
Mathematical Programming Computation (2021) 13:225–256
https://doi.org/10.1007/s12532-020-00191-6

FULL LENGTH PAPER

Incorporating bounds from decision diagrams into integer
programming

Christian Tjandraatmadja1 ·Willem-Jan van Hoeve1

Received: 5 December 2018 / Accepted: 2 June 2020 / Published online: 2 November 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020

Abstract
Decision diagrams have been successfully used to help solve several classes of dis-
crete optimization problems. We explore an approach to incorporate them into integer
programming solvers, motivated by the wide adoption of integer programming tech-
nology in practice. The main challenge is to map generic integer programming models
to a recursive structure that is suitable for decision diagram compilation. We propose
a framework that opportunistically constructs decision diagrams for suitable substruc-
tures, if present. In particular, we explore the use of a prevalent substructure in integer
programming solvers known as the conflict graph, which we show to be amenable
to decision diagrams. We use Lagrangian relaxation and constraint propagation to
consider constraints that are not represented directly by the substructure. We use the
decision diagrams to generate dual and primal bounds to improve the pruning process
of the branch-and-bound tree of the solver. Computational results on the independent
set problem with side constraints indicate that our approach can provide substantial
speedups when conflict graphs are present.

Keywords Integer programming · Decision diagrams · Lagrangian relaxation ·
Conflict graph

Mathematics Subject Classification 90C10 · 90C35

Christian Tjandraatmadja is currently at Google.

B Christian Tjandraatmadja
ctjandra@alumni.cmu.edu

Willem-Jan van Hoeve
vanhoeve@andrew.cmu.edu

1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-020-00191-6&domain=pdf


226 C. Tjandraatmadja, W.-J. van Hoeve

1 Introduction

Decision diagrams were originally introduced to compactly represent Boolean func-
tions, and have been widely applied to verification and configuration problem
[4,21,30,38]. More recently, decision diagrams have been applied to model and solve
combinatorial optimization problems, in particular via a stand-alone solver in which
relaxed and restricted decision diagrams provide dual and primal bounds as well as a
branch-and-bound search strategy [15,18,19].

A strength of decision diagrams lies in representing recursive structure embedded
in certain discrete optimization problems. Typically, this structure is explicitly mod-
eled by a user through a dynamic programming formulation [17], which is often not
readily available when facing a new problem. Instead, it is common for discrete opti-
mization problems to be modeled via integer programming (IP) formulations, due to
the effectiveness of mixed-integer programming (MIP) solvers and the capability of
IP models to express a variety of problems.

In this paper, we propose a framework to improve the solution process of MIP
solvers through the use of relaxed decision diagrams: decision diagrams that represent
relaxations of a problem. To achieve this goal, we study two main research questions.
The first question is how to construct effective relaxed decision diagrams from generic
IP formulations. Provided with a method to do so, the second question is how to use
them to aid the MIP solver.

One of the main challenges in constructing relaxed decision diagrams from IP
models is that the linear formulation may not give access to the original problem
structure. For example, successful applications of decision diagrams in the context
of scheduling and routing [22,28,33] require a constraint-based representation that
is not easy to recognize when presented as a linearized MIP model. It is important
to recognize that the effectiveness of decision diagrams is tightly connected to the
structure modeled by the dynamic programming (DP) formulations used to construct
them. Therefore, the complex structure of real-world problemsmay present an obstacle
for approaches based on decision diagrams. A solution to this challenge is to break
these problems apart into structures that are more tractable from the perspective of
decision diagrams. For instance, several problems contain set packing constraints—
constraints of the form Ax ≤ 1, where A is a binary matrix and x is a binary vector of
variables—which, when isolated, tend to be receptive to approaches based on decision
diagrams [19].

This motivates us to develop methods for the case when a known structure
exploitable by decision diagrams is partially present in a problem. We propose a
framework that builds decision diagrams for classes of constraints present in the
problem—which can be viewed as relaxations—and incorporates the remaining con-
straints via two approaches, Lagrangian relaxation and constraint propagation. This
framework is aimed towards generating dual bounds for the problem, which we later
use to aid the MIP solver.

While this framework permits any choice of substructure, in this paper we inves-
tigate the use of the conflict graph for binary problems [1,7]. The conflict graph is a
common component in modern MIP solvers and represents the pairs of binary vari-
ables that cannot take a certain pair of values. It can be viewed as a relaxation of the

123



Incorporating bounds from decision diagrams into integer… 227

problem and thus it fits our framework. Moreover, as we later show in this paper, the
feasible set of a conflict graph admits a good DP formulation. A benefit of using the
conflict graph is that the method requires no additional input from the user other than
the IP model itself. Nevertheless, a user could provide a DP formulation of a different
substructure of a problem as well.

Although focusing on a specific substructure limits the range of applications, we do
not aim to design a method to improve the solution of any arbitrary IP model. Instead,
our approach is opportunistic: we only attempt to aid the solution process for a model
when there are reasons to believe that decision diagrams can help—for example, when
a conflict graph is present and captures a substantial part of the problem. Additional
substructures may be incorporated in future research, extending the applicability of
this framework.

After constructing the relaxed decision diagrams, we consider the question of how
to leverage them to reduce solving times in MIP solvers. Decision diagrams have been
used early on to solve integer programs via an independent branch-and-bound mech-
anism [29] and later to generate cutting planes within MIP solvers [8,36], including
in stochastic [31] and nonlinear [23] settings. In this work, we generate dual bounds
from these decision diagrams throughout the branch-and-bound tree in order to iden-
tify additional pruning opportunities. In other words, this approach is oriented towards
eliminating subproblems that only contain suboptimal solutions. We computationally
test this technique on two classes of instances: one in which the entire problem can be
expressed as conflict constraints (the independent set problem), and one in which the
conflict graph only partially captures it (the independent set problem augmented with
knapsack constraints).

The dual bounds we generate in our framework come from solving the following
relaxation:

max
x

{c�x : Âx ≤ b̂, x ∈ conv(S)}, (1)

where c�x models the objective function (assumingmaximization), S is a relaxation of
the feasible set represented by a relaxed decision diagram, and Âx ≤ b̂ are constraints
that cannot be efficiently represented by the decision diagram in practice.

Along with dual bounds, we also generate primal feasible solutions. Better primal
feasible solutions not only improve the pruning process but are also informative for
the user if the solving process is terminated before reaching optimality. Conversely,
we show how to use primal bounds generated from the MIP solver to speed up the
construction of relaxed decision diagrams.

We begin by defining decision diagrams in Sect. 2 and providing an overall view of
the framework in Sect. 3. Sections 4 and 5 detail two important aspects of the frame-
work: constructing decision diagrams for conflict graphs and handling constraints that
are not considered in the decision diagrams. Section 6 discusses techniques related to
primal bounds. Finally, Sect. 7 presents computational results and Sect. 8 concludes
this paper.

123



228 C. Tjandraatmadja, W.-J. van Hoeve

x1

x2

x3

x1

x2

x3

Fig. 1 On the left, a decision diagram that represents the set {x ∈ {0, 1}3 : x1 + x2 + x3 ≤ 1}, pictured on
the right. A dashed line indicates an arc with value zero, while a full line indicates an arc with value one.
Each of the four paths from the root to the terminal nodes corresponds to a point in the set

2 Decision diagrams

In the context of optimization, we can view a decision diagram (DD) as a graph
that represents the feasible set of a discrete optimization problem. In general, they
can represent discrete sets of points or Boolean functions. More formally, a decision
diagram is a directed acyclic multigraph in which the nodes and arcs form layers, as
illustrated in Fig. 1. The arcs of each layer k correspond to assigning some value v

to a variable xk . Parallel arcs are allowed. The first layer has a single root node s and
the last layer, a single terminal node t . We assume that all nodes except the root and
terminal have at least one incoming arc and one outgoing arc. We denote by width the
size of the largest layer of the decision diagram.

The feasible set S of a problem is represented through a one-to-one correspondence
between each x ∈ S and each directed path from s to t in the decision diagram. The
solution x is represented by the assignments that correspond to the arcs in the path,
noting that all variables are represented in the layers.We remark that given an ordering
of variables, there exists a unique smallest decision diagram for S, called a reduced
decision diagram [21].

