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Abstract
Large Neighborhood Search (LNS) heuristics are among the most powerful but also
most expensive heuristics for mixed integer programs (MIP). Ideally, a solver adap-
tively concentrates its limited computational budget by learning which LNS heuristics
work best for the MIP problem at hand. To this end, this work introduces Adap-
tive Large Neighborhood Search (ALNS) for MIP, a primal heuristic that acts as a
framework for eight popular LNS heuristics such as Local Branching and Relaxation
Induced Neighborhood Search (RINS). We distinguish the available LNS heuristics
by their individual search spaces, which we call auxiliary problems. The decision
which auxiliary problem should be executed is guided by selection strategies for the
multi armed bandit problem, a related optimization problem during which suitable
actions have to be chosen to maximize a reward function. In this paper, we propose an
LNS-specific reward function to learn to distinguish between the available auxiliary
problems based on successful calls and failures. A second, algorithmic enhancement is
a generic variable fixing prioritization, whichALNS employs to adjust the subproblem
complexity as needed. This is particularly useful for some LNS problems which do
not fix variables by themselves. The proposed primal heuristic has been implemented
within the MIP solver SCIP. An extensive computational study is conducted to com-
pare different LNS strategies within our ALNS framework on a large set of publicly
available MIP instances from the MIPLIB and Coral benchmark sets. The results of
this simulation are used to calibrate the parameters of the bandit selection strategies.
A second computational experiment shows the computational benefits of the proposed
ALNS framework within the MIP solver SCIP.
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1 Introduction

Mixed integer programming (MIP) is a powerful modeling paradigm with numerous
relevant industrial applications in scheduling, production planning, traffic optimization
[1] and countless more. For solving their models, many practitioners rely on state-of-
the-art commercial or noncommercial general purpose MIP solvers such as CBC [2],
CPLEX [3], Gurobi [4], SCIP [5,6], or XPress [7], all of which employ a variant of the
branch-and-bound algorithm [8,9]. As the branch-and-bound algorithm by itself may
be quite slow to provide good solutions, a rich set of primal heuristic algorithms has
been proposed to improve the primal convergence [10] of the solvers. Primal heuristics
can be further classified [11] into rounding algorithms, diving and objective diving
heuristics and feasibility-pump [11,12] procedures, and finally Large Neighborhood
Search (LNS) heuristics such as Relaxation Induced Neighborhood Search (RINS)
[13]. LNS heuristics typically restrict the search space of an input MIP instance to a
particular neighborhoodof interest. The resulting auxiliary problem (cf.Definition 2.1)
is again a MIP, which is then partially solved by a branch-and-bound algorithm under
reasonable working limits, and eventual solutions are kept for the main search process.
Many different LNS techniques have been proposed in recent years [13–18]. Their
computational effort makes it impractical to apply all of them frequently within the
solver. Since a priori it is unclear which approach might work best for a concrete
problem instance, the solver ideally learns during the solving process which LNS
heuristics should be applied, and more importantly, which ones can be deactivated.

Following this line of thought, we propose Adaptive Large Neighborhood Search
(ALNS) for MIP. We address in particular the question how to select from the set of
available auxiliary problems, which are introduced in Sect. 2. In Sect. 3, we propose
a suitable reward function for LNS heuristics to learn to discriminate between the
auxiliary problems during the search.We also propose a generic variable fixing scheme
that can be used to extend the set of fixed variables within a selected neighborhood to
reach a target fixing rate. This has a particular impact on LNS heuristics that do not
fix variables by themselves and may hence be too expensive on larger problems, such
as, e.g., Local Branching [14] (cf. Sect. 2.2).

The framework is obliged to trade off between exploration and exploitation, because
only one auxiliary problem is selected and evaluated at a specific call. Such a selection
scenario is also referred to as multi armed bandit problem, in which a player tries to
maximize their reward by playing one available action at a time and observing the
particular reward of this action only. We review three selection algorithms for the
multi-armed bandit problem in Sect. 4. Two numerical experiments are presented in
Sect. 5, a first one to tune the selection process of the ALNS heuristic, and a second
experiment to show that ALNS improves the MIP performance of SCIP on a large set
of publicly available benchmark instances from the collections of MIPLIB [19–21]
and Cor@l [22].
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1.1 Related work

The notion of an Adaptive Large Neighborhood Search has already been coined in
the literature, particularly in the context of Constraint Programming, where ALNS is
usually tailored to a particular application. The authors of [23]were the first to describe
an adaptive LNS technique for single-mode scheduling problems, which selects from
a finite set of so-called search operators, which are a CP analogue to the auxiliary
problems for MIP (see Sect. 2). Building upon their method, ALNS has also been
applied for different types of Vehicle Routing Problems, see [24] for an overview.
Throughout the remainder of this article, we will shortly write “ALNS” to denote our
proposed “ALNS for MIP”.

A different, MIP specific approach to learn how to run heuristics has been recently
proposed in [25]. Their work uses logistic regression to predict the probability of
success for different diving heuristics. The prediction is based on state information
about the current node and the overall search.Their approach is fundamentally different
from our proposed method in that it learns one regression for each individual diving
heuristic, but does not attempt to prioritize between them.

The selection strategies presented here are truly online learners. They do not use
any information that was collected offline before the search. The only feedback that the
selection method receives is the reward of the selected action. Attempts with popular
ML technology may consider additional features of the problem instance or search
statistics to train a more informed selection method.

Focusing on the feature-independent setup of the bandit selection strategies has
several advantages over an ML approach that uses features: First, the number of LNS
executions in a MIP solver is typically small and may not suffice to collect enough
training data for a feature based ML approach, whereas our simulation in Sect. 5.2
shows that the bandit strategies already learn useful information within a “typical”
number of calls of an LNS heuristic. An alternative may be to collect the data only
once to then train the ML approach offline and apply the learned model during the
search, but this violates the “online” scope of this paper.

Finally, an ML approach may lack explainability why it prefers certain auxil-
iary problems in certain situations. In contrast, especially the α-UCB bandit strategy
provides a simple explanation, namely the UCB-score, why it prefers one auxiliary
problem over another.

The first use of bandit related ideas inside MIP solvers concerns the integration
of a node selection rule [26] into CPLEX. This node selection approach balances
exploration and exploitation of the search tree. It is inspired by a successful method for
game search trees, which is related to the Upper Confidence Bounds (UCB) selection
algorithm [27] explained in Sect. 4.

2 Large neighborhood search heuristics for MIP

We propose Adaptive Large Neighborhood Search in the context of mixed-integer
programs (MIPs). A MIP P is an optimization problem of the form
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188 G. Hendel

min cT x

s.t. Ax ≥ b

l ≤ x ≤ u

x ∈ {0, 1}nbin × Z
nint−nbin × Q

n−nint

(MIP)

in n variables and m linear constraints, which are defined by a matrix A ∈ Q
m,n and a

right hand side b ∈ Q
m . Every variable x j , j ∈ {1, . . . , n} has an objective coefficient

c j ∈ Q and lower and upper bounds l j ∈ Q∪{−∞} and u j ∈ Q∪{+∞}, respectively.
Finally, without loss of generality, the first nint variables are further constrained that
they must take integer solution values. These are called the integer variables of P .
An important subset of the integer variables are the nbin ≤ nint binary variables
with a {0, 1}-domain. The shorthand notations for binary variables and nonbinary
integer variables, which are called general integer variables, areMbin := {1, . . . , nbin}
and M int := {nbin + 1, . . . , nint}, respectively. Binary variables are often used to
encode highly relevant yes/no-decisions in an optimization scenario such as, e.g., if a
facility should be built at a certain location. Therefore, binary variables often receive
a prioritized treatment by the neighborhoods in Sects. 2.1 and 2.2 . Every point of
Q

n satisfying all of the above constraints is called a solution of P , and the set of all
solutions of P is denoted by SP .

Dropping all integrality restrictions yields the LP relaxation of P . It is well known
that (MIP) in the presented general form is N P-hard to solve, which is why all
modern MIP solvers employ some form of branch-and-bound algorithm [8,9]. In
essence a clever enumeration, the branch-and-bound algorithm repeatedly partitions
the search space of an inputMIP P , mainly guided by integer variableswith noninteger
(fractional) values in the solution x lp to its LP relaxation. Since the LP relaxation has
fewer constraints than P andhence abroader feasible region, its optimal objective value
cT x lp is a lower bound to the optimal value c∗ of P . If, in addition, the LP solution
satisfies the integrality requirements x lpj ∈ Z ∀ j ∈ {1, . . . , nint}, then cT x lp = c∗

and x lp is an optimal solution for P . The minimum lower bound of all unprocessed
subproblems is called the dual bound and denoted by cdual.

In practice, however, the LP relaxation mostly provides feasible solutions only at
deeper levels, ie. later stages of the branch-and-bound search. Many different primal
heuristic algorithms have been proposed to overcome this weakness, which are highly
diverse in the computational effort they require. Starting from simple and fast heuris-
tics [28] that attempt to construct feasible solutions by rounding the LP solution, a
higher computational effort is usually required by diving or feasibility-pump [12] like
procedures, which solve sequences of modified LP relaxations. At the most expensive
end of the scale lies the class of Large Neighborhood Search (LNS) heuristics that
solve an auxiliary problem with branch-and-bound techniques.

Definition 2.1 (Auxiliary problem) Let P be aMIP with n variables. For a polyhedron
N ⊆ Q

n and objective coefficients caux ∈ Q
n , a MIP Q defined as

min
{
cTauxx | x ∈ SP ∩ N

}
(2.1)
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is called an auxiliary problem of P . The polyhedron N associated with Q is called its
neighborhood.

