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Abstract
Time transformation is a ubiquitous tool in theoretical sciences, especially in physics. It
can also be used to transform switched optimal control problems into control problems
with a fixed switching order and purely continuous decisions. This approach is known
either as enhanced time transformation, time-scaling, or switching time optimization
(STO) for mixed-integer optimal control. The approach is well understood and used
widely due to its many favorable properties. Recently, several extensions and algorith-
mic improvements have been proposed. We use an alternative formulation, the partial
outer convexification (POC), to study convergence properties of (STO). We introduce
the open-source software package ampl_mintoc (Sager et al., czeile/ampl_mintoc:
Math programming c release, 2024, https://doi.org/10.5281/zenodo.12520490). It is
based on AMPL, designed for the formulation of mixed-integer optimal control prob-
lems, and allows to use almost identical implementations for (STO) and (POC). We
discuss and explain our main numerical result: (STO) is likely to result in more local
minima for each discretization grid than (POC), but the number of local minima is
asymptotically identical for both approaches.

Keywords Mixed-integer optimal control · Switched systems · Enhanced time
transformation · Switching time optimization · Optimization software

Mathematics Subject Classification 49M37 · 90C20 · 90C30 · 90C53 · 90C55 · 97N80

B Manuel Tetschke
manuel.tetschke@ovgu.de

Sebastian Sager
sager@ovgu.de

Clemens Zeile
clemens.zeile@ovgu.de

1 Faculty of Mathematics, Otto-von-Guericke-Universität, Magdeburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-024-00263-x&domain=pdf
https://doi.org/10.5281/zenodo.12520490


S. Sager et al.

1 Introduction

In this study, we consider mixed-integer optimal control problems. The integer aspect
results from time-dependent control functions that are restricted to take values in
a finite set. Prominent examples include gear switches, compressors and valves, the
applicability of laws and regulations, combinations of administered drugs, performing
measurements yes or no, or general on/off controls. See [49] for an online bench-
mark library. There are various mathematically equivalent ways to formulate such
control problems. The choice of formulation usually has a large impact on solution
algorithms, though. A convenient formulation is based on switched optimal control
problems, where at any given point t of time exactly one of nω different right-hand
sides f j(t)(x(t)) is active. In practice, often a common drift term f0(x(t)) is present,
such that the ordinary differential equation reads as

ẋ(t) = f0(x(t)) + f j(t)(x(t))

where j(t) is the active mode at time t ∈ T := [0, tN]. Note, that the interval starts
at 0 without loss of generality. For example, f0 could comprise the dynamics that are
independent of a gear choice, such as the effect of steering or air friction, whereas the
gear-specific dynamics f j(t) could be calculated using different transmission ratios
and degrees of efficiency, e.g., [27].

In this study, we assume Lipschitz-continuity of the right-hand side functions f0
and f j(t) for guaranteeing the existence of a (unique) ODE solution by the Picard-
Lindelöf theorem [44]. Throughout the paper, we use the notation [N ] = {1, 2, . . . , N }
and [N ]0 = {0, 1, 2, . . . , N }. Also, we use the exclusive-or operator ⊕

for choosing
exactly one active mode for all time points and on the same time all other modes are
inactive. We define the problem class of interest as follows.

Definition 1 (Mixed-integer optimal control problem) We refer to

inf
x(·), j(·) φ(x(tN))

subject to⊕

j(t)∈[nω]
ẋ(t) = f0(x(t)) + f j(t)(x(t)) for t ∈ T a.e.,

x(0) = x0,

(MIOCP)

as a mixed-integer optimal control problem (MIOCP) on a fixed time horizon T =
[0, tN] with differential states x : T �→ R

nx , fixed initial values x0 ∈ R
nx , and a

continuous objective function φ : R
nx �→ R of Mayer type. The degrees of freedom

are switching decisions, i.e., the selection of the active mode j almost everywhere on
T .

In the following, we omit the time dependency of f j(t) and write f j instead for a
more compact notation. There are a variety of different approaches to solve (MIOCP)
to local or global optimality. They comprise indirect methods based on the global max-
imum principle, dynamic programming, moment relaxations, or direct first-discretize
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then-optimize methods which result in mixed integer nonlinear programs. A survey
is beyond the scope of this paper and we refer to [6, 16, 17, 23, 27, 50, 52, 58] for
further references.

Note that the modeling of practical problems may result in more general formu-
lations than Problem (MIOCP), e.g., using additional continuous control functions
u : [0, tN] �→ R

nu , additional path constraints 0 ≤ c(x(t), u(t)) (mode-specific or
for all modes), a Lagrange term

∫ tN
0 L(x(τ ))dτ in the objective, non-fixed terminal

time tN, more general boundary conditions, path-control, combinatorial, dwell time,
or vanishing constraints, multi-stage problems with changes in dynamics or even in
the dimension, differential algebraic equations, or semi-discretized partial differential
equations. In the interest of a clear presentation of the convergence properties, which
are likely to carry over to the more general cases, and because above formulation
covers our benchmark problems, we work in the following with Problem (MIOCP).

In this paper, we are going to numerically study convergence properties of two
established approaches to (approximately) solve (MIOCP): switching time optimiza-
tion (STO) [58] and partial outer convexification (POC) [50]. To our knowledge this is
the first comparison of this type. In the interest of understanding the main differences
between the two approaches, we use comparable implementations within a new open-
source software package, similar notation and discretization grids, and two benchmark
problems from the literature. The paper is organized as follows.

In Sect. 2, we survey a semi-discretization of the state equations of (MIOCP),
namely (STO), and the relaxation of another semi-discritization of the state equations
(POC). Thereby, in both cases the solution space is reduced to a finite-dimensional sub-
space of the feasible set. In the following, wewill use the term ’approximation’ instead
of (relaxation) of a semi-discretization, whenever we compare the two approaches.
Both are formulated in a way such that the small, but fundamental difference between
them is clearly visible. We also discuss their relation to problem (MIOCP). We derive
approximation properties of the two approaches in Sect. 3. In Sect. 4, two test prob-
lems are presented. In Sect. 5, we describe the novel open-source software package
ampl_mintoc. It is placed on top of AMPL [13] and allows to formulate finite-
dimensional approximations of (mixed-integer) optimal control problems in a compact
way. In Sect. 6, we present simulation- and optimization-based numerical results for
comparing the two approaches. In Sect. 7 we discuss these results, focusing on non-
convexity, algorithmic properties and number of local minima. A summary concludes
the paper.

2 Switching time optimization and partial outer convexification

In this paper, we focus on two approximations (MIOCP) that have received increasing
attention in the last years. In the following, let

GN := {t0, t1, t2, . . . , tN }
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be an ordered set of equidistant time points ti = i�t for all i ∈ [N ]0 and grid size
�t > 0. We remark that the number of discretization intervals N is assumed to be
fixed in the remainder.

2.1 Switching time optimization

The first one is referred to as enhanced time transformation or as switching time
optimization in the literature. The underlying idea is fundamental in many sci-
ences, particularly in physics, e.g., [7]. A dynamic process with differential states
x : [0, tN] �→ R

nx specified via f : Rnx �→ R
nx and

ẋ(t) = f (x(t)) t ∈ [0, tN] (1)

can be written equivalently as

ẋ(τ ) = tN f (x(τ )) τ ∈ [0, 1], (2)

exploiting that t = tNτ implies dt = tNdτ (in a slightly abused Leibniz’s notation).
The advantage is obvious if the terminal time tN is unknown. Formulation (2) allows
the treatment of tN as an optimization variable, while the integration horizon is fixed.
By gluing several horizons with fixed horizon lengths together, this idea can also be
applied to several interior time points, e.g.,

ẋ(t) =
{
f1(x(t)) if t ∈ [0, t1),
f2(x(t)) if t ∈ [t1, t2], (3)

can be written equivalently as

ẋ(τ ) =
{

t1 f1(x(τ )) if τ ∈ [0, 1),
(t2 − t1) f2(x(τ )) if τ ∈ [1, 2]. (4)

Applying this idea to transform problem (MIOCP) needs only three more ingredi-
ents. First, we define two time grids in Definition 2. The second step is to assume an
order inwhich the switches occur. The corresponding switching sequence is introduced
in Definition 3. Finally, in Definition 4 we make sure that the variables indicating the
duration of the active modes, denoted by wi j , are normalized to get an equivalence to
the outer grid time points of the original time horizon.

Definition 2 (Equidistant grids) Let numbers N ∈ N and nσ ∈ N be given and let �t
be the equidistant outer grid size. We write

Ti := [ti−1, ti ), i ∈ [N ], ti ∈ GN ,

for a coarse grid partition T = ∪i∈[N ]Ti . Furthermore, let

Ti j := [ti−1, j−1, ti−1, j ), i ∈ [N ], j ∈ [nσ ]
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for a fine grid partition Ti = ∪ j∈[nσ ]Ti j with equidistant inner grid points ti j :=
ti + j �t

nσ
and inner grid size �int := �t

nσ
. We include tN in the last outer and inner

intervals TN and TN ,nσ , respectively.

We stress that despite fixed inner and outer grids, we still optimize the duration of
mode activations based on the control variables defined in Definition 4. For this, we
specify the sequence of active control modes.

Definition 3 (Switching sequence) Let nσ ∈ N be the maximum number of control
mode activations per outer grid interval.We define a switching sequence as a surjective
mapping σ : [nσ ] �→ [nω] on Ti and, repeated N times, also on T .

The above definition implies that at most nσ − 1 switches are possible per outer
interval. The choice nσ = nω allows to activate each control mode once on every
interval, in a specific order. With larger choices of nσ arbitrary switching sequences
can be generated by shrinking the duration of specific mode activations to zero.

Definition 4 (Feasible control set) For a given number of intervals N and maximum
number of control mode activations nσ , we define the feasible set of controlsW as:

W :=
⎧
⎨

⎩
w ∈ R

N×nσ : wi j ∈ [0, 1] ∀ i ∈ [N ], j ∈ [nσ ],
nσ∑

j=1

wi j = 1 ∀ i ∈ [N ]
⎫
⎬

⎭
.

The variables wi j indicate how the time points of the inner grid move and can thus
be interpreted as the fraction of the duration wi j�t of the activated mode σ( j) on the
interval Ti . The condition

∑nσ

j=1 wi j = 1, which is often referred to as one-hot condi-
tion, ensures that the outer grid points ti are not moved by the time-transformation.

We consider the differential equation with a transformed time τ on time intervals of
unit length as in (4), with time scaling depending on wi j for all i ∈ [N ] and j ∈ [nσ ]:

ẋ(τ )=wi j�t ( f0(x(τ ))+ fσ( j)(x(τ ))), τ ∈ [(i − 1)nσ + j − 1, (i − 1)nσ + j].
(5)

For comparability of the problem formulations,we scale the total length of the intervals
for τ to the length of T . This is equivalent to scaling the individual intervals for τ

of length 1 to the length of Ti j via multiplication with 1
�int

. Exploiting nσ = �t
�int

according to Definition 2 and using t again instead of τ to denote the time variable,
we introduce the problem (P-STO):

Definition 5 (Switching time optimization) With the definitions from above we refer
to

min
x,w∈W

φ(x(tN))

subject to
ẋ(t) = wi j nσ ( f0(x(t)) + fσ( j)(x(t))), t ∈ Ti j ,
x(0) = x0,

(P-STO)
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for i ∈ [N ] and j ∈ [nσ ] as the switching time optimization (P-STO) (or the enhanced
time or time-scaling) transformation of (MIOCP).