Given a constructed decision diagram for S, we can efficiently optimize a linear
function over S. Due to the correspondence between paths and solutions in S, maximiz-
ing a linear function c�x entails finding a path on the decision diagram of maximum
weight, given weights ckvk on each layer-k arc with value vk . Since a decision diagram
is a directed acyclic graph, this can be done in time linear in the number of arcs in the
decision diagram.

Representing the feasible set of hard discrete optimization problems will often
result in impractically large decisiondiagrams.To tackle this issue,we consider relaxed
decision diagrams [5,15,18], which are relaxations in the form of decision diagrams—
that is, they contain the feasible set but are not required to represent it exactly. Relaxed
decision diagrams are usually made smaller than exact ones by merging nodes in a
way that avoids removing feasible solutions, but may add infeasible ones. Typically,
throughout the construction, the nodes of a layer are merged until a given width limit is
satisfied. See e.g. [18] for more details on a construction method for relaxed decision

123



Incorporating bounds from decision diagrams into integer… 229

diagrams. A relaxed decision diagram can yield a dual bound (i.e., a lower bound
if we are minimizing or an upper bound if we are maximizing) for the problem by
optimizing the linear objective function over it, since it is a relaxation [15,19].We refer
to [17] for an overview of the use of decision diagrams in the context of combinatorial
optimization.

3 Framework

A central challenge in designing approaches based on relaxed decision diagrams is to
keep them small while still obtaining a good approximation of the problem. We next
discuss two main factors that influence the strength of this approximation: the ability
to identify equivalent nodes and the form of relaxation.

The power of decision diagrams comes frommerging equivalent nodes. Equivalent
nodes are those that have the same completion set, defined as the set of possible
assignments leading to feasible solutions given the assignments made from the root
to that node. The problem of complete equivalence is to decide whether two nodes
are equivalent or not. Unfortunately, deciding whether two nodes are equivalent or not
in the context of linear constraints is NP-complete. This is because a special case of
node equivalence is deciding whether a node is equivalent to an infeasible node, and
deciding integer feasibility for two or more linear constraints is NP-complete. While
in practice it is not vital that wemerge every pair of equivalent nodes possible, merging
as many as possible allows us to focus on other important factors that affect the size
of decision diagrams.

Nevertheless, even if we can efficiently identify equivalent nodes, a decision dia-
gram can still grow exponentially large. To manage its size, we must approximate
the problem with a tractable relaxation. In this framework, we consider two forms of
relaxation: one at the level of decision diagram construction and another at the level
of problem constraints.

At the decision diagram level, we construct relaxed decision diagrams using a
top-down construction, as done in recent literature [18]. We set a maximum width
parameter and whenever a layer has higher width than this parameter, we merge (non-
equivalent) nodes until the width is within the maximum. Ensuring a relaxation in this
merging process is problem-dependent: a node typically is associated to a state which
implicitly encodes its completion set, and merging non-equivalent nodes requires
finding a state that encodes a completion set containing the union of the completion
sets of the two original nodes. For example, in the independent set problem, a state
would be the vertices that can still be selected and the merged state would be the union
of the two sets of available vertices from the original states. The criteria for choosing
which nodes to merge may depend on the application, but there exist generic rules
such as merging nodes with poor objective values. We refer to Chapter 4 of [17] for
more details on node merging for relaxed decision diagrams.

At the constraint level, the framework considers a substructure of the problem, such
as a subset of constraints of a specific type or, in the case of this work, conflict graphs.
Not only may substructures have a more tractable size than the overall problem, but
more importantly information about problem structure can significantly benefit the

123



230 C. Tjandraatmadja, W.-J. van Hoeve

construction of decision diagrams. However, this relaxation can be very weak if it
ignores constraints not captured by the substructure. We call such constraints generic.
This is compensated through the use of Lagrangian relaxation, which can be used with
decision diagrams [14]. Moreover, we can partially incorporate them into a decision
diagram through the use of constraint propagation. More details are presented in
Sect. 5.

Given that we use a substructure as the basis for our decision diagram, we must
choose a structure with good qualities. We balance the following criteria in the choice
of structure:

– Identifiability:We should be able to efficiently identify and extract the substruc-
ture from the problem. While this is trivial if we choose an explicit subset of
constraints, we may also consider relaxations that are not explicitly given in the
problem.

– Generality: The structure should be as generic as possible in order to capture
structure within as many applications as possible. In particular, this structure must
play a fundamental role in defining the problems we aim to improve upon, as
otherwise the bounds generated would be weak.

– Compactness: In order to keep the size of the decision diagram compact, the
formulation must ideally support efficient equivalence tests that are complete or
close to being complete. Moreover, structures with good variable ordering and
merging (relaxation) heuristics are desirable. It iswell known that variable ordering
can have a considerable effect on the size of the decision diagram [21] and likewise
the quality of the bound from relaxed decision diagrams [20].

For binary problems, conflict graphs satisfy these three criteriawell. First, the task of
identifying the conflict graph structure (when present) is already performed bymodern
MIP solvers, and thus we do not need to be concerned with extracting them. Second,
the conflict graph encompasses common constraints such as set packing constraints
and simple implications of the form xi = vi �⇒ x j = v j . These are equivalent to
2-SAT constraints (see, e.g., [6]) as well as implication graphs, as wewill discuss in the
next section. Observe that if we were to extend the representation to 3-SAT, complete
equivalence becomesNP-complete, since the special case of deciding feasibility is also
NP-complete for 3-SAT. Third, we will present in Sect. 4 a DP formulation for the
conflict graph that has an efficient complete equivalence test in top-down construction.
In addition,wegeneralize a variable ordering heuristic for the independent set problem,
previously shown to perform well in practice [19].

By choosing the conflict graph as a substructure, we limit this work to binary
problems. Nevertheless, the framework itself supports any type of structure, as long as
we can efficiently build good decision diagrams from them. In this context, structure
means any class of constraints that forms a relaxation of the problem. Examples of
structures that may work well with decision diagrams, and are defined on the original
problem variables, include set partitioning and set packing (as special cases of the
conflict graph), set covering [15,16], and maximum cut problems [18]. When the
model representation is extended beyond traditional MIP formulations, one could
incorporate structures for single-machine scheduling and routing [22,28,33]. More
generally, a user may provide a DP formulation of a substructure of a specific problem,

123



Incorporating bounds from decision diagrams into integer… 231

x1
1

x0
1

x1
2

x0
2

x1
3

x0
3

x1 + x2 + x3 ≤ 1

x2 + (1 − x3) ≤ 1

(1 − x1) + (1 − x2) ≤ 1

x1, x2, x3 ∈ {0, 1}

Fig. 2 Example of a conflict graph for three binary variables, where x0i and x1i indicate setting xi to 0 and
1 respectively. On the right, a linear representation of the constraints from the conflict graph

or combine multiple classes of constraints. Decomposing a problem with multiple
decision diagrams may also be implemented in this framework [11]. These extensions
are however beyond the scope of this work.

We apply our approach to generate dual bounds from relaxed decision diagrams at
certain nodes of the branch-and-bound tree to improve the pruning process. Pruning
is performed as usual: if the current primal bound is at least as good as the dual bound
generated at a subproblem node, then the subproblem contains no improving solution
and does not need to be explored. In this paper, we focus on generating them in small
subproblems of the tree.

A summary of the framework is as follows.

1. We select a substructure of the problem fromwhich to construct a relaxed decision
diagram—in this paper, we use a conflict graph.

2. We construct a decision diagram, possibly relaxed, using aDP formulation specific
to the substructure (Sect. 4). During construction, we may propagate information
from generic constraints (constraints not implied by the substructure) into the
decision diagram (Sect. 5.2).

3. Once the decision diagram is constructed, we apply Lagrangian relaxation in order
to further incorporate generic constraints into the bound (Sect. 5.1).

