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Abstract: A series of oxadiazole-substituted α-isopropoxy phenylpropanoic acids with dual activators of PPARα
and PPARγ derivatives were subjected to two dimensional and k-nearest neighbour Molecular field analysis. The
statistically significant best 2D-QSAR (PPARα) model having good predictive ability with statistical values of
r2 = 0.8725, q2 = 0.7957 and pred r2 = 0.8136, was developed by GA-PLS with the descriptors like SsClcount,
SddsN (nitro) count and SsOHcount contribute significantly to the biological activity. The best 3D-QSAR studies
(PPARα) were performed using the genetic algorithm selection k-nearest neighbor molecular field analysis ap-
proach; a leave-one-out cross-validated correlation coefficient q2=0.7188 and predicate activity pred r2 =0.7508
were obtained. The influences of steric and electrostatic field effects generated by the contribution plots are
discussed. The best pharmacophore model includes three features viz. hydrogen bond donor, hydrogen bond
acceptor, and aromatic features were developed. The information rendered by 2D, 3D QSAR models may lead
to a better understanding of structural requirements of substituted α-isopropoxy phenylpropanoic derivatives and
also aid in designing novel potent PPARα and PPARγ for antihyperglycemic molecules.
Key words: phenylpropanoic, PPARα, PPARγ, 2D QSAR, k-nearest neighbor, pharmacophore, antihyper-
glycemic, VLife MDS.

1 Introduction

Type 2 diabetes is a debilitating disease characterized
byhyperglycemia due to insulin resistance (IR) in the
liverand peripheral tissues. In the US, approximately
16 million people suffer from type 2 diabetes and an
additional 14 million have impaired glucose tolerance
(Smith et al., 2000). Type 2 diabetes is a metabolic
disorder that affects approximately150 million people
worldwide with projections of 300 millionpeople by the
year 2025 (WHO, 2002; Jönsson et al., 2002). The
PPARs (peroxisome proliferator activated receptors)
were cloned less than a decadeago and are members
of the super family of nuclear transcription factors that
includes thereceptors for steroid, retinoid, and thyroid
hormones (Mangelsdorf and Evans, 1995). Coronary
heart disease (CHD) remains the leading cause of death
in the developed world and is linked to a number of
associated risk factors including hypertriglyceridemia
and hypercholesterolemia. As members of the nuclear
hormone receptor super family of ligand-activated tran-
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scription factors, the peroxisome proliferator-activated
receptors (PPARs) regulate a multitude of cellular
processes including the storage and catabolism of di-
etary fats and carbohydrates (Lemberger et al., 1996).
PPARs, which belong to a nuclear hormone receptor
super family, act as transcription factors in the regula-
tion of genes involvedin glucose and lipid homeostasis
(Shearer and Billin, 2007). Up to date, three PPAR
subtypes, PPARα, PPARγ and PPARδ have been iden-
tified. Activation of PPARαby fibrates, such as fenofi-
brate, is known to be useful in thetreatment of dyslipi-
demia. On the other hand, compounds thatact on both
PPARα and γ including ragaglitazar, muraglitazarand
tesaglitazar have been identified as very attractive can-
didatesin the treatment of dyslipidemic type 2 diabetes
(Staels and Fruchart, 2005; Gross et al., 2007; Willson
et al., 2000). These receptors are important regula-
tors in multiple physiological pathways, such as glu-
cose homeostasis, fatty acid metabolism, inflammation,
and cellular differentiation (Kersten et al., 2000). Gli-
tazones and fibrates are two classes of PPAR drugs
currently being marketed for the treatments of insulin
resistance and dyslipidemia, respectively. Glitazones