In other words, Q has the same number of variables (columns) as the original MIP
P and its solution set SQ is a subset of SP by construction. Definition 2.1 requires
N to be a polyhedron, ie., it should be expressed by a finite set of inequalities. The
definition includes N = Q

n . The auxiliary objective function caux can be different
from the objective function of P .

There are only a few different types of neighborhoods typically used. All LNS
heuristics have in common that they solve auxiliary problems around a set of reference
points. One of the most common classes of neighborhoods is derived by fixing those
integer variables whose solution values agree on a set of reference points.

Definition 2.2 (Fixing neighborhood) Let P be aMIPwith n variables and nint integer
variables. Let M ⊆ {1, . . . , nint} and x∗ ∈ Q

n denote a reference point. A fixing
neighborhood

Nfix(M, x∗) :=
{
x ∈ Q

n | x j = x∗
j ∀ j ∈ M

}

fixes the variables in M to their values in x∗.

Definition 2.3 (Matching set) For k ≥ 1, let X = {x1, . . . , xk} ⊂ Q
n with xi �= xi

′

∀i �= i ′ ∈ {1, . . . , k}. The matching set

M= (X) :=
{
j ∈ {1, . . . , nint} | xij = x1j ∀i ∈ {1, . . . , k}

}

describes all integer variable indices whose values agree on X . We call X the set of
reference points.

Definitions 2.2 and 2.3 admit the use of reference points such as LP solutions, which
are not (integer) feasible. Note that whenever a set of reference points X contains at
least one solution x ′ ∈ SP , the auxiliary MIP defined by the fixing neighborhood of
the matching set is feasible because X ⊆ Nfix(M=(X), x ′).

The task of finding an improving solution can be easily incorporated into Defini-
tion 2.1. Assume that an incumbent solution x inc ∈ SP and a dual bound cdual are
already available. For δ ∈ (0, 1), every solution x ′ ∈ SP that satisfies

cT x ′ ≤ (1 − δ) · cT x inc + δ · cdual︸︷︷︸
< cT x inc

< cT x inc

is clearly an improving solution. The set of solutions that are better than x inc by at
least δ is contained in the improvement neighborhood

N obj(δ, x inc) :=
{
x ∈ Q

n | cT x ≤ (1 − δ) · cT x inc + δ · cdual
}

. (2.2)
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190 G. Hendel

Therefore, whenever an incumbent solution is available, our auxiliary problems are
always defined over the combination N ′ of a neighborhood N with an improvement
neighborhood,

N ′ = N ∩ N obj
(
δ, x inc

)
,

to filter out all nonimproving solutions regardless of the choice of caux. The choice of δ
is an important control parameter toweigh between the difficulty (and feasibility) of the
auxiliary problem and the desired amount of improvement. The above neighborhood
notions suffice to describe several popular LNS heuristics.

2.1 Fixing neighborhood LNS heuristics

CombiningDefinitions 2.2 and 2.3 is very popular for constructing auxiliary problems.
Starting from a set of reference points X = {x1, . . . , xk}, a fixing neighborhood is
obtained with the help of the matching set of X . Since all points in X agree on their
matching set M=(X), the same fixing neighborhood is obtained regardless of the
anchor point

Nfix
(
M=(X), x1

)
= Nfix

(
M=(X), xi

)
∀i ∈ {1, . . . , k}.

RINS [13] Relaxation Induced Neighborhood Search (RINS) is one of the first gener-
ally applicable LNS approaches. The idea of RINS is to fix integer variables whose
solution values agree in the solution x lp of the LP relaxation at the current, local node,
and the current incumbent solution x inc. The neighborhood of the auxiliary MIP of
RINS is

NRINS := Nfix
(
M= ({

x lp, x inc
})

, x inc
)

.

Crossover [15] Another improvement heuristic is the Crossover heuristic, which is
inspired by the recombination of solutionswithin genetic algorithms.Crossover selects
k ≥ 2 already known, feasible solutions X = {x1, . . . , xk} ⊆ SP as reference points.
X does not necessarily contain x inc. The crossover neighborhood fixes

NCross := Nfix
(
M= (X) , x1

)
.

The authors suggest to use k = 2 solutions that are randomly selected fromall available
solutions, using a bias towards solutions with better objective.
Mutation [15] Furthermore, the authors of Crossover suggest a second LNS heuristic
calledMutation that fixes a random subset of integer variables of the incumbent solu-
tion. For a randomly chosen subset M rand ⊆ {1, . . . , nint}, themutation neighborhood
is defined as

NMuta := Nfix
(
M rand, x inc

)
.
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Mutation is the only LNS heuristic for which the difficulty of the auxiliary problem
can be directly controled, namely by a number or percentage of integer variables that
should be fixed. In contrast, all previous neighborhoods depend on the cardinality of
their matching set.
RENS [17] Starting from anLP relaxation solution x lp, theRelaxation EnforcedNeigh-
borhood Search (RENS) neighborhood focusses on the feasible roundings of x lp and
can be written as

NRENS :=
{
x ∈ Q

n |
⌊
x lpj

⌋
≤ x j ≤

⌈
x lpj

⌉
, j ∈ {1, . . . , nint}

}
. (2.3)

Similarly to the RINS heuristic, the aim of RENS is to construct feasible solutions
that are close to the LP relaxation solution and therefore have a near-optimal solution
value.

2.2 LNS Heuristics Using Constraints and Auxiliary Objective Functions

All approaches presented so far fix a set of integer variables using one or several
reference points. Local Branching [14] is the first LNS heuristic that uses a different
neighborhood.
Local Branching [14] Instead of fixing a set of variables and solving for improving
solution values on the remaining variables, the neighborhood of Local Branching is
restricted to a ball around the current incumbent solution. More formally, Let P be a
MIP with nbin ≥ 1 binary variables. Based on the Manhattan metric for x ∈ Q

n , the
binary norm1 of x is defined as

‖x‖b :=
nbin∑
j=1

|x j |.

Let x inc ∈ SP be an incumbent solution for P , and let dmax > 0 denote a distance
cutoff parameter. The local branching neighborhood is the restriction

NLBranch :=
{
x ∈ Q

n |
∥∥∥x − x inc

∥∥∥
b

≤ dmax

}

The reason for preferring the binary norm over the regular norm or the norm taking all
integer variables is practicality. The binary norm can be expressed as a linear constraint
without introducing auxiliary variables.
Proximity Search [18] A dual version of Local Branching has been introduced as
Proximity Search. Using the binary norm, Proximity seeks to minimize the binary
norm

∥∥x − x inc
∥∥
b through an auxiliary objective coefficient vector cProxi defined as

1 Strictly speaking, ‖·‖b is a seminorm because nonzero vectors can have binary norm of 0.
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192 G. Hendel

(cProxi) j :=

⎧
⎪⎨
⎪⎩

0 if j /∈ Mbin

1 if j ∈ Mbin and x incj = 0

−1 if j ∈ Mbin and x incj = 1

over the entire set of improving solutions:

NProxi := N obj(δ, x inc).

Zero Objective The second LNS heuristic that uses an auxiliary objective function
different from the original objective function is Zero Objective. As its name suggests,
it uses cZeroobj := 0 as auxiliary objective function. Zero Objective thereby reduces the
search for an (improving) solution to a feasibility problem. If an incumbent solution
x inc is available, Zero Objective searches the set of improving solutions NZeroobj :=
N obj(δ, x inc), and NZeroobj = Q

n otherwise.
DINS [16] Distance Induced Neighborhood Search (DINS) combines elements of the
Crossover, Local Branching, and RINS heuristics. Similarly to RINS, the intuition is
that improving solutions are located between the current incumbent solution x inc and
the solution to the node LP relaxation x lp. With the intention of reducing their integer
distance

∥∥∥x inc − x lp
∥∥∥
i
:=

nint∑
j=1

|x incj − x lpj |,

let J := { j ∈ M int | |x incj −x lpj | ≥ 0.5} denote the index set of general integer variables
with a difference of at least 0.5 between the two reference points. The J -neighborhood
of DINS is

NJ := {x ∈ Q
n | |x j − x lpj | ≤ |x incj − x lpj |, j ∈ J }.

This neighborhood restricts lower and upper bounds of the general integer variables.
Let XDINS ⊆ SP denote a subset of currently available solutions, containing x inc, to
the MIP at hand. The DINS neighborhood can be written as a combination of a total
of four neighborhoods

NDINS :=NJ

∩Nfix
(
M int \ J , x inc

)

∩Nfix
(
Mbin ∩ M=({x lp, x root-lp} ∪ XDINS), x inc

)

∩NLBranch.

The set of general integer variables outside of J is fixed to the values in the incum-
bent solution. Binary variables that have not changed between the root LP relaxation
solution x root-lp and x lp are fixed if they have taken the same value in all solutions in
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XDINS. In our implementation of DINS, we use between 1 ≤ |XDINS| ≤ 5 available
solutions with best objective, depending on howmany solutions are available. Finally,
the search is further restricted to a certain binary distance around the current incumbent
solution through an additional local branching neighborhood.

Remarks There is further work on LNS approaches that are not covered here. Note
that the only heuristics that do not use an incumbent solution are RENS and Zero
Objective. In [29], an extension of Local Branching has been proposed that starts from
an infeasible reference point. Such points are quickly produced by rounding or with a
few iterations of theFeasibility Pump [12]. In addition to the local branching constraint,
the auxiliary problem of [29] is extended by additional variables to model and penalize
the violation of constraints, inspired by the phase 1 of the Simplex algorithm. A recent
approach called Alternating Criteria Search [30] also starts from infeasible reference
points, and alternates between auxiliary problems with artificial feasibility objective
and the original objective function of the inputMIP in a parallel setting. The necessary
diversification is obtained by fixing subsets of integer variables indexed by a random
consecutive index set, which is a variant of Mutation [15] discussed in Sect. 2.1. The
heuristics presented in [31] formulate and solve auxiliary problems only for the general
integer variables as a final post processing step after fixing all binary variables based on
available, global problem structures such as cliques and implications between binary
and integer variables.