Please note that the way in which we define the switching time optimization trans-
formation differs from the literature, e.g., [58], although we use the same algorithmic
approach. The definition above enables us to highlight the major difference to the
partial outer convexification formulation introduced below. The switching time opti-
mization is well-posed: assume a solution x̃, w̃ of (P-STO). Noting that nσ = �t

�int
indicates the time transformation factor from the equidistant inner to the outer grid,
we obtain a feasible trajectory x of (MIOCP) via

x(t(τ )) = x̃(τ ) for τ ∈ Ti j and

t(τ ) = ti−1 +
j−1∑

k=1

wik�t + (τ − ti−1, j−1)wi j nσ ∈ T ∗
i j

for time transformed intervals

T ∗
i j :=

⎡

⎣ti−1 +
j−1∑

k=1

wik�t, ti−1 +
j∑

k=1

wik�t

⎤

⎦

that also partitionT . Note that x̃ maybe constant on certain timeperiods (i.e.,whenever
wi j = 0), whereas the corresponding intervals T ∗

i j vanish. This is illustrated in the
following short example.

Example 6 (Illustration of the time transformation) Consider an outer grid with N = 3
intervals. Let nσ = 3 and the switching sequence σ be the identity. Then the inner
grid consists in total of 9 intervals. Consider the values

w1 := (0, 1, 0) , w2 :=
(
3

5
, 0,

2

5

)

, w3 :=
(
1

5
,
4

5
, 0

)

∈ [0, 1]nσ .

Figure 1 illustrates the corresponding switches and the transformation in time.

For optimal control, time transformations have been used intensively. In indirect
approaches the unknown time points of structural changes have to be determined, e.g.,
when a bang-bang arc becomes a singular arc or a path constraint becomes active.
Also, the potential to avoid the discrete decision of which mode to activate at time
t in problem (MIOCP) by continuous decisions when to switch from one mode f j1
to another mode f j2 was already discovered in the 1960s. Dubovitskii and Milyutin
used a time transformation to transform (MIOCP) into an equivalent optimal control
problem without discrete control variables, [9, 10], [18, p. 95], [24, p. 148]. Necessary
optimality conditions were obtained by applying suitable local maximum principles to
the transformed problem. Gerdts used the time transformation to prove a global max-
imum principle that can be applied to mixed-integer optimal control problems [16,
17]. An STO formulation was also used for discretized dynamical systems [12], the

123



A numerical study of transformed MIOCPs

Fig. 1 Illustration of the time transformation with the control values wi j for Example 6, adapted from
[17]. Top: The control values indicate the percentage of control mode activation for the corresponding
outer interval and for the three control modes. Center plot: Corresponding progress of the transformed
time variable t ∈ T ∗

i j as a function of τ ∈ Ti j . Bottom: Resulting activated control modes in (MIOCP)

over time that correspond to the values wi j . The mode switches occur at t̃1 = t1 + w21(t2 − t1) and
t̃2 = t2 + w31(t3 − t2)

numerical solution of free end-time [28], bi-objective [38, 39], multiple model stages
[63], constrained MIOCPs [47, 60], or real-time problems [36, 37], and was studied
concerning specific numerical aspects [33–35, 56]. The method has been investigated
with respect to second-order sufficient conditions [42] and recently been extended to
include vanishing constraints [43] and time delays [64]. An efficient structure exploit-
ing way to calculate functions and derivatives was proposed in [58]. The mapping
σ , which in our setting is assumed to be identical on all intervals Ti for notational
convenience, also has an impact. As stated in [17], the order is irrelevant for (P-STO)
to be an equivalent reformulation of (MIOCP) if we assume that (MIOCP) admits a
unique optimal solution with finitely many switches and N is large enough and hence
nomore than one switching point of the optimal bang-bang solution occurs per interval
Ti . However, σ may have an impact on computational performance as discussed in
[46]. An efficient way to determine optimal sequences has been proposed in [1, 11].

2.2 Partial outer convexification

An alternative approximation of (MIOCP) is the following, using the same outer
time grid Ti as in (P-STO) for control discretization and relaxation of the integrality
constraints.
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Definition 7 (Partial outer convexification) With the definitions from above (using
nσ = nω in Definition 4 of W) we refer to

min
x,w∈W

φ(x(tN))

subject to
ẋ(t) = ∑nω

j=1 wi j ( f0(x(t)) + f j (x(t))), t ∈ Ti for i ∈ [N ]
x(0) = x0,

(P-POC)

as the partial outer convexification (P-POC) approximation of (MIOCP).

Note that partial refers to the fact that the dynamics are only convexified with respect
to the switching decision, but the f j may still be nonconvex. Outer is in contrast to an
inner convexification as suggested, e.g., in [15], and compared in [25]. The formulation
itself is well-known in many areas. In integer programming it is usually referred to
as a one-row or one-hot relaxation. The usage in mixed-integer optimal control and
the name itself were initiated by [47, 50]. In the control engineering community,
the term embedding transformation was introduced [2] for the same reformulation
idea and led to various subsequent publications [45, 61, 62]. As discussed in the
next subsection, (P-POC) only provides relaxed solutions for a discretized version of
(MIOCP). Methods for the generation of integer solutions have been proposed in [47,
48, 50, 54]. Extensions comprise the explicit treatment of combinatorial [26, 40, 53,
65] and vanishing constraints [27, 29], of differential-algebraic equations [17], and of
partial differential equations [19–22, 31, 41].

To highlight the similarities and differences to formulation (P-STO), we have
defined (P-POC) in a first-discretize, then-optimize way with finitely many degrees
of freedom. Here, the controls w can be interpreted as piecewise constant functions
ω j (t) = wi j for t ∈ Ti almost everywhere.

We recapitulate two methods that round the optimal solution of (P-POC). We
use these methods in the numerical experiments for a fair comparison with the STO
approach, which directly constructs binary-feasible solutions for (MIOCP).

Definition 8 (Sum-up rounding) Let the optimal w∗ for (P-POC) be given. Sum-up
rounding computes for i ∈ [N ] the binary control values bi, j :

bi, j :=

⎧
⎪⎨

⎪⎩

1, if j = arg max
l=1,...,nω

{
i∑

k=1
w∗
k,l −

i−1∑

k=1
bk,l

}

,

0, else,
for j ∈ [nω].

We break ties arbitrarily in the above argmax.

One option to limit the number of switches in the binary solution is to impose total
variation (TV) constraints as part of a mixed-integer linear program.

Definition 9 ((CIA) with TV constraints) Let the optimal w∗ for (P-POC) and the
number of maximal allowed number of switches ns be given. The combinatorial
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integral approximation (CIA) problem with TV constraints is defined by

min
b∈W, bi, j∈{0,1}, θ≥0

θ

s. t. θ ≥ ± ∑

l∈[i]
(w∗

l, j − bl, j ), for i ∈ [N ], j ∈ [nω].
ns ≥ 1

2

∑

i∈[N−1]
∑

j∈[nω]
|bi+1, j − bi, j |.

Adding the TV constraints to the problem can be seen as regularization technique,
which might prevent us from reaching the infimum of (MIOCP) in the constructed
solution since we assume ns to be given and fixed.

2.3 Relations to the original problem formulation

Both problem formulations (P-STO) and (P-POC) are approximations of (MIOCP).
Both are discretizing (MIOCP), which is usually modeled with L∞(T , {0, 1}nω)

control functions, with finitely many decision variables w. In addition to this
finite-dimensional approximationwhich depends on N , the formulation (P-POC) addi-
tionally relaxes the decision variables, as W is defined with wi j ∈ [0, 1] instead of
wi j ∈ {0, 1}.

The optimal solution of (P-STO) is a feasible solution ω(·) of the original problem
(MIOCP) (compare ω in the proof of Corollary 12). Depending on the number and
location of switches in the optimal solution of (MIOCP), the numbers N and nσ need
to be chosen sufficiently large to ensure that the optimal switching points of (MIOCP)
can be realized within (P-STO). In the case that the optimal solution shows chattering
behavior (i.e., an infinite number of switches as in the famous example of Fuller
[14]), the optimal objective function value can be approximated arbitrarily well with
increasing N or nσ .

There is a bijection between feasible solutions of formulations (P-POC) and
(MIOCP) if one replaces wi j ∈ [0, 1] by ω j (t) ∈ {0, 1} and one uses the same
discretization on (MIOCP). Formulated for continuous variables wi j , (P-POC) only
provides a relaxed solution for the control discretization grid GN , however with strong
theoretical properties and tailored algorithms likeCombinatorial Integral Approxima-
tion, SumUpRounding (SUR), orNext ForcedRounding to derive binary solutionswith
error bounds, see [47, 48, 50, 54]. The need to derive ω j (t) ∈ {0, 1} from wi j ∈ [0, 1]
seems like a big disadvantage at first sight. However, the aforementioned rounding
strategies have excellent asymptotic behavior with respect to the integrality gap and
a runtime which is often negligible compared to the solution of (P-POC). The need
to transform the solution back even offers advantages, e.g., to take a penalization of
switches or dwell time constraints into account [3, 4, 65].
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Fig. 2 Shown is the impact of the controls on the mode selection in (MIOCP) for STO and POC controls
wSTO
i1 = wPOC

i1 = 0.1(i − 1) for i ∈ [11]. The values of wSTO
i1 are reflected by the duration of the mode

selections (width), whereas the values of wPOC
i1 are reflected by the relative share of mode 1 on the current

time interval (height). The other nσ − 1 modes would fill the diagram vertically P-POC or horizontally
P-STO, if they were also plotted

2.4 A first comparison

Comparing (P-STO) and (P-POC), one observes a small, but important difference in
the dynamics. For i ∈ [N ] and j ∈ [nω] we have within (P-STO)

ẋ(t) = wi j nσ ( f0(x(t)) + fσ( j)(x(t))), t ∈ Ti j , x(0) = x0 (STO-f)

while due to the one-hot condition in W we have within (P-POC)

ẋ(t) = f0(x(t)) +
nω∑

j=1

wi j f j (x(t)), t ∈ Ti , x(0) = x0. (POC-f)

The way the control variables w enter the right-hand sides look very similar in
(STO-f) and (POC-f). Figure 2 gives an example to visualize how they differ in their
impact on the original dynamic system.

Problems (P-STO) and (P-POC) optimize the same objective function over the
finite-dimensional set W . For both, the accuracy of the approximation of (MIOCP)
depends on the grid GN .

3 Approximation properties

Behind this asymptotic analysis an approximation theorem from [50] will be useful. It
also can be used for the study of how far optimal objective function values of (P-STO)
and (P-POC) may differ from one another depending on N . We repeat it here for
convenience and use it in the discussion in Sect. 7.

Assumption 10 (Properties of the switched system) Let measurable functions α,ω :
[0, tN] → [0, 1]nω be given and let x(·) and y(·) be solutions of the initial value
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problems on T = [0, tN]

ẋ(t) = f0(x(t)) +
nω∑

j=1

α j (t) f j (x(t)), x(0) = x0, (6)

ẏ(t) = f0(y(t)) +
nω∑

j=1

ω j (t) f j (y(t)), y(0) = x0. (7)

Let all f j : Rnx �→ R
nx be differentiable for j ∈ [nω]0 and their sum be essentially

bounded by M ∈ R
+ on [0, tN], and positive numbers C, L ∈ R

+ exist such that for
t ∈ [0, tN] almost everywhere and a vector norm ‖·‖ we have

∥
∥
∥
∥
d

dt
( f0, f1, f2, . . . , fnω)(x(t))

∥
∥
∥
∥ ≤ C,

∥
∥
(
f1(y(t)) − f1(x(t)), . . . , fnω(y(t)) − fnω(x(t))

)∥
∥ ≤ L ‖y(t) − x(t)‖ .

