were observed for the

Hypo1 compared with other hypotheses. Hence Hypo1 was

selected for further analysis; the statistical parameters such

as cost values, correlation, and RMS deviation are summa-

rized in Table 1, and the correlation between the experi-

mental and predicted activity of training set compounds is

shown in Table 2. For most of the compounds, the model

predicts the activity correctly. Figure 1 shows chemical

features of the Hypo1 with its geometric parameters. The

most active and inactive compounds in the training set are

aligned in Hypo1 which is shown in Supplementary

Figure 2.

3.2 Pharmacophore Validation

There are several methods to confirm the pharmacophore

model, such as cost analysis, test set prediction, Fischer’s

randomization, and enrichment factor (E value).

Table 1 Results of pharmacophore hypotheses generated by HypoGen algorithm

Hypo Total cost Cost differencea RMS Error cost Correlation (R2) Max fit Features

1 135.1 82.3 2.48 119.8 0.78 8.24 HY, RA, RA

2 135.42 81.98 2.48 119.57 0.78 8.43 HBA, HY, RA

3 136.61 80.79 2.45 118.3 0.79 6.1 RA, RA

4 136.63 80.77 2.49 120.13 0.78 5.76 RA, RA

5 137.28 80.12 2.51 121.45 0.77 5.62 RA, RA

6 141.24 76.16 2.53 122.5 0.77 9.26 HBA, RA, RA

7 142.03 75.37 2.64 127.76 0.75 7.83 HBA, HY, RA

8 142.43 74.97 2.63 127.62 0.75 8.05 HBA, HY, RA

9 145.72 71.68 2.68 130.33 0.74 8.27 HBA, HY, RA

10 149.38 68.02 2.8 136.58 0.74 6.96 HBA, HY, RA

RMS root-mean-square deviation, HY hydrophobic, RA ring aromatic, HBA hydrogen bond acceptor
a Cost difference between null and total cost. Null cost of ten hypotheses is 271.4 and fixed cost is 70.29
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3.2.1 Cost Analysis

TheHypoGen algorithm inDS generates the pharmacophore

model with three cost values, which are fixed cost, total cost,

and null cost. The pharmacophore model was validated by

the cost difference between the null cost and total cost; if the

cost difference has above 60 bit, it has predictability level of

90 %. The Hypo1 has the highest cost difference of 82.3

shows as significant model (shown in Table 1).

3.2.2 Test Set Prediction

Secondly in test set prediction, six compounds were

chosen as test set. Ligand Pharmacophore Mapping pro-

tocol with flexible search option was used to map the test

set compounds. In test set prediction, the model predicts

activity to the tune of less than 10 %. Out of six com-

pounds, four compounds predicted by the error factor less

than 5 %. The experimental and predicted activities of

test set compounds are given in Table 3.

3.2.3 Fischer’s Randomization Method

Fischer’s randomization was third approach to validate the

Hypo1. In this method, 95 % confidence level and 19 random

spreadsheets (random hypotheses) were generated. The sig-

nificance of themodel calculated by the formula[1 - (1 ? X)/

Table 2 Experimental and estimated activities of training set molecules based on the pharmacophore model Hypo1

Compound name Exp. IC50 (lM) Exp. scalea Pred. IC50 (lM) Pred. scalea Errorb Fit valuec