4. This process yields dual bounds. Primal bounds may also be obtained (Sect. 6).
These bounds are added to certain nodes of the branch-and-bound tree of the MIP
solver to help pruning. Nodes with smaller subproblems are prioritized.

4 Decision diagrams for conflict graphs

The conflict graph captures constraints that forbid certain pairs of binary variables
from taking specific values. More formally, a conflict graph G = (V , E) is a graph
with two vertices per binary variable of the problem. Each vertex corresponds to an
assignment of 0 or 1 to the corresponding variable. Denote by xv

j the node of the

conflict graph corresponding to the assignment of v to the variable x j . We use x1−v
j to

denote the node corresponding to the negation of xv
j . An edge exists between xui and

xv
j if the assignments xi = u and x j = v cannot simultaneously occur in a feasible

solution of the problem. Figure 2 illustrates an example of a conflict graph.

123



232 C. Tjandraatmadja, W.-J. van Hoeve

Conflict constraints can be inferred in MIP solvers when applying, for instance,
bound strengthening or probing during a presolve step. A common use of a conflict
graph is to generate cuts [1,7].

Note that each conflict constraint on xui and xv
j is equivalent to the constraint

xi = u �⇒ x j = 1 − v, which is itself equivalent to x j = v �⇒ xi = 1 − u.
Therefore, we can express conflict constraints as implication constraints by replacing
each edge {xui , xv

j }with a pair of directed arcs (xui , x1−v
j ) and (xv

j , x
1−u
i ). The resulting

graph is called an implication graph. Since this conversion can occur in both directions,
conflict graphs are equivalent to implication graphs.

Throughout this section, it is more convenient to describe a formulation for the
implication graph instead of the conflict graph. Concepts from this formulation can be
directly translated to the context of the conflict graph through the above equivalence.

We remark that modern MIP solvers may construct implication graphs for general
integer variables instead of binary [1]. However, in this work, we focus on the binary
setting.

4.1 Dynamic programming formulation

As described in [17], decision diagrams can be constructed from a dynamic program-
ming model, which provides the state definitions for its nodes, as well as the transition
function between nodes. We therefore first provide a dynamic programming formula-
tion for the feasible set of the implication graph—that is, the set of all solutions that
satisfy the implication constraints encoded in the graph.

For notational convenience, we assume variables are ordered as x1, . . . , xn . The
layer j (or stage j in DP terms) contains the states in which we have defined assign-
ments for variables x1, . . . , x j−1 and seek to assign values to x j , . . . , xn . The values to
be assigned are restricted to the variable’s domain, denoted byD(x j ) for each variable
x j , which for conflict constraints we assume to be {0, 1}. We denote the infeasible
state by 0̂.

The DP formulation for the implication graph works as follows. Each state at layer
j corresponds to domains of the variables x j , . . . , xn . When we transition by setting
the variable x j to v j , we remove from the domains all assignments xk = vk such that

x1−vk
k is reachable from x

v j
j . Here, we say that u is reachable from v if there exists a

directed path in the implication graph from u to v. In other words, we take the implied
assignments and remove their complements from the domains.

More precisely, the DP formulation of the implication graph, which we denote by
(IG) for the remainder of the paper, is defined as follows:

– State space: A state s in the state space S j of stage j represents a list
(D(x j ),D(x j+1), . . . ,D(xn)) such that each D(x j ) represents the domain of the
variable x j , and thus may take the values∅, {0}, {1}, or {0, 1} in this binary setting.

– Transition function: LetDs be the domain associated to state s. Given an assign-
ment v j to a variable x j , denote byD′

s(xk) = Ds(xk)� R̄k, j,v j , where R̄k, j,v j is the

set of values vk such that the node x1−vk
k is reachable from x

v j
j in the implication

123



Incorporating bounds from decision diagrams into integer… 233

x1
1

x0
1

x1
2

x0
2

x1
3

x0
3

(a)

x1

x2

x3

∗∗∗

∗∗ ∗1

1

(b)

x1

x2

x3

∗∗∗

∗1

1

(c)

Fig. 3 a A conflict graph. b Decision diagram that would be obtained by using the DP formulation (IG) as
is. The states are depicted as a sequence of symbols representing the domain of each completion variable
following the order x1, x2, x3. The symbol is ∗ if the domain is {0, 1}, 1 if it is {1}, and 0 if it is {0}. c
Decision diagram obtained if we establish domain consistency at the root state, which is always reduced as
proved in Theorem 1

graph G. The transition function t j at layer j is defined as:

t j (s, v j ) =

⎧
⎪⎨

⎪⎩

(D′
s(x j+1),D′

s(x j+2), . . . ,D′
s(xn))

if v j ∈ Ds(x j ) and D′
s(xk) 	= ∅ for all k = j + 1, . . . , n,

0̂ otherwise.

Figure 3 illustrates a decision diagram constructed from this DP formulation. We
next show that this formulation is correct and provides a sufficient condition for com-
plete equivalence that can be efficiently guaranteed.

4.1.1 Correctness

The proposition below shows that (IG) models the implication graph.

Proposition 1 The DP formulation (IG) correctly models the feasible set of the given
implication graph G.

Proof Let D be the decision diagram generated by (IG), Sol(D) be the set of solutions
represented by s-t paths in D, and Sol(G) be the feasible set of the implication graph
G. We want to show that Sol(D) = Sol(G).

The implication constraints of G enforce that if x j is set to v j , then xk must be set

to vk for all nodes x
1−vk
k that are reachable from x

v j
j . Since the transition function only

enforces these constraints, it cannot eliminate feasible solutions. This implies that all
feasible solutions must be represented as s-t paths in D. Therefore, Sol(G) ⊆ Sol(D).

To show that Sol(D) ⊆ Sol(G), let x̂ be a solution represented by an s-t path in
D. We want to show that x̂ is feasible with respect to G. Suppose for contradiction
that x̂ is infeasible. Then x̂ must violate the constraint of some arc (x

v j
j , xvk

k ) in
G. That is, x̂ j = v j and x̂k = 1 − vk . Assume without loss of generality that x j
comes before xk in the ordering, which can be done because each arc (x

v j
j , xvk

k )

123



234 C. Tjandraatmadja, W.-J. van Hoeve

in G has a counterpart (x1−vk
k , x

1−v j
j ). Then this assignment cannot occur because

t j (s j , v j ) enforces the domain of xk to become {vk} in all subsequent states, which is
a contradiction. Therefore, x̂ is feasible, and thus Sol(D) = Sol(G). ��

In fact, formulation (IG) is correct even in a depth-d variant in which we redefine
R̄k, j,v j in the transition function to only consider nodes within a distance of d from

x
v j
j , for any d ≥ 1. Note that the exact same proof above holds in this case. This

variant may be useful to improve the performance of equivalence tests, at the cost of
potentially allowing some equivalent nodes to be left unmerged.

4.1.2 Completeness

Now that the correctness of (IG) is established, we turn to the question of when
this formulation yields a reduced decision diagram. It suffices to present an efficient
complete equivalence test—that is, a test that identifies exactly when two states have
the same completion set.

The example in Fig. 3 shows that (IG) as currently formulated does not always
generate a reduced decision diagram. In Fig. 3a, the two second-layer nodes have the
same completion set but different states. The state of the leftmost second-layer node
unnecessarily has 0 in the domain of x3, which if removed, would enable merging.
This observation motivates the lemma below, which provides a sufficient condition
for completeness.

We call a state s domain consistent if for every variable xi and value vi ∈ Ds(xi ),
there exists a feasible completion from state s that assigns vi to xi . We use a natural
equivalence test in formulation (IG), which simply identifies two nodes as equivalent
if they have the same state.

Lemma 1 If every state in (IG) is domain consistent, then the equivalence test from
formulation (IG) is complete.

Proof Domain consistency ensures that if two domains are different, then they must
have different completion sets. More formally, consider states s1 and s2 with different
domains. Suppose without loss of generality that there exists vi ∈ Ds1(xi ) such that
vi /∈ Ds2(xi ). Then the above property implies there exists a completion from s1 which
assigns vi to xi that does not exist from s2. ��

As a side note, observe that Lemma 1 holds not only for the formulation (IG),
but also for any formulation in which the state space consists of domains for their
completions.