(pioglitazone and rosiglitazone) are insulin sensitizers
functioning through PPAR γ activation (Berger et al.,
1996). Each of these subtypes appears to be differen-
tiated in a tissue-specific manner and to play a pivotal
role in glucose and lipid homeostasis. PPAR γ agonists
enhance insulin action and promote glucose utilization
in peripheral tissues. PPARα agonists improve insulin
sensitivity associated with obesity and mediate their ef-
fects on lipid metabolism. Therefore PPARα/ γ dual
activators provide superior profile toward the control
of hyperglycemia and hypertriglyceridemia. PPARγ
is mainly expressed in insulin sensitive tissues such as
adipocytesand to a lesser extent in muscle and liver.
It ishypothesized that their activation by TZDs affect
theexpression of a number of genes involved in lipid
andglucose metabolism and preadipocyte differentia-
tion (Spiegelman, 1998; Brun et al., 1997), Both rosigli-
tazone and pioglitazone are potentagonists of PPARγ.
Designing compounds with PPARα activity in addi-
tion to PPARγ agonist activity may offer improved al-
ternatives toward control of hyperglycemia and hyper-
triglyceridemia in type 2 diabetics (Murakami et al.,
1998). Many synthetic dual PPARα/γ agonists have
been developed to treat type 2 diabetes (T2D) and
metabolic syndrome and have been shown to be benefi-
cial as compared with selective PPARR or PPARγ ago-
nists because they improve lipid and glucose homeosta-
sis (Sauerberg et al., 2002). However, the adverse toxic-
ity profiles of dual PPARα/γ activators have raised crit-
ical safety issues, which have caused developmental pro-
grams to be discontinued (Nissen et al., 2005). Studies
also show that PPARγ is the receptor for a well-known
class of antidiabetic drugs, thiazolidinedione (Lehmann
et al., 1995). Thiazolidinedione derivatives (glitazones)
(Sohda et al., 1982; Oberfield et al., 1999) and other
classes of insulin sensitizers such as oxazolidinediones
(Dow et al., 1991; Momose et al., 2002), isoxazolidine-
diones (Shinkai et al., 1998) tetrazoles and tyrosine
derivatives (Collins et al., 1998) are found to specif-
ically sensitize PPARγ. The fibrate class of antilipi-
demic agents act as agonists for PPARα. Propionic
acid derivatives (ragaglitazar) have been found to be
dual activators for PPARR and PPARγ (Buckle et al.,
1996; Henke, 2004; Lohray et al., 1999). PPARδ is
expressed in most cell types; several studies indicate
that PPARδ agonists play important roles in dyslipi-
demia (Oliver et al., 2001), cancer treatment (Park et
al., 2001) and differentiation of cells within the cen-
tral nervous system (Basu-Modak et al., 1999). Inter-
estingly, a recent report shows that PPARδ agonists
could stimulate muscle fiber transformation and en-
hance physical endurance (Wang et al., 2004). Cur-
rent drugs used for the treatmentof type 2 diabetes are
selected from biguanides, sulfonylureas, insulin formu-
lations, glinides, a-glucosidase inhibitors (Wagman and
Nuss, 2001), dipeptidyl peptidase IV inhibitors (Kim

et al., 2005), Glucagon-like peptide (GLP)-1 analogs
(Joy et al., 2005) and peroxisome proliferator acti-
vated receptor (PPAR) δ agonists. Although treat-
ment with highly active thiazolidinedione (TZD) class
of drugs has significantlyimproved the clinical situa-
tion, suffers with adverse sideeffects of hepatotoxic-
ity, weight gain and edema (Ram, 2003; Diamant and
Heine, 2003). In addition to the characteristiccombina-
tion of insulin resistance and insulin deficiency, the type
2 diabetic often displayscardiovascular risk factors in-
cluding dyslipidemia (hypertriglyceridemia, low HDL,
andsmall dense LDL), hypertension, and obesity (Amos
et al., 1997). Quantitative structure activity relation-
ship (QSAR) which has become a popular tool for es-
tablishing quantitative relationship between biological
activity and descriptors representing physicochemical
properties of the compounds in aseries using statistical
methods and it helps topredict the biological activities
of newly designed analogues contributing to the drug
discovery processes (Ferreira, 2002). The prime feature
of QSAR is to establish a correlation between various
molecular properties of a set of molecules with their ex-
perimentally known biological activity. 2D-QSAR rela-
tionship is a rough approximation and contains topolog-
ical or two-dimensional (2D) information. It explains
how the atoms are bonded in a molecule, the type of
bonding, and the interaction of particular atoms (e.g.,
total path count, molecular connectivity indices, etc.).
Pharmacophore modeling correlates activities with the
spatial arrangement of various chemicalfeatures (Sotrif-
fer et al., 1996).

In the search of new oxadiazole-substituted α-
isopropoxy phenylpropanoic acids entities with im-
proved PPARα and PPARγ activity, this study deals
with 2D-QSAR, 3DQSAR, and pharmacophore ap-
proaches using V-Life Science Version 3.5 molecular de-
sign software to find out structure features required for
biological activity. These identified important struc-
tural features could subsequently be utilized to design
novel potent dual activators on PPARα and PPARγ.

2 Materials and method

All computational workwas performed on a HP Com-
paq PC running on Intel Pentium-D processor. The
molecular structures of the compounds in the data
set were sketched using V-life MDS (Molecular Design
Suite) TM3.5 software supplied by V-life Sciences Tech-
nologies Pvt. Ltd., Pune, India.

2.1 Data set of Biological Activities

A series of 26 analogues of oxadiazole-substituted
α-isopropoxy phenylpropanoic acids with dual agonist
PPARα and PPARγ activity on were selected and ac-
tivity data (EC50nm) were collected from published
literature (Liu et al., 2001). The biological activities
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Table 1 Structure and activity of oxadiazole substituted α-isopropoxy phenylpropionic derivatives

O

N O

N
R

O

O

HO
n

Com.No n R IC50 (PPARα) pIC50 (PPARα) IC50 (PPARγ) pIC50 (PPARγ)