Theorem 11 If Assumption 10 holds and if there exists ε ∈ R
+ such that for all

t ∈ [0, tN]
∥
∥
∥
∥

∫ t

0
α(τ) − ω(τ) dτ

∥
∥
∥
∥ ≤ ε, (8)

then, also for all t ∈ [0, tN], we have

‖y(t) − x(t)‖ ≤ (M + Ct)eLt ε.

To understand the asymptotic behavior of the optimal objective function values of
(P-STO) and (P-POC), the following corollaries will be helpful. Theorem 11 allows
to a priori bound the difference of the optimal objective function values of (P-STO)
and (P-POC) by a constant multiple (depending on properties of f j ) of the grid size
�t .

Corollary 12 (Difference in objective and constraints 1) Let nσ ∈ N, a map σ :
[nσ ] �→ [nω], and wSTO ∈ W be given and differential states xSTO : [0, tN] �→ R

nx

be the solution of (STO-f) with w = wSTO.
Under Assumption 10, there exist a constant C1 and a vector wPOC ∈ W such that

for the solution xPOC : [0, tN] �→ R
nx of (POC-f) with w = wPOC we have

∣
∣φ(xSTO(tN)) − φ(xPOC(tN))

∣
∣ ≤ C1�t .

Proof As already observed above, we have an xSTO = x equivalence

ẋSTO(τ ) = wSTO
i j nσ ( f0(xSTO(τ )) + fσ( j)(xSTO(τ ))), τ ∈ Ti j

⇔ ẋ(t) = f0(x(t)) + fσ( j)(x(t)), t ∈ T ∗
i j
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between (P-STO) and (MIOCP) solutions for transformed time intervals

T ∗
i j :=

⎡

⎣ti−1 +
j−1∑

k=1

wSTO
ik �t, ti−1 +

j∑

k=1

wSTO
ik �t

⎤

⎦ .

The functions

ωk(t) :=
{
1 if t ∈ T ∗

i j for j ∈ [nσ ] and k = σ( j) ∈ [nω]
0 else

are obviously well-defined and have the one-hot property, such that

ẋ(t) = f0(x(t)) + ωσ( j)(t) fσ( j)(x(t)), t ∈ T ∗
i j

= f0(x(t)) + ∑nω

k=1 ωk(t) fk(x(t)), t ∈ T ∗
i j .

Defining
α j (t) := wPOC

i j for t ∈ Ti
we have twomeasurable functions α,ω : [0, tN] �→ [0, 1]nω and differential equations
of the form (6–7) such that Assumption 10 is satisfied.

To apply Theorem 11, we choose wPOC in a particular way. With

wPOC
i j :=

∫ ti

ti−1

ω j (τ ) dτ

it follows
∥
∥
∥
∫ ti
0 α(τ) − ω(τ) dτ

∥
∥
∥ = 0 for all i ∈ [N ]. Themaximumover all t ∈ [0, tN]

can hence not exceed the integral of length �t over extreme cases such as α ≡ 1 and
ω ≡ 0, thus

max
t∈T

∥
∥
∥
∥

∫ t

0
α(τ) − ω(τ) dτ

∥
∥
∥
∥ ≤ ε := �t .

Theorem 11 now gives a bound ‖xPOC(t) − xSTO(t)‖ ≤ Ĉ�t for all t ∈ T which
carries over to the objective function via assumed continuity. This concludes the proof.

��
Given the symmetry of Theorem 11, the reverse is also true.

Corollary 13 (Difference in objective and constraints 2) Let wPOC ∈ W , xPOC :
[0, tN] �→ R

nx be the solution of (POC-f) with w = wPOC.
Under Assumption 10, there exist a constant C1, a number nσ , a switching order

σ : [nσ ] �→ [nω], and a vector wSTO ∈ W such that for the solution xSTO : [0, tN] �→
R
nx of (STO-f) with w = wSTO we have

∣
∣φ(xSTO(tN)) − φ(xPOC(tN))

∣
∣ ≤ C1�t .
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Proof The claim can be proved analogously to the proof of Corollary 12. Here nσ , σ ,
and wSTO can be constructed with the well-known bound that is linear in �t using
SOS1 Sum Up Rounding [47, 50]. ��

Both corollaries together show that the optimal objective function values of (P-STO)
and (P-POC) are close with respect to �t . Therefore, one can expect that for larger N
the objective function landscapes look very similar for the approximations (P-STO)
and (P-POC).

Moreover, from Theorem 11 in conjunction with Corollaries 12 and 13, it can be
deduced that the (local) optima of (P-STO) and (P-POC) are ε-optima with respect to
the modified problem (P-POC) in which wi j is replaced by the non-discretized w j (t).
Since this modified (P-POC) with non-discretized controls w j (t) is a true relaxation
of (MIOCP), this implies the minima of (P-STO) and the rounded minima of (P-POC)
are also ε-optima of (MIOCP).

4 Two test problems

We are going to compare numerical properties of (P-STO) and (P-POC) in Sect. 6,
using the newsoftware packageampl_mintoc [55] introduced inSect. 5. The numer-
ical results are obtained for two test mixed-integer optimal control problems that we
shortly present in this section. In this study, we limit ourselves to two benchmark
problems, since a more detailed analysis of other problems is beyond the scope of this
paper. We have specifically chosen two structurally different problems. The optimal
solution of the first problem consists of singular and bang-bang arcs, which renders its
solution to be challenging, while the other involves only bang-bang arcs. Moreover,
the problems have different convexity properties. One problem is convex over a large
part of the domain and, thus, in this sense relatively easy to solve, while the other prob-
lem is very nonconvex and raises numerically more difficulties. The Lotka-Volterra
fishing benchmark problem was first formulated in [51]. The numerically constructed
optimal relaxed solution has bang-bang and singular arcs, which can be derived using
Pontryagin’s maximum principle [51]. The (P-POC) formulation is convex on large
parts of the domain and for many choices of the discretization grid, initial values,
and bounds, as we will show in the numerical results in Sect. 6 in Fig. 7. The second
problem, a calcium signaling pathway inhibition, was formulated in [32]. The numer-
ically constructed optimal relaxed solution consists of three bang-bang arcs. Both the
(P-POC) and the (P-STO) formulation are nonconvex. Both problems have oscillatory
dynamics and only use one binary control function. Further references and details can
be found in [49]. Here, we only state and use the mathematical formulations of these
problems.
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Definition 14 (Lotka problem) We refer to

min
x,ω

x3(tN)

s.t. ẋ1(t) = x1(t) − x1(t)x2(t) − c1x1(t) ω(t)
ẋ2(t) = −x2(t) + x1(t)x2(t) − c2x2(t) ω(t)
ẋ3(t) = ∑2

i=1(xi (t) − x̃i )2

x(t0) = (0.5, 0.7, 0.0), x̃ = (1, 1)
ω(t) ∈ {0, 1}

(Lotka)

as the Lotka-Volterra fishing control problem with c1 = 0.4, c2 = 0.2 and tN = 12
on T = [0, 12].
Definition 15 (Calcium problem) We refer to

min
x,ω

x5(tN) (Calcium)

s.t. ẋ1(t) = k1 + k2x1(t) − k3x1(t)x2(t)
x1(t)+K4

− k5x1(t)x3(t)
x1(t)+K6

ẋ2(t) = k7x1(t) − k8x2(t)
x2(t)+K9

ẋ3(t) = k10x2(t)x3(t)x4(t)
x4(t)+K11

+ k12x2(t) + k13x1(t) − k16x3(t)
x3(t)+K17

+ x4(t)
10

−ω
k14x3(t)

ūmax x3(t)+K15
− (1 − ω(t)) k14x3(t)

ūmin x3(t)+K15

ẋ4(t) = − k10x2(t)x3(t)x4(t)
x4(t)+K11

+ k16x3(t)
x3(t)+K17

− x4(t)
10

ẋ5(t) = ∑4
i=1

(
xi (t)−x̃i

x̃i

)2 + 100 ω(t)

x(t0) = (0.03966, 1.09799, 0.00142, 1.65431, 0)
ω(t) ∈ {0, 1}

as the Calcium control problem with tN = 22 on T = [0, tN] with data ūmin = 1,
ūmax = 1.3, k1 = 0.09, k2 = 2.30066, k3 = 0.64, K4 = 0.19, k5 = 4.88, K6 =
1.18, k7 = 2.08, k8 = 32.24, K9 = 29.09, k10 = 5.0, K11 = 2.67, k12 = 0.7, k13 =
13.58, k14 = 153.0, K15 = 0.16, k16 = 4.85, K17 = 0.05, and reference unstable
steady state x̃1 = 6.78677, x̃2 = 22.65836, x̃3 = 0.38431, x̃4 = 0.28977.

Both control problems can be cast (easily) into the formulation of (MIOCP), where
the nω = 2 different modes correspond to valuesω(t) = 0 andω(t) = 1, respectively.
They use a single binary control, as the second control was eliminated via the one-hot
constraint.

5 The software package ampl_mintoc

We have designed the AMPL [13] code ampl_mintoc for the formulation of Mixed
INTeger Optimal Control problems, in particular for problems of type (MIOCP). The
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package ampl_mintoc is available as open-source on GitHub.1 We explain the
concept and idea of the software in Sect. 5.1. In Sect. 5.2, we first describe the most
relevant problem-independent files and explain the different algorithmic options and
discretizations. We then dedicate the remaining section to the implementation of the
approximations (P-STO) and (P-POC).We also provide an explanation of how optimal
control problems can be formulated and solved with ampl_mintoc in Appendix 9.1.

5.1 Conceptual description

ampl_mintoc consists of a set of codefiles that allow the user to efficiently formulate
control problems. These are solved by off-the-shelf NLP or MINLP solvers interfaced
by AMPL. In particular, problem-independent code exists to apply (P-STO) as well as
(P-POC) formulations to problem-dependent functions.

The application of ampl_mintoc is illustrated in Fig. 3. The goal of this soft-
ware is to be able to formulate and solve optimal control problems easily. For
this purpose, there is a set of problem-independent code files that define generic
parameters, variables, problems, and approximations that can be used by the user
depending on the application. For formulation of an MIOCP, the user needs to spec-
ify files problem.mod and problem.dat to define the objective function and
constraints as well as parameter values, respectively. In the file problem.run
algorithmic choices are set, such as the choice of the solver, the integrator, and the prob-
lem approximation. To this end, problem-independent files, e.g. mintocPre.mod,
mintocPost.mod, and solve.run, are included in this file to reuse generic struc-
tures.

After applying the numerical solver interfaced via AMPL, the constructed optimal
solution can be visualizedwith plot routines from the software package and gnuplot.
The obtained solution can also be used for further optimization steps as specified
in problem.run. For instance, after solving (P-POC), one could be interested in
computing a rounded solution via SUR or Combinatorial Integral Approximation [53].

The advantage of using AMPL is that the syntax remains close to the mathemati-
cal formulation. Due to the chosen direct approach for the solution of the OCPs, the
implementation is done directly in a discretized setting. As a disadvantage, the usage
of AMPL implies that functions cannot be implemented in a straightforward manner,
complicating the implementation of adaptive numerical integrators. However, the dis-
cretized problem formulation can also be beneficial, since the program’s preprocessor
can eliminate variables and constraints from discretized functions before the solution
process.