The next step is to provide a means to obtain domain consistency at every state,
since this would yield completeness. In fact, it turns out that the transition function
t j (s j , v j ) in (IG) preserves domain consistency as long as the original state s j is
also domain consistent, as we establish next with Theorem 1. This implies that it is
sufficient to make the root state domain consistent, which can be done in linear time
in the size of the conflict graph as shown later in this section. For instance, in Fig. 3 it
would suffice tomake the initial state domain consistent in order to construct a reduced
decision diagram.

123



Incorporating bounds from decision diagrams into integer… 235

Theorem 1 If s is a domain consistent state, then t j (s, v j ) is a domain consistent state
if feasible.

In order to prove Theorem 1, we first derive two intermediate lemmas. We use
the following theorem from Aspvall et al. [6], which characterizes feasibility of an
implication graph.

Theorem 2 [6] An implication graph G is feasible if and only if there is no x j such
that x0j and x1j are in the same strongly connected component.

The two intermediate lemmas are the following.

Lemma 2 Given an implication graph G, there exists a feasible solution with x j set
to v j if and only if there exists a feasible solution for the implication graph Ĝ :=
G ∪ {(x1−v j

j , x
v j
j )}.

Proof The constraint from the additional arc (x
1−v j
j , x

v j
j ) is violated exclusively by

all solutions with x j set to 1− v j , leaving exactly the feasible solutions of G with x j
set to v j . ��
Lemma 3 Given a feasible implication graph G, there exists a feasible solution with

x j set to v j if and only if there is no path from x
v j
j to x

1−v j
j in G.

Proof By Lemma 2, there is a feasible solution with x j set to v j if and only if Ĝ :=
G ∪ {(x1−v j

j , x
v j
j )} is feasible. In view of Theorem 2 and the feasibility of G, Ĝ

is feasible if and only if adding (x
1−v j
j , x

v j
j ) to G keeps x

1−v j
j and x

v j
j in different

strongly connected components.1 This happens if and only if there is no path from x
v j
j

to x
1−v j
j in G. ��

Lemma 3 tells us how to achieve domain consistency for the implication graph.

For every variable x j , we check if x0j is reachable from x1j and vice versa. If x
1−v j
j is

reachable from x
v j
j , we remove v j from Ds(x j ).

In addition, this can be done in linear time as follows. Tarjan’s strongly connected
components algorithm [35] provides the strongly connected components in reverse
topological order. By treating each component as a node, we can scan the graph in
topological order in a single pass to find these paths. Throughout this pass, we store
at each component the variable-value assignments of its ancestors in order to pass
it forward. Whenever we find the complement of one of these assignments, we can
remove the assignment from the domain.

We now prove Theorem 1, which implies that it suffices to ensure domain consis-
tency at the root state in order to guarantee completeness.

1 As a technicality, this requires that Theorem 2 holds when there are arcs between the two nodes of a same
variable. Despite assuming a standard implication graph, the proof from Aspvall et al. [6] is also valid with
same-variable arcs.

123



236 C. Tjandraatmadja, W.-J. van Hoeve

Proof (Theorem 1) Consider the states s and s′ := t j (s, v j ). In order to show that
s′ is domain consistent, we need to show that for any vk ∈ Ds′(xk), there exists a
completion from s′ that assigns vk to xk .

Let Ĝs be the implication graph G with the additional arcs (x
v j
j , x

1−v j
j ) for all

v j ∈ {0, 1}�Ds(x j ). Note that the feasible set of Ĝs corresponds to the completion set

of s by Lemma 2. Moreover, the feasible set ofG ′ := Ĝs ∪{(x1−v j
j , x

v j
j )} corresponds

to the completion set of s′. Following Lemma 3, it suffices to show that G ′ does not
contain a path from xvk

k to x1−vk
k .

Given that Ds is consistent, there must exist a completion x from s such that
xk = vk . Equivalently, Ĝs must not contain a path from xvk

k to x1−vk
k according to

Lemma 3. Therefore, any path in G ′ from xvk
k to x1−vk

k must go through the only new

arc (x
1−v j
j , x

v j
j ). However, x1−vk

k is not reachable from x
v j
j , as otherwise vk would be

removed from Ds′(xk) as a result of the transition function. Hence, there cannot be a
path in G ′ from xvk

k to x1−vk
k . ��

The above theorem directly implies the following result.

Corollary 1 The equivalence test from the DP formulation (IG) is complete when the
initial state is domain consistent.

Therefore, once we establish domain consistency in the root state, we can use the
DP formulation in a top-down fashion to construct a reduced decision diagram.

We remark that this serves as an alternative proof for complete equivalence for the
independent set problem in [19]. If we view the independent set problem in terms of
an implication graph, we obtain a graph where all arcs point from a nonnegated node
to a negated node. This means that every path in the implication graph has length at
most one, and thus it suffices for the transition function to consider only the neighbors
of each vertex, as done in the formulation of [19]. Moreover, the initial domain of all
possibilities (i.e. the root state of the formulation in [19]) is always consistent since
every individual vertex of the original graph is a feasible independent set.

4.2 Variable ordering

Variable ordering for decision diagrams is often based on heuristics. Using a fast
heuristic is particularly helpful in our case, as we may be generating several decision
diagrams during the solution process of a single problem.

Based on the close connection of conflict graph constraints to independent set
constraints, we use a generalization of a variable ordering heuristic for independent
set that has shown to work well in practice, namely the minimum number of states
ordering [19,20]. In the context of independent set, at each layer, the ordering selects
the vertex v that appears in the fewest number of states in the state pool. Every node
with a state in which v appears will branch to both zero and one, whereas if v does
not appear, the corresponding node only branches to zero. Therefore, this minimizes
the number of arcs in the following layer.

A natural generalization for conflict graph constraints is as follows: at each layer,
we select the variable with the smallest sum of domain sizes throughout the state

123



Incorporating bounds from decision diagrams into integer… 237

pool. This minimizes the number of arcs in the next layer since each assignment
corresponds to an arc, given that the domains are consistent. We use this ordering in
our computational experiments discussed in Sect. 7.

5 Generic constraints

Focusing on a substructure is typically only practical if it capturesmost of the problem,
and any constraints not part of the substructure are still taken into account in some
form.

Suppose that our goal is to solve maxx {c�x : Ax ≤ b, x ∈ {0, 1}n}, given an
objective function c ∈ R

n , a coefficient matrix A ∈ R
m×n , and a right-hand side

b ∈ R
m . While we focus on the binary version, in general we can replace the binary

constraints by bounded integer constraints. We partition the constraints Ax ≤ b into
two sets, given by Âx ≤ b̂ and Āx ≤ b̄, where the latter set of constraints will be
represented with a (relaxed) decision diagram. We denote the remaining constraints
Âx ≤ b̂ by generic constraints.

As mentioned in the introduction of this paper, we aim to solve the following
relaxation of the above problem:

max
x

{c�x : Âx ≤ b̂, x ∈ conv(S)}, (1)

where S is a superset of {x ∈ {0, 1}n : Āx ≤ b̄}. Here, S is represented by a decision
diagram.

The partition of the constraints may be induced by a chosen substructure. More pre-
cisely, we first construct a relaxed decision diagram for a substructure of the problem,
representing S, and then mark as generic the constraints that are not made redun-
dant by the constraint x ∈ conv(S). In this case, identifying generic constraints can
be done by checking if at least one solution represented in the decision diagram is
violated by the constraint. In other words, a constraint a�x ≤ b can be marked as
generic if maxx∈S{a�x} > b, which can be efficiently checked by finding a maximum
weight path in the decision diagram. All other constraints can be discarded, as they
are implicitly represented in the decision diagram.

In the context of conflict graphs, we mark a constraint as generic in our imple-
mentation if it does not have a particular form implied by conflict constraints:∑

i∈P xi + ∑
i∈N (1 − xi ) ≤ 1 for some disjoint set of variable indices P and N .