1 1 H 160 2.204 79 1.897

2 1 3-F 79 1.897 100 2.000

3 1 4-F 160 2.204 200 2.301

4* 1 2-CH3 40 1.602 100 2.000

5 1 3-CH3 79 1.897 50 1.698

6* 1 4-CH3 25 1.397 16 1.204

7 1 4-Cl 13 1.113 20 1.301

8 1 4-Br 40 1.602 32 1.505

9 1 4-CF3 32 1.505 25 1.397

10* 1 4-CF3O 20 1.301 63 1.799

11 1 4-CH(CH3)2 13 1.113 4 0.602

12 1 4-C(CH3)3 40 1.602 3 0.477

13 1 3,5-di-F 40 1.602 100 2.000

14* 1 3,5-di-CF3 6 0.778 32 1.505

15 1 C6H11 240 2.380 230 2.361

16 2 H 2000 3.301 13 1.113

17 2 3-F 500 2.698 2 0.301

18 2 4-F 790 2.897 40 1.602

19* 2 4-Cl 400 2.602 25 1.397

20 2 3-Cl 320 2.505 4 0.602

21 2 3-CF3 200 2.301 6 0.778

22 2 2-CF3 400 2.602 160 2.204

23* 2 3,5-di-CF3 50 1.698 4 0.602

24 — 3,5-di-CF3 6 0.778 32 1.505

25 — 3,5-di-CF3 4 0.602 32 1.505

26 — 3,5-di-CF3 2500 3.397 630 2.799

*Test Compound

were converted into the corresponding pIC50 values (-
log EC50), where IC50 value represents the drug in mo-
lar concentration that causes 50% of inhibition. Our
aim is to utilize these activity data for the development
of a valid QSAR models based on 2D and 3D-QSAR
model based on steric and electrostatic fields that gives
a deep insight into structure- property-activity correla-
tions. The compounds along with their inhibitory data
(as reported in literature and also in its negative log-
arithmic form) are presented in Table 1. The dataset
of 26 molecules was divided into training and test set
by sphere exclusion method (Golbraikh and Tropsha,
2002) for PLS model with pIC50 activity field as de-
pendent variable and various 2D descriptors calculated
for the molecules as independent variables. Six com-
pounds namely 4, 6, 10, 14, 19, and 23, were used

as test set, while the remaining molecules were used as
the training set.

2.2 Molecular modeling

The sketched structures were used for the calcula-
tion of 2D molecular descriptors using QSAR module
of Molecular design suite software. All the compounds
werebatch optimized for the minimization of energies
and optimization of geometry using Merck molecular
force field, followed by considering distance-dependent
dielectric constant of 1.0, convergence criterion or root
mean square (RMS) gradient at 0.01 kcal/mol Å (Hal-
gren, 1996) and the iteration limit to 10 000. Selection
of the training andthe test set for the QSAR model was
done byconsidering the fact that the test set compounds
should represent structural diversity and a range of bi-
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Table 2 Selected descriptors parameters of phenylpropionic derivatives (PPARα and PPARγ)

SsCl

count

SsOH

count

SsCH3

Count
T 1 Cl 1 E 802 E 99 S 747 S 264

0 6.246628 2.975211 1 −0.63170 −0.91868 −0.18933 −0.39496

0 8.138522 2.979642 0 −0.33751 −0.50552 −0.26150 −0.03465

0 7.042682 3.241557 0 −0.33484 −0.68175 −0.17598 −0.35290

1 6.217063 3.333259 2 −0.42184 −0.61580 −0.26706 −0.45463

3 7.578866 3.277148 6 −0.14307 −0.50179 −0.22729 −0.41420

0 6.793475 3.433304 0 −0.48077 −0.95821 −0.16848 −0.30252

0 6.432420 2.939990 0 −0.58467 −1.02430 −0.24162 −0.43852

0 6.542894 3.081704 0 −0.63440 −0.94613 −0.19002 −0.40024

1 5.991743 3.025575 1 −0.51682 −0.69920 −0.18227 −0.38014

1 6.246628 2.187287 1 −0.46008 −0.84799 −0.27950 −0.49602

0 6.432420 2.142629 0 −0.15726 −0.09007 −0.29468 −0.47964

0 6.432420 2.058078 0 −0.58467 −1.02430 −0.24162 −0.43852

0 6.935301 2.948151 3 −0.32194 −0.38460 −0.16292 −0.30417

3 6.682532 2.971689 3 −0.69547 −1.21658 −0.20476 −0.40735

3 7.340776 3.266819 6 −0.37948 −0.65165 −0.28905 −0.49647

0 6.246628 2.975211 1 −0.63170 −0.91868 −0.18933 −0.39496

1 6.935301 3.808387 1 −0.39943 −0.82565 −0.21254 −0.40652

0 7.155994 3.790876 0 0.033046 0.025315 −0.25511 −0.45144

0 3.749303 4.037275 0 0.057784 0.065864 −0.22702 −0.47645

0 3.749303 4.486000 0 −0.22015 −0.32077 −0.23116 −0.43307

0 3.749303 4.521512 0 −0.22015 −0.32077 −0.23116 −0.43307

3 3.996920 4.342947 3 −0.58288 −1.01051 −0.25004 −0.46760

3 3.948311 3.749303 3 −1.56647 −0.51336 −0.25477 −0.49772

0 4.434671 3.892938 1 −1.35820 −0.36561 −0.43403 −0.22156

0 3.808387 3.897507 0 −0.47888 0.313824 −0.42404 −0.31154

0 6.246628 3.749303 0 −0.37719 −0.10301 −0.42728 −0.25119

ological activities similar tothat of the training set.

