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Abstract: Spatial colocalization of fluorescently labeled proteins can reveal valuable information about protein-
protein interactions. Compared to qualitative visual interpretation of dual color images, quantitative colocalization
analysis (QCA) provides more objective evaluations to the degree of colocalization. However, the finite resolution
power of microscopes and the spatial patterns of intracellular structures may compromise the reliability of many
classical QCA methods. In this paper, we discuss the strength and weakness of some mostly used QCA methods.
By studying their applications on computer-simulated images and biological images, we show that classical pixel
intensity based QCA methods are often vulnerable to coincidental overlapping among resolution elements (resel)
distributions and thus not suitable to images with high molecular density or with low resolution. Also, many QCA
methods can mistakenly regard long range correlation as colocalization due to protein localization in intracellular
structures. The newly developed protein-protein index (PPI) approach is able to reduce the influence from resel
overlapping and spatial intracellular pattern compared to previous methods, significantly improving the reliability
of QCA.
Key words: fluorescence microscopy, confocal microscopy, image analysis, colocalization.

1 Introduction

Spatial colocalization analysis is a standard tool
widely used in fluorescence microscopy to study
protein-protein interactions. By labeling two proteins
with two different of fluorophores emitting at differ-
ent wavelengths, dual color (we will name the two col-
ors “red” and “green” throughout this article, despite
their real color in reality) images can be generated,
and highly colocalized red and green signals might in-
dicate close spatial correlations between the proteins,
which in turn signifies their probable interactions. Vi-
sual interpretation of the overlaid dual color image
pair or their intensity scatter plot is an intuitive way
to assess colocalization and can be very helpful (Du-
tartre et al., 1996; Fox et al., 1991). However, it is
only qualitative and often vulnerable to human bias.
Quantitative colocalization analysis (QCA) calculates
various numerical indices to more objectively evalu-
ate the degree of colocalization (Zinchuk and Zinchuk,
2008). Intensity based indices are calculated through
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the pixel intensity values; examples of those approach
are Pearson’s correlation coefficient (Demandolx and
Davoust, 1997; Manders et al., 1992), overlap coeffi-
cients (Manders et al., 1993), Manders’ colocalization
coefficients (Manders et al., 1993) and intensity corre-
lation quotient (Li et al., 2004). More advanced inten-
sity based approaches such as the automatic threshold
method (Costes et al., 2004), image cross-correlation
spectroscopy (ICCS) (Comeau et al., 2006; Comeau et
al., 2008), and protein proximity index (PPI) (Wu et
al., 2010) were also developed. There are also object
based methods, in which images are processed with im-
age segmentation or edge detection algorithms to iden-
tify objects, and these objects rather than individual
pixels are used to assess the degree of colocalization
(Bolte and Cordelieres, 2006; Boutte et al., 2006; Lach-
manovich et al., 2003).

It is obvious that colocalization analysis, and even
the concept of “colocalization”, is closely related to the
resolution of the microscopes used to create the im-
ages. Optical microscopes have finite resolution power:
A point light source produces a spatial distribution
light intensity at the image plane according to the
point spread function (PSF), and two point sources lo-
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cated within the size of PSF are difficult or impossible
to resolve. Conventional confocal fluorescence micro-
scopes are subject to the diffraction limit and cannot
exceed the resolution at ∼200 nanometers. Recently,
super-resolution techniques such as photo-activated lo-
calization microscopy (PALM) (Betzig et al., 2006),
structured illumination microscopy (Gustafsson, 2000),
and stimulated emission depletion (STED) microscopy
(Hell, 2003), may be able to improve the resolution
down to 20-50nm. Since the physical size of a pro-
teins and their interaction distance may be on the order
of several nanometers, for most existing optical micro-
scopes, two associated proteins will produce almost co-
incident resolution elements (resel) on the image and
are thus considered as “colocalized”. On the other
hand, two overlapping but not coincident resels usually
should not be considered as colocalized, because the ac-
tual distance between the two proteins is too far away
for them to be actually associated. On digital micro-
scopic images, the full width half maximum (FWHM)
of PSF should be sampled with at least 4 pixels accord-
ing to the Nyquist sampling theorem. Therefore, a resel
consists of quite a number of pixels on images, which
results problems for many intensity based QCA meth-
ods: These classical QCA methods are based on count-
ing colocalized red and green pixels, and always tend
to overestimate the degree of colocalization by regard-
ing overlapping pixels in resels as colocalization. Ob-
viously this overestimation becomes more problematic
when the degree of colocalization is low or when there
is excessive resel overlapping, which happens when the
resolution is too low or the density of molecules is very
high.