3 Adaptive large neighborhood search for MIP

The proposed Adaptive Large Neighborhood Search heuristic governs the execution
of a setQ of 8 available auxiliary problems from Sect. 2, which has been chosen as a
representative set of diverse LNS heuristics from the literature. Table 1 gives a quick
overview of the auxiliary problems used, as well as their individual preconditions.
ALNS is executed periodically during the main search. The execution schedule is
itself dynamic and explained in Sect. 3.2. In each round t = 1, 2, . . . , ALNS basically
performs the following steps.

1. Select an auxiliary problem Qt ∈ Q via a bandit selection strategy.
2. Apply generic (un-)fixing of integer variables depending on the target fixing rate

of Qt . Stop if generic fixing cannot be applied.
3. Setup and solve the auxiliary problem Qt .
4. Reward the auxiliary problem and update the bandit selection strategy based on the

outcome of Qt .

Different bandit selection strategies and their individual update procedures are
subject of Sect. 4. The solution process of the auxiliary problem uses a strict limit
on the number of branch-and-bound nodes to keep the overall computational effort
small. It may still be very expensive to solve auxiliary problems if the corresponding
neighborhood is large, especially since someneighborhoods donot fix integer variables
directly. In Sect. 3.1, a generic approach is explained for fixing additional variables to
reach any desired target fixing rate and hence reduce the complexity of the auxiliary
problem. Details on the dynamic adjustment of the target fixing rate and node limit are
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194 G. Hendel

given in Sect. 3.2. Finally, Sect. 3.3 introduces the scoring mechanism for rewarding
Qt .

3.1 Fixing and unfixing variables

Many of the neighborhood definitions in Sect. 2 consist in the fixing of a subset of
integer variables to their values in a solution xsol ∈ SP , which can be the incumbent
or an inferior solution for P at step t and depends on the selected auxiliary problem
Qt . The fixed set of Qt and its corresponding neighborhood NQt is defined as

Mfix
Qt

:=
{
j ∈ Mbin ∪ M int | NQt ⊆

{
x ∈ Q

n | x j = xsolj

}}
.

The size of the fixed set is denoted by nfixQt
:= |Mfix

Qt
|. Every auxiliary problem (action)

Q ∈ Q operated by ALNS has a target fixing rate φQ,t ∈ [0, 1) that changes between
rounds as explained in Sect. 3.2. It may happen that Qt does not reach its specified
target fixing rate, ie.

nfixQt
< φQt ,t · nint.

For example, the neighborhoods of Zero Objective, Proximity and Local Branching do
not fix any variables. It may also happen that φQt ,t is exceeded, which unnecessarily
restricts the search space. ALNS treats both cases very similarly by using a generic
variable fixing prioritization to sort the set of possible (un)fixings.

In the first case, φQt ,t · nint − nfixQt
additional integer variables from Mfix

Qt
=

{1, . . . , nint} \ Mfix
Qt

have to be selected. For two variables x j , x j ′ ∈ Mfix
Qt

with ref-

erence solution values xsolj , xsolj ′ , the fixing x j = xsolj is preferred over x j ′ = xsolj ′ , if,
in decreasing order of priority,

1. x j has a smaller distance than x j ′ from Mfix
Qt

in the variable constraint graph (see
below).

2. The reduced costs for fixing x j = xsolj are smaller than those for fixing x j ′ = xsolj ′ ,

credj ·
(
xsolj − x root-lp( j)j

)
< credj ′ ·

(
xsolj ′ − x root-lp( j

′)
j ′

)

3. The pseudo costs (see below) for fixing x j = xsol are smaller than for x j ′ = xsolj ′ ,

Ψ j

(
xsolj − x root-lpj

)
< Ψ j ′

(
xsolj ′ − x root-lpj ′

)
.

4. Randomly.

Variable constraint graph The idea behind the variable constraint graph is to maintain
several unfixed variables together in some constraints to increase the likelihood that
the auxiliary problem contains an improving solution. Intuitively, finding improving
solutions requires to alter several solution values per constraint. For a constraint with
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only a single unfixed variable in the auxiliary problem, it is unlikely that the reference
solution value of this variable can be altered in the direction of an improving solution.

For a given MIP P , the variable constraint graph GP is a bipartite graph with one
node for each variable and constraint of P , V (GP ) = {v j | j ∈ {1, . . . , n}}∪{w j | j ∈
{1, . . . ,m}}. Its edges E(GP ) := {(v j , wi ) | Ai j �= 0} correspond to the nonzero
entries of the matrix A. Distances in GP are breadth first distances. First of all, each
node has a distance of 0 to itself. Starting from a variable node v j , all variables with
an edge to one of the constraint nodes adjacent to v j have a distance of 2 from v j .

All variables which are reachable via another constraint from any of the nodes with
distance 2 have a distance of 4, and so on. Since all distances between variables in GP

are even, we divide all breadth-first distances by two.
The distance of a variable node v j from the nodes corresponding to Mfix

Qt
is the

minimum distance to any of the variable nodes in Mfix
Qt
. It is determined by queuing

all variable nodes in Mfix
Qt

into the initial queue for breadth first search.
If the original problem has block structure, the variable prioritization concentrates

additional fixings on those blocks with a nonempty intersection in Mfix
Qt
. Related ideas

are used, e.g., in presolving for detecting independent components of a MIP [32], or
within Graph-Induced Neighborhood Search (GINS) [33].

Reduced cost score The cost based scores used as tie breakers in steps 2 and 3 both
penalize a deviation of the potential fixing from an LP solution at the root node of the
branch-and-bound search. After the initial LP relaxation at the root of the search, most
MIP solvers solve a sequence of further LP relaxations during their cut separation
loop.

The first associated penalty uses reduced costs. Reduced costs are part of every
optimal simplex tableau. At the root node, reduced costs during the LP relaxations
are stored per variable, to enable so-called root reduced-cost strengthening during the
search. For each variable x j , we initialize its associated root reduced costs to those
observed in the initial optimal LP solution. At each subsequent LP, each time we
encounter higher reduced costs than the recorded reduced costs for x j , they are stored

togetherwith the correspondingLP solution value x root-lp( j)j . Therefore, theLP solution
values used to compare the potential fixings of j and j ′ may come from different LP
solutions. Ties in the reduced cost comparison can occur if, for example, both variables
have a corresponding score of 0, which is always the case if both variables are basic
in all LP solutions at the root node.

Reduced costs are 0 for all basic variables in the optimal simplex tableau. The LP
solution x root-lp( j)j of each nonbasic variable x j is either l j or u j . Nonbasic variables

at their lower bound have a reduced cost coefficient credj ≥ 0 and variables at their

upper bound have credj ≤ 0. In both cases, the product credj ·
(
xsolj − x root-lp( j)j

)
is

nonnegative. It is a lower bound on the objective deterioration by fixing x j = xsolj ,
hence the preference for variable fixings with smaller reduced cost scores.
Pseudo cost score Pseudo costs [34] are a common aggregate of branching information
on the variables. The pseudo cost score estimates the potential dual bound degradation
after fixing x j = xsolj . As reference serves the final root LP solution x root-lp on which
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the solution process started branching. Given the average dual bound increase Ψ +
j

(Ψ −
j ) per unit fractionality after branching upwards (downwards) on a variable x j for

j ∈ {1, . . . , nint}, the pseudo cost score is computed as

Ψ j : Q → Q≥0

z �→
{

Ψ +
j · z, if z ≥ 0

−Ψ −
j · z, if z < 0.

(3.1)

Computing Ψ j (xsolj − x root-lpj ) considers fixing x j = xsolj as a branching restriction

from x root-lpj /∈ Z in the direction of xsolj , upwards if xsolj > x root-lpj and downwards
otherwise. The pseudo cost score estimates the increase in the dual bound after fixing j .
As an example, assume that a binary variable x j has an LP solution value x

root-lp
j = 0.4

and a reference solution value of xsolj = 1.Assume that the average dual bound increase

has been Ψ −
j = 10 for branching down on x j and Ψ +

j = 5 for branching up. The

pseudo costs for the fixing x j = xsolj is calculated asΨ j (xsolj −x root-lpj ) = Ψ +
j ·0.6 = 3.

If the solution value had been 0 instead of one, the corresponding pseudo cost score
is Ψ j (0 − x root-lpj ) = −Ψ − · (−0.4) = 4 for branching down on x j .

The pseudo cost score summarizes the branching history of a variable. Like reduced
cost scores, pseudo costs are always nonnegative. The pseudo cost score Ψ j (xsolj −
x root-lpj ) of a fixing is only an estimate of the impact of the fixing of x j on the objective,
in contrast to reduced cost scores. As for reduced costs, we prefer additional fixings
with smaller pseudo cost scores to increase the likelihood of good solutions in the
remaining auxiliary problem.
Unfixing variablesOnly slight details are changed if the neighborhood was too restric-
tive, such that nfixQt

− φQt ,t · nint variables from Mfix
Qt

should be selected and unfixed
(relaxed). Distances are now computed in the variable constraint graph starting from

Mfix
Qt
, and variables with a small distance from Mfix

Qt
are preferably relaxed to keep

the auxiliary problem connected. Since we use the cost tie breakers as estimate of the
objective degradation of a fixing in the auxiliary problem, variables are relaxed prefer-
ably if they have a large reduced cost score or, in case a tie occurs, a large pseudo cost
score. Finally, if none of the scores discriminate between two variables, the prefer-
ence is given by a random score assigned to each variable. Generic (un-)fixing within
ALNS is only applied if the target fixing rate φQt ,t is missed by a tolerance of 10%,
i.e. only if nfixQt

/∈ [(φQt ,t − 0.1) · nint, (φQt ,t + 0.1) · nint]. As the fixings of the RENS
neighborhood depend solely on the LP solution, it is the only auxiliary problem for
which there is no suitable integer feasible reference solution to use for generic fixings.
Generic unfixings, however, are always possible, even for RENS.