Apigenin 1.9 ??? 7.97 ?? -6.07 5.42

Quercetin 2.04 ??? 5.92 ?? -3.88 5.42

Chrysin 7.2 ?? 7.96 ?? -0.76 5.42

Compound 1 5.1 ?? 7.98 ?? -2.88 5.42

Compound 15 1.3 ??? 0.22 ? 1.08 6.98

Compound 18 5.2 ?? 7.96 ?? -2.76 5.42

Compound 2 10 ?? 7.96 ?? 2.04 5.42

Fisetin 0.42 ??? 7.96 ?? -7.54 5.42

Flavone 100 ? 91.88 ? 8.12 5.41

Flavopiridol 0.28 ??? 0.44 ??? -0.16 6.67

Hesperetin 26.92 ?? 17.9 ?? 9.02 5.37

Kaempferol 3.5 ??? 7.96 ?? -4.46 5.42

Luteolin 1.5 ??? 14.09 ?? -12.59 5.17

Naringenin 45.71 ?? 43.15 ?? 2.56 5.91

Naringin 300 ? 293.16 ? 6.84 5.49

Nobiletin 52.48 ? 43.45 ?? 9.03 5.36

Rutin 10.28 ?? 18.22 ?? -7.94 5.06

Fig. 1 Generated pharmacophore model with distance constraints

features are color coded with light blue: one hydrophobic, orange:

two aromatic groups

NCI Database (253368)   - Natural Database (53261)

Molecular Docking using Ligand Fit (DS)

Pharmacophore Mapping
NCI Database (49895)   - Natural Database (29992)

Es�mated Ac�vity <1
NCI Database (13709)   - Natural Database (13243)

Lipinski rule of five
NCI Database (6671)   - Natural Database (8023)

ADMET
NCI Database (1187)   - Natural Database (2323)

Similarity Search
NCI Database (234)   - Natural Database (362)

Fig. 2 Flow chart of virtual screening process
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Y] 9 100, where X is number of hypothesis having total cost

lower than Hypo X and Y is total number of HypoGen runs

(initial ? random runs). Here X = 0 and Y = (19 ? 1),

S = [1 - ((1 ? 0)/(19 ? 1))] 9 100 % = 95 %. Supple-

mentary Figure 3 shows that Hypo1 has good statistical value

than other models.

3.2.4 Decoy Set

Finally decoy set was generated to validate the Hypo1. The

decoy set contains 1512 compounds (D) including active

and inactive compounds of GSK-3b inhibitors. Ligand

Pharmacophore Mapping module with flexible search

option in DS was used for screening the data set. From the

database screening, 333 compound (Ht) hits were retrieved,

and among these, 229 (Ha) compounds are active. A

number of parameters such as hit list (Ht), number of active

percent of yields (%Y), percent ratio of active in the hit list

(%A), enrichment factor of (EF), false negatives, false

positives, and goodness-of-fit score of (GF) are calculated.

The EF and GF are 1.82, 0.55, respectively, indicating the

competence of screening (Supplementary Table 1).

3.3 Database Screening

Two databases namely NCI (265242) and Natural com-

pounds (53299) were employed in database searching with

Hypo1. In drug discovery process, virtual screening of the

database is the alternative process of high-throughput

screening (HTS). A total of 79887 compounds (49895 NCI

and 29992 Natural databases) satisfied the all features of

Hypo1. 26952 compounds (13709 NCI, 13243 natural)

were considered for further analysis based on activity less

than 1 lM. Drug likeness properties are important for

in vitro analysis and so were further analyzed by Lipinski’s

rule of five and ADMET properties gave total of 3510

(1187 NCI, 2323 natural). Molecular similarity was

performed for 3510 molecules that were identified as hits

from pharmacophore-based virtual screening of NCI and

natural compound databases with reference compound 679

using Tanimoto similarity coefficient method. Finally, 596

compounds (234 NCI, 362 Natural) were considered for

docking studies. The schematic representation of the virtual

screening process is shown in Fig. 2.