Another significant matter to consider is that pro-
teins in most cases are not homogenously distributed in
the cell, but reside in intracellular structures and form
a pattern due to their organized spatial distribution.
Thus, both types of proteins under colocalization anal-
ysis usually appear in the same intracellular structures,
meaning that their spatial distribution is correlated,
but they are not necessarily colocalized. It is worth
noting that this spatial correlation due to intracellu-
lar structures often has longer spatial range than colo-
calization, in other words, the intracellular structures
have longer length scales than PSF. If this was not the
case, the structures could not be resolved and could not
be differentiated from colocalized proteins in principle.
Many existing QCA approaches mistakenly count this
long range spatial correlation due to intracellular struc-
tures as colocalization and yield overestimation. This
issue has been discussed in a recent publication (Wu et
al., 2010), in which the PPI approach is presented. In
this approach, spatial correlations are decomposed ac-
cording to their range, and colocalization is identified
only with correlation whose range is comparable to the
PSF size, which effectively reduces the influence from

long range correlation due to intracellular pattern.
In this article, we review a number of most widely

used QCA methods in comparison to the PPI approach.
We apply these approaches to computer-simulated im-
ages and biological images and compare their results.
In computer-simulated images the degree of colocaliza-
tion can be precisely controlled, which makes it easy for
us to evaluate the reliability of the QCA methods under
review. We also use two sets of biological images of the
same type of cells to study the dynamic change in colo-
calization. We discuss the strengths and weaknesses
of the QCA methods and show that the PPI approach
is more reliable than other methods in minimizing the
overestimation caused by both overlapping resels and
spatial patterns of intercellular structures. Further im-
provement on the reliability of QCA will mostly rely
on the advancement of microscopic technology with en-
hanced resolution, since higher resolution power will
reduce resel overlapping and better distinguish colocal-
ization from intracellular patterns.

2 Methods

The central issue of this paper is to test the accuracy
and reliability of various QCA methods. QCA methods
discussed in this paper include:

• Pearson’s correlation coefficient Rr

• Manders’ overlap coefficient R

• Overlap coefficients k1 and k2

• Colocalization coefficients m1 and m2

• Li’s intensity correlation quotient (ICQ)

• Costes’ automatic threshold method

• Costes’ randomization test

• Image cross-correlation spectroscopy (ICCS) with
scrambled images

• Protein-protein proximity index (PPI)

• Object based methods (distance between centers
of mass)

Manders’ overlap coefficient R, overlap coefficients
k1 and k2, and colocalization coefficients m1 and m2

were calculated using CoLocalizer Pro 2.5 (CoLocaliza-
tion Research Software) (Zinchuk and Grossenbacher-
Zinchuk, 2009). Li’s intensity correlation quotient,
Pearson’s correlation coefficient Rr , Costes’ random-
ization test and object based methods were calculated
or implemented with an ImageJ plugin JACOP (Bolte
and Cordelieres, 2006) and some of them were double-
checked by our own program. We also programmed our
own software to implement Costes’ randomization test,
ICCS and to calculate PPI.

To test the accuracy of these methods, we used com-
puter simulated images, in which the degree of colocal-
ization is known precisely, so that after applying the
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QCA methods, the results can be compared with the
known value. Computer simulated images were gen-
erated using MatLab 2009a (The MathWorks, Natick,
MA). An image with size of m × n is represented by
an m × n matrix where each matrix element stores the
intensity value at the corresponding pixel. In confo-
cal fluorescence microscopy, each fluorophore will gen-
erate a resel (according to PSF) on the resultant im-
age. Therefore, two steps were followed to generate a
computer-simulated image: First, the central pixels of
resels, each corresponding to a fluorophore, were deter-
mined according to a certain spatial distribution, and
at each central pixel the intensity value was set to one;
secondly, the matrix was then convoluted with a Gaus-
sian PSF. The spatial distribution of resel centers can
be chosen in two ways. The first one is that they are
distributed purely randomly, or, in other words, the flu-
orophores are distributed according to a uniform distri-

bution, as seen in Fig. 1 (A-C). This is of course only
an ideal case and can rarely be a good approximation
to real biological images. The second choice is that the
spatial distribution is taken from a biological image, to
which the computer-simulated image will visually re-
semble. In this case, the central pixels are distributed
according to the pixel distribution of a biological im-
age, and the intracellular structures are thus kept in the
computer simulated images, whose influences to QCA
may then be assessed. It is worth noting that images in
two channels cannot share the same biological image as
the spatial intracellular pattern provider, otherwise the
images will always have a certain degree of colocaliza-
tion. We have used an image pair of a cardiomyocyte
from a mouse where ryanodine receptor (RyR) and es-
trogen receptor α (ERα) were independently labeled
(See Fig. 1 (D) and Fig. 1 (G), respectively. Images
were cropped and processed with median filters to