We note that there are other AMPL packages for optimal control, such as TACO
[30] that interfaces a multiple shooting code for optimal control. The novel feature of
ampl_mintoc is the possibility for rapid prototyping of transformation and decom-
position algorithms and to facilitate the formulation and solution ofMIOCPs, by using
the flexibility of solver choice provided with AMPL.

1 ampl_mintoc is available under https://github.com/czeile/ampl_mintoc.
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Fig. 3 Flowchart overview of the application of ampl_mintoc. The user can formulate an MIOCP in
this code by creating problem-specific files, as listed in the lower box. ampl_mintoc provides a set of
problem-independent files that implement generic routines and which simplify the problem formulation,
as listed in the upper box. The modeling language is AMPL, which facilitates to interface a wide range of
numerical solvers. The constructed optimal solution can be visualized or used for further optimization steps
by using ampl_mintoc code routines. The dashed lines mark the software related area without input and
output

5.2 Details on problem-independent files

In order to save implementation effort, problem-independent variables and generic
problemstructures are outsourced to dedicatedAMPLfiles. ThefilemintocPre.mod
contains the declaration of general parameters such as the time discretization and the
number of differential states and controls. It also defines the variables for the ODE
model function, the control values, differential states, and discretized constraint func-
tions. In mintocPost.mod, we define different objectives, constraints, numerical
integration schemes for the ODEs, and the formulation of NLPs and Combinatorial
Integral Approximation [66] problems.

123



A numerical study of transformed MIOCPs

The files mintocPre.mod and mintocPost.mod can be considered as the
core of ampl_mintoc. Both files need to be included in the problem-specific run
file and reduce the effort to formulate the optimal control problems significantly.

Currently available numerical integrator schemes are the Radau collocation and
explicit and implicit Euler methods, which can be set via the variable integrator.
Various problem variants can be solved via setting the variable mode. For instance,
in the Simulate mode, all control variables are fixed and in the Relaxed
mode the optimization problem is solved with relaxed integer variables. The file
solve.run contains the commands to interface and run the NLP solver based on
the chosen algorithmic options. Thus, one needs to use include ../solve.run
in the problem-specific run file to let the problem at hand be solved. The files
solveMILP.run and solveRound.run work similarly as solve.run, but
interface MILP solvers for specific combinatorial integral approximation problems
[53] and contain specific rounding algorithms, respectively, as part of the Combinato-
rial Integral Approximation decomposition [66]. The declaration of default settings for
solvers, problem classes, and integrators are outsourced in the file set.run, while
checkConsistency.run verifies if valid options/modes have been chosen for
solver, integrator, and discretization.

Standardized routines are implemented in the ampl_mintoc code to post-
process, store, and restore problem solutions. These can be retrieved via the file
problem.run and theAMPL command include. For instance, by calling the script
printOutput.run, detailed solution results can be output, such as the objective
function value, constraint violation metrics, and the run time. If the user includes
the script plot.run, the determined solution is stored in a file problem.plot,
which in turn can be used by gnuplot to plot result data such as the state or con-
trol trajectories. Furthermore, one can use the scripts storeTrajectory.run and
readTrajectory.run to save or read problem solutions in order to solve a prob-
lem again later in a modified form. The problem-independent files do not need to be
modified by users, but can be extended by algorithm developers.

We illustrate the implementation of the problem-independent formulations of the
ODE constraints for STO and POC in the Listing 1. The presented implementation is
done in mintocPost.mod and is based on a discretization with an explicit Euler
scheme. We note that the (discretized) ODE equations in ampl_mintoc closely
resemble the correspondingmathematicalODEequations from (P-STO) and (P-POC).
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Listing 1 AMPL model file with problem-independent ODE constraint formulations for (P-STO) and
(P-POC) and explicit Euler integration scheme

### Switching Time Optimization
ode_STO {k in X, o in 1..no, i in IU, ii in 0..nsto -1}:

x[k,i*ntperu +(o-1)*nsto+ii+1] = (
if (integrator =="explicitEuler") then

x[k,i*ntperu +(o-1)*nsto+ii] + wi[o,i] * dt*no *
(f[k,0,i*ntperu +(o-1)*nsto+ii] + f[k,o,i*ntperu +(o-1)*nsto+ii])

);

### Partial Outer Convexification
ode_POC {k in X, i in 0..nt -1}:

x[k,i+1] = (
if (integrator =="explicitEuler") then

x[k,i] + dt * (f[k,0,i] + sum {o in Omega} w[o,i] * f[k,o,i])
);

6 Numerical experiments

We are going to investigate the two test problems from Sect. 4 numerically. Special
focus is given on nonconvexity of the objective functions over W . We present first
simulation-based analyses. To be able to plot results, we consider low dimensions,
projections, and the concept of mid-point convexity, respectively. We complement the
findingswith optimization-based analyses, comparing the number of optimal solutions
that are found for random initial values.An interesting approach is to initialize (P-STO)
with the binary solution determined from (P-POC), which we test as part of this
investigation. We also use different algorithms to compare integer solutions, that can
be derived using the solution of (P-POC). In the following, we are only inspecting
local optimality up to the precision of the numerical method.

6.1 Discretization and numerical integration

All numerical results were produced using amachinewith 160 Intel CPU cores (2GHz
each) and 1 TB of RAM running Ubuntu 18.04.5 LTS. We implemented the Problems
(P-STO) and (P-POC) in ampl_mintoc and used IPOPT 3.12.13 to solve the
resulting NLPs. In the following, we refer to the determined optima of IPOPT as local
minima, neglecting the fact that in theory the determined stationary points can also be
saddle points. The underlyingmotivationwas to get as close to objective comparability
as possible, ignoring issues of efficacy. Thus, the absolute computational times are
irrelevant and only a relative comparison between them will play a role. Our main
focus will be the impact of the different dynamics on the objective function values.
To this end, we used the same discretization grids. For both test problems, an explicit
Euler scheme with equidistant step sizes was used. We tested different numbers of
grid points nt for the evaluation of differential states, with control values arbitrarily
fixed to 1, compare Table 1. Then, we chose nt = 48000 since the objective function
values hardly change (less than 0.05%) with finer discretizations.

We also qualitatively compared the simulation results to those of an implicit Euler
scheme and of a Gauß Radau collocation of order 3. These approaches are more

123



A numerical study of transformed MIOCPs

Table 1 Simulated objective
function values for the two test
problems and fixed controls
wSTO
i1 = wPOC

i1 = 1 for all i and
an equidistant explicit Euler
scheme with nt discretization
points

nt (Lotka) (Calcium)

(STO-f) (POC-f) (STO-f) (POC-f)

24000 9.42072 9.41165 1992.72 1991.31

48000 9.41165 9.40712 1991.31 1990.62

96000 9.40712 9.40485 1990.62 1990.27

192 000 9.40485 9.40372 1990.27 1990.10

As expected for w ∈ {0, 1}, one obtains the same results for nSTOt =
2nPOCt . In the following, we used nSTOt = nPOCt = 48000 for (Lotka)
and (Calcium) as a good compromise between computational costs
and acceptable relative numerical errors below 0.05%

efficient in the sense of computational speed, but we experienced also additional
numerical issues such as convergence issues in IPOPT. The results for the explicit
Euler scheme are hence easier to compare and might always serve as an initialization
of the more involved schemes.

Unfortunately, even for this simplistic numerical scheme, a fair comparison with
the same number of integration intervals for STO and POC is not straightforward
because the discretization grid depends on the values inwSTO. IfwSTO

i j ∈ {0, 1} for all
i, j , then for the overall number of state discretization time points nSTOt it holds that
nSTOt = nσnPOCt since nσ − 1 sub-intervals on each discretization interval will not be
used for integration in the STO approach. However, if wSTO

i j ∈ (0, 1) for all i, j , then

nSTOt = nPOCt . As these values wSTO
i j are going to change during the optimization,

there is no perfect choice. In the interest of getting an idea about the numerical effort,
we chose nt identical for (STO-f) and (POC-f). Also in the interest of simplicity, we
focused on nσ = 2 and a switching order σ(1) = 1, σ (2) = 0 on each sub-interval.
As we consider cases with only two possible modes ω(t) ∈ {0, 1}, we can omit the
second index, such that wi = wi1 and 1 − wi = wi2.

6.2 Measuring convexity

Wewould like to evaluate the constructed solutions by STO and POC in terms of (non-
)convexity. One quantitative measure of nonconvexity is the nonconvex ratio [59], a
measure of the nonconvexity of black-box functions. It can be easily applied to our
ampl_mintoc implementation via outer simulation loops. The approach uses the
midpoint convexity as an indicator for convexity. We repeat the definitions here for
convenience.

Definition 16 (Midpoint convexity) The continuous function f : R
n ⊃ M → R is

called midpoint convex on the convex domain M, if and only if

f (x1) + f (x2) ≥ 2 f

(
x1 + x2

2

)

∀x1, x2 ∈ M. (9)
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Fig. 4 Comparison of simulated objective function landscapes for (Lotka) example using two degrees of
freedomw1 andw2. Left: (P-STO), i.e., ẋ = w1( f0+ f1) for t ∈ [0, 6w1], ẋ = (1−w1) f0 for t ∈ [6w1, 6]
and ẋ = w2( f0 + f1) for t ∈ [6, 6 + 6w2], ẋ = (1 − w2) f0 for t ∈ [6 + 6w2, 12]. Right: (P-POC), i.e.,
ẋ = f0 + wi f1 for t ∈ Ti with t0 = 0, t1 = 6, t2 = 12. The (P-STO) formulation has at least 3 local
minima, see Table 2

The following definition already takes the practical calculation of the nonconvex ratio
into account. Details of the development of the method can be found in [59].

Definition 17 (Nonconvex ratio R∗) Let ζ : M
2 → {0, 1} denote a function with

ζ(x1, x2) = 1 if and only if x1 and x2 fulfill (9) and let S denote the number of samples.
For uniformly chosen x1i , x2i , i ∈ [S], the nonconvex ratio R∗ can be computed as

R∗ := 1 − 1

S

S∑

i=1

ζ (x1i , x2i )
(
{x1i , x2i } ∼ U(M2)

)
. (10)

Note, that a value of R∗ = 1 corresponds to a concave function. Please also note that
R∗ is only an approximation of the ratio of the number of points fulfilling the midpoint
convexity property to the number of pairs of points in M. Thus, the parameter S has
to be chosen sufficiently large. Due to the fact that each function evaluation in our
setting comes at the cost of solving a discretized ODE, we restricted the sample size
S to 1000 in this study, still resulting in an overall computation time of approximately
one week.

6.3 Simulation-based analysis

We start with visualizations of the objective function landscapes for two-dimensional
problems. For both problems (Lotka) and (Calcium) we performed simulations with
N = 2 and varied the controls w1, w2 between 0 and 1 with an increment of 0.01.