3.2 Dynamic limits

Good limits on the computational budget of an LNS heuristic are essential to make it
useful inside aMIP solver. To this end, a tradeoffmust bemade between the intensity of
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the search inside the auxiliary problem and the runtime. For ALNS, the complexity of
the auxiliary problem and the budget are adapted dynamically between the individual
calls to ALNS.

All of the following dynamic decisions consider the auxiliary problem Qt at the
t-th round of ALNS (t = 0, 1, . . . ) and its solution status stat (Qt ) which can be one
of

– inf , if Qt was infeasible,
– opt, if Qt was solved to optimality
– sol, if Qt provided an improving solution for P
– nosol, if no improving solution was found searching Qt .

Target fixing rate φQ,t The first dynamic adjustment of the auxiliary problem com-
plexity over time is described in [15], together with the introduction of the Crossover
and Mutation LNS heuristics (cf. Sect. 2), which are available in ALNS. The authors
of [15] control the complexity of an auxiliary problem Qt by specifying the amount
of integer variables that should be fixed before solving the auxiliary problem Qt . The
intuition is that the difficulty of Qt decreaseswith increasing fixing rate. In the notation
of the present work, the target amount of fixed integer variables at round t is specified
by a target fixing rate φQ,t ∈ [0, 1) for each Q ∈ Q of ALNS.

For Q ∈ Q, let TQ(t)denote the number of times that Q has been selected, including
round t . The fixing rate is modified according to the status in round t as

φQ,t+1 =

⎧⎪⎨
⎪⎩

φQ,t , if Q �= Qt or stat (Qt ) = sol,

max{0.1, φQ,t − 0.75TQ (t) · 0.2}, if stat (Qt ) ∈ {inf, opt}
min{0.9, φQ,t + 0.75TQ (t) · 0.2} if stat (Qt ) = nosol

If Qt was too easy for the solver, ie. it could be solved to optimality or infeasibility
within a given node budget, the fixing rate for the next iteration is decreased. If no
new solution was found, the target fixing rate is increased. If a solution was found,
but the search could not be completed, the fixing rate is kept. The additive change of
the fixing rate is 0.2 initially, which is multiplied with 0.75 after every update step,
exactly as in [15]. The use ofmax andmin ensures that the target fixing rate stayswithin
10% and 90%. In our implementation, those two values are parametrized and can be
individually set for every auxiliary problem. Every target fixing rate is initialized by
φQ,1 = 0.9, which represents the most conservative value in the allowed range of the
fixing rate2, see Sect. 5 for details.
Stall node limit νlimt The main budget limitation of ALNS is a limit on the number of
consecutive branch-and-bound nodes during which no improving solution is found,
the so-called stall node limit. The stall node limit νlimt+1 for the next round of ALNS is
adjusted based on the results of the auxiliary problem of round t as follows.

νlimt+1 =
{

νlimt , if stat (Qt ) ∈ {opt, inf, sol}
min{�νlimt · 1.05� + 1, 5000}, if stat (Qt ) = nosol

2 controled via 8 user parameters heuristics/alns/*/maxfixingrate all defaulting to 0.9.
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ALNS uses an affine linear function of the branch-and-bound nodes νbb in the main
search to limit the search effort inside auxiliary problems. Let νQi denote the amount
of nodes used for searching the auxiliary problem Qi at round 1 ≤ i ≤ t − 1, and let
s(t − 1) denote the total number of improving solutions found by ALNS until round
t − 1 inclusively. Concretely, the next round t of ALNS is called as soon as the main
search nodes νbb have progressed such that

κ0 + s(t − 1) + 1

(t − 1) + 1
· κ1 · νbb −

t−1∑
i=1

(100 + νQi ) ≥ νlimt . (3.2)

Here, κ0 is an initial budget of ALNS and κ1 is the node budget relative to νbb. The
initial budget κ0 allows to execute ALNS already early during the tree search when
νbb is small. When the search progresses and the initial budget κ0 has been spent after
a (usually small) number of ALNS rounds, the relative node budget κ1 is the main
parameter to control ALNS resources relative to the main search. In (3.2), the relative
budget is increased or decreased based on the total number of improving solutions
that ALNS contributed. With this strategy, ALNS slowly fades out if it does not find
improving solutions. The last term expresses the total resources used so far by ALNS,
with an additional 100 nodes per round to account for the setup costs of each Qi .

In SCIP, each primal heuristic is executed according to its frequency parameter
f ≥ 0 that determines the depth levels of the search tree at which the heuristic is
called. For example, a heuristic with frequency f = 1 is called at every branch-
and-bound node, whereas a heuristic with a frequency of 5 is only called when the
search focuses nodes in depth 0, 5, 10, etc. In our experiments in Sect. 5, our ALNS
implementation has its frequency set to 20. Because of the budget computation in
Eq. (3.2), ALNS is not statically called at every depth 0, 20, 40, etc., but only when,
in addition, the budget computation (3.2) allows for the next round. This is true for
the standalone LNS heuristics RINS and Crossover, as well.

In contrast to the target fixing rate, the stall node limit νlimt is a global limit inde-
pendent of the selected auxiliary problem. This design choice has been made because
the target fixing rate is supposed to be the main driver to adjust auxiliary problem
difficulty.

3.3 A reward function for auxiliary problems

All of the bandit selection strategies presented in Sect. 4 require the definition of a
suitable reward function. Intuitively, the reward should always be higher for auxiliary
problems that lead to improvements over the current incumbent solution and also
depend on the achieved objective quality. Furthermore, between unsuccessful auxiliary
problems, the reward should still distinguish if the solution process failed fast or if it
required a lot of computational resources. In order for some of the selection strategies
in the following Sect. 4 to work correctly, we require that a reward should be in the
interval [0, 1]. A reward of 0 is the worst possible score, i.e., the maximum penalty.

Let Qt ∈ Q denote the selected auxiliary problem in round t > 0, and let cold :=
cT x inc denote the incumbent value before Qt is solved, if an incumbent solution
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x inc ∈ SP is available, or cold := ∞ otherwise. Similarly, cnew is the objective of the
best known solution after Qt has been solved. As before, let νlimt and νQt denote the
stall node limit and amount of nodes used by Qt , respectively.

Two reward functions are combined to reward both the presence of a new incumbent
solution and the objective improvement. The former is expressed by the solution
reward

r sol(Qt , t) :=
{
1, if stat (Qt ) ∈ {opt, sol},
0, else.

The improvement in solution quality is measured by the closed gap reward

rgap(Qt , t) := cold − cnew

cold − cdual
,

which evaluates to 0 if no improving solution could be found, and to 1 if the new
solution has an objective that is equal to the dual bound (and hence optimal for P).
As a convention, the closed gap reward is 1 if Q contributes the first solution to the
problem. Since most neighborhoods require a known solution as input (cf. Table 1),
this is only possible with RENS and Zero Objective.

Since the time measurement in some MIP solvers including SCIP is not determin-
istic, we use the number of nodes to introduce the effort ξ(t) as

ξ(t) = (
1 − φQt ,t

) νQt

νlimt
. (3.3)

The effort ξ(t) serves as a deterministic approximation of run time spent on the search
in the auxiliary problem. In order to compensate for different target fixing rates, ξ(t)
uses a scaling by the remaining number of free integer variables. The generic (un)fixing
based on the variable prioritization from Sect. 3.1 ensures that the fraction of fixed
integer variables in the subproblem is approximately equal to the current target fixing
rate. The effort is≥ 1 if the stall node limit was exhausted (νQt ≥ νlimt ) and no integer
variables were fixed by the neighborhood of Qt . If solving Qt fails to produce a better
solution, the last of the three individual reward functions is the failure reward

r fail(Qt , t) :=
{
1, if stat (Qt ) ∈ {opt, sol},
1 − min{ξ(t), 1}, else,

which becomes smaller depending on the effort spent in an auxiliary problem, if no
improving solution was found.

With two additional convex combination parameters η1, η2 ∈ [0, 1], the reward
function of ALNS combines all three rewards into
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r alns(Qt , t) := η1r
fail(Qt , t) + (1 − η1) · η2r sol(Qt , t) + (1 − η2)rgap(Qt , t)

1 + ξ(t)
(3.4)

The first control parameter η1 separates the reward between runs that were success-
ful and runs that failed to improve the incumbent solution. The second parameter η2
adjusts between the solution and the closed gap rewards. The result, which is again a
reward in the interval [0, 1], is scaled by the effort involved to reward fast auxiliary
problemsmore. For the remainder of this work, we propose to use values η1 = 0.5 and
η2 = 0.8 as an intuitive choice which reserves the bottom half of the reward interval
[0, 1] for unsuccessful LNS executions, and the upper half for improvements.

The left part of Fig. 1 depicts the individual elements of the ALNS reward function
visually. The right part of the figure illustrates three reward examples of hypothetical
outcomes after an auxiliary problemhas been solved. Starting from the bottom, assume
the measured effort (3.3) was 0.8, for example because 80% of the integer variables
were fixed and the entire node budget was exhausted. Since no new solution has been
found (xold = xnew), the two other rewards r sol(Qt , t), rgap(Qt , t) are both zero,
which yields a reward of r alns(Qt , t) = 0.1. The middle example does not contribute
a new solution, but achieves an effort of 0 and was therefore much faster than the
first example. An effort of zero can only be attained if the auxiliary problem could be
solved within 0 nodes, i.e. during presolving. Such a case most likely occurs when the
auxiliary problem is proven infeasible because of the improvement neighborhood 2.2,
which restricts the search space to solutions that improve the primal bound by at
least 0 < δ < 1. Note that this infeasibility does not mean that no solution for
the original MIP P within the improvement neighborhood exists, it only means that
the targeted objective improvement cannot be achieved by the fixings in the current
auxiliary problem. Therefore, the adaptive fixing rate will be lowered to broaden the
search space for the next round in which Qt is selected again. This outcome receives
a reward of 0.5, which is best possible for rounds of ALNS that do not contribute a
new solution.