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

10 µm

10 µm

Fig. 1 Images generated by computer simulations to test QCA methods. (A) Computer-simulated image in which molecules
are randomly distributed according to a uniform distribution. Each molecule is represented by a single pixel. (B
and C) Convoluting the image in (A) with a Gaussian PSF with standard deviation σ = 3 and 5 pixels, respectively.
(D) Cropped image of a cardiomyocyte from mouse where ryanodine receptor (RyR) were labeled. (E and F)
Computer-simulated images based on the image in (D), convoluted with a Gaussian PSF with σ = 3 and 5 pixels,
respectively. (G) Cropped image of a cardiomyocyte from mouse where estrogen receptor α (ERα) was labeled. (H
and I) Computer-simulated images based on the image in (G), convoluted with a Gaussian PSF with σ = 3 and 5
pixels, respectively.
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reduce shot noises and background) as the blueprint
for computer simulations. It has been shown that these
two proteins do not associate (Wu et al., 2010; Ropero
et al., 2006), and thus we could control the degree of
colocalization in computer-simulated images by adding
artificial colocalized molecules.

Real microscopic images are more complex than our
model images due to complications such as dark current
and shot noise of detectors, out of focus light, nonspe-
cific labeling of antibodies, and bleed-through between
the two channels. However, in order to concentrate our
study on influence from resel overlapping and spatial
intracellular pattern to QCA, these factors were not in-
cluded in our computer simulations.

We also test the QCA methods on biological images,
which were taken for isolated heart myocytes from mice.
Proteins were labeled with specific monoclonal (anti-
mouse) and polyclonal antibodies (anti-rabbit). Iso-
lated cells were fixed with 4% paraformaldehyde in 0.1
M Na2HPO4 and 23 mM NaHPO4 (pH 7.4) at room
temperature for 20 min, and permeabilized with 0.2 %
Triton-X 100. Nonspecific binding was blocked for 30
minutes at room temperature using 10% goat or donkey
serum in PBS pH 7.4 containing 0.2% Triton X-100 to
permeabilize the cells. Double labeling was achieved in-
cubating the cells with polyclonal and monoclonal anti-
bodies (5-10 µg/ml) incubated overnight at 4 ℃). Cells
were washed, incubated (1 h, room temperature) with
secondary Abs Alexa 488 anti-rabbit IgG and Alexa 594
anti-mouse IgG1 (2 µg/ml), washed again and mounted
with Prolong (Molecular Probes). Stack of images were
typically acquired by optically sectioning cells every 0.1
µm at 0.058 µm per pixel with a confocal microscope
using 60X, 1.4 NA, oil immersion objective. PMT sen-
sitivity was adjusted to avoid saturation.

3 Results and discussions

We use computer simulated images to test the relia-
bility of QCA methods in the following aspects:

First, the result of a reliable QCA method should
not count randomly overlapping resels as colocalization.
One way to test this is to see whether the results vary
significantly when the resolution of the microscope or
the image pixel size changes. To this end we use a set
of computer simulated images in which the locations
of molecules are kept same, but the standard deviation
σ (or width for simplicity) of the Gaussian PSF varies
from 0 to 5 pixels, as illustrated in Fig. 1 (PSF σ = 0
means that the convolution with PSF is not performed;
σ = 3 is close to proper sampling according to Nyquist’s
theorem; σ = 5 is oversampling). Note that less reso-
lution power at a fixed pixel size or a smaller pixel size
at a given resolution (oversampling) will both result a
greater PSF width measured by the number of pixels.
A reliable QCA method should yield same or similar

results for image pairs with different PSF widths.

Secondly, inauthentic “colocalization” introduced by
the spatial pattern of intracellular structures should be
excluded. To test this, we apply QCA methods on com-
puter simulated images whose spatial distribution was
taken from a mouse cardiomyocyte, as shown in Fig. 1
(D) and (G). Both species are distributed along the T-
tubules, which might be incorrectly regarded as colo-
calization by some QCA methods.