3.4 Molecular Docking

In order to understand the ligand orientation in GSK-3b
(PDB Id: 1Q4L), initially reference compound 679 was

docked into the active site of GSK-3b. GSK-3b protein

(PDB Id: 1Q4L) has two chains A and B, and the reference

compound 679 was docked into the active site of these

chains using LigandFit protocol in DS. The docking score

along with binding orientation and hydrogen bond network

were considered to choose best pose of the docked com-

pounds. The docking score and H-bond interactions of

reference compounds with both chains are listed in Sup-

plementary Table 2 and 3. It shows the chain A

(81.67 kcal/mol) has the highest docking score than the

chain B (80.16 kcal/mol) having four hydrogen bonding

with VAL135, ARG141 (3), GLN185, and ASP133 resi-

dues shown in Fig. 3a. The chain A was selected, and final

hit compounds (234 NCI, 362 Natural) from virtual

screening were docked into the active site of 1Q4L-A, and

the docking scores were compared with the reference

compound 679. The hit compounds which showed the

highest docking score than the reference compound (679)

were considered as potential hits. About 75(37 compounds

from NCI, 38 compounds from natural) compounds show

docking score higher than the reference compound (679)

among which top 20 compounds (10 NCI, 10 Natural) are

listed with docking score and H-bond interactions in Sup-

plementary Table 4–7. Finally, eight hit compounds (4

NCI, 4 Natural) were listed as potent inhibitors of GSK-3b.

Table 3 Experimental and estimated activities of test set molecules

Compound name Exp. IC50 (lM) Exp. scalea Pred. IC50 (lM) Pred. scalea Errorb Fit valuec

Compound 16 10 ?? 9.79 ?? 0.21 6.99

Compound 4 10 ?? 9.973 ?? 0.027 7.88

Compound 5 10 ?? 9.53 ?? 0.47 5.34

Eriocitrin 100 ? 89.2 ? 10.8 5.2

Narirutin 100 ? 99.69 ? 0.31 6.82

Tangeretin 100 ? 99.69 ? 0.31 6.82

a Fit value indicates how well the features in the pharmacophore overlap the chemical features in the molecule
b Difference between the predicted and experimental values. ‘?’ indicates that the predicted IC50 is higher than the experimental IC50; ‘-’

indicates that the predicted IC50 is lower than the experimental IC50; a value of 1 indicates that the predicted IC50 is equal to the experimental

IC50

c Activity scale: IC50\ 5 lM = ??? (active); IC50[ 5\ 50 lM = ?? (moderately active); IC50[ 50 lM = ? (less active)

123

Interdiscip Sci Comput Life Sci (2016) 8:303–311 307



123

308 Interdiscip Sci Comput Life Sci (2016) 8:303–311



NSC230353 (4-chloro-N2,N7-diphenylnaphthalene-2,7-

disulfonamide), NSC66454 [2-(4-(N-thiazol-2-ylsul-

famoyl)phenylcarbamoyl)benzoic acid], NSC159593

Fig. 3 Binding mode of reference compound and hit compounds

a Reference compound 679, b NSC230353, c NSC66454, d NSC159

593, e NSC156759, f STOCK1N-81808, g ZINC02159818, h ZINC0

4042470, i ZINC72326235
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Fig. 4 2D chemical structures of hit compounds a NSC230353, b NSC66454, c NSC159593, d NSC156759, e STOCK1N-81808,

f ZINC02159818, g ZINC04042470, h ZINC72326235

b
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[N,N0-(2-nitro-1,4-phenylene)dibenzenesulfonamide], and

NSC156759 [N,N0-(2-(butylthio)-1,4-phenylene)dibenzene-
sulfonamide] from NCI database were identified with good

docking score and estimated activity value of 0.417 lM,

0.216 lM, 0.25 lM and 0.19 lM, respectively, and

STOCK1N-81808 (methyl 3-(3-chlorophenyl)-3-[2-(3,4-di-

hydroxyphenyl)-3,5,7-trihydroxy-4-oxo-chromen-8-yl]