The last hypothetical outcome contributes a new incumbent solution which closes
the gap by 50% and therefore achieves a gap reward of 0.5. Every round with a new
incumbent solution automatically achieves a solution reward of 1, which has been
omitted from the figure for a better readability. In combination with an effort of 0.25,
this round achieves a reward of 0.72.

4 Selection strategies for multi armed bandit problems

The goal of the present work is a framework that selects among the LNS heuristics
presented in Sect. 2 and that tries to maximize their utility under a shared computing
budget. Such a sequential decision process from a finite set of actions (auxiliary prob-
lems) with unknown outcome appears in the literature asMulti Armed Bandit Problem
[27].

The basic multi armed bandit problem can be described as a game, which is played
over multiple rounds. In every round t = 1, 2, . . . , the player chooses one action
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Fig. 1 Left: Diagram of the proposed reward function. Right: Three hypothetical outcomes and their reward
on the [0, 1]-scale

Qt ∈ Q from a finite set of available actions. In return for playing Qt , the player
observes a reward r(Qt , t) ∈ [0, 1] for the selected action. The aim for the player
is to maximize their total revenue

∑
t r(Qt , t). Since only the reward of the selected

action can be observed at a time, every suitable algorithmic strategy must find a good
balance between exploration across all actions and exploitation of the best action seen
so far.

Let TQ(t) := ∑t
i=1 1Qi=Q denote the number of times that action Q has been

selected until round t . The average reward of Q is

r̄Q(t) := 1

TQ(t)

t∑
i=1

1Qi=Qr(Q, i),

where we define r̄Q(t) = 0 as long as TQ(t) = 0. The selection strategies below
ensure that during the first rounds, all reward averages are meaningfully initialized by
playing each action once in randomized order.

Algorithm 1: ε-greedy [35]
Input: Set of actionsQ, parameter ε ≥ 0

1 t ← 0
2 while not stopped do
3 t ← t + 1

4 εt ← ε ·
√

|Q |
t

5 Draw et ∼ U ([0, 1]) /* drawn from uniform distribution */
6 if et ≤ εt /* Selection of next action */
7 then
8 Draw Qt ∼ U (Q)

9 else
10 Qt ← argmax

Q∈Q
r̄Q(t − 1)

11 Update r̄Qt (t) by the observed reward r(Qt , t)
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Algorithm 1 [35] is a very simple, randomized selection strategy for themulti armed
bandit problem. It uses the short notation U (X) to denote the uniform distribution
over a set X . The initial lack of reward information is compensated by a randomized
selection of the first few actions. The amount of random selections decreases at the
speed of 1√

t
and can be controled by the input parameter ε. With increasing t , it

therefore becomes less and less likely to choose an action at random, whereas the
probability of greedily exploiting the best action increases.

A different, more deterministic approach [36] uses Upper Confidence Bounds
(UCB) based on the principle of optimism at the face of uncertainty. Assume that
Q is an ordered |Q|-uple (Q1, Q2, . . . , Q|Q|). The selection strategy α-UCB selects

Qt =
⎧⎨
⎩
argmax
Q∈Q

{
r̄Q(t − 1) +

√
α ln(1+t)
TQ(t−1)

}
if t > |Q|,

Qt if t ≤ |Q|.
(4.1)

With thegoal to ultimatelyfind the actionQ∗ withmaximumexpected reward, theUCB
algorithm selects the action that maximizes the sum of the average reward observed
so far and its associated confidence bound, which depends on the number of times
that Q has been selected in proportion to the (logarithmic) overall number of rounds.
The rationale behind this is that also inferior actions become more attractive to the
algorithm after they have not been selected for a while.

The case distinction in Eq. 4.1 is necessary to obtain a meaningful initialization
of all sample means and because TQ(|Q|) ≥ 1 for all Q ∈ Q is required for the
confidence bound in Eq. 4.1 to be well defined. The width of the confidence bound
around the average reward is further controlled by a parameter α ≥ 0. The special
case of α = 0 yields a completely greedy exploration strategy that does not take into
account the upper confidence bound. In the first case of Eq. 4.1, eventual occuring ties
are broken uniformly at random.

A visual impression of the influence of the parameter α in the α-UCB Eq. (4.1)
is given in Fig. 2. Assume there are only two actions Q = (Q1, Q2) available, both
of which return a constant reward every time they are played, r(Q1, t) = μ1 and
r(Q2, t) = μ2. We assume that μ1 > μ2 such that after the two required rounds to
initialize the average reward of each available action, Q1 will be selected in round 3
because of its better average reward r̄Q1(2) = μ1. The question is after how many
rounds the weaker action Q2 is played by α-UCB for the second time, which happens
when itsUCB score exceeds theUCB score of Q1. As alreadymentioned, for a value of
α = 0, α-UCB continues to play Q1 without considering Q2 again. For positive values
of α, Q2 will be reconsidered depending on the reward difference Δ := μ1 − μ2. We
denote by T (Δ, α) the round in which Q2 will be played the second time. Figure 2
shows how this function looks like for different values of Δ between 0 and 1 at three
distinct values α ∈ {0.01, 0.1, 1}. The y-axis uses a logarithmic scale. Values of T (·, ·)
that exceed 106 have been removed. In general, all three curves are increasing with
increasing reward difference Δ. At the smallest α = 0.01, Q2 will be selected within
the first 100 rounds only if the reward difference Δ is smaller than 0.2, whereas for
reward differences larger than 0.35, Q2 will not be selected within the first 1 million
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Fig. 2 Rounds until α-UCB reconsiders the weaker of two actions as a function of the reward difference Δ

and the confidence width α

rounds. At a value of α = 1, Q2 will be selected again within the first ten rounds
even for Δ = 0.99. In the LNS setting, the situation is more complicated than in this
example since we have eight actions to select from and expect nonconstant rewards.

Algorithm 2 [37] is a third approach for the multi armed bandit problem. It is
briefly called Exp.3, which is an abbreviation of “Exponential Weight Algorithm for
Exploration and Exploitation”. In each round t , the next action is selected randomly
from a probability distribution defined by marginal probabilities (weights) pQ,t for
each Q ∈ Q. After receiving the reward r(Qt , t), the weight update is performed in
two steps. First, the cumulative reward RQt of the selected action Qt is updated in
line 7. The cumulative reward divides the observed reward by the probability to select
Qt , thereby emphasizing actionswith a high reward compared to their current selection
probability. Second, the probabilities for the next iteration t + 1 are computed as a
convex combination of two probability distributions based on the choice of γ ∈ [0, 1].
In the two extreme cases, the algorithm either draws from a uniform distribution
(γ = 1) in the next iteration, or from a distribution defined over the cumulative rewards
(γ = 0), using a softmax normalization. This normalization assigns the largestweights
to actions with high cumulative reward, while the probabilities on actions with low
cumulative reward vanish fast.

Remarks Depending on the nature of the reward distribution, two main scenarios
of multi armed bandit problems are distinguished, see, e.g., [27]. In the stochastic
scenario, the observable rewards r(Q, t) for every action Q ∈ Q are independent,
identically distributed (i.i.d.) random draws over time from a probability distribution
with unknown expected reward μQ ∈ [0, 1]. In the stochastic scenario, a good strategy
should play an action Q∗ with maximum expected reward μQ∗ ≥ μQ′ ∀Q′ ∈ Q as
often as possible.

In the adversarial scenario, the player faces an opponent that chooses the rewards
with the goal to maximize the player’s regret–the discrepancy between the player’s
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Algorithm 2: Exp.3
Input: Set of actionsQ, convex combination parameter γ ∈ [0, 1]

1 pQ,1 ← 1
|Q | , RQ ← 0 ∀Q ∈ Q

2 t ← 0
3 while not stopped do
4 t ← t + 1
5 Draw Qt according to probability distribution pQ,t
6 Observe reward r(Qt , t)

7 RQt ← RQt + r(Qt ,t)
pQ,t

8 foreach Q ∈ Q do

9 pQ,t+1 ← (1 − γ )
exp(RQ )∑
Q′ exp(RQ′ ) + γ

|Q |

reward and the best possible reward. The opponent may take into account all choices
previously made by the player, but does not know the selected action at time t . After
the player and the opponent have each made their decisions, the player receives the
reward r(Qt , t) for the selected action only, while the opponent is informed about the
player’s choice Qt . It is noteworthy that in the adversarial scenario, the opponent has
an incentive to play rewards different from 0 in every round of the game because the
player’s regret is minimal in every round t where all actions have a reward of 0. For
a player in the adversarial scenario, a good strategy must necessarily be randomized
in some way because every deterministic algorithm is easily fooled by the opponent,
who can minimize the player’s total reward by assigning a reward of 0 to the player’s
deterministic next action, and 1 to all other actions.

Intuitively, the adversarial scenario seemsmuchharder to approach than the stochas-
tic scenario because the latter is indifferent to choicesmade by the player, and estimates
of the expected rewards can be built over time. It turns out that it is possible, even
for the adversarial scenario, to create strategies that yield an asymptotically optimal
reward in their respective scenario. While the ε-greedy and α-UCB strategies can be
made asymptotically optimal for the stochastic scenario, the Exp.3 selection strategy
and its variants are a state-of-the-art strategy for the adversarial scenario. The reader
is referred to the survey [27] for more information about and variants of the discussed
selection strategies.