Lastly, QCA methods should be able to differentiate
significant changes in the degree of colocalization. This
will be tested by using two sets of simulated or bio-
logical images that have the different known degrees of
colocalization.

The testing results are summarized in Table 1, Table
2 and Fig. 2. Note that some QCA methods use only
one numerical value to quantify colocalization while
others use two values for two channels respectively.
When comparison is made among them and a method
yields two values, their geometric mean is used for com-
parison. Figure 2 shows the calculated values of each
QCA method with growing PSF width, also their com-
parison to the real colocalization values predefined by
the computer simulation.

Below we will discuss the reliability of each QCA
methods in details.

3.1 Pearson’s correlation coefficient

Pearson’s coefficient is defined as

Rr =

∑

i

(Ri − Ravg) (Gi − Gavg)
√∑

i

(Ri − Ravg)
2 ∑

i

(Gi − Gavg)
2
, (1)

where Ri and Gi are intensity at the ith pixel in the
red and green channel, respectively, and the subscript
“avg” stands for the average intensity value. Pearson’s
coefficient has been criticized for its nonlinear depen-
dence on intensity values (Costes et al., 2004), and for
that it only has a single numerical value which is usually
not sufficient to describe colocalization in two channels
(Comeau et al., 2006). However, Pearson’s correlation
coefficient has the advantage that its value is not sen-
sitive to varying PSF width, as shown in Table 1 and
Table 2. On the other hand, the intracellular struc-
tures do greatly affect its value and produce significant
overestimation to the degree of colocalization when the
degree of colocalization is low. In Table 2 and Fig. 2,
we see that at nonzero PSF width, Rr ≈ 0.35 even if
the image pairs do not have colocalization. This posi-
tive value of Rr merely signifies correlation due to the
closely related spatial pattern of T-tubules of the car-
diomyocyte in both red and green channel.
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Table 1 Comparison of QCA methods applied on computer simulated images where molecules were ran-
domly distributed

PSF width (pixels)

PSF σ = 0 PSF σ = 3 PSF σ = 5

Real colocalization 0%, 0% 33%,25% 0%, 0% 33%,25% 0%, 0% 33%, 25%

Peasrson’s correlation coefficient Rr 0.00 0.29 0.00 0.29 0.00 0.29

Manders’ overlap coefficient R 0.02 0.16 0.30 0.39 0.36 0.43

Overlap coefficient k1 and k2 0.04, 0.01 0.39,0.06 1.1, 0.08 1.6, 0.10 1.9, 0.07 2.3, 0.08

Manders’ coefficient m1 and m2 0.02, 0.03 0.20,0.26 0.97, 0.24 0.99,0.31 1.0, 0.24 1.0, 0.31

ICQ 0.41 0.41 0.01 0.10 0.00 0.10

Automatic threshold 4.9%, 3.2% 38%,29% 70%, 44% 87%,75% 61%, 46% 88%, 82%

Costes’ randomization test Failed Passed Failed Passed Failed Passed

Objected based method N/A N/A 14%, 15% 17%,19% 4.3%, 5.2% 6.1%,6.0%

ICCS (image scrambled) 0.00%, 0.00% 33%,25% 0.16%,0.11% 33%, 25% 0.21%, 0.14% 33%, 26%

PPI 0%, 0% 35%,25% 0%, 0% 33%,25% 0%, 0% 34%,26%

Table 2 Comparison of QCA methods applied on computer simulated images based on biological images
with a spatial intracellular pattern

PSF width (pixels)

PSF σ = 0 PSF σ = 3 PSF σ = 5

Real colocalization 0%, 0% 15%, 33% 0%, 0% 15%, 33% 0%, 0% 15%, 33%

Peasrson’s correlation coefficient Rr 0.04 0.25 0.35 0.51 0.34 0.50

Manders’ overlap coefficient R 0.07 0.28 0.35 0.69 0.45 0.77

Overlap coefficient k1 and k2 0.08, 0.06 0.18, 0.44 0.22, 0.54 0.35, 1.37 0.29, 0.72 0.38, 1.59

Manders’ coefficient m1 and m2 0.09, 0.07 0.18, 0.42 0.40, 0.81 0.69, 0.87 0.50, 0.93 0.81, 0.94