2.2.1 Two dimensional QSAR

2D-QSAR study requires the calculation of molecu-
lardescriptors; almost 239 physicochemical descriptors
were calculated by QSAR Plus module within VLife
MDS. The invariable descriptors (descriptors that are
constant for allthe molecules) were removed; as they
do not contribute tothe QSAR. The various alignment-
independent descriptors (Baumann, 2000) were also cal-
culated. In this study to calculate AI descriptors, we
have used following attributes, 2 (double bonded atom),
3 (triple bonded atom), C, N, O, S, H, F, Cl, Br and I
and the distance range of 0–7.

2.2.2 Three dimensional QSAR

For generation of 3D QSAR model, k Nearest Neigh-
bor Molecular Field Analysis (kNN MFA) method was
used in conjunction with genetic algorithms (GA) and
simulated annealing (SA) coupled with PLS and align-
ment of the molecules was carried out using template
based alignment. The steps involved in 3D-QSAR stud-
ies are data selection, descriptor evaluation, structure

alignment, selection of training and test set, variable
selection, statistical methods, model evaluation and
model interpretation.

All molecules in the dataset were aligned by
template-based method (Ajmani et al., 2006) where a
template is built by considering common substructures
in the series. The structure of α-isopropoxy phenyl-
propanoic acids template is shown in Fig. 1(a). The su-
perimposition of all molecules based on minimizing root
mean square deviation (RMSD) is shown in Fig. 1(b).
The resulting alignments of molecules were used for
building 3D models. For calculation of 3D field de-
scriptor values, using Tripos force field (Clark et al.,
1989) steric and electrostatic field types, with cut-offs
of 10.0 and 30.0 kcal/mol, respectively, were selected
and charge type was selected as by Gasteiger and Mar-
silli (Gasteiger and Marsilli, 1980). The dielectric con-
stant was set to 1.0 considering the distance dependent
dielectric function. This resulted in calculation of 3400
field descriptors (1700 for each steric and electrostatic)
for all the compounds in separate columns (Bhatia et
al., 2012).
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(a) (b)

Fig. 1 (a) Common template used for alignment; (b) Alignment pattern of all 26 compounds as training set used for QSAR
study.

2.2.3 Pharmacophore identification studies

A set of pharmacophore hypotheses was generated
by the mole sign module of Vlife MDS 3.5 on the re-
ported α-isopropoxy phenylpropanoic acids derivatives.
All 26 aligned molecules were taken for pharmacophore
development. Select the most active molecule to set
it as reference. The reference molecule is the molecule
on which the other molecules of the align dataset get
aligned. For four point pharmacophore identification
tolerance limit set up to 30 Å and max distance al-
lowed between two features, setthe value to 5 Å. The
pharmacophore model has to describe the nature of the
functional groups like hydrogen bond donors and ac-
ceptors, charge interactions, and hydrophobic areas in-
volved in ligand-target interactions, as well as the type
of the non-covalent bonding and inter change distances.

2.3 k-Nearest Neighbor Molecular Field Anal-
ysis

3D-QSAR studies were carried out by k-NN method
using genetic algorithms (GA) and simulated anneal-
ing (SA) coupled with PLS method. Among several
search algorithms, genetic algorithms (GA) based fea-
ture selectionprocedures is the most popular for build-
ing QSAR models and can explain the situation more
effectively (Hasegawa et al., 1999).

Genetic algorithms (GA) described by Holland, is a
stochastic optimization technique that mimic natural
evolution andselection (Holland, 1992). The GA be-
gins by generating a set of randomsolutions (the popu-
lation), which are analogous to a set ofchromosomes in
a biological system. The set of variablesindicated with
a value of 1 in the chromosome is then used asinput for
model building by partial least square method.

Simulated annealing (Zheng and Tropsha, 2000) is
a multivariate optimization technique based on the
Metropolis Monte Carlo algorithm for examining the
equations of state and frozen states of n-body systems.
The concept is based on the manner in which liquids

freeze or metals recrystalise in the process of anneal-
ing. In simulated annealing, the process starts from an
initial state of very high temperature and introduces
perturbations, or random moves, which create a new
state.

d = r2(Vnew) − r2(Vold) is calculated

If d > 0, Vnew is accepted, else, it is accepted with
probability exp (-d/T), where Tstands for temperature
control parameter. The overall idea is tostart with a
high value of T, so that all steps are accepted and then-
gradually reduce T as the simulation progresses, so that
eventuallyonly steps that improve the solutions are ac-
cepted.