Both ε-greedy and α-UCB address the stochastic scenario, in which the distribution
of rewards is fixed across all rounds. This assumption is violated for the proposed
reward function (3.4) for LNS auxiliary problems because some ALNS rounds may
be executed after an optimal solution has already been found, such that no auxiliary
problem can contribute an improving solution and receive a reward of 0.5 or higher
anymore. But even after an optimal solution has been found, the proposed reward
function prefers quicker fails, preferably detected during the presolving of the auxiliary
problem, over actions that consume a lot of resources thatmay be invested in improving
the dual bound at this stage of the main search. Therefore, at each stage of the search,
we seek to maximize the reward of the selected actions, although the potential payoff
may change over time. An LNS auxiliary problem that was not successful at its first
attempt may become useful later during the search, if initialized from a different
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reference solution. In particular α-UCB and Exp.3 try to choose inferior actions from
time to time, which is desirable in the context of MIP primal heuristics to diversify
the search. The advantage of α-UCB in this respect is its explainability. In contrast to
Exp.3, α-UCB has a deterministic explanation, the UCB score itself, why it prefers
which action in each round.

5 Computational results

The proposed ALNS framework has been implemented and tested as an additional
plugin on top of SCIP 5.0, using CPLEX 12.7.1 as the underlying LP solver. All 8
auxiliary problems listed in Table 1 and their corresponding neighborhoods have been
incorporated intoALNS.As instance set, we use the union of threeMIPLIB collections
3.0, 2003, and 2010, [19–21] and the Coral [22] instance set, totaling to 666 instances.
The computational experiments for the present work are split into two parts. The first
part is an offline simulation that uses reward information about all auxiliary problems
in each call toALNS. This information is used to compare the performance of auxiliary
problems, and to calibrate the parameters of the bandit selection strategies fromSect. 4.
Section 5.3 describes the results that we obtained with the ALNS framework inside of
SCIP using the readily calibrated α-UCB selection strategy. Since a lot of parameters
have been introduced in the previous sections, Table 2 summarizes the parameter
settings used for the simulation and the performance experiments in this section.

5.1 Auxiliary problem comparison

The first part aims at providing a fair comparison between the auxiliary problems in
the ALNS framework. Instead of choosing a single auxiliary problem, all of them
are executed one after another at each call to ALNS, and their individual rewards are
recorded. In order to ensure fairness, every found improving solution is only used to
compute the reward function. However, SCIP does not store these solutions as they
could potentially impact the neighborhoods of the subsequent auxiliary problems at
this call. All dynamic decisions from Sect. 3 are deactivated for this experiment. The
target fixing rate is kept fixed at {0.1, . . . , 0.9} in steps of 0.2, with a tolerance of
±0.1. Also the stall node limit is kept fixed at 50 nodes. The budget computation (3.2)
skips the dynamic adjustment based on the number of solutions that ALNS found,
such that ALNS is executed more statically according to its frequency schedule as
soon as the budget computation allows another run. Recall that the additional generic
fixings/unfixings are only applied if the obtained fixing rate lies outside of the tolerance
interval. The experiments have been conducted on a Linux cluster using Ubuntu 16.04,
with a time limit of 5h for each instance. All runs are single threaded.

Not all neighborhoods are applicable to all MIP instances. For example, Local
Branching and Proximity require instances with binary variables. Zero Objective
requires a nonzero objective function. For this simulation experiment, we focus on
those instances with binary variables and nonzero objective function such that all
neighborhoods are applicable. Furthermore, on an instance whichmeets those require-
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Table 3 Number of (successful) rounds of ALNS on 494 instances

Total across instances Instances with …rounds

Fixing rate Rounds Success Rate > 10 > 20 > 30 > 40

0.1 9037 841 0.093 227 169 124 93

0.3 9233 975 0.106 234 172 131 92

0.5 9789 1005 0.103 237 182 140 103

0.7 9925 1196 0.121 241 189 138 97

0.9 10085 1337 0.133 246 187 142 101

ments, Crossover requires at least 2 available solutions. Furthermore, RENS and RINS
require a feasible LP relaxation at the local node. We wait until enough solutions have
been found during the main search before ALNS is executed. Recall from Sect. 3.1
that RENS is special in that generic fixing cannot be applied to RENS because its
neighborhood relies solely on the LP solution at the current node, but no feasible
reference solution is involved. Whenever RENS does not attain its targeted fixing rate
during the simulation, RENS obtains a reward of 0.

In total, our data set comprises 48k records over 494 instances at five tested fixing
rates. Table 3 shows the number of ALNS rounds for every tested fixing rate, where
each round consists in searching all eight available auxiliary problems once. The
rounds range from 9037 at a fixing rate of 0.1 to 10085 at a fixing rate of 0.9. The
number of executed rounds is different for every fixing rate because the auxiliary
problems become simpler with increasing fixing rate, such that more rounds of ALNS
can be executed during the search. The total number of rounds where at least one of
the tested auxiliary problems contributes a solution is shown in the column “Success”
and the corresponding proportion in column “Rate”. Across the tested fixing rates, the
success rate ranges from 9.3% to 13.3% and increases with the fixing rate. In a round
in which none of the auxiliary problems contribute a solution, the selection process
is only required to select an auxiliary problem that fails fast, but cannot contribute
to the overall search process with an incumbent solution. Therefore, we will report
all simulation results on the data set restricted to the successful rounds shown in the
column “Success”.

Furthermore, Table 3 also shows the numbers of instances for which more than 10,
20, 30, and 40 ALNS rounds were executed during the data collection. For example,
more than 90 instances admit at least 40 rounds of ALNS. A certain number of rounds
is necessary for the bandit selection strategies. The selection strategy α-UCB, for
example, tries every action once during the first eight rounds to initialize the average
reward. This α-UCB initialization phase is completed for more than 220 instances
for all different fixing rates as shown in the table. On average, ALNS was executed
between 18.3 and 20.4 times per instance, depending on the fixing rate.

The left part of Fig. 3 shows the average solution rate of each auxiliary problem at
the different testedfixing rates. The solution rate is the fraction of successful executions
of an auxiliary problem/selection strategy. In this section, we show the solution rate as
additional measure of the quality. When we compare auxiliary problems across fixing
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Fig. 3 Solution rates (left) and average rewards (right) at different fixing rates

rates, the solution rate does not depend on the fixing rate like the reward (3.4). For
each fixing rate, we compute the solution rate and average rewards on the subset of
records on which at least one of the possible auxiliary problems finds a solution, as
shown in the column “Success” of Table 3. At the smallest fixing rate of 0.1, RINS has
the highest solution rate of approximately 0.56, which means that RINS contributes a
solution in 56% of the 841 cases at this fixing rate in which any auxiliary problem is
successfully applied.

In Fig. 3, we try to detect trends for individual auxiliary problems when the fixing
rate is varied. At the same time, these charts allow for comparisons between different
LNS techniques. For example, it can be observed that RINS, DINS, and Local Branch-
ing are almost consistently the top threemethods across all tested fixing rates. All three
achieve their highest solution rate at the highest tested fixing rate of 0.9, where DINS
has the highest solution rate of 0.62 across all tested techniques and fixing rates. In
contrast, the depicted solution rates of Crossover, RENS, andMutation clearly exhibit
a decreasing trend towards higher fixing rates.

The ranking between the auxiliary problems is similar regarding the obtained aver-
age rewards shown in the right part of Fig. 3. As before, we restrict ourselves to the
rounds counted as “Success” in Table 3. A higher average reward results from an
increased solution frequency, a better solution quality, and/or less effort to solve the
corresponding auxiliary problems. In the figure, the average rewards of most auxil-
iary problems clearly increase with the fixing rate. This is partly because the reward
definition (3.4) penalizes neighborhoods of auxiliary problems with a high fixing rate
less strictly. At a particular fixing rate, the different rewards can be compared well.

RINS, Local Branching, and DINS also achieve high average rewards. The highest
increase in average reward can be observed for Proximity and Zero Objective. At a
high fixing rate of 0.9, RENS achieves the smallest average reward. The reward for
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Fig. 4 Reward comparison of RINS and mutation

Mutation only increases up to a fixing rate of 50%. Its reward is almost constant for all
fixing rates ≥ 50%. RENS lacks a reference solution for additional, generic fixings,
which is why it can run less frequently than others. A possible explanation for the
decreasing solution rate of Crossover is the random selection of reference solutions.
Searching a narrow auxiliary problem around a reference solution far away from the
incumbent may lower its chances to find a better solution. The lower solution rates of
Mutation are remarkable because RINS andMutation use the same reference solution,
namely the incumbent. RINSmay even need additional generic fixings to reach higher
target fixing rates, whereas the Mutation scheme always fixes the targeted percentage
of integer variables. The large discrepancy in their solution rates indicates that more
informed approaches such as the LP driven neighborhoods of RINS or DINS are the
most important fixing schemes.