Figure 4 shows a comparison for (Lotka) and the case N = 2. The switching time
optimization approximation on the left appears to be nonconvex, while the partial outer
convexification approximation on the right is much more convex. This is also reflected
in the nonconvex ratios (see Definition 17). While R∗

ST O = 0.849 is indicating a very
nonconvex objective landscape, R∗

POC = 0.188. Note, that the nonconvexity of the
results is presumably mainly attributed to the very small number of controls (N = 2).
At least, this behaviorwas experienced in further numerical trials for our test problems.
If this generally holds true might be an interesting question for further research.
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Fig. 5 Same setting as Fig. 4, but for problem (Calcium). Both formulations are nonconvex. The objective
function landscapes are dominated by a bifurcation

Fig. 6 Simulated objective function values for fixed wi = β. The x-axis reflects the fixed values wi = β.
We show the values based on the transformed problem (P-STO) for (Lotka) and N ∈ {1, 2, 3, 4, 8, 16}
(left) and for (Calcium) and N ∈ {16, 32, 64, 128} (right). Note that (P-POC) has identical results for all
values of N due to the constant choice of wi . STO-N converges to POC as N increases

Figure 5 shows a comparison for (Calcium) and the case N = 2. Both approxima-
tions result in nonconvex objective function landscapes, which is also reflected in the
high nonconvex ratios R∗

ST O = 0.472 and R∗
POC = 0.707.

To get an impression of the nonconvexity in higher dimensions we performed
another simulation. Here we used a one-dimensional parameterization

wi = β, i ∈ [N ],

with β running from 0 to 1 in steps of 0.01. The resulting control for (P-POC) is
simply a constant function with the value β and hence independent of N . However,
in the case of (P-STO), each value of N results in different dynamics (cf. Fig. 2).
Figure 6 shows a comparison of the resulting one-dimensional slices through the N -
dimensional objective function landscapes for (Lotka) and for (Calcium).

Comparing the resulting objective function values for (Lotka) on the left of Fig. 6,
one gets an idea of the nonconvexity of the different approximations of the optimization
problem depending on N . For each N , the formulation (P-STO) is less convex than the
(P-POC) formulation. For N = 2 one sees two of the local minima that we observed
already in Fig. 4 (left). When looking at the objective functions for increasing N , one
sees a convergence of the (P-STO) objective function values to the (P-POC) objective
function values.
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Fig. 7 Nonconvex ratios R∗ for different discretizations N for (Lotka) on the left and (Calcium) on the
right-hand side for sample size S = 1000. Here, only the x axes are logarithmic. One observes higher R∗
values for (P-STO) compared to (P-POC) for small N and similar values for larger N

A similar picture emerges from the right plot of Fig. 6. Here, however, the objective
function landscape is also visibly nonconvex for formulation (P-POC).Again, for small
values of N more local minima can be seen in (P-STO), and for large N the objective
functions look similar.

We considered the R∗ values also in higher dimensions. Figure 7 illustrates the
values of R∗ as a function of N . For (Lotka), the (P-STO) formulation produces
higher nonconvexities, which approaches that of (P-POC) for large N . For (Calcium),
we have a similar result in the sense that (P-STO) appears to be more convex than
(P-POC) with the exception of N ∈ {1, 2, 64}. Note, that because of our relatively
small sample size, the results suffer from high uncertainty and need to be interpreted
with care. Also, deviating from the rest of this section, we used nt = 51200 in this case.
Otherwise, the larger values of N would have resulted in a corresponding non-integer
value for nσ .

6.4 Optimization-based analysis

Weperformed an additional study to understand the convergence behavior for (P-STO)
and (P-POC). We calculated local minima for nt = 48000 and different values of N
using IPOPT. For both formulations, we used random initializations for the con-
trols w by means of AMPL’s Uniform01 function. For (P-STO) and (P-POC) we
used the same random seed via option randseed, such that the starting values
wSTO
0 = wPOC

0 were uniformly randomly distributed in [0, 1]N and identical. Also
for the corresponding state variables x(·), initial values were provided. We used the
initializations STOa and POCa where we initialized x discontinuously, but possibly
close to an optimal solution via
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xki =
{
x̃k if k < nx
0 if k = nx

for i ∈ [nt ]. Here, we used the special structure of the control problems (Lotka) and
(Calcium) and their (steady-state x̃ seeking) Mayer terms in x3 and x5, respectively.
As a second scenario, we considered initializations STOb and POCb, respectively, for
values x(·) that were obtained from a (single shooting) forward solution based on the
fixed initial values x(0) and wSTO

0 = wPOC
0 .

To obtain an idea about the distribution of local minima for the two approaches we
performed 100 optimization runs for each of the four approximations plus initializa-
tions STOa, STOb, POCa, and POCb, and for different values of N . An upper limit
of 60min CPU time was imposed via an AMPL and IPOPT option and additionally
via a system timeout command. The latter was necessary because often IPOPT got
stuck in the linear system solves. Hence, the category “no convergence” in the tables
is composed of several different numerical phenomena, such as too large number of
iterations or problems with dual variables in the range of 1012 in the linear system
solves. As stated before, the implementations are by no means efficient and the CPU
times shall only give a hint on how the different approximations relate to one another.
Iteration counts and CPU times (and their standard deviations) are only calculated
from the instances that converged within the time limit.

The numbers of times (out of 100 each) that IPOPT converged to a local minimum
are shown in Tables 2 and 3. Stationary points are clustered with a tolerance of 10−3

for (Lotka) and 1 for (Calcium), comparing objective function values (not the values
of w).

We observe that for small numbers of N the number of local minima are larger for
(P-STO) than for (P-POC), e.g., 3 : 1 for (Lotka) and N = 2 (compare also Fig. 4 left
for this special case) or 11 : 6 for (Calcium) and N = 3. For N = 100 the behavior
is almost identical for (P-STO) and (P-POC): converging to only one local minimum
for (Lotka) and to a comparable amount of five to six local minima for (Calcium).

One can also see differences for state initialization a (i.e., setting x0 = x̃) and b (i.e.,
calculating x0i from x0 and w0). While STOa and POCa have a tendency to converge
to better local minima, they also have a tendency to not converge at all.

Finally, to provide an idea of how localminima differ in the space of the correspond-
ing controls and differential states, Fig. 8 shows exemplary solutions for (Calcium).
All four plots correspond to results calculated for N = 100 as shown in Table 3.
Comparing the first two and the last two rows, respectively, one sees how the activa-
tions of mode 1 in the (P-STO) and (P-POC) formulations are very similar in the state
space. The corresponding trajectories are almost identical, which is also reflected in
the objective function values (1597.61 versus 1596.66 and 4225.18 versus 4223.89).
In control space, the solutions are only similar in a weak topology and look different
to the eye. A comparison of rows 1 and 2 on the one hand, and rows 3 and 4 on the
other hand, gives a comparison between two different local minima also in state space.
One state remains in the steady state after time t ≈ 7, while the other state continues
to oscillate. A second control activation at t ≈ 15 is necessary to bring the system into
the unstable steady state.
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Table 2 Convergence results for different numbers N of controls, the approximations and initializations
STOa, STOb, POCa, and POCb introduced in Sect. 6.4, and for problem (Lotka)

N Objective function Convergence to local minima

(P-STO) (P-POC) STOa STOb POCa POCb

2 6.08124 5.40938 74× 100× 100×
7.06487 87×
9.96625 2× 13×
No convergence 24×
Iterations 487 ± 586 32 ± 7 94 ± 115 22 ± 2

CPU time [s] 453 ± 591 21 ± 5 72 ± 88 17 ± 2

3 4.07543 4.98114 76× 69× 99× 100×
7.06418 7.44638 5× 31× 1×
No convergence 19×
Iterations 494 ± 693 40 ± 8 30 ± 9 26 ± 11

CPU time [s] 368 ± 496 25 ± 5 26 ± 7 21 ± 9

4 1.72221 2.75505 81× 100× 100× 100×
No convergence 19×
Iterations 681 ± 679 43 ± 9 51 ± 36 31 ± 2

CPU time [s] 861 ± 881 32 ± 8 41 ± 29 24 ± 2

5 1.35203 1.38501 79× 100× 100× 100×
No convergence 21×
Iterations 500 ± 581 41 ± 3 50 ± 6 35 ± 2

CPU time [s] 795 ± 985 29 ± 3 40 ± 4 27 ± 1

8 1.67690 1.46873 77× 100× 100× 100×
No convergence 23×
Iterations 265 ± 381 47 ± 6 61 ± 4 46 ± 2

CPU time [s] 385 ± 508 33 ± 5 47 ± 3 33 ± 2

100 1.34568 1.34488 100× 100× 100× 100×
Iterations 208 ± 26 98 ± 4 184 ± 10 133 ± 7

CPU time [s] 171 ± 29 74 ± 3 139 ± 9 98 ± 6

We show the number of times that IPOPT converged to a local minimum with the objective function value
given in the left columns. A trend towards more local minima for approximation (P-STO) can be observed
for small values of N , as well as a higher dependence on the initialization and in general more issues with
convergence. The number of iterations and the CPU times are using the format mean value ± standard
deviation

6.5 Initialization of STOwith solution of POC

As a remedy to avoid bad local minima and the also observed convergence issues, it
seems a logical choice to use (P-POC) in a first phase to derive an initialization for
(P-STO), as first suggested and implemented in [47].

We thus investigated the behavior of (P-STO), when being initialized with the
optimal solution of (P-POC). For this purpose, we simply performed a "hot-start" of
the STOa and STOb methods after running POCa and POCb, respectively. Other than
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Table 3 As Table 2, but for problem (Calcium)

N Objective function Convergence to local minima

(P-STO) (P-POC) STOa STOb POCa POCb

2 1958.14 1959.28 14× 40× 15×
4412.69 4418.30 35× 84×
No convergence 100× 51× 60× 1×
Iterations – 1063 ± 450 459 ± 392 246 ± 237

CPU time [s] – 2191 ± 921 781 ± 596 391 ± 356

3 1721.85 1894.62 9× 8×
1838.70 1908.83 9× 19× 2×
1846.60 2372.22 1× 5×
4429.67 4322.82 16× 15×
4480.46 4399.00 2× 15×
4482.31 4402.87 8× 54×
4514.67 10×
4528.46 6×
4530.22 2×
4608.23 2×
4755.96 1×
No convergence 100× 34× 81× 1×
Iterations – 851 ± 423 668 ± 560 284 ± 382

CPU time [s] – 1832 ± 936 1538 ± 1084 586 ± 665

4 1690.03 4× 5×
1790.12 1950.00 1× 16× 4×
1794.49 1954.58 36× 3× 44×
4337.71 4289.55 23× 14×
4402.78 4291.79 1× 37×
4458.08 2×
No convergence 96× 32× 81× 1×
Iterations 280 ± 105 1046 ± 341 274 ± 152 626 ± 359

CPU time [s] 885 ± 360 2312 ± 763 535 ± 268 1195 ± 631

100 1597.36 72×
1597.61 1596.66 10× 100× 13×

4193.96 1×
4211.54 1×
4222.59 4221.75 1× 1×
4223.87 4222.82 9× 2×
4225.18 4223.89 68× 76×
No convergence 28× 11× 7×
Iterations 696 ± 136 392 ± 156 227 ± 64 624 ± 209

CPU time [s] 2110 ± 473 1555 ± 614 446 ± 128 2156 ± 723
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Fig. 8 Exemplary stationary points for (Calcium) and N = 100, corresponding to the objective function
values 1597.61, 1596.66, 4225.18, and 4223.89 (top to bottom)

that, the experimental setup remained unchanged. We also did some computations
with an additional run of SUR for the solutions of POCa and POCb to use integer
solution for the initialization. The results with respect to convergence properties and
objective values were much worse than for the original initializations of STOa and
STOb.We omit detailed results here and instead focus on the experiments without this
additional algorithm.
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Table 4 Objective function
values and numbers of iterations
of STOa and STOb for (Lotka)
after hot-starting the problems
with the results of POCa and
POCb, respectively

Objective function POCa POCb

nt STOa STOb STOa STOb

2 7.06487 36 30 36 30

3 4.07543 53 42 53 42

4 1.72221 47 39 48 39

5 1.35203 40 37 40 37

8 1.67690 56 63 56 63

100 1.34568 117 117 117 115

Looking again at the results for (Lotka) in Table 2, in all cases but one (POCa
and N = 3) the methods POCa and POCb converged to the same objective function
value and correspondingly to the same optimal controls. Thus, it is sufficient to inspect
one run of STOa and one run of STOb for each N for this problem. In Table 4 the
objective function values and numbers of STO-iterations for the four combinations
of initializations are presented. As in the case of STOb without POC-initialization,
all instances could be solved in this scenario. Also, the number of iterations until
convergence is close to the results of STOb. In the cases of N = 2 and N = 3,
only the smaller objective function values were achieved. In comparison with STOa
without POC-initialization, the hot-start gave an advantage in numbers of iterations
and stability, but was not able to capture the best objective in the case of N = 2.