Internal validations of the models in all the cases are
madein terms of cross-validated Q2 and external pre-
dictability of the developed models are performed by
calculating predictive R2 (R pred2) using the following
equations (Leach and Gillet, 2003).

q2 = 1 −
∑

(yi − ŷi)2∑
(yi − ymean)2

(1)

where yi and ŷi are the actual and predicted activities of
the ith molecule, respectively, and ymean is the average
activity of all molecules in the training set. A model
is considered acceptable when the value of Q2 exceeds
0.5.

Pred r2 = 1 −
∑

(yi − ŷi)2∑
(yi − ymean)2

(2)

In Eq. (2), where yi and ŷi are the actual and pre-
dicted activities of the ith molecule in test set, respec-
tively, and ymean is the average activity of all molecules
in the training set. The pred r2 value is indicative of
the predictive power of the current kNN–MFA model
for external test set. For a predictive QSAR model, the
value of R2 pred should be more than 0.5.

Interdiscip Sci Comput Life Sci (2015) 7: 335–346 339



PLS was employed as a statistical method for the
evaluation of fitness in the genetic algorithms and sim-
ulated annealing scheme. PLS have been widely em-
ployed to solve multivariate structure-activity relation-
ships in QSAR. The final model obtained is further re-
fined by removing descriptors which do not affect pre-
dictive accuracy significantly.

3 Results and discussion

Two and Three dimensional quantitative structure-
activity relationship studies of oxadiazole-substituted
α-isopropoxy phenylpropanoic acids derivatives having
inhibitory activities against with dual agonist PPARα
and PPARγ activity have been performed using GA
and SA based variable selection methods for develop-
ing PLS models respectively. The training and test sets
selected for such study are the same as has been con-
sidered in 3D QSAR models for an effective comparison
between GA and SA methodologies.

3.1 Modelling with genetic algorithm
(PPARα) method

pIC50(PPARα) = +0.6782(±0.1413) SsClcount +
0.4274 (±0.0964) T N F 2 - 0.5485 (±0.0094) SddsN
(nitro) count + 0.8625 (±0.0278) SsOHcount + 0.85243

Optimum Components = 4, Degrees of Freedom =
18, Ntraining = 20, Ntest= 6, r2= 0.8725, q2= 0.7957, F
test 40.865, r2se = 0.1848, q2 se = 0.2582, pred r2 =
0.8136, pred r2se = 0.1094.

The statistically significant model 1 using the ge-
netic algorithm Partial least square (GA-PLS) method
with 0.8725 as the coefficient of determination (r2)
was considered. Model-1 can explain 87% of the vari-
ance in the observed activity values. It shows cross-
validated squared correlation coefficient (q2 = 0.7957)
of 79% and a predictivity for the external test set
(pred r2 = 0.8136) of about 81%. The developed ge-
netic algorithm-PLS model reveals that the descriptor
is SddsN (nitro) count are inversely proportional to the
activity and suggests the total number of nitro group
connected with one single and two double bonds R po-
sition will lead to improved activity. Model-1 shows
the positive contribution of SsOHcount indices for total
number of -OH group connected with one single bond

showed positive contribution. Such positive effect indi-
cated that the activity was increased with the presence
of hydroxy groups in 4th position in Phenylpropanoic
moiety. The descriptor T N F 2 (∼15%) reveals the im-
portance of presence of fluorine atom (i.e. –F, CF3) at
2, 3 and 4th position site R on Phenylpropanoic nucleus
to be detrimental for the activity.Thus, the presence of
fluoro substituents (like in compound 2, 3, 9, 10, 13,
14, and 21-26) would increase the activity. The study
revealed that SsClcount is topological parameter signi-
fies the total number of chlorine atoms connected with
one single bond and positive coefficient of the descriptor
suggests that activity of Phenylpropanoic derivatives
may be improved by increasing the number of chlorine
atoms present in the Phenylpropanoic nucleus at R site.
Thus, the presence of chloro substituents (like in com-
pounds 7, 18, and 19) would increase the antihyper-
glycemic activity. The plots of actual activity vs pre-
dicted activity values of pIC50 and contribution chart
are shown in Fig. 2(a) and 2(b). The correlation ma-
trix is shown in Table 3 which shows good correlation of
selected parameters with biological activity. The pre-
dicted activities of the compounds by the above model
are shown in Table 4.

pIC50(PPARα) = E 602 (0.0484, 2.0340) - S 747
(−0.7153, −0.7111) - S 247 (−0.4907, −0.4588) - E 802
(−1.2877, −1.4138)

Degrees of Freedom = 22, Ntraining = 20, Ntest =
6, Optimum Components = 3, q2 = 0.7188, F test =
32.652, r2 se q2 se = 0.3542, pred r2 = 0.7508.