One may ask the question whether a well-performing auxiliary problem such as
RINS entirely dominates the less performant auxiliary problems such asMutation. Fig-
ure 4 illustrates the measured rewards for RINS and Mutation in a histogram, which
shows the distribution of their reward difference r alns(QRINS, t) − r alns(QMutation, t)
regardless of the fixing rate at which these rewards were recorded. For consistency,
only rounds are shown that are marked as “Success” in Table 3. If the reward dif-
ference is positive, RINS achieves a higher reward than Mutation. RINS has a clear
tendency to score higher. However, also the execution of Mutation can be beneficial.
Mutation reaches a higher reward in about 30% of the cases. Analogous comparisons
for other pairs of neighborhoods yield similar results. Based on these observations, it
is reasonable to enable all available auxiliary problems by default, and to rely on the
selection mechanism.
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5.2 Simulation of the selection process

The data set from the previous section is now used for an offline calibration of the
three bandit selection strategies from Sect. 4. Recall that each of the three bandit
selection methods has a single parameter that can be calibrated for the use inside the
ALNS selection process. The parameter ε ≥ 0 of the ε-greedy strategy controls how
long the selection strategy selects uniformly among the auxiliary problems before
transitioning into a greedy selection based on the largest average reward observed.
The α ≥ 0 parameter controls the width of the confidence band around the observed
average rewards in α-UCB (4.1). Recall that a larger value of α forces α-UCB to
select actions with inferior average reward more frequently. Finally, the parameter
0 ≤ γ ≤ 1 controls the mass of the uniform distribution in the mixed probability
density from which Exp.3 makes its selection. All three α-UCB, Exp.3, and ε-greedy
are calibrated on the entire data set of 48000 rounds, i.e., including those rounds in
which no auxiliary problem contributes a solution.

Since each selection strategy involves some randomized choices, average rewards
are computed over 100 repetitions of the experiment. This simulation of the selection
routines has been implemented in the programming language R. For the calibration,
we call the R function optimize and obtain optimal values of ε = 0.4685844,
α = 0.0046, and γ = 0.07041455. Ideally, the selection performs better than a pure
random selection for instances that allow for a certain number of rounds to initialize
the selection process. Note that certain parameter choices of the Exp.3 (γ = 1) and
ε-greedy bandits are equivalent to a uniform random selection.

Figure 5 shows the selection quality for each bandit selection strategy in terms
of both their solution rate on the left and average reward on the right. While the
reward (3.4) is the immediate feedback that the selection strategies receive to adjust
their respective ranking of the auxiliary problems and depends in particular on the
fixing rate, the solution rate computation is not biased towards higher fixing rates.
As in the previous section, the figures in this section summarize only the subset of
rounds from the column “Success” in Table 3 ranging from841–1337 depending on the
fixing rate. This means that the solution rate of an optimal selection strategy would be
a horizontal line with value 1.0 across all fixing rates. As a reference curve, each of the
six plots of Fig. 5 shows the expected solution rate/reward of a completely randomized
selection strategy “random”. This reference curve is computed as the sample average
across all eight measured solution rates/rewards at each round. Therefore, it represents
the expected solution rate of a uniform random selection strategy.

The first part of the figure shows the solution rate (left) and average reward (right) at
every tested fixing rate for the ε-greedy selection strategy shown in Algorithm 1. The
best choice for ε computed by R is 0.4685844, which has the largest average reward
across all tested fixing rates. Some other manually selected choices of ε are also
shown. Recall from Algorithm 1 that at larger values of ε, the selection strategy tends
to uniformly select among the actions more frequently. In particular, as long as the
quantity εt , which decreaseswith the number of rounds, is larger than 1, every selection
is a uniform random selection. In the figure, the results for ε = 4 are indistinguishable
from “random” sampling considering both solution rate and average reward. The
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Fig. 5 Comparison of selection performance for different parameter choices
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reason is the limited number of rounds per instance/fixing rate in our data, which is at
most 71. At an initial choice of ε = 4, the quantity εt is larger than 1 for all rounds
of our simulation data such that only random sampling is applied by the ε-greedy
bandit. At all smaller choices of the ε-parameter, ε-greedy always improves upon the
reference curve “random”.

In the middle row of Fig. 5, we show solution rate and average reward of the α-
UCB bandit for different choices of the α parameter. The average reward of the α-UCB
selection strategy has been maximized for the parameter choice of α = 0.0046. With
this choice of α, α-UCB achieves the highest solution rate and average reward of
all three tested bandit strategies. Other choices of α are detrimental especially with
respect to the solution rate compared to the calibrated parameter value, but clearly
achieve a better solution rate than the reference curve “random”.

The last two plots depict the selection quality of Exp.3 at different values of
the γ parameter. Some hand-picked values {0.15, 0.45, 0.95} are compared to γ =
0.07041455, the optimal value for γ as computed by the R function optimize, and
the reference line “random”. At all tested values of the γ -parameter, the selection
quality of Exp.3 is better than purely randomized selection. Furthermore, the exper-
iment reveals that higher values of γ decrease the selection quality across all tested
fixing rates. The choice of γ = 0.95 shows, as expected, almost the same selection
quality as a pure random selection. Note that the average selection quality is higher
for α-UCB and ε-greedy than for Exp.3.

The improvements in solution rate and average reward of all bandit selection strate-
gies suggest that it is clearly beneficial to incorporate observed rewards into the
selection process. The optimal values for the different parameters can be interpreted
as follows. The optimal value for the γ -parameter is very close to a purely weight
based Exp.3 selection strategy. The optimal value of the α-parameter shows a higher
selection quality than the nearby value of α = 0, a purely greedy selection. This is
seconded by the optimal value of the ε-parameter. The “near-greedy” optimal values of
all three parameters indicate that it suffices to revisit inferior actions only if the reward
difference to the best action is small. This shows that learning from past observations
clearly helps the selection process at later stages.

Another observation is that the plots of Fig. 5 seldomly cross, i.e. the ranking
betweendifferent parameter choices is the same for different fixing rates. This indicates
that the selection strategies can be safely combined with an adaptive fixing rate.

Finally, the learning success of the bandit selection methods is depicted in Fig. 6, in
whichwe draw the solution rate as a function of the number of roundswithin theALNS
framework for each selection strategy. Each bandit selection strategy uses its optimized
parameter value. As a comparison serves the strategy “random”, which represents, as
before, the expected solution rate of a uniformly randomized selection strategy at
each round over the entire duration of the search. In order to aid the visual distinction
between the solution rates of the strategies, the figure also shows a straight line as the
result of a linear regression between round and solution rate. Throughout all rounds,
the solution rate of the reference strategy “random” stays relatively constant around
0.3, whereas the solution rate of each bandit selection strategy shows an increasing
trend.
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Fig. 6 Average solution rate as a function of the individual round

The ε-greedy selection strategy shown uses the optimized value of ε. Its margin
from the baseline solution rate is already visible at rounds 6–8, and keeps improving.
As an example, the (arbitrary) mark of a solution rate of 0.6 is first reached after
24 rounds, and reliably surpassed after 40 rounds to the selection routine, as can be
seen by the corresponding regression line. The solution rate of the calibrated α-UCB
selection strategy reaches the mark of 0.6 after 17 rounds for the first time, and almost
consistently after 30 rounds. The regression line of α-UCB is clearly the highest across
all strategies. The price for this selection performance is that the first 8 observations
must be spread over the 8 auxiliary problems to select from, which is why α-UCB
achieves exactly average performance at this early stage. At a later stage, α-UCB
reaches a solution rate of 1.0 for the four rightmost observations, i.e., α-UCB can
reliably identify and select a well performing auxiliary problem at this stage. Recall
that these plots represent average solution rates over 100 repetitions of the experiment.
Also for Exp.3, the solution rate for the choice of γ = 0.07041455 is better than the
reference curve “random” after a small number of rounds and has a clear tendency
to increase with the number of rounds. Still, Exp.3 is clearly the weakest of the three
bandit selection strategies even with an optimized choice of its γ -parameter.

As a conclusion, all three bandit selection algorithms achieve an above average
selection performance, as desired. With an increasing initialization time, the learning
effect becomes more pronounced. α-UCB achieves the best solution rate, followed by
ε-greedy and Exp.3. Arguably, the good solution rate is an indication that the designed
reward function, which the bandits actually receive as feedback, captures the ranking
between the neighborhoods sufficiently well within the ALNS framework.
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5.3 MIP Performance

This section examines the impact of ALNS in a real setting where only one auxiliary
problem is called at each round.

By the time we finished the original technical report on ALNS [38] leading to this
article, a new benchmark set has been released: MIPLIB 2017 [39], a substantially
harder set of benchmark instances than its predecessor, MIPLIB 2010. The benchmark
set MIPLIB 2017 consists of 240 instances in total and 150 instances that were not
part of any of the four existing sets that we used for calibration of the bandit selection
strategies.

For the results in this section, we test the newest version of SCIP by the time of
this writing, SCIP 7.0.2 [40], in which ALNS is active by default. We made a couple
of minor modifications to the released version of the code:

– We generalize the RENS neighborhood 2.3. As mentioned in Section 3.1, RENS
is the only neighborhood without a reference solution for generic variable fixings.
If RENS does not reach its (tight) target fixing rate of 90% at its first call, it will be
penalized with a reward of 0, which seemed unfair. We introduced fractionality-
based fixing for theRENSneighborhood, such that RENScontinues to fix variables
to their (rounded) LP solution value in the order of least fractionality until it reaches
its target fixing rate.

– We implemented a multiple root initialization: In SCIP 7.0.2, ALNS is only called
(at most) once at the end of the root node. With the goal of initializing more than
one neighborhood early during the search, we allow for multiple calls of ALNS
during the root node processing of SCIP.

– We use local reduced costs and pseudo-costs for generic variable fixing: Instead
of reduced costs and pseudo-costs relative to the root LP solution, we use local LP
solutions (at the nodes where ALNS is called) for generic variable fixings with the
goal to diversify the search neighborhoods.

– We modified the computational budget of ALNS: Currently, the budget computa-
tion of ALNS (and other LNS heuristics in SCIP) aims at calling the heuristic less
and less frequently if it does not find improving solutions. For ALNS, however,
the number of target nodes for the auxiliary problems are increased each time the
search of an auxiliary problem stalled without finding an improving solution, as
explained in Sect. 3.2. These two effects combined led to a very infrequent call
strategy for ALNS. In our revised implementation, we remedy this by introducing
a lower threshold on the relative number of branch-and-bound nodes that ALNS
may spend regardless of its success. In the budget computation (3.2), the ALNS
node budget relative to the number of nodes in the main search tree is computed
as s(t−1)+1

(t−1)+1 · κ1, which can converge to zero. In our revised implementation, we
use a lower threshold of 0.1 on the above factor, which is equal to the value of κ1
used for the simulation. As a result, we still use an adaptive budget allocation for
ALNS as described in 3.2, but allow at least 10% of the main search nodes to be
additionally spent inside ALNS.