Very similar results can be observed in the calcium example in Fig. 9. Here, we
chose a graphical representation due to the much higher number of local minima.
Again, the initialization of the method with the results of POCa and POCb can help
by means of more successful runs for STOa. As a drawback, again, the best results for
N = 4 could not be achieved. In comparison to STOb without POC-initialization, the
number of solved instances is lower for each combination, but one.

6.6 Comparison of constructed (MIOCP) solutions

To fairly compare the two approaches STO and POC, it is useful to also construct and
analyze the resulting integer (MIOCP) solutions. For this, we used the Lotka-Volterra
problem with N = 100 intervals and investigated both, the number of switches and
the corresponding (MIOCP) objective function values of the constructed solutions.
We note that, in contrast to the optimal solution of (P-POC), the (P-STO) solution is
already feasible for (MIOCP). Based on the (P-POC) solution w∗, we used the CIA
problem from Def. (9) to compute solutions with a limited number of switches, where
we varied the bound on the number of switches ns between 2 and 20. Focusing on the
(MIOCP) objective function value, we also applied SUR on w∗. The approximation
Theorem 11 implies that for a given ε > 0, we can construct a binary control via SUR
with a corresponding (MIOCP) objective value that is ε-close to the optimal solution by
refining the discretization grid. For this purpose, we created refined (P-POC) solutions
w̃ with 2k N , k = 0, 1, 2, 3, discretization intervals, where the w∗ value on the
unrefined interval is used for definition of w̃ values on the refined intervals:
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Fig. 9 Results of initialization of STOa and STOb with the optimal solutions from POCa and POCb as
described in Sect. 6.4 for N ∈ {2, 3, 4, 100}. The upper bar shows the number of local minima, where the
number of instances with no convergence is presented in black. The black lower bar represents the ratio of
the median number of iterations for each of the 16 categories to the maximum median number of iterations
over all categories. Themaximal median number of iterations is assumed in the category N=2, POCb, STOa.
In the case of no success for all instances, the bars are empty
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Fig. 10 Comparison of number of switches and (MIOCP) objective values for the solution of different
approaches and the Lotka-Volterra problem with N = 100. The (P-STO) solution is depicted with the black
star. The (P-POC) solution is not integer-feasible and therefore shown as green line (without a meaningful
switching value). Based on the (P-POC) solution, we used the CIA-TV approach from Def. (9) and SUR as
explained in the text with refined grid levels k for constructing integer-feasible (MIOCP) solutions. Please
note, that grid refinement was applied only in the case of SUR. With increasing ns , the CIA-TV solution
converges to the unrefined SUR solution. The same convergence behavior could be demonstrated for each
refined grid with CIA-TV towards the corresponding SUR solution

w̃i, j := w∗
l, j , for i ∈ {2k(l − 1) + 1, . . . , 2kl}.

Then, we applied SUR on these relaxed control solutions w̃ with 2k N discretization
intervals.

We illustrate the numerical result in Fig. 10, where the x-axis depicts the number of
switches and the y-axis shows the deviation of the objective value of the constructed
solution from the (P-POC) in percentage. The (P-STO) solution is in terms of the
objective function value very close to the (P-POC) solution, at the expense of a large
number of switches. Since the (P-POC) solution is fractional and therefore has no
meaningful switching value, we represent it as a line in the plot.

If we permit only a small number of switches in theCIA problem, the corresponding
(MIOCP) solution deviates more than 7% from the (P-POC) objective value. Themore
switches we allowed, the better the (MIOCP) objective function value became. This
holds up to ns = 14. For larger ns values, the determined binary control still involves
only 14 switches, since more switches result in no improvement in the objective on
the unrefined grid. We remark, however, that this method would result in the same
convergence behavior to the optimal objective value of (P-POC) as the SUR method
when applied on the refined discretization grid and with sufficiently large chosen ns .

The determined solution from SUR on the unrefined grid, i.e. k = 0, has a small
number of switches compared to the (P-STO) solution but yields a larger objective
value. By refining the discretization grid, the constructed SUR solutions converged
to the optimal objective value of (P-POC) or even reached smaller values for large k,
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which is possible as (P-POC)was solved on the unrefined grid. The improved objective
values come at the expense of frequent switching.

7 Discussion

We are going to discuss the most important results of the previous section, looking
for plausibility of the observations. We start with some considerations concerning the
computational costs, before we address the main finding: the different numbers of
local minima in the two formulations.

7.1 Computational costs

The computational costs of iterative algorithms are determined by the number of
iterations, and the computational costs per iteration. In the previous section, and in
particular in Tables 2 and 3 we observed

Numerical Result 18 (Number of Iterations) There is an increased number of iterations
and of convergence issues for (P-STO) compared to (P-POC).

A closer look at (STO-f) and (POC-f) reveals one detail: in (STO-f) the drift term
f0 is multiplied with the optimization variables w. In (POC-f), this is not the case
owing to the one-hot property of w ∈ W . It is well known that higher nonlinearities,
e.g., measured via Lipschitz constants, typically lead to increased regions of fast local
convergence and to worse convergence rate constants, e.g., [5, 8, 57]. Thus we think
that Numerical Result 18 is due to the augmented nonlinearity of the differential
equations that appear in function and derivative evaluations in (P-STO).

One may possibly construct cases in which this multiplication does not increase
nonlinearity, because f0(x) ≈ 1/w, or the effect might be negligible compared to the
nonlinearities in the other f j . However, for most practically relevant cases we can
assume that the multiplication of f0 with w increases nonlinearity of the optimization
problem. There might be ways to reduce this nonlinearity again via a lifting procedure
and usage of big M or McCormick-type constraints. Since this would involve case-
specific upper bounds on the right-hand sides and a further level of approximation,
we did not pursue this direction here, but worked with the formulation that is usually
used in the STO literature.

A second observation in Tables 2 and 3 was

Numerical Result 19 (Computational Costs) The computational costs per iteration are
roughly similar for (P-STO) and (P-POC).

For our numerical approach and test problems the computational costs per iteration
weremainly governed by the evaluation of the differential equations and the sensitivity
differential equations. Thus, the computational effort to evaluate the right-hand sides in
(STO-f) and in (POC-f) for the whole time horizon T are important, as they carry over
in a more or less straightforward way to the effort of derivative calculation. For many
practical optimal control problems the evaluation of function andderivatives dominates
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the computational costs. Evaluating (POC-f) for a fixed t ∈ T needs more function
evaluations, as all nω +1 functions f j need to be evaluated, whereas for (STO-f) only
two evaluations are necessary. However, if we assume that the computational effort
to evaluate (STO-f) on Ti j is approximately constant (this certainly depends on the
numerical integration scheme), then the evaluation on all nσ subintervals Ti j increases
the overall effort by a factor of nσ . This would then give advantage to (POC-f), because
the drift term f0 needs to be evaluated only once for each t ∈ T and multiple times
for STO (because it is evaluated at different times). Another interesting question is
the one about situations in which wSTO

i j = 0. While it is clear that in this case no
integration on Ti j would be necessary, an implementation of this is rather tricky to
realize, especially as also derivatives are needed to determine whether the search
direction of the optimization algorithm is positive for wSTO

i j = 0 or not.
For (P-STO) a speedup by two orders of magnitude was achieved for test problems

based on a linearization of the dynamics [58]. The approach benefits from the usage of
an exponential integrator and closed-form analytical derivatives. Themain idea should
also carry over to POC approximations, with the main difficulty of deriving analytical
formulas for the derivatives of the matrix exponential for non-commutative matrices,
though.

As a summary, we see reasons that in many cases the computational costs for
(P-STO) might be higher than for (P-POC) because of more iterations of a generic
iterative optimization algorithm, with similar costs per iteration.

In Table 4 and Fig. 9, the experiments of initializing (P-STO) with the optimal
solution of (P-POC) led to ambiguous results. For some problem sizes, the number of
converging instances could be increased; however, for few others, the opposite was the
case. The same holds true with respect to the constructed best objective values. This
non-intuitive behavior can have several reasons. An interior-point solver likeIPOPT is
not well suited for restarts, and active-set based approaches could rather be used. Also,
efficient schemes like the one proposed in [58] could be taken into account, possibly
exploiting additional structures in a hot-start. The transfer of differential states from
one time grid to another has to be carefully implemented unless one uses a single
shooting initialization with the controls resulting from the first phase, as we did in this
study. This initialization led overall to better convergence properties than using only
the optimal control values of (P-POC).

7.2 Nonconvexity of the objective function

There were three main observations in the previous section for the two benchmark
problems, which might carry over to other mixed-integer optimal control problems.
We are somewhat sloppy with our formulations concerning “small” or “large” values
of N , as this is certainly problem-specific. In Fig. 7 we got indications that

Numerical Result 20 (Nonconvexity Evaluation) Quantified measures of nonconvex-
ity such as R∗ are higher for (P-STO) compared to (P-POC) for small N , and identical
for large N .

123



S. Sager et al.

Almost as a corollary, but also from Figs. 4, 5, and 6 as well as from Tables 2 and
3 we obtained

Numerical Result 21 (Number of Local Minima) For fixed N , there are typically at
least as many local minima for (P-STO) as for (P-POC).

The case N = 100 in Table 3 indicated that

Numerical Result 22 (Asymptotic Objective Function Values) The number of ε-
optimal local minima is asymptotically, i.e. for N → ∞, identical for (P-STO) and
(P-POC).

The additional nonconvexity in (P-STO) is again due to the additionalmultiplication
of the drift term f0 by w, as discussed above. Therefore, it is not surprising that there
are instances in which the number of local minima of (P-POC) is dominated by the
number corresponding to (P-STO), e.g., the case N = 3 in Table 3.

Numerical Result 22 is less intuitive. The asymptotic behavior of the number of
local minima can be explained by the fact that the optimal objective function values of
(P-STO) and (P-POC) are converging to the same value for increasing N as derived
in Corollaries 12 and 13 and discussed at the end of Sect. 3.

Thus, the effect of the increased nonconvexity on the number of local minima
can only be observed for coarse control discretizations (large �t). We summarize that
(P-STO) is likely to havemore local minima for each discretization grid than (P-POC);
however, the number of local minima is asymptotically identical.