For 3D-QSAR, a kNN-MFA with genetic algorithm
Partial least square was used resulted in several statis-
tically significant models, of which the corresponding
best model with activity PPARα is reported herein.
The kNN -MFA contour plots which showed the rela-
tive position and ranges of the corresponding important
steric and electrostatic fields in the model, provided
guidelines for new molecule design.The Stereo view of
the super imposedmolecules along with the descriptors
contributing tothe activity are shown in Fig. 2(c). Ta-
ble 4 lists the predicted activity and the descriptor val-
ues. From 3D-QSAR model it is observed that the pres-
ence of steric descriptor S 747 and S 247 with negative
values is also near from the R position of the Phenyl-
propanoic ring which indicates that less steric or less

Table 3 Correlation matrix between descriptors present in the best QSAR model PPARα

Parameter pIC50 SsClcount T N F 2 SddsN (nitro) count SsOHcount

pIC50 1.0000

SsClcount 0.4376 1.0000

T N F 2 0.6521 0.7698 1.0000

SddsN (nitro) count 0.4876 0.6541 0.7863 1.0000

SsOHcount 0.2317 0.5873 0.6983 0.8317 1.0000
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Table 4 Comparative Observed and Predicted Activities of phenylpropionic derivatives (PPARα and
PPARγ)

Com.

No

pIC50

(PPARα)

pIC50

(PPARγ)

2D QSAR model

(PPARα)

3D GA-PLS model

(PPARα)

2D-QSAR model

(PPARγ)

3D SA-PLS model

(PPARγ) (PPARγ)

Pred. Res. Pred. Res. Pred. Res. Pred. Res.

1 2.204 1.897 2.073 0.131 2.376 −0.172 1.985 −0.880 1.833 0.064

2 1.897 2.000 1.793 0.104 1.962 −0.065 2.074 −0.074 2.092 −0.092

3 2.204 2.301 2.417 −0.213 2.368 −0.164 2.384 −0.083 2.427 −0.126

4 1.602 2.000 1.556 0.046 1.534 0.068 2.038 −0.038 1.915 0.085

5 1.897 1.698 2.023 −0.126 1.826 0.071 1.564 0.134 1.582 0.116

6 1.397 1.204 1.319 0.078 1.304 0.093 1.312 −0.108 1.168 0.036

7 1.113 1.301 1.052 0.061 1.254 −0.141 1.413 −0.112 1.395 −0.094

8 1.602 1.505 1.542 0.060 1.551 0.051 1.622 −0.117 1.435 0.070

9 1.505 1.397 1.416 0.089 1.698 −0.193 1.304 0.093 1.472 −0.075

10 1.301 1.799 1.075 0.226 1.162 0.139 1.887 −0.088 1.827 −0.028

11 1.113 0.602 1.275 −0.162 1.232 −0.119 0.544 0.058 0.689 −0.087

12 1.602 0.477 1.687 −0.085 1.868 −0.226 0.413 0.064 0.527 −0.050

13 1.602 2.000 1.379 0.223 1.441 0.161 2.102 −0.102 1.911 0.089

14 0.778 1.505 0.657 0.121 0.712 0.066 1.568 −0.063 1.618 −0.113

15 2.380 2.361 2.063 0.317 2.263 0.117 2.415 −0.054 2.212 0.149

16 3.301 1.113 3.181 0.120 3.464 −0.163 1.058 0.055 1.421 −0.308

17 2.698 0.301 2.417 0.281 2.641 0.057 0.338 −0.037 0.378 −0.077

18 2.897 1.602 2.958 −0.061 2.768 0.129 1.676 −0.074 1.545 0.057

19 2.602 1.397 2.665 −0.063 2.503 0.099 1.521 −0.124 1.268 0.129

20 2.505 0.602 2.363 0.142 2.433 0.072 0.525 0.077 0.674 −0.072

21 2.301 0.778 2.376 −0.075 2.253 0.048 0.727 0.051 0.695 0.083

22 2.602 2.204 2.718 −0.116 2.668 −0.066 2.113 0.091 2.283 −0.079

23 1.698 0.602 1.756 −0.058 1.663 0.035 0.683 −0.081 0.672 −0.070

24 0.778 1.505 0.851 −0.073 0.714 0.064 1.451 0.054 1.461 0.044

25 0.602 1.505 0.542 0.060 0.498 0.104 1.542 −0.037 1.483 0.022

26 3.397 2.799 3.176 0.221 3.462 −0.065 2.834 −0.035 2.749 0.050

Res. = Obs. pIC50–Pred. pIC50
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Fig. 2 (a) Plot of contribution chart of 2D QSAR Model (PPARα); (b) Graphs of observed vs. predicted activity of 2D
QSAR model (PPARα); (c) Stereo view of the molecular rectangular field grid around the superposed molecular of
phenylpropanoic acids derivatives (PPARα) compounds using GA-PLS kNN-MFA method; (d) Graphs of observed
vs. predicted activity of 3D QSAR model (PPARα); (e) Plot of contribution chart of 2D QSAR Model (PPARγ);
(f) Graphs of observed vs. predicted activity of 2D QSAR model (PPARγ); (g) Stereo view of the molecular
rectangular field grid around the superposed molecular of phenylpropanoic acids derivatives (PPARγ) compounds
using SA-PLS kNN-MFA method; (h) Graphs of observed vs. predicted activity of 3D QSAR model (PPARγ); (i)
Pharmacophore features Substituted Phenylpropanoic Acids; (j) Aligned 3D pharmacophore features; (k) Probable
best pharmacophore features of active molecule.