– We introduce a maximum number of calls to ALNS on the same incumbent solu-
tion, which we set equal to the number of neighborhoods that are active on an
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instance. A neighborhood is inactive if the structural information of the MIP
(binary variables and/or nonzero objective function) does not admit the neigh-
borhood’s fixing scheme. After ALNS has been called with the same incumbent
solution (including no solution) once for each of its active neighborhoods, it will
immediately return and wait for new input before it attempts to solve the next
auxiliary problem.

The simulation in the previous section revealed that α-UCB (4.1) with a suitable
choice of its selection parameter α is the best performing bandit selection strategy
among the three tested strategies from Sect. 4. Recall that a larger α results in a higher
frequency of choosing inferior actions. Besides the good simulation performance, α-
UCB also provides the easiest explanation, namely the UCB value itself (4.1), why an
auxiliary problem has been selected.

All parameters values (and their SCIP names) for this experiment can be found in
Table 2. Besides the use of α-UCB as a selection strategy, generic (un-)fixing using
the variable prioritization from Sect. 3.1 is enabled, and a dynamic target fixing rate is
used. All auxiliary problems have 0.9 as initial, conservative fixing rate, which is only
reduced if the auxiliary problem was too easy or too restrictive (if proven infeasible)
as explained in Sect. 3.2. The stall node limit is dynamically adjusted as explained in
Sect. 3.2, and the budget computation (3.2) considers the number of found solutions by
ALNS, such that the execution schedule is more dynamic than during the simulation
in the previous sections.

We compare against the setting ALNS off, which uses default settings of SCIP 7.0,
but deactivates ALNS.

The existing standalone LNS heuristics RENS, RINS, and Crossover are active
independently from ALNS also in the ALNS setting, as this combination of ALNS and
the standalone LNS heuristics represents the default settings of SCIP 7.0. Standalone
RENS is only used at the (end of the) root node of the search. Preliminary experiments
have shown that deactivating this single RENS call at the end of the root is detrimental
to performance.

ALNS using α-UCB has two places where randomized decisions are used, The first
random decision concerns the selection process during the first eight rounds of ALNS
where α-UCB tests one previously unseen action per round in a randomized initial
order. The second random decision is the use of a randomized score as last tie-breaker
in the variable fixing prioritization.

We test both settings using the default plus two nondefault initial random seeds
for SCIP to better cope with the huge performance variability that some instances
may exhibit. The experiment in this section has been conducted on a Linux cluster
of 48 computing nodes equipped with Intel Xeon Gold 5122 at 3.60GHz and 96 GB.
The time limit was 1 hour for every instance and seed. In order to measure time as
accurately as possible, every job has been scheduled exclusively. As before, all jobs
are single threaded.

Table 4 shows aggregated results for three performance measures, the solving time
to optimality in columnTime and the primal integral Integral, aswell as the total num-
ber of solved instance/seed combinations.We treat every instance/seed combination as
an individual record. This table has been prepared using the Interactive Performance
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Table 4 Performance results of ALNS compared with ALNS off

ALNS ALNS off

Group Instances Time Integral Solve TimeQ IntegralQ Solve

All 720 781 7814 340 1.01 1.16 344

Diff 195 171 1110 185 1.06 1.37 189

Equal 155 136 2468 155 0.98 0.98 155

Timeouts 370 32972 34018 0 1.00 1.14 0

[0,3600] 350 155 1589 340 1.02 1.18 344

[100,3600] 219 614 3493 209 1.05 1.20 213

Numbers in bold font indicate where one setting was strictly better than the other

Evaluation Tools [41] on the raw SCIP log file output. The twomeasures are presented
as shifted geometric mean time using a shift of 1 second and shifted geometric mean
primal integral [10] with respect to the known optimal solution values using a shift of
100, which corresponds to a gap of 100% for 1 second.

For a better quantitative assessment, the table shows the relative performance for
ALNS off in columns TimeQ and IntegralQ. Factors larger than 1 in these columns
indicate an improvement using ALNS.

Using three random seeds, our benchmark consists of 720 records in total. Table 4
summarizes the performance for the entire test bed in the first row (group All) as
well as several interesting subgroups. The subgroup Diff contains all instance/seed
pairs for which the two settings have a different solution path. A change in the path
is detected by a change in the number of LP iterations of the main solution process.
On the complementary group Equal, ALNS does not alter the solving process. We call
a record solvable if it could be solved by at least one setting. Both groups drop all
unsolvable records. This is particularly interesting for the results regarding runtime,
which is otherwise partially leveled out by records for which all settings time out and
hence contribute equally to the shifted geometric mean time.

As a fourth row, we also show the group Timeouts. On this group both ALNS
and ALNS off timed out, such that only the primal integral can be different between
settings.

The last two rows use the standard bracket notation [x,3600] for x ∈ {0, 100}. A
bracket [x,3600] consists of all solvable records where the slower setting required
at least x seconds of solving time. The first bracket [0,3600] therefore consists of
all solvable records. The second bracket [100,3600] consists of 219 harder but still
solvable instances.

We first focus on the differences regarding runtime and primal integral. Overall,
ALNS achieves a speedup of 1% and an improvement in primal integral by 17%.

On the 195 instances from the group Diff, ALNS shows a time improvement by 6%
and an improvement in primal integral by 37%. The group Equal is the only group
where ALNS off is faster than ALNS, reducing the time and primal integral by 2%.
This is not surprising since for this group, ALNS only causes overhead, but does not
contribute to the solution process.

123



218 G. Hendel

On the bracket groups, we see a time improvement by 2% for all solvable instances
and 5% for the harder bracket [100,3600]. The primal integral improvements are 18%
and 20%, respectively.

We see that ALNS achieves substantial integral improvements in all except the Equal
group. Overall, its overhead on this group is neglible compared to its benefits on the
larger group Diff.

However, there are still four records solved less with ALNS enabled on the four
groups All,Diff, [0,3600], and [100,3600]. The number of instances solved exclusively
by ALNS is 6, compared to 10 records solved exclusively by ALNS off. In total, the
16 records that were exclusively solved by one of the two settings are split across
14 instances. This is a first indication that ALNS does not introduce a systematic
deterioration that could explain the discrepancy in solved instances.

One may think that ALNS has a significant overhead on those instances, but this is
actually never the case. There are cases such as the one of assign1-5-8, which
can be solved by ALNS off eight seconds before the time limit. However, ALNS being
called 13 times only spends 0.3 seconds of runtime in this case.

We tested these 14 instances with another seven different random seeds. In this
setup,ALNS solves 3 recordsmore than ALNSoff. Therefore, we consider performance
variability as the main reason that we observe this discrepancy in solved instances.
The effects of new solutions found during the root node, for example, can trigger
additional separation rounds in SCIP, which may change the LP solution on which the
first branching is performed. Such effects cannot be completely avoided in a realistic
experimental setup, but are beyond the scope of ALNS.

We conclude that ALNS achieves the main goal of a MIP primal heuristic, namely
the improvement of the primal integral, very effectively. On the set of solvable
instances, we see a time improvement by 2%, which is amplified to 5% on the set of
harder instances.

6 Conclusion

This article introduces Adaptive Large Neighborhood Search for MIP, a framework
around eight well-known LNS heuristics from the literature. It has been implemented
as a primal heuristic in SCIP and is publicly available since SCIP 5.0. The framework
combines a selection procedure, which is governed by strategies for the multi armed
bandit problem, and the idea of generic additional variable fixings to adjust the com-
plexity of the auxiliary problems as needed. To rank between auxiliary problems, we
propose a reward function that combines the important aspects of solution quality and
effort into a single number. We have used a simulation experiment to calibrate each
bandit algorithm individually. Training the bandit strategies with this reward function
shows a clear trend to improve the solution rate with an increasing number of rounds.
As a byproduct of this simulation, we saw clear differences between the auxiliary
problems regarding the number of solutions they produce. Two of the auxiliary prob-
lems that were most successful in our experiments, DINS and Local Branching, have
been previously inactive in SCIP. ALNS with an α-UCB bandit selection strategy has
been activated by default in addition to the standalone LNS heuristics RENS, RINS,
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and Crossover since SCIP 5.0. Because of generic variable (un-)fixing, it represents
an extension of these powerful standalone LNS heuristics. Besides, previously dis-
abled techniques such as DINS, Localbranching, and Proximity are activated within
ALNS for the first time by default, thereby enriching SCIP’s default heuristic strate-
gies. Before ALNS, it was not clear how to best integrate five disabled LNS heuristics
into the mix. One of the key points is that all techniques within ALNS share a common
computational budget, which makes it possible to easily adjust the overall computa-
tional budget spent inside of LNS heuristics.

We see several future perspectives for this work. Adaptive algorithm selection may
also be beneficial in other parts of the solver where the choice between similarmethods
largely affects the overall performance. In a recent article [42], promising results are
presented for diving heuristics, and for dynamic switching between different pricing
strategies of the dual simplex procedure to maximize the node throughput during the
search. Second, we hope that the software design of the introduced ALNS framework
proves useful as a development platform for incorporating novel LNS-related heuristic
ideas and algorithmic enhancements into SCIP more easily in the future. Finally, it
would be interesting to see how the bandit selection strategies compete against other
selectionmechanisms from theMLcommunity.Attemptswith popularML technology
may consider additional features of the problem instance or search statistics to train a
more informed selection method.
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