Although this can be checked quickly, it is possible that we label more constraints
than necessary as generic. Note that in this particular implementation, we may also
remove constraints that are not completely redundant with respect to conv(S) when S
corresponds to a relaxed decision diagram.

We handle generic constraints in two ways: Lagrangian relaxation and constraint
propagation. In Lagrangian relaxation, we essentially seek to solve (1). In constraint
propagation, we strengthen the set S by removing some of the solutions violated by
Âx ≤ b.

123



238 C. Tjandraatmadja, W.-J. van Hoeve

5.1 Lagrangian relaxation

Lagrangian relaxation is a classical technique that is primarily used to obtain dual
bounds for optimization problems. It consists of moving a set of constraints to the
objective function by penalizing its violation. In our context, we apply Lagrangian
relaxationwith respect to the generic constraints, by solving the following optimization
problem:

min
λ≥0

max
x

{c�x + λ�(b̂ − Âx) : x ∈ conv(S)}.

The variables λ are called Lagrange multipliers, which represent penalties for the
violation of the constraints Âx ≤ b̂.

This problem can be solved with subgradient methods that require optimizing a
linear function over conv(S) as a subproblem. In our context, this subproblem entails
finding an optimal path in the decision diagram representing S, which can be done
in linear time with respect to the size of the decision diagram, once it is constructed.
This makes decision diagrams particularly well-suited to be used in conjunction with
Lagrangian relaxation, as often several of these subproblems need to be solved. The
use of Lagrangian relaxation with decision diagrams has been previously investigated
in the context of constraint programming as well [13,14].

Lagrangian relaxation theory establishes that the optimal value of the above problem
is equivalent to the optimal value of (1). This provides a clean interpretation of the
bound we obtain from Lagrangian relaxation. Essentially, we are optimizing over the
convex hull of the set of points represented by the decision diagram intersectedwith the
generic constraints in their original linear form. In other words, we are convexifying
the constraints involved in the construction of the decision diagram, taking integrality
into account.

We remark that the above problem can also be solved by modeling conv(S) as a
network flow with additional arc variables [9,12,14,36] and solving the overall linear
program.However,weopt for theLagrangian relaxation approach as it tends to produce
good bounds quickly in our computational experience, interrupting it before reaching
optimality.

A limitation of Lagrangian relaxation is that it is only equivalent to adding the
constraints back in its original linear form. In some cases, we may need to tighten
these generic constraints in order to obtain improvements. For instance, if the decision
diagram is constructed from a set of linear constraints whose polyhedron has only
integer vertices, then this approach cannot yield a better bound than the LP bound.

5.2 Constraint propagation

Even if a generic linear constraint results in a large decision diagram by itself, it
can be partially incorporated into the decision diagram of other constraints without
significantly increasing its size. This is particularly true if we use domain states: we
use constraint propagation to filter out infeasible values from the domain states [5,27].
This results in the elimination of infeasible points from the decision diagram, which

123



Incorporating bounds from decision diagrams into integer… 239

may improve the associated bounds. Moreover, it may reduce the time it takes to
construct the decision diagram, as we are potentially exploring fewer nodes.

Consider a constraint a�x ≤ b and a node u with domain state s. Given a variable
x j and a value v j in the domain Ds(x j ), our goal is to determine before branching on
u if no completion assigning v j to x j satisfies the constraint. If so, we can remove v j

from the domain Ds(x j ).
Before approaching this problem, let us consider an easier variant. Suppose that we

want to tackle this problem on a fully constructed decision diagram. This is equivalent
to determining if the constraint is violated by all possible solutions with x j = v j corre-
sponding to paths that pass through the node u. To solve this, we can find the smallest
left-hand side a�x within this solution set and check if it exceeds the right-hand side
b. This fundamental propagation idea is extensively used in constraint programming
and MIP solvers [2,3,10,24,34]. In its simplest version, variable bounds are used to
minimize a�x , but here we express this minimization problem in terms of the partial
solution set and the completion set of the node u.

Denote by S↓(u) the partial solution set of a node u at layer k: the set of all solutions
(x1, . . . , xk−1) corresponding to a path from the root to u. Similarly, denote by S↑(u)

the completion set of u, the set of all solutions (xk, . . . , xn) corresponding to a path
from u to the terminal node.

Proposition 2 Consider a decision diagram D ordered x1, . . . , xn, a node u of D at
layer k, and a linear constraint

∑n
i=1 ai xi ≤ b. Let j ≥ k. Then no solution x with

x j = v j corresponding to paths in D containing u satisfies the linear constraint if
and only if

min
(x1,...,xk−1)∈S↓(u)

{
k−1∑

i=1

ai xi

}

+ min
(xk ,...,xn)∈S↑(u)

x j=v j

{
n∑

i=k

ai xi

}

> b

Proof The set of solutions x corresponding to paths containing u is S(u) := {x :
(x1, . . . , xk−1) ∈ S↓(u), (xk, . . . , xn) ∈ S↑(u)}. Let S′(u) := S(u) ∩ {x : x j = v j },
which is the set of solutions for which we want to check violation. This set violates the
constraint if and only if minx∈S′(u)

∑n
i=1 ai xi > b, which is equivalent to the above

condition. ��
For convenience, we denote the first minimization term on the left-hand side of the

condition in Proposition 2 by pa(u) and the second term by ca(u, j, v j ).
Let us return to the context of filtering the domain of a node u at the construc-

tion stage. We can efficiently compute pa(u), since it consists of optimizing a linear
function over the decision diagram of the partial solution set of u, which is fully
available at the time of branching for a top-down construction. It is not necessary
to recompute pa(u) at every node, as we can maintain them throughout the con-
struction. At every new node u′ coming from a node u and arc x j = v j , we let
pa(u′) := pa(u) + a jv j . In addition, whenever two nodes u and u′ are merged into
u′′, we let pa(u′′) = min{pa(u), pa(u′)}.

On the other hand, computing ca(u, j, v j ) during construction is difficult because
we do not have the completion set of the node. Instead, we compute a lower bound

123



240 C. Tjandraatmadja, W.-J. van Hoeve

x1
1

x0
1

x1
2

x0
2

x1
3

x0
3

x1

x2

x3

∗∗∗

∗∗ 0∗

∗

Propagate
x1 + x3 ≤ 1

∗∗∗

∗∗ 00

∗ 0

Fig. 4 An example in which propagation increases the size of the decision diagram in the context of conflict
graphs

B for ca(u, j, v j ). If we satisfy the condition pa(u) + B > b, then by Proposition 2
we can still safely remove v j from Ds(x j ). In our case where domains are states,
we calculate B by minimizing

∑n
i=k ai xi over the possible values of the domains,

after restricting x j to be v j . More precisely, we let B be
∑

i :ai≥0,i 	= j min(Ds(xi )) +∑
i :ai<0,i 	= j max(Ds(xi )) + a jv j .
This completes the descriptionof the constraint propagationmethod.We remark that

while this approach can only improve the bound since it removes infeasible solutions,
it can potentially increase the size of the decision diagram. A simple example where
this happens is given in Fig. 4. Alternatively, if we want to ensure that the size of the
decision diagram does not increase, we may apply propagation only with respect to
the variable of the next layer. The size cannot increase because no states are modified
with this approach, except for identifying infeasible nodes to be pruned. This can be
interpreted as a weaker version of arc filtering [5], which we call arc pruning.

Finally,we remark that one could detect special classes of constraints and implement
specialized propagators. Our implementation is however limited to this more general
propagator.

6 Primal bounds

In our framework, primal bounds can not only be generated from decision diagrams
for the MIP solver, but conversely primal bounds from the MIP solver can also benefit
decision diagram construction.

We next present heuristic approaches to identify feasible solutions from the relaxed
decision diagrams we use. We consider two cases: one when generic constraints are
not present and onewhen they are. In the latter case, we assume that we use Lagrangian
relaxation as described in Sect. 5.1.

1. Without generic constraints. During the construction of a relaxed decision dia-
gram, we keep track of nodes that have beenmerged due to relaxation.We then find
the optimal path that does not contain any of such nodes. This path corresponds
to a feasible solution to the overall problem because it only contains exact nodes.