bulky substituent’s are favorable on this site and pres-
ence of less steric substituents increases the antihyper-
glycemic activity of Phenylpropanoic compounds. It is
observed that electrostatic descriptors like E 602 with

positive coefficient are at the R ring of Phenylpropanoic
structure indicating that electropositive groups are fa-
vorable on this site and presence of electropositive
groups would increase the antihyperglycemic activity of
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these compounds. Most of the active compounds in se-
ries (like in compound 4, 5, 6, 11, and 12) having elec-
tropositive substitution at the 3rd position of Phenyl-
propanoic ring strongly support the above statement.
This is also well supported by 2D-QSAR study. An-
other electrostatic descriptor E 802 with negative coef-
ficients are at the R ring of Phenylpropanoic structure
indicating that electronegative groups are favorable on
this site and presence of electronegative groups would
increase the antihyperglycemic activity of these com-
pounds. The graph of observed versus predicted ac-
tivity for given set of molecules is shown in Fig. 2(d).
The predicted (LOO) activities of the compounds by
the above model are shown in Table 4.

3.2 Modelling with simulated annealing
(PPARγ) method

pIC50 (PPARγ) = 0.4486(±0.0917)SsCH3Count-
0.2815(±0.0512) SsBrE-index + 0.6310 (±0.2815)
SssOE-index +0.1067(±0.0047) T 1 Cl 1 - 0.0036

Optimum Components = 3, Ntraining = 20, Ntest = 6,
r2 = 0.7614, q2 = 0.6996, F test =29.653, r2 se = 0.2036,
q2 se = 0.2502, pred r2 = 0.7193, pred r2se = 0.3206,
Z Score Qˆ2 = 1.4334, Best Rand Qˆ2 = 1.07212.

The statistically significant tetra-parametric model
with simulated annealing Partial least square (SA-PLS)
method with coefficient of determination (r2) = 0.7614
is capable of explaining 76% of variance in the observed
activity values. The model showed an internal predic-
tive power (q2 = 0.6996) of 69% and predictivity for
external test set (pred r2 = 0.7193) about 72%. The F-
test = 29.653 shows the overall statistical significance
level of 99.99% of the model which means the probabil-
ity of failure of the model is 1 in 10 000. The developed
simulated annealing-PLS model reveals that the de-
scriptor SsBrE-index reveals the importance of presence
of number of Bromine connected with one single bond
(i.e. -Br) at R position on ring to be detrimental for
the activity. The descriptor SsCH3Count was found to
be directly proportional to the activity. This indicates
that increase in SsCH3Countof fragment R may lead to
an increase in the activity. The positive coefficient of
this descriptor signifies the importance of methyl group
for activity. The above results are in close agreement
with the experimental observations where compounds
4, 5, 6, 8, 11 and 12 with substituent at the R posi-
tions produce activity. The next descriptor T 1 Cl 1 is
the number of double-bonded atoms separated fromthe
chlorine atom by single bond. It is another influen-
tial alignment-independent descriptor (∼25% contribu-
tion), suggesting that the presence of substituents with
chlorine on the phenyl ring at the ortho position will
lead to an increase inactivity. It is evident that the chlo-
rine atom attach 3rd and 4th position of R substituent
(compound 7, 19 and 20) increases the activity.The
other descriptor such as SssOE-index which is topolog-

ical indices for number of oxygen atom connected with
two single bonds showed positive contribution and posi-
tive effect indicated that the activity was increased with
the presence of methoxy groups. The results of activity
depicted that the presence of electron donating group,
OCH3, in compound, increase the activities.The contri-
bution chartfor all the descriptors in the QSAR model
equation is illustrated in Fig. 2(e) and observed versus
predicted activity of both test set and training set are
portrayed in Fig. 2(f). The predicted (LOO) activities
of the compounds by the above model are shown in Ta-
ble 4. The correlation matrix is shown in Table 5 which
shows good correlation of selected parameters with bi-
ological activity.

pIC50 (PPARγ) = E 265 (1.5009, 2.4771) - E 99
(−0.4218, −0.3219) - S 264 (−0.5785, −0.4969)

Degrees of Freedom = 20, Ntraining = 20, Ntest =
6, Optimum Components = 3, q2 = 0.6421, F test =
24.731, q2 se = 0.4317, pred r2 = 0.6732