7.3 Obtaining (MIOCP)-feasibility

While the STO approach constructs integer-feasible solutions for (MIOCP) and can be
viewed as a primal heuristic, the main motivation of the POC approach is to provide a
relaxed solution of (MIOCP). The necessary postprocessing of the (P-POC) solution
for determining an integer solution can be considered as a drawback, in particular
since the rounded solution can result in relatively large objective values compared
with the relaxed one. However, we showed in Sect. 6.6 that the rounded (P-POC)
solution converges to the optimal solution of (MIOCP) by applying refinement of the
discretization grid. Moreover, rounding methods such as SUR are computationally
inexpensive. Regardless of whether we use STO or POC as solution approach for
(MIOCP), a trade-off between objective quality and the number of used switches can
be observed. The more switches we allow by means of control discretization or as part
of CIA, the better the optimal objective value.

8 Conclusion

In this paper, we compared the (P-STO) and the (P-POC) approximations of Prob-
lem (MIOCP). We have demonstrated with numerical simulation and optimization
results that (P-STO) tends to result inmore local minima than (P-POC) for few degrees
of freedom (small N ), whereas both problem formulations show similar behavior for

123



A numerical study of transformed MIOCPs

large N .We explained theoretically the underlying reasons. The additional nonconvex-
ities and nonlinearities are due to amultiplication of the drift term f0(·)with the control
w in (P-STO). However, asymptotically in N → ∞, i.e., for �t → 0, every solution
of (P-STO) can be approximated arbitrarily close by a solution of (P-POC), and vice
versa. The initialization of (P-STO) with optimal solutions of (P-POC) led to ambigu-
ous results with respect to convergence properties but could be investigated further
in the future. Another future research direction could be an investigation if singular,
path-constrained, and bang-bang arcs in optimal solutions of (P-POC) have an impact
in this context. Also, a broader numerical investigation with more control problems,
more instances, various switching orders σ , more efficient implementations, additional
underlying constraints, and aspects of global and/or robust optimization could shed
additional light on the question of how the two approximations can be combined to
solve Problem (MIOCP).

9 Appendix

9.1 How to set up and solve anMIOC with ampl_mintoc

Following AMPL standards, a problem-specification usually involves one data file,
one model file and one run file. An optimal control problem prob can be formulated
using ampl_mintoc via the problem-specific files prob.dat, prob.mod, and
prob.run. First, problem dimensions (e.g. of the differential states and controls),
parameters (e.g. the number of discretization intervals), and initial values are specified
in prob.dat. In the prob.mod file, model-specific functions can be defined (in
the discretized sense). This includes the model function f , mixed state-control con-
straints, path constraints c, and vanishing constraints. Listings 2 and 3 show the AMPL
implementations for the (Lotka) and (Calcium) problems from Sect. 4 as examples of
how to formulate f and, hence, the problems’ dynamics.

Listing 2 Problem-dependent functions f j as AMPL code for (Lotka). The index k denotes the entry of xk ,
the index o ∈ {1, . . . , nω} the switching mode in fo, and i is the time index.

var f {k in X,o in 0..no ,i in I} = (
if (k==1 && o==0) then x[1,i] - x[1,i]*x[2,i]
else if (k==2 && o==0) then - x[2,i] + x[1,i]*x[2,i]
else if (k==1 && o==1) then - x[1,i]*p[1]
else if (k==2 && o==1) then - x[2,i]*p[2]
else if (k==3 && o==0) then sum{l in 1..2} (x[l,i] - xtilde[l])^2

);
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Listing 3 Problem-dependent functions f j as AMPL code for (Calcium).

var f {k in X,o in 0..no ,i in I} = (
if (k==1 && o==0) then k1 + k2*x[1,i]

- k3*x[1,i]*x[2,i]/(x[1,i]+K4) - k5*x[1,i]*x[3,i]/(x[1,i]+K6)
else if (k==2 && o==0) then k7*x[1,i] - k8*x[2,i]/(x[2,i]+K9)
else if (k==3 && o==0) then k10*x[2,i]*x[3,i]*x[4,i]/(x[4,i]+K11)

+ p18*k12*x[2,i] + k13*x[1,i] - k14*x[3,i]/(1.0*x[3,i]+K15)
- k16*x[3,i]/(x[3,i]+K17) + x[4,i]/10

else if (k==4 && o==0) then - k10*x[2,i]*x[3,i]*x[4,i]/(x[4,i]+K11)
+ k16*x[3,i]/(x[3,i]+K17) - x[4,i]/10

else if (k==3 && o==1) then k14*x[3,i]/(1.0*x[3,i]+K15)
- k14*x[3,i]/(1.3*x[3,i]+K15)

else if (k==5 && o==0) then sum{k in 1..4} (x[k,i]-xtilde[k])^2
);

Note that we use the time index i to define the functions. These discretized defini-
tions allow the user to easily specify piecewise functions on different sub-domains.

Finally, algorithmic choices can be provided in prob.run, such as the integra-
tion scheme, the problem reformulation, the simulation or optimization algorithm,
relaxation of integer variables, or postprocessing of results.

Listing 4 Exemplary run file lotka.run as AMPL code.

model ../mintocPre.mod;
model lotka.mod;
model ../mintocPost.mod;
data lotka.dat;

let nlpsolver := "ipopt";
let integrator := "explicitEuler";
let mode := "SimulateSTO";

include ../solve.run;
display objective;

Funding Open Access funding enabled and organized by Projekt DEAL. This project has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (Grant Agreement No 647573) and from the Deutsche Forschungsgemeinschaft
(DFG)—314838170, GRK 2297 MathCoRe and SPPs 1962 and 2331.

Data Availability The data and code that support the findings of this study are reproducible from the
ampl_mintoc github library [55].

Declaration

Conflict of interest The authors declare that they have no Conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


A numerical study of transformed MIOCPs

References

1. Axelsson, H., Wardi, Y., Egerstedt, M., Verriest, E.: Gradient descent approach to optimal mode
scheduling in hybrid dynamical systems. J. Optim. Theory Appl. 136(2), 167–186 (2008)

2. Bengea, S., DeCarlo, R.: Optimal control of switching systems. Automatica 41(1), 11–27 (2005).
https://doi.org/10.1016/j.automatica.2004.08.003

3. Bestehorn, F., Hansknecht, C., Kirches, C., Manns, P.: Mixed-integer optimal control problems with
switching costs: a shortest path approach. submitted to Mathematical Programming B (2020). http://
www.optimization-online.org/DB_HTML/2020/02/7630.html. Submitted

4. Bestehorn, F., Kirches, C.: Matching algorithms and complexity results for constrained mixed-integer
optimal control with switching costs. SIAM J. Optim. (2020). http://www.optimization-online.org/
DB_HTML/2020/10/8059.html. (submitted)

5. Bock, H.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differ-
entialgleichungen, Bonner Mathematische Schriften, vol. 183. Universität Bonn, Bonn (1987). http://
www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf

6. Burger, M., Gerdts, M., Göttlich, S., Herty, M.: Dynamic programming approach for discrete-valued
time discrete optimal control problems with dwell time constraints. In: IFIP Conference on System
Modeling and Optimization, pp. 159–168. Springer (2015)

7. Caputi,W.J.: Stretch: a time-transformation technique. IEEETrans. Aerosp. Electron. Syst. 2, 269–278
(1971)

8. Deuflhard, P., Heindl, G.: Affine invariant convergence theorems for newton’s method and extensions
to related methods. SIAM J. Numer. Anal. 16(1), 1–10 (1979)

9. Dubovitskii, A., Milyutin, A.: Extremum problems in the presence of restrictions. USSR Comput.
Math. Math. Phys. 5(3), 1–80 (1965). https://doi.org/10.1016/0041-5553(65)90148-5

10. Dubovitskij, A., Milyutin, A.: Extremum problems with constraints. Sov. Math. Dokl. 4, 452–455
(1963)

11. Egerstedt, M., Wardi, Y., Axelsson, H.: Transition-time optimization for switched-mode dynamical
systems. IEEE Trans. Autom. Control 51, 110–115 (2006)

12. Flaßkamp, K.: On the optimal control of mechanical systems—hybrid control strate-
gies and hybrid dynamics. Ph.D. thesis, University of Paderborn (2014). https://nbn-
resolving.de/urn:nbn:de:hbz:466:2-12756

13. Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathematical Programming.
Duxbury Press (2002)

14. Fuller, A.: Study of an optimum nonlinear control system. J. Electron. Control 15, 63–71 (1963)
15. Gerdts, M.: Solving mixed-integer optimal control problems by Branch & Bound: a case study from

automobile test-driving with gear shift. Optim. Control Appl. Methods 26, 1–18 (2005)
16. Gerdts,M.: A variable time transformationmethod formixed-integer optimal control problems. Optim.

Control Appl. Methods 27(3), 169–182 (2006)
17. Gerdts, M., Sager, S.: Mixed-integer dae optimal control problems: necessary conditions and bounds.

In: Biegler, L., Campbell, S., Mehrmann, V. (eds.) Control and Optimization with Differential-
Algebraic Constraints, pp. 189–212. SIAM (2012). https://mathopt.de/PUBLICATIONS/Gerdts2012.
pdf

18. Girsanov, I.V.: Lectures onMathematical Theory of ExtremumProblems. Springer, Berlin-Heidelberg-
New York (1972)

19. Göttlich, S., Potschka, A., Teuber, C.: A partial outer convexification approach to control transmission
lines. Comput. Optim. Appl. 72(2), 431–456 (2019)

20. Göttlich, S., Potschka, A., Ziegler, U.: Partial outer convexification for traffic light optimization in road
networks. SIAM J. Sci. Comput. 39(1), B53–B75 (2017)

21. Hante, F., Sager, S.: Relaxation methods for mixed-integer optimal control of partial differential equa-
tions. Comput. Optim. Appl. 55(1), 197–225 (2013)

22. Hante, F.M.: Relaxation methods for hyperbolic PDE mixed-integer optimal control problems. Optim.
Control Appl. Methods 38(6), 1103–1110 (2017). https://doi.org/10.1002/oca.2315.Oca.2315

23. Hellström, E., Ivarsson, M., Aslund, J., Nielsen, L.: Look-ahead control for heavy trucks to minimize
trip time and fuel consumption. Control Eng. Pract. 17, 245–254 (2009)

24. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland Publishing Company,
Amsterdam, New York, Oxford (1979)

123

https://doi.org/10.1016/j.automatica.2004.08.003
http://www.optimization-online.org/DB_HTML/2020/02/7630.html
http://www.optimization-online.org/DB_HTML/2020/02/7630.html
http://www.optimization-online.org/DB_HTML/2020/10/8059.html
http://www.optimization-online.org/DB_HTML/2020/10/8059.html
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf
https://doi.org/10.1016/0041-5553(65)90148-5
https://mathopt.de/PUBLICATIONS/Gerdts2012.pdf
https://mathopt.de/PUBLICATIONS/Gerdts2012.pdf
https://doi.org/10.1002/oca.2315.Oca.2315


S. Sager et al.

25. Jung, M., Kirches, C., Sager, S.: On perspective functions and vanishing constraints in mixed-integer
nonlinear optimal control. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization—
Festschrift for Martin Grötschel, pp. 387–417. Springer Berlin Heidelberg (2013). https://mathopt.de/
PUBLICATIONS/Jung2013.pdf

26. Jung,M., Reinelt, G., Sager, S.: TheLagrangian relaxation for the combinatorial integral approximation
problem. Optim. Methods Softw. 30(1), 54–80 (2015)