2. With generic constraints. The process of solving the Lagrangian relaxation prob-
lem typically involves optimizing over the decision diagram a number of times.

123



Incorporating bounds from decision diagrams into integer… 241

The solutions obtained in this process are called primal iterates. For every such
solution generated, we check its feasibility with respect to the overall problem.
If we find that it is feasible, we store it as a primal feasible solution. This simple
approach has been suggested in early works on Lagrangian relaxation [26].

An alternative is to generate primal feasible solutions (and thus primal bounds)
from restricted decision diagrams [16], which encode a subset of feasible solutions.
However, we opt not to investigate this approach, as not only constructing further deci-
sion diagrams for primal bounds can be inefficient, but also they require all constraints
to be considered in the construction.

Conversely, primal bounds from the MIP solver can help eliminate solutions from
the decision diagrams, potentially making them smaller. If we have a primal bound
Bp and we are maximizing an objective c, then we can effectively add the constraint
c�x ≥ Bp to the decision diagrams. In order to keep the size of the decision diagram
in check, we do so by applying arc pruning with respect to this constraint, as described
in the end of Sect. 5.2.

7 Computational experiments

Given that we focus on the conflict graph substructure, we first need to understand the
impact of the DD bounds in a form where the problem is entirely composed of that
structure. In particular, we first run experiments on a pure independent set problem,
which can be represented by a conflict graph. We then investigate the impact of the
DD bounds in the presence of side constraints by adding knapsack constraints to an
independent set problem. As a MIP solver, we use SCIP 5.0.1 equipped with CPLEX
12.6 as an LP solver. SCIP was chosen in part because it enables us to directly access
the conflict graph. The experiments were performed on a 2.33Ghz Linuxmachine with
32GB of RAM. The code can be found at https://github.com/ctjandra/ddopt-bounds.

As discussed in Sect. 3, we generate bounds at certain nodes of the branch-and-
bound tree, passed to SCIP via its relaxation handler. The bound is computed after
solving each LP and may be done more than once per node if it involves multiple LPs.
Themain input to the SCIP relaxator is the conflict graph (in the form of a clique table),
which is built by SCIP after the presolve step. Any additional constraints for propa-
gation and Lagrangian relaxation are copied over from the first LP at the root, after
presolve. As a result, cutting planes are not considered for bound generation. In addi-
tion, due to a technical incompatibility, we disable restarts and variable aggregation
for all runs.

To keep the experiments clean, we opt for the following simple approaches in our
implementation. Improving upon these is left for future work.

1. To select the nodes at which a bound will be generated, we use a simple node
selection rule: we generate bounds only when the number of variables of the
subproblem is below a given threshold. This is motivated by the computational
observation that the bounds are more likely to help for smaller subproblems in this
particular experimental setup.

123

https://github.com/ctjandra/ddopt-bounds


242 C. Tjandraatmadja, W.-J. van Hoeve

2. We build a new decision diagram from scratch at every node we generate a bound.
Besides simplifying the implementation, this avoids potential memory concerns
from handling more than one decision diagram at a time.

7.1 Independent set constraints

Weconsider randomgraphs parameterizedby sizen anddensityd following theErdős–
Rényi modelG(n, d): each edge of a graph with n vertices is included with probability
d.We also consider instances from theDIMACSmaximum clique benchmark set [25],
discussed later.

For the random graphs, we select two instance sizes n, 150 and 300, and vary
the density d parameter from 10 to 90% in increments of 10%. For each of these
parameters, we generate 16 instances. All solving times and number of nodes reported
are shifted geometric means among these 16 instances with a shift factor of 10 for
solving time and 100 for nodes. We set a time limit of one hour.

Except when stated otherwise, we generate bounds for every subproblem with
at most 2/3 of the variables—that is, 100 and 200 for the instances of sizes 150
and 300 respectively. This subproblem size is manually tuned: we performed some
computational experiments with different sizes and selected one that performed well
for these runs.

The IP model given to the solver is a clique cover formulation. The constraints are∑
j∈C x j ≤ 1 for every clique C in a clique cover C, which is a set of cliques that

covers all edges ofG. Each clique is generated by startingwith a vertexwithmaximum
degree and greedily adding vertices with maximum degree that form a clique with the
current set.

In practice, wewould typically not use aMIP solver to solve themaximum indepen-
dent set problem, as this is a well-studied problem with several specialized algorithms
significantly faster than a MIP solver. However, they often no longer function as is
when the problem is further constrained, as is often the case with real-world problems.
Observing the behavior of aMIP solver in this simpler case is useful as a stepping stone
to problems with independent set constraints as a substructure, which is examined in
the next set of experiments in Sect. 7.2.

In terms of implementation, we construct decision diagrams based on the conflict
graph of the problem, followingSect. 4, even thoughweknow these are independent set
instances. Since the DP formulation of the conflict graph generalizes the formulation
for the independent set problem, the resulting decision diagrams are the same, presolve
aside. The difference between this version and one specific to the independent set
problem is overhead in time from extracting and processing conflict constraints. Note
also that presolve may affect these graphs including their densities. Any figure in this
section refers to the original densities.

We use arc pruning with primal bounds and the primal heuristic without generic
constraints as described in Sect. 6. We use the variable ordering described in Sect. 4.2,
and a merging rule that merges together nodes with the smallest objective values until
the width limit is satisfied.

123



Incorporating bounds from decision diagrams into integer… 243

Fig. 5 Comparison in solving time and branch-and-bound tree size between applying and not applying DD
bounds in independent set instances with 150 vertices. Results are averaged over solving 16 instances to
optimality for each density parameter

Fig. 6 Comparison in solving time and branch-and-bound tree size between applying and not applying DD
bounds in independent set instances with 300 vertices. The gray dotted line on the left plot indicates the
time limit of one hour. Unreported data on number of nodes corresponds to cases in which the time limit of
one hour was hit on the majority of runs

– Overall performance:Thefirst plots in Figs. 5 and 6 show the overall performance
of the method. For random graphs, solving maximum independent set problems
tends to be easier for either dense graphs or very sparse graphs, and this is evident
from the plot. The graph suggests that our approach is more beneficial around
middle ranges of density. For instance, in the case of density 60% and 300 vertices
(in which time limit is not hit), applying the DD bounds reduces the tree size by
99.6%, allowing the problem to be solved 6.4 times faster. The bounds do not
perform well for low densities, consistent with observations from previous works
[19,36].

– Subproblem size: Figure 7 shows what happens if we choose a different sub-
problem size threshold. Selecting a larger threshold—that is, applying decision
diagram bounds more often—can be helpful when we know relaxed decision dia-
grams are strong, such as with high-density cases. However, that can waste time
when the relaxations do not scale well, as illustrated by the low-density cases, in
which case focusing on smaller subproblems performs better. We omit the plot for

123



244 C. Tjandraatmadja, W.-J. van Hoeve

Fig. 7 Comparison of different subproblem size thresholds with 150 vertices

Fig. 8 Effect on solving time when disabling primal pruning and/or primal heuristic on instances of size
150 (left) and 300 (right). The vertical axis is the ratio td/T , where td is the time without a given feature
and T is the time with all capabilities, and the horizontal axis is the density parameter of the set of instances.
On the right, data points for densities below or equal 30 are omitted because the time limit is always hit

instances of size 300 as it depicts a similar behavior as above (although it cannot
be observed for lower densities due to the time limit).

– Primal bounds: Figure 8 illustrates the impact of primal bounds. It provides the
ratio between the solving time without a given feature (primal pruning and/or
primal heuristic) and the solving time with all features. The effect of the primal
techniques becomes more significant with larger branch-and-bound trees. Primal
pruning is particularly helpful to avoid wasting time on small nodes that are easily
identifiable as infeasible.

In Sect. A of the “Appendix”, we provide further information on the time spent
generating bounds and on the number of times an improving bound was found.