3D-QSAR models were selected based on value of sta-
tistical parameters and the best SA- PLS 3D-QSAR
model has a q2 of 0.6421 and pred r2 of 0.6732. In
Model as shown in Fig. 2(g) Positive range of electro-
static field descriptor indicates that the electrostatic
potential E 265 (1.5009, 2.4771) is favorable for in-
crease in activity and hence a less electro-negative sub-
stituent group is preferred in that region. From 3D-
QSAR model Fig. 2(g)-it is observed that electrostatic
field with negative coefficient E 99 (−0.4218, −0.3219)
is far from the Phenylpropanoic moiety, indicating that
electronegative groups are unfavorable on this site and
presence ofelectronegative groups decrease the activ-
ity of Phenylpropanoic compounds. Negative values of
steric S 264 descriptor negative range (green) indicate
that negative steric potential is favorable for activity
and less bulky substituents group is preferred inthat re-
gion.The predicted (LOO) activities of the compounds
by the above model are shown in Table 4. The graph
of observed versus predicted activity for given set of
molecules is shown in Fig. 2(h).

3.3 Pharmacophore Identification Studies

A set of pharmacophore hypothesis was generated
using the mole sign module of V life MDS 3.5 on the
reported Substituted α-Isopropoxy Phenylpropanoic
Acids. Each hypothesis was found to contain common
features like hydrogen bond donor, hydrogen bond ac-
ceptor, and aromatic features (Fig. 2(i)). The phar-
macophore hypothesis generated in V life MDS 3.5
(Fig. 2(j)) indicated the significance of presence of two
aromatic features for the antihyperglycemic activity;
these features are contributed by the Phenylpropanoic
Acids nucleus. Existence of such a pharmacophoric pat-
tern is the condition for ligand–macromolecule interac-
tion, and such searches for chemical patterns in molec-
ular databases allow us to find new scaffolds for devel-
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Table 5 Correlation matrix between descriptors present in the QSAR model PPARγ

Parameter pIC50 SsCH3Count SsBrE-index SssOE-index T 1 Cl 1

pIC50 1.0000

SsCH3Count 0.3198 1.0000

SsBrE-index 0.3764 0.4543 1.0000

SssOE-index 0.3658 0.5896 0.6745 1.0000

T 1 Cl 1 0.3376 0.4097 0.6487 0.7243 1.0000

oping lead structures (Choudhari and Bhatia, 2012).
From distance geometry studies of the pharmacophore,
it is clear that for optimum factor antihyperglycemic
activity, the distance between the two hydrophobic fea-
tures should be about (62HAc 37H) = 7.3613 Å, Dis-
tance (62HAc 26C) = 4.8637 Å, Distance (37H 26C)
= 8.5606 Å, Distance (62HAc 19N) = 1.4307 Å and
Distance (21O 54H) = 3.1729 Å the distance between
the hydrogen bonddonor, acceptor and two aromatic
features (Fig. 2(k)). The average RMSD of the phar-
macophore alignment of each two molecules is 0.6549
Å.

4 Conclusion

The present studies were aimed at deriving predic-
tive 2D, 3D-QSAR model and Pharmacophore stud-
ies capable of elucidating the structural requirements
for novel oxadiazole-substituted α-isopropoxy phenyl-
propanoic acids with dual agonist PPARα and PPARγ
activity.The suitable set of the molecular descriptors
was calculated and the important descriptors using the
variable selections of the genetic algorithm and simu-
lated annealing were selected. A comparison between
the attained results indicated the superiority of the ge-
netic algorithm over the simulated annealing method
in the feature-selection. The predictive quality of the
quantitative structure-activity relationship models was
tested for an external set of six compounds, sphere
exclusion method out of 26 compounds. The genetic
algorithm-PLS model with four selected descriptors was
obtained. This model, demonstrating high statistical
qualities r2= 0.8725, q2= 0.7957, and pred r2 = 0.8136
could predict the model antihyperglycemic activity of
the PPARα molecules. The results suggest that ni-
tro, hydroxy group connected with one single and two
double bonds R position will lead to improved activ-
ity. Furthermore, visualization of the 3D-QSAR model
using kNN-MFA method combined with various selec-
tion procedures. By using kNN-MFA approach, vari-
ous 3D QSAR models were generated to study the ef-
fect of steric and electrostatic descriptors on antihy-
perglycemic activity. It was found that the (E 602)
electropositive groups like ethyl were essential R site in
Phenylpropanoic moiety for potent antihyperglycemic
activity. The 2D- and 3D-QSAR results revealed that

that the presence of chloro or fluoro substituents would
increase the antihyperglycemic activity and presence of
bulky electron withdrawing groups at 3rd and 4th po-
sition of ring would increase the antihyperglycemic ac-
tivity. The QSAR model suggests that electron with-
drawing character is crucial for the antihyperglycemic.
In addition to the electron withdrawing character, hy-
drogen bond donating group, acceptors andaromatic
groups positively contribute to the antihyperglycemic.
These findings provide a set of guidelines for designing
compounds with better antihyperglycemicpotential.
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