ICQ 0.42 0.44 0.21 0.25 0.18 0.22

Automatic threshold Failed 0%, 0% 87%, 70% 82%, 96% 84%, 71% 88%, 96%

Costes’ randomization test Passed Passed Passed Passed Passed Passed

Objected based method N/A N/A 13%, 12% 22%, 20% 9.5%, 8.8% 19%, 17%

ICCS (image scrambled) 4.9%, 3.6% 17%, 36% 34%, 36% 42%, 61% 33%, 35% 42%, 59%

PPI 0%, 0% 15%, 33% 1.1%, 1.4% 21%, 38% 1.5%, 1.6% 20%, 34%

3.2 Manders’ overlap coefficient
Manders’ overlap coefficient is defined as

R =

∑

i

RiGi

√∑

i

R2
i

∑

i

G2
i

(2)

Compared to Pearson’s coefficient, the elimination of
the average intensity values avoids negative values of
R, but it also makes R vulnerable to resel overlapping,
which always exaggerates its value. Other researchers
also found this coefficient is less reliable compared to
Pearson’s correlation coefficient (Adler and Parmryd,
2010). In Table 1, Table 2 and Fig. 2, one can see that
Mander’s overlap coefficient grows along with increas-
ing PSF width. Also, it is difficult for Manders’ overlap
coefficient to differentiate the degree of colocalization:
R is insensitive to the change in real colocalization val-
ues. In addition, this coefficient can also produce in-

authentic colocalization due to spatial pattern of inter-
cellular structures. Therefore, one should be very care-
ful when applying this coefficient to images with high
molecular density or with poor resolution that causes
much resel overlapping, and also to images with a clear
spatial intracellular pattern.
3.3 Overlap coefficients k1 and k2

In order to characterize colocalization in both chan-
nels, it is necessary to use two coefficients. Overlap
coefficients k1 and k2 are defined as

k1 =

∑

i

RiGi

∑

i

R2
i

k2 =

∑

i

RiGi

∑

i

G2
i

(3)
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Fig. 2 Comparing the results of QCA methods applied on
computer simulated images illustrated in Fig. 1, as
a function of PSF width. For methods generate two
values, their geometric mean is used in the plot. (A)
Preset colocalization value is zero for both images.
(B) Preset colocalization value is 15% for one image
and 33% for the other, and the geometric mean is
22%. In both (A) and (B), PPI yields result very
close to real value despite the growing PSF width.

k1 and k2 have the same drawbacks that Manders’
Overlap Coefficient R has due to the similarity between
their definitions. Another obvious disadvantage is that
k1(k2) scales proportionally to the intensity value of the
green (red) channel, and thus the coefficients depend on
the relative strength of the two channels. These coef-
ficients are almost only applicable to image pairs with
similar intensity level in two channels. In our computer
simulations we set different absolute intensity values in
two channels deliberately, resulting very much uneven
overlap coefficient values that are hard to interpret (see
Table 1 and Table 2), because one cannot determinate
whether the high k1(k2) values are due to colocalization
or simply because the green (red) channel has much

higher intensity than its counterpart.
3.4 Manders’ coefficients m1 and m2

Compared to k1 and k2, the advantage of Manders’
coefficients is that they do not scale with the absolute
intensity in both channels. The definition of Manders’
coefficients is

m1 =

∑

i

Ri,col

∑

i

Ri

m2 =

∑

i

Gi,col

∑

i

Gi
, (4)

where Ri,col is the intensity of the ith red pixel that
has a nonzero Gi > 0, and Gi,col is defined similarly.
In simple terms, Manders’ coefficients are defined as
the fraction of coincident pixels. Manders coefficients
are widely used but they could be misleading because
one is actually interested in the fraction of colocal-
ized molecules rather than coincident pixels, and again,
overlapping resel and intracellular structures may pro-
duce coincident pixels without the presence of real colo-
calization of molecules. Therefore, Manders’ coefficient
share the same drawbacks that overlap coefficients have,
except that they can be applied to image pairs with a
relative intensity strength difference in two channels.
3.5 Intensity correlation quotient

This index is defined as

ICQ =
#i (Ri − Ravg) (Gi − Gavg) > 0

N
− 0.5, (5)

where #iP stands for counting number of pixels satisfy-
ing condition P , and N is the total number of pixels (Li
et al., 2004). In other words, ICQ basically measures
the fraction of pixels that the red intensity value and
the green intensity value are either both greater or both
less than the average. Noticing the similarity between
this definition and Eq. 1 in the numerators, it is not
surprising that ICQ is also insensitive to overlapping
resels but exaggerates colocalization because of spatial
pattern of intracellular structures. Also, in Table 2 one
can see that, when colocalization goes from zero to 15%
(red) and 33% (green), the increment in ICQ values is
very little. Therefore, ICQ can be sloppy in signify-
ing the varying degree of colocalization, making it less
suitable to study dynamic changes in cell biology.
3.6 Costes’ randomization test