Table 1 exhibits solving times for instances from the DIMACS maximum clique
benchmark set [25], converted to maximum independent set by considering their
complement graphs. Most of these instances have different structures than random
Erdős–Rényi graphs. We present only the set of instances that were solved to opti-
mality within one hour with SCIP 5.0.1 at its default settings, either with or without
bounds from decision diagrams, and for at least one random seed. The bounds from

123



Incorporating bounds from decision diagrams into integer… 245

Table 1 Effect of applying bounds on selected DIMACS benchmark instances

Instance Density (%) Solving time (s) Number of nodes

MIP MIP + DD MIP MIP + DD

brock200_1 25.5 >3600.00 1096.36 >239552.41 14637.51

brock200_2 50.4 245.74 39.59 19631.05 173.37

brock200_3 39.5 844.77 82.23 57032.38 625.98

brock200_4 34.2 1321.67 166.97 93581.85 1583.24

C125.9 10.2 21.47 45.49 1370.75 1119.28

gen200_p0.9_44 10.0 32.88 105.87 737.29 1149.75

gen400_p0.9_65 10.0 >2366.88 >3600.00 >58268.84 >11993.40

gen400_p0.9_75 10.0 995.33 1742.15 6968.81 4035.27

hamming8-4 36.1 142.47 78.00 1672.93 179.32

keller4 35.1 288.55 32.99 30392.73 357.44

MANN_a27 1.0 42.79 34.72 5006.48 4146.73

MANN_a45 0.4 797.68 820.63 88823.52 79162.73

p_hat300-1 75.6 195.28 96.01 7684.60 151.50

p_hat300-2 51.1 1184.74 459.30 26900.27 2355.57

p_hat500-1 74.7 2688.06 700.69 79198.67 609.70

san200_0.7_2 30.0 22.39 16.74 60.25 31.80

san200_0.9_3 10.0 13.68 56.64 239.43 553.39

san400_0.5_1 50.0 495.26 87.67 320.56 32.58

san400_0.7_1 30.0 490.55 392.30 1152.63 379.04

san400_0.7_2 30.0 885.74 380.64 6448.98 651.72

san400_0.7_3 30.0 >3439.64 >1431.74 >51602.73 >4618.31

san400_0.9_1 10.0 254.77 419.46 470.31 709.16

sanr200_0.7 30.3 2973.10 407.97 270050.01 4891.10

sanr400_0.5 49.9 >3600.0 2544.89 >133516.18 8338.75

Average
All 448.47 239.15 9920.72 1322.03

≥ 30 733.01 223.05 16145.26 835.61

Averages are in shifted geometric mean. Entries marked with a ‘>’ have reached the time limit for at least
one random seed

decision diagrams are applied at every branch-and-bound node with at most 3/4 of the
total number of vertices with a width of 100.

On average across all DIMACS instances tested, we observe that using the bounds
makes the solving process 1.87× faster with a node reduction of 86.7%. In practice,
we would not apply this method to low-density instances however. If we consider only
instances with density at least 30%, the improvement is more pronounced: the solving
times are on average 3.29× faster and the node reduction is on average 94.8%.

123



246 C. Tjandraatmadja, W.-J. van Hoeve

7.2 Independent set and knapsack constraints

Wenextwish to understand the impact of theDDbounds in presence of side constraints.
The instances we consider in this section are a combination of independent set (set
packing) constraints with knapsack constraints. The integer programming model is
given by:

max c�x
∑

j∈C
x j ≤ 1 for all C ∈ C (set packing)

n∑

j=1

ai j x j ≤ bi for all i = 1, . . . ,mknap (knapsack)

x ∈ {0, 1}n

The independent set constraints for the input graph G are modeled with a clique
cover formulation, as described in the previous section.

To eliminate the bias from the properties of the conflict graph that we studied in
the previous section, we define an underlying random graph structure for which the
performance of the decision diagram is rather stable: the Watts–Strogatz model [37],
which has small-world properties and allows us to scale up to relatively large size
without compromising the quality of the DD performance too much. This model gen-
erates graphs through the following process. Given the desired number of vertices n,
the desired mean degree k (assumed even), and a probability p, construct a prelim-
inary graph with n vertices arranged in a cycle. Let two vertices be adjacent if and
only if they are within distance k/2 in the cycle. Then for each vertex i and outgoing
edge (i, j), reassign j with probability p to another vertex (besides i or a neighbor
of i) uniformly chosen at random. In our instances, the mean degree k is 100 and the
probability p is 0.1.

We perform two sets of experiments: we first assess the quality of the DD bounds on
a varying number of knapsack constraints, and then their impact on the overall solving
process for a fixed fraction of knapsack constraints. We use the following parameters
for both cases. For each knapsack constraint indexed by i , we select a support of 100
variables at random and choose coefficients ai j uniformly at random from 1 to 100,
and the remaining variables have zero coefficients. We maximize an objective with
coefficients c j also randomly chosen from 1 to 100. We fix bi to 150 in all instances in
this section. Solving times and nodes are aggregated over 10 instances with 5 solver
random seeds each using shifted geometric mean with a shift of 10 for time and 100
for nodes.

The variable ordering and merging rules for the relaxed decision diagrams are the
same as in the previous section. We use different width limits for the two sets of exper-
iments: 1000 for the first set and 100 for the second one. We observed that increasing
the latter to 1000 results in similar behavior, with little improvement to pruning, likely
because we only focus on small subproblems that do not require large widths to be

123



Incorporating bounds from decision diagrams into integer… 247

Fig. 9 The plot on the top illustrates a comparison of bound quality for independent set + knapsack con-
straints with 200 (left) and 1000 (right) variables, varying the number of knapsack constraints. The plot on
the bottom represents the solve times to reach each bound. The quality of a bound D is represented by its
gap (D − P)/P , where for n = 200 (left), P is the optimal value, and for n = 1000 (right), P is the best
primal value given by the solver at its default settings after 10 min of solve time

effectively tackled. TheLagrangian relaxation is solved using theConicBundle library,
which implements a bundle method to solve it. We extract the best bound it finds by
the end of 50 iterations. We do not use warm starts for the Lagrangian relaxation.

In the first set of experiments, we are interested only in examining the bounds at the
root node. Figure 9 shows the quality of the bounds (represented by gap, as defined
in the caption of the figure) as we increase the number of knapsack constraints in the
cases of n = 200 and n = 1000. As a baseline, we include in the plots the initial
LP bound and the LP bound at the end of the root node, which may include cutting
planes, at default settings. In addition, the figure provides the time it takes to reach
each bound.

We observe that for small instances, the bounds are strong even if several knapsack
constraints are present. For the larger instances, more knapsack constraints result in
lower DD bound quality. This is expected since we mostly explore the conflict graph
substructure. We also show the DD bounds with constraint propagation disabled,
and both constraint propagation and Lagrangian relaxation disabled. Enabling both
of them is particularly helpful for the smaller instances, but for larger instances, we
observe that Lagrangian relaxation suffices to improve the bound most of the way at a
relatively small cost. Moreover, Lagrangian relaxation and constraint propagation are
more helpful when more knapsack constraints are present, which is expected given
that their role is to take them into account.

Our final set of experiments assesses the impact of the DD bound on the overall
search tree. Again, we follow the Watts–Strogatz graph model to generate instances
with n variables, and we vary the number of variables n from 300 to 450 in incre-

123



248 C. Tjandraatmadja, W.-J. van Hoeve

Fig. 10 Comparison in solving time and branch-and-bound tree size of the use of decision diagram bounds
for independent set + knapsack instances

ments of 50. We keep the number of knapsack constraints at a fixed proportion to n.
Experiments are performed for 16 random instances, each with 5 different MIP solver
random seeds. For this set of experiments, we do not apply a time limit. Based on the
results presented in Fig. 9, we determine that adding 0.1n knapsack contraints strikes
a good balance between the relative performance of the LP bound and the DD bound
for an insightful comparison. The subproblem size threshold is 100, determined by
manual tuning. We use Lagrangian relaxation and constraint propagation as described
in Sect. 5. Moreover, we include the primal heuristic (with generic constraints) and
the arc pruning based on primal bounds described in Sect. 6.