27. Jung, M.N., Kirches, C., Sager, S., Sass, S.: Computational approaches for mixed integer optimal
control problems with indicator constraints. Vietnam J. Math. 46, 1023–1051 (2018). https://doi.org/
10.1007/s10013-018-0313-z

28. Kaya, C., Noakes, J.: Computations and time-optimal controls. Optim. Control Appl. Methods 17,
171–185 (1996)

29. Kirches, C.: Fast numerical methods for mixed-integer nonlinear model-predictive control. Ph.D. the-
sis, Ruprecht-Karls-Universität Heidelberg (2010). http://www.ub.uni-heidelberg.de/archiv/11636/.
Available at http://www.ub.uni-heidelberg.de/archiv/11636/

30. Kirches, C., Leyffer, S.: TACO—A toolkit for AMPL control optimization. Math. Program. Comput.
5(2), 227–265 (2013). https://doi.org/10.1007/s12532-013-0054-7

31. Kirches, C., Manns, P., Ulbrich, S.: Compactness and convergence rates in the combinatorial integral
approximation decomposition. Math. Program. pp. 1–30 (2020)

32. Lebiedz, D., Sager, S., Bock, H., Lebiedz, P.: Annihilation of limit cycle oscillations by identification of
critical phase resetting stimuli via mixed-integer optimal control methods. Phys. Rev. Lett. 95, 108303
(2005)

33. Lee,H.W.J., Teo,K.L.,Cai,X.Q.:Anoptimal control approach to nonlinearmixed integer programming
problems. Comput. Math. Appl. 36(3), 87–105 (1998)

34. Lee, H.W.J., Teo, K.L., Rehbock, V., Jennings, L.S.: Control parameterization enhancing technique
for time optimal control problems. Dyn. Syst. Appl. 6(2), 243–262 (1997)

35. Lee, H.W.J., Teo, K.L., Rehbock, V., Jennings, L.S.: Control parametrization enhancing technique for
optimal discrete-valued control problems. Automatica 35(8), 1401–1407 (1999)

36. Leineweber, D., Bauer, I., Bock, H., Schlöder, J.: An efficient multiple shooting based reduced SQP
strategy for large-scale dynamic process optimization. Part I: Theoretical aspects. Comput. Chem. Eng.
27, 157–166 (2003)

37. Leineweber, D., Bock, H., Schlöder, J.: Fast direct methods for real-time optimization of chemical
processes. In: Proc. 15th IMACS World Congress on Scientific Computation, Modelling and Applied
Mathematics Berlin. Wissenschaft- und Technik-Verlag, Berlin (1997)

38. Liu, C., Gong, Z., Lee, H.W.J., Teo, K.L.: Robust bi-objective optimal control of 1, 3-propanediol
microbial batch production process. J. Process Control 78, 170–182 (2019)

39. Liu, C., Gong, Z., Teo, K.L., Loxton, R., Feng, E.: Bi-objective dynamic optimization of a nonlinear
time-delay system in microbial batch process. Optim. Lett. 12(6), 1249–1264 (2018)

40. Manns, P.: Relaxed multibang regularization for the combinatorial integral approximation. arXiv
preprint arXiv:2011.00205 (2020)

41. Manns, P., Kirches, C.: Improved regularity assumptions for partial outer convexification of mixed-
integer pde-constrained optimization problems. ESAIM: Control, Optimisation and Calculus of
Variations (2019). http://www.optimization-online.org/DB_HTML/2018/04/6585.html

42. Maurer, H., Büskens, C., Kim, J., Kaya, Y.: Optimization methods for the verification of second-order
sufficient conditions for bang-bang controls. Optim. Control Methods Appl. 26, 129–156 (2005)

43. Palagachev, K., Gerdts, M.: Mathematical programs with blocks of vanishing constraints arising in
discretized mixed-integer optimal control problems. Set-Valued Var. Anal. 23(1), 149–167 (2015)

44. Picard, C.: Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approxima-
tions successives. Journal de Mathématiques Pures et Appliquées 6, 145–210 (1890)

45. Vasudevan, R., Gonzalez, H., Bajcsy, R., Sastry, S.S.: Consistent approximations for the optimal control
of constrained switched systems—part 2: An implementable algorithm. SIAM J. Control Optim. 51,
4484–4503 (2013)

46. Ringkamp, M., Ober-Blöbaum, S., Leyendecker, S.: On the time transformation of mixed integer
optimal control problems using a consistent fixed integer control function. Math. Program. 161(1),
551–581 (2017). https://doi.org/10.1007/s10107-016-1023-5

47. Sager, S.:Numericalmethods formixed–integer optimal control problems.Der andereVerlag, Tönning,
Lübeck, Marburg (2005). https://mathopt.de/PUBLICATIONS/Sager2005.pdf. ISBN 3-89959-416-9

123

https://mathopt.de/PUBLICATIONS/Jung2013.pdf
https://mathopt.de/PUBLICATIONS/Jung2013.pdf
https://doi.org/10.1007/s10013-018-0313-z
https://doi.org/10.1007/s10013-018-0313-z
http://www.ub.uni-heidelberg.de/archiv/11636/
http://www.ub.uni-heidelberg.de/archiv/11636/
https://doi.org/10.1007/s12532-013-0054-7
http://arxiv.org/abs/2011.00205
http://www.optimization-online.org/DB_HTML/2018/04/6585.html
https://doi.org/10.1007/s10107-016-1023-5
https://mathopt.de/PUBLICATIONS/Sager2005.pdf


A numerical study of transformed MIOCPs

48. Sager, S.: On the Integration of Optimization Approaches for Mixed-Integer Nonlinear Opti-
mal Control. University of Heidelberg (2011). https://mathopt.de/PUBLICATIONS/Sager2011d.pdf.
Habilitation

49. Sager, S.: A benchmark library of mixed-integer optimal control problems. In: Lee, J., Leyffer, S.
(eds.) Mixed Integer Nonlinear Programming, pp. 631–670. Springer (2012). https://mathopt.de/
PUBLICATIONS/Sager2012b.pdf

50. Sager, S., Bock, H., Diehl,M.: The integer approximation error inmixed-integer optimal control.Math.
Program. A 133(1–2), 1–23 (2012)

51. Sager, S., Bock, H., Diehl, M., Reinelt, G., Schlöder, J.: Numerical methods for optimal control with
binary control functions applied to a Lotka-Volterra type fishing problem. In: Seeger A. (ed.) Recent
Advances in Optimization, Lectures Notes in Economics and Mathematical Systems, vol. 563, pp.
269–289. Springer, Heidelberg (2009). ISBN 978-3-5402-8257-0

52. Sager, S., Claeys, M., Messine, F.: Efficient upper and lower bounds for global mixed-integer optimal
control. J. Glob. Optim. 61(4), 721–743 (2015). https://doi.org/10.1007/s10898-014-0156-4

53. Sager, S., Jung, M., Kirches, C.: Combinatorial integral approximation. Math. Methods Oper. Res.
73(3), 363–380 (2011). https://doi.org/10.1007/s00186-011-0355-4

54. Sager, S., Reinelt, G., Bock, H.: Direct methods with maximal lower bound for mixed-integer optimal
control problems. Math. Program. 118(1), 109–149 (2009)

55. Sager, S., Tetschke, M., Zeile, C.: czeile/ampl_mintoc: Math programming c release (2024). https://
doi.org/10.5281/zenodo.12520490

56. Siburian, A.: Numerical Methods for Robust, Singular and Discrete Valued Optimal Control Problems.
Ph.D. thesis, Curtin University of Technology, Perth, Australia (2004)

57. Smale, S.: Newton’s Method Estimates from Data at One Point. Springer, Verlag (1986)
58. Stellato, B., Ober-Blöbaum, S., Goulart, P.J.: Second-order switching time optimization for switched

dynamical systems. IEEE Trans. Autom. Control 62(10), 5407–5414 (2017). https://doi.org/10.1109/
TAC.2017.2697681

59. Tamura, K., Gallagher, M.: Quantitative measure of nonconvexity for black-box continuous functions.
Inf. Sci. 476, 64–82 (2019). https://doi.org/10.1016/j.ins.2018.10.009

60. Teo, K.L., Jennings, L.S., Lee, H.W.J., Rehbock, V.: The control parameterization enhancing transform
for constrained optimal control problems. J. Aust. Math. Soc. 40(3), 314–335 (1999)

61. Uthaichana, K., Bengea, S., DeCarlo, R., Pekarek, S., Zefran, M.: Hybrid model predictive control
tracking of a sawtooth driving profile for anHEV. In: AmericanControl Conference, 2008, pp. 967–974
(2008)

62. Vasudevan, R., Gonzalez, H., Bajcsy, R., Sastry, S.S.: Consistent approximations for the optimal
control of constrained switched systems—part 1: a conceptual algorithm. SIAM J. Control Optim.
51(6), 4463–4483 (2013)

63. Wang, L., Yuan, J., Wu, C., Wang, X.: Practical algorithm for stochastic optimal control problem about
microbial fermentation in batch culture. Optim. Lett. 13(3), 527–541 (2019)

64. Wu, D., Bai, Y., Yu, C.: A new computational approach for optimal control problems with multiple
time-delay. Automatica 101, 388–395 (2019). https://doi.org/10.1016/j.automatica.2018.12.036

65. Zeile, C., Robuschi, N., Sager, S.: Mixed-integer optimal control under minimum dwell time con-
straints. Math. Program. 188, 653–694 (2021). https://doi.org/10.1007/s10107-020-01533-x

66. Zeile, C.,Weber, T., Sager, S.: Combinatorial integral approximation decompositions formixed-integer
optimal control. submitted to Optimization Methods and Software (2018). http://www.optimization-
online.org/DB_HTML/2018/02/6472.html. Submitted

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://mathopt.de/PUBLICATIONS/Sager2011d.pdf
https://mathopt.de/PUBLICATIONS/Sager2012b.pdf
https://mathopt.de/PUBLICATIONS/Sager2012b.pdf
https://doi.org/10.1007/s10898-014-0156-4
https://doi.org/10.1007/s00186-011-0355-4
https://doi.org/10.5281/zenodo.12520490
https://doi.org/10.5281/zenodo.12520490
https://doi.org/10.1109/TAC.2017.2697681
https://doi.org/10.1109/TAC.2017.2697681
https://doi.org/10.1016/j.ins.2018.10.009
https://doi.org/10.1016/j.automatica.2018.12.036
https://doi.org/10.1007/s10107-020-01533-x
http://www.optimization-online.org/DB_HTML/2018/02/6472.html
http://www.optimization-online.org/DB_HTML/2018/02/6472.html

	A numerical study of transformed mixed-integer optimal control problems
	Abstract
	1 Introduction
	2 Switching time optimization and partial outer convexification
	2.1 Switching time optimization
	2.2 Partial outer convexification
	2.3 Relations to the original problem formulation
	2.4 A first comparison

	3 Approximation properties
	4 Two test problems
	5 The software package ampl_mintoc
	5.1 Conceptual description
	5.2 Details on problem-independent files

	6 Numerical experiments
	6.1 Discretization and numerical integration
	6.2 Measuring convexity
	6.3 Simulation-based analysis
	6.4 Optimization-based analysis
	6.5 Initialization of STO with solution of POC
	6.6 Comparison of constructed (MIOCP) solutions

	7 Discussion
	7.1 Computational costs
	7.2 Nonconvexity of the objective function
	7.3 Obtaining (MIOCP)-feasibility

	8 Conclusion
	9 Appendix
	9.1 How to set up and solve an MIOC with ampl_mintoc

	References