The Costes’ randomization test is not an indepen-
dent QCA method but is an effective way to detect
inauthentic colocalization due to randomly coincident
pixels (Costes et al., 2004). To perform the test, one of
the images is divided into small squares that are then
randomly scrambled. The size of the squares should be
large enough to cover a single PSF. It is highly proba-
ble that the scrambled images will have less colocalized
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pixels, if colocalization between the original images is
not purely coincidental. In practice the Pearson’s cor-
relation coefficient Rr is used as the measure of colocal-
ization, and the test is passed if 90% of the randomized
images result a smaller Rr. In practice, image random-
ization is performed at least 200 times.

From Table 1 one can see that colocalized pixels
due to resel overlapping cannot pass Costes’ random-
ization test. Therefore, this test is essential when
QCA methods that are sensitive to resel overlapping
are used. However, this test gives only “yes-or-no” an-
swers. When there is partial colocalization, this test can
hardly be helpful for quantifying colocalization. Also,
Table 2 shows that Costes’ randomization test fails to
distinguish spatial correlation due to intracellular struc-
ture from real colocalization. Passing this test is a thus
necessary but not sufficient condition for the existence
of colocalization.
3.7 Object based methods

All the methods discussed above are “pixel intensity
based”, in the sense that the basic element considered
in these methods is individual pixels. Object based
methods, on the other hand, are based on counting ob-
jects in the images. They utilize edge detection and
image segmentation algorithms to identify individual
objects in images, and then apply various criterions to
determine colocalized objects rather than pixels. The
specific approach used in this article measures the dis-
tance between the centers of mass of two objects, and if
the two centers coincident within the uncertainty due to
sampling, then they are counted as colocalized (Bolte
and Cordelieres, 2006; Boutte et al., 2006).

Object based methods obviously are very sensitive
to resel overlapping: Two PSF can either be identified
as two objects or as one object, depending on whether
and how much they overlap. One could reduce resel
overlapping by applying threshold, but there is no ob-
jective way to set the threshold values. In our analysis
we used the threshold values provided automatically by
the JACOP software. In order to remove influence from
shot noises, only objects with size larger than 9 pixels
are recognized by the software. The performance of the
object based method on high density images is still not
satisfactory, as shown in Table 1. Image pairs with-
out colocalization were mistakenly measured to have
significant degrees of colocalization, and for partially
colocalized image pairs, the resulting values were very
different from real values. Also, the result of the ob-
ject based method can be unstable when PSF width
changes. For example, in Table 1 one can see that at
the same real colocalization value (33% and 25% for two
channels, respectively), calculated colocalization values
change from about 17% and 19% to 6.1% and 6.0%
when PSF width goes from 3 pixels to 5 pixels.

3.8 Automatic threshold
The idea behind this method is fairly simple. All

fluorescence signals may be decomposed into a random
component and a colocalized component. It is assumed
that the random components has lower intensity in gen-
eral, and they are then identified by setting thresh-
old: The signals in two channels below threshold values
should have zero correlation (measured by Pearson’s
correlation coefficient) and are thus considered as the
random components, while signals above thresholds are
deemed as the colocalized components. The colocaliza-
tion coefficients are simply the ratio of the integrated
intensity of the colocalized component to the integra-
tion of all signals.

This simplistic method is obviously highly empirical.
In the original paper where it was proposed (Costes
et al., 2004), it was tested with computer-simulated
images but the images used were very different from
real microscopic images. It has been reported that this
method yields inaccurate result for images with high
density of molecules. When tested with our computer
simulation, it was also shown that this method is very
vulnerable to both resel overlapping and spatial intra-
cellular patterns, constantly producing very large over-
estimation to colocalization, and because of the exag-
geration, this method is insensitive to the change in
colocalization, too (See Table 1, Table 2 and Fig. 2).
3.9 Image cross-correlation spectroscopy

(ICCS)
The essential equations in ICCS are

Pred =
Cov(R, G)
V ar(G)

Gavg

Ravg

Pgreen =
Cov(R, G)
V ar(R)

Ravg

Gavg
, (6)

where Cov() and V ar() are used to denote covariance
and variance, respectively. In ideal situation (without
background, noises, and spatial pattern), the coefficient
Pred (PGreen) is equal to the fraction of colocalized
molecules in the red (green) channel. But in practice,
background and noise are always present. Therefore,
covariance and variance are not calculated directly, but
are derived through the correlation function defined as