propanoate), ZINC02159818 [ethyl 2-((6,7-dihydroxy-2-

oxo-2H-chromen-4-yl)methylamino)benzoate], ZINC04042470

[3-(2-(2-carboxybenzamido)ethyl)-5-methoxy-1H-indole-

2-carboxylic acid] and ZINC72326235 [2-(2-(7-hydroxy-4-

methyl-2-oxo-2H-chromen-8-ylamino)-2-oxoethyl)benzoic

acid] from natural database were identified with good

docking score and estimated activity value of 0.067 lM,

0.172 lM, 0.7 lM and 0.090 lM, respectively. All eight

compounds showed favorable hydrogen bond interactions

with ARG141, GLN185, VAL135 residues. Figure 3 shows

that the binding orientations of hit compounds and how

well these hit compounds fit to the Hypo1. The hit com-

pound NSC230353 has the docking score of 105.8 kcal/mol

and forms two hydrogen bonds with ARG141 and GLN185

shown in Fig. 3b, and the binding orientation shows the

sulfonamide group of amine forms hydrogen bond with

ARG141 and oxygen of sulfonamide group forms bond

with GLN185. NSC66454 has the docking score of

101.67 kcal/mol showing H-bond interactions with two

residues, ARG141 and GLN185, and the binding orienta-

tion shows amide group of nitrogen of sulfonamide group

accepts the electron from ARG141 and sulfur of thiazole

group accepts electrons from GLN185 shown in Fig. 3c. In

Fig. 3d the binding mode of the NSC159593 is shown, and

it has the docking score of 95.83 kcal/mol and forms two

hydrogen bonds with VAL135, ARG141; the oxygen of

nitro group forms bond with VAL135, and nitrogen of

sulfonamide group forms bonds with ARG141.

NSC156759 has the docking score of 94.85 kcal/mol

forming hydrogen bonds with ARG141, GLN185; oxygen

of sulfonamide forms bonds with these residues shown in

Fig. 3e, and there is also pi–pi interaction between

ARG141 and benzene ring. STOCK1N-81808, ZINC021

59818, ZINC04042470, and ZINC72326235 identified as

potent inhibitors of glycogen synthase kinase-3b from

natural database. STOCK1N-81808 has docking score of

112.72 kcal/mol with three hydrogen bonds with LYS183

(2), GLN185, and ILE62, and the binding orientation of

complex is given in Fig. 3f, and it shows that oxygen forms

H-bond with three residues. Figure 3g shows the binding

mode of ZINC02159818, and it has the docking score of

109.371 kcal/mol with two hydrogen bonds with ARG141

(2), GLN185 (2) amino acids. ZINC04042470 has the

docking score of 100.17 kcal/mol having interaction with

ARG141 (2), GLN185, and VAL135, and the binding

mode of protein–ligand complex is shown in Fig. 3h;

oxygen binds with ARG141 and GLN185, and nitrogen of

indole group forms hydrogen bond with VAL135. ZINC

72326235 has docking score of 97.71 kcal/mol and shows

H-bond interactions with VAL135 (2), ARG141 (2), and

GLN185 shown in Fig. 3i. The pharmacophore overlay of

hit compounds shown in Supplementary Figure 4 and their

2D chemical structures of hit compounds are given in

Fig. 4. Finally eight diverse structural compounds were

sorted for in vitro studies.

4 Conclusion

In this study pharmacophore model successfully generated

using HypoGen algorithm, the Hypo1 represents one

hydrophobic (HY) and two ring aromatic (RA) pharma-

cophore features required for glycogen synthase kinase-3b
(GSK-3b) activity. The model validated by four methods and

provides additional confidence on proposed model. This

model can be useful for future studies to design the structural

novel GSK-3b inhibitors. To identify potent GSK-3b inhi-

bitors, virtual screening studies were carried out with NCI

and Natural databases. Five hundred and ninety-six com-

pounds from the virtual screening were selected for molec-

ular docking studies. The binding mode between the protein–

ligand complexes was analyzed to select lead candidates.

Finally four ligands from each database are selected as lead

candidates, which are NSC230353, NSC66454, NSC159593,

and NSC156759 from NCI database and STOCK1N-81808,

ZINC02159818, ZINC04042470, and ZINC72326235 from

natural database as potent novel GSK-3b inhibitors. These

novel compounds can be used for experimental studies for

inhibition of GSK-3b.
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