Gr,g(u, v) =
Cov(R, Gu,v)

RavgGavg
, (7)

where Gu,v stands for the image in the green channel
being shifted by u pixels horizontally and v pixels verti-
cally. Similarly one can define Gr,r(u, v) and Gg,g(u, v).
The use of correlation functions to validate colocaliza-
tion dates back 1996, when Van Steensel and cowork-
ers proposed to measure the Pearson’s correlation co-
efficient as a function of pixel shift (van et al., 1996).
Usually PSF can be well approximated by a Gaussian
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function, and so are these correlation functions in ideal
situation. ICCS calculates the correlation functions
and then fit them into three-dimensional Gaussian func-
tions, and the fitting parameters were used to calculate
colocalization coefficients to reduce the influence from
background and noises.

The main difficulty of the original ICCS approach
is that the three-dimensional fit often fails, especially
when colocalization is low. An “improved” version of
ICCS was then developed (Comeau et al., 2008), which
scrambles the image pairs to produce a sharp Gaus-
sian peak in the landscape of the correlation functions.
Though the three-dimensional fit made easy, the pro-
cess of image scrambling includes background due to
out of focus light and spatial pattern of intracellular
structures into the correlation functions. This essen-
tially because by dividing image into small squares the
length scales of spatial correlations are completely de-
stroyed. In Table 2 we show that this approach over-
estimated the degree of colocalization and mistakenly
reported the existence of colocalization for images ac-
tually with zero colocalization.

3.10 Protein proximity index (PPI)

This approach is also a successor of the original ICCS
method (Wu et al., 2010). It was realized that the cor-
relation functions actually contain spatial correlations
in several different length scales: At the shortest length
scale, there is autocorrelation of shot noise, whose range
is at about one pixel. At the length scale of resolu-
tion distance (PSF size at focus), there are autocor-
relation of each fluorophores and cross-correlation due
to colocalization of molecules, whose range is at about
several hundred nanometers for diffraction-limited sys-
tems. There are also long range correlations due to
the spatial pattern of intracellular structures and out
of focus light, whose ranges are typically much longer
than resolution distance. Obviously, the estimation of
colocalization for confocal images should only use cor-
relations at the length scale of PSF at focus. The shot
noise can be effectively removed by image processing
techniques such as deconvolution or median filter. A
two-dimensional “double Gaussian fit” was used to dif-
ferentiate correlation at the resolution length scale and
the longer range correlations. The direction at which
the two-dimensional fit is performed should be chosen
such that the distinct between the short range correla-
tions and the long range correlations is as obvious as
possible, and usually it follows where the long range
correlations decreases slowest. This technique allows
one to extract even small degree of colocalization from
long range correlations. In Table 1, Table 2 and Fig. 2
we show that the PPI method yields excellent results
for computer-simulated images, despite the existence of
both resel overlapping and spatial pattern of molecule

distribution.
3.11 Biological images

Unlike computer-simulated images, the actual degree
of colocalization is not known in biological images. It is
easier to test QCA methods under changes in colocal-
ization under different conditions. We applied QCA
methods to images of mouse cardiomyocytes, where
α1C channel and ryanodine receptors (RyR) were sep-
arately labeled. The distribution and colocalization of
these two kinds of proteins in a cell from a failing mouse
heart were compared to those in a healthy heart cell as
the control. It is expected that in the process of heart
failure, the proteins not only lose the organized pattern,
but also undergo a decrease in degree of colocalization.
The original images have considerable amount of back-
ground due to out of focus light, detector noise, and
nonspecific labeling. Thus, background subtraction and
(or) deconvolution techniques were used to reduce their
influences. Deconvolution is a controversial technique
in colocalization analysis. While it usually produces
sharper and cleaner images thus recommended by many
researchers, it was also concerned that it introduces too
drastic changes in the images and may result inaccurate
assessment of colocalization. We adopted two ways to
process the image:

1) Images were cropped, deconvoluted, and then
threshold were applied. The resulting images are shown
in Fig. 3.

2) Images were cropped, processed with a 3×3 me-
dian filter to remove shot noises, and then threshold
were applied. The resulting images are shown in Fig. 4.

In each case, the preset threshold values automat-
ically given by CoLocalization Pro 2.5 or JACOP are
used. The aim is to test performance and consistency of
QCA methods when different approaches of background
reduction are used. Different background reduction ap-
proach may result different levels of resel overlapping,
and a reliable QCA method is expected to be insensitive
to different background reduction approaches. In Table
3 one can see that only some methods yield expected
results for deconvoluted images, but most methods sen-
sitive to resel overlapping, such as overlap coefficients
and Manders’ coefficients, are unable to differentiate
the control and the failing heart sample. When applied
on images without deconvolution, almost all methods
except the PPI method fail to clearly signify the de-
creasing degree of colocalization from the control to the
sick sample. The PPI method is the only approach that
provides expected results under both image processing
procedures. The reason why other approaches fail for
undeconvoluted images may lie in fact that the image
without deconvolution has more resel overlapping, since
deconvolution techniques can effectively shrink PSF to
deblur images. At least for this specific example, de-
convolution is proven to be helpful in QCA and the
PPI method is demonstrated to be the most reliable
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(A) (B)

(C) (D)

5 µm 5 µm

5 µm 5 µm

Fig. 3 Deconvoluted images (also cropped and thresh-
olded) of ventricular cardiomyocytes from a control
mouse and a mouse undergoing pressure overload 3
weeks after transaortic constriction (TAC). (A and
B) �1C calcium channel (α1C) and ryanodine re-
ceptor (RyR) channel in the control cell, respec-
tively. (C and D) α1C channel and RyR channel in
the failing heart cell, respectively.

(A) (B)

(C) (D)

10 µm 10 µm

10 µm 10 µm

Fig. 4 Images (cropped and thresholded, but without de-
convoluted) of the same cells as in Fig. 2. (A and B)
α1C calcium channel (α1C) and ryanodine receptor
(RyR) channel in the control cell, respectively. (C
and D) α1C channel and RyR channel in the failing
heart cell, respectively.

Table 3 Comparison of QCA methods applied on images of ventricular cardiomyocytes from a control
mouse and a mouse undergoing pressure overload

Not Deconvoluted Deconvoluted

Control Failing Heart Control Failing Heart

Peasrson’s correlation coefficient Rr 0.56 0.50 0.49 0.30

Manders’ overlap coefficient R 0.70 0.77 0.63 0.71

Overlap coefficient k1 and k2 0.37, 1.30 0.76, 0.79 0.26, 1.57 0.65, 0.78

Manders’ coefficient m1 and m2 0.69, 0.92 0.92, 0.91 0.49, 0.84 0.89, 0.76

ICQ 0.39 0.33 0.40 0.26

Automatic threshold 55%, 87% 60%, 74% 48%, 69% 39%, 29%

Costes’ randomization test Passed Passed Passed Passed

Objected based method 13%, 2.1% 12%, 9.9% 8.3%, 4.3% 0.6%, 3.6%

ICCS (image scrambled) 38%, 81% 55%, 47% 40%, 60% 42%, 22%

PPI 20%, 67% 14%, 9.1% 19%, 32% 17%, 6.5%

one among QCA methods we have tested.

4 Conclusions

In Table 4 we summarize the results we have obtained
in testing the QCA methods. For QCA methods sensi-
tive to resel overlapping, one should be cautious about
its results for images with high molecular density, with
low resolution, or with oversampling. For most QCA
approaches except the PPI method, the result is not

reliable if the images contain a clear intracellular struc-
ture.

Reliable QCA is difficult, because various QCA meth-
ods all have their drawbacks, and also because there
is no universal background reduction procedure, espe-
cially when the degree of colocalization is intermediate
or low. In order to enhance the reliability of QCA, it
is strongly recommended that one apply several QCA
methods and/or background reduction approaches to
see whether consistent results can be achieved.
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Table 4 Summary of the testing for QCA methods

Sensitive

to resel

overlapping

Sensitive to

intracellular

pattern

Comments

Peasrson’s correlation coefficient Rr No Yes

Manders’ overlap coefficient R Yes Yes

Overlap coefficient k1 and k2 Yes Yes Only for images with similar intensity strength in two channels

Manders’ coefficient m1 and m2 Yes Yes

ICQ No Yes Intermediate values insensitive to changes in colocalization value

Automatic threshold Yes Yes

Costes’ randomization test No Yes Only gives “yes-or-no” answers, cannot quantify colocalization

Objected based method Yes Yes

ICCS (image scrambled) No Yes Image scrambling worsen the influence from background

PPI No No

The discussion of this article is based on the as-
sumption that two associated molecules cannot be re-
solved by the microscope, which currently remains true
in most cases. The advancement of super-resolution
microscope and image processing techniques, however,
may falsify this assumption, and by that time the mind
set of QCA will be dramatically changed.
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