– Overall performance: The overall performance of the decision diagram bounds
is presented in Fig. 10, along with a summary in relative terms in Table 2. On aver-
age for these instances, this technique results in an overall speed-up of 66.94%
(or equivalently, a slowdown of 40.09% if we disable the bounds). The number
of nodes is reduced by 66.10%—to almost one-third of its original size. From
Table 2, we observe that the speed-up scales well up to the sizes we tested. Fig-
ure 11 illustrates all individual instances and random seeds and it suggests that the
approach is fairly robust for these instances.

– Lagrangian relaxation, constraint propagation, primal bounds: Table 3 shows
the effect of disabling each of the techniques we use on top of the dual bound
generation. While the dual bounds by themselves are strong—in part because
the independent set constraints play a substantial role in defining the problem—
removing fromconsideration either the generic constraints or the primal techniques
results in a significant deterioration of the speed-up. In particular, although remov-
ing one of the two generic constraint techniques does not affect the solving time
too much, disabling both of them has a large impact, indicating that it is important
to consider the generic constraints in some way.

Section A of the “Appendix” contains information on the fraction of time spent
generating bounds and on the number of times the LP bound was improved.

123



Incorporating bounds from decision diagrams into integer… 249

Table 2 Speed-up and node
reduction from using decision
diagram bounds

Instance size

300 350 400 450

Speed-up (%) 62.13 76.78 68.57 64.90

Node reduction (%) 74.46 68.34 63.84 58.40

Speed-up is the ratio of original solving time to the solving time with
the bounds, minus one (e.g. a speed-up of 100% means twice as fast).
Solving times and numbers of nodes are averaged using the shifted
geometric mean (with shifts of 10 and 100 respectively)

Fig. 11 Effect of using decision diagram bounds illustrated by individual independent set + knapsack
instance. Each point is an instance + random seed and points below the diagonal line correspond to better
performance than not using bounds

Table 3 Effect of removing from consideration generic constraints or primal bounds for the independent
set + knapsack instances, averaged across all instances using shifted geometric mean (with shifts of 10 and
100 respectively)

Speed-up (%) Node reduction (%)

All techniques 66.94 66.10

No Lagrangian relaxation 65.95 65.86

No propagation 60.58 63.50

No Lagrangian relaxation or propagation 46.59 55.69

No primal pruning 60.32 66.03

No primal heuristic 54.33 63.88

No primal pruning or heuristic 54.33 64.01

Without the above techniques 42.39 55.03

7.3 Computational limitations

The previous subsections provide computational evidence that our approach works
well in scenarios where the conflict graph either forms the entire problem, or plays an

123



250 C. Tjandraatmadja, W.-J. van Hoeve

important role in the problem. A natural next question is whether this method works
well for arbitrary MIP instances. We therefore evaluate our approach on the MIPLIB
2017 benchmark set [32]. The details of this experiment are described in Sect. B of
the “Appendix”. We only observe a significant reduction in search tree size for 2 out
of the 109 MIPLIB 2017 instances we examined, mine-166-5 and mine-90-10,
but even in those cases the overall solving time increased.

There are several reasons that may explain the lack of performance on this bench-
mark set, and on arbitrary MIP instances in general. The first reason is related to
the decision diagram structure—the conflict graph in our case. When the problem
instance does not contain a conflict graph, no bound will be generated. Otherwise,
when a conflict graph is present, it may generate a weak bound, which may happen in
the following cases:

1. The conflict graph captures only a small number of constraints.
2. The convex hull of solutions feasible to the conflict graph is already close to

being an integral polyhedron. For instance, a conflict graph may be composed of
independent cliques, while other constraints tie them together.

3. The decision diagram relaxation is too weak (e.g., because the conflict graph is
sparse).

The second reason is related to the MIP search tree. For example, the MIP solver
may not generate sufficiently many search tree nodes of small enough size for the
bound generator to be called. Alternatively, the search tree nodes that are pruned by
the decision diagram bounds may simply be too small (i.e., represent a small subtree)
in order to be effective.

The issues above may potentially be mitigated by considering other substructures
within the decision diagram, or by performing a better selection of nodes at which to
generate bounds. Despite these negative results on MIPLIB 2017, we emphasize that
this method is valuable for instances in which the conflict graph or substructure being
leveraged plays an important role in the problem (which may be detected a priori).

8 Conclusion

Relaxed decision diagrams provide good approximations to certain classes of dis-
crete optimization problems, and in this paper we investigate an approach to replicate
this power for more general integer programming solvers. We explore approaches to
answering two underlying questions in this work: how to construct effective relaxed
decision diagrams from integer programming models, and how to use them in order
to improve the solving process of a MIP solver.

In this paper, we construct relaxed decision diagrams for a specific substructure
of the problem, allowing for DP formulations, merging rules, and variable ordering
heuristics that take advantage of that structure. We apply Lagrangian relaxation and
constraint propagation to take into account any other constraints. As one possible
substructure, we propose the use of the conflict graph, for which we introduce efficient
and complete equivalence tests within the construction of a decision diagram.

123



Incorporating bounds from decision diagrams into integer… 251

Once we have a procedure to construct a relaxed decision diagram that heuristically
approximates well the feasible set of an integer programming model, the next step is
to use it to aid the solving process. We investigate the simple yet effective approach
of using dual and primal bounds from these decision diagrams to improve the pruning
of the branch-and-bound tree. We find that the bounds are effective both in a case
where the entire problem can be modeled as a decision diagram and in a case where
it represents a substructure. The decision diagram bounds are able to substantially
reduce the tree size in the independent set and independent-set-like instances we
tested, leading to a significant improvement in total solving time (roughly 1.6x faster
on average in the latter set of instances).

Although we limit our computational experiments to instances in which the con-
flict graph plays an important role, we provide computational evidence that modeling
substructures of a more general problemwith decision diagrams can be effective. Han-
dling substructures is particularly important in the case of decision diagrams because,
at their current methodological state, they tend to capture well specific structures, but
complex combinations of structures are less explored. As decision diagram method-
ology for optimization evolves, we will be able to better handle different classes of
constraints, and our framework allows us to expand the range of problems that decision
diagrams can aid in solving.

A Additional computational observations

In this section, we report three additional experimental observations on the runs per-
formed in Sect. 7:

1. Percentage of time spent generating bounds and compiling decision diagrams (the
former is the latter plus any Lagrangian relaxation or primal bound computation);

2. Number of improving feasible solutions found by the primal heuristic.
3. Number of times that the bound generator was called (i.e. it met the criterion on

subproblem size), that a bound resulted in an improvement over the LP bound at
a node, and that the improvement resulted in the node being pruned by bound;

Tables 4, 5, 6, 7, 8 and 9 in this section report the values described above. All
averages of the values above are done with arithmetic mean across the instances and
random seeds examined in Sect. 7. Note that the percentage of time spent on each
portion of the method are calculated via ratios of times summed up across all seeds
and instances (or equivalently, via ratios of arithmetic means).

B Experiments onMIPLIB 2017

We performed the following simple experiment on MIPLIB 2017 instances [32]. We
took the 109 instances with the tags ‘binary’ and ‘benchmark_suitable’ fromMIPLIB
2017. For these instances, we ran SCIP with bounds from relaxed decision diagrams,
using a width of 100 and generating them at subproblems where number of variables

123



252 C. Tjandraatmadja, W.-J. van Hoeve

Table 4 Percentage of time used for bound generation and number of times an improving primal feasible
solution was found for independent set instances of size 150 from Sect. 7.1

Density (%) Percentage of time
on bound
generation

Percentage of time
on DD
compilation

Number of primal
improvements

10 68.61 65.07 2.26

20 60.90 58.72 3.15

30 39.96 38.33 2.31

40 15.61 14.99 1.75

50 2.72 2.69 1.31

60 0.88 0.87 1.41

70 0.47 0.46 1.47

80 0.20 0.20 0.30

90 0.09 0.09 0.31

Table 5 Number of times an improving boundwas found or resulted in pruning for independent set instances
of size 150 from Sect. 7.1

Density (%) Number of calls to
bound generator

Number of
improvements

Number of
prunings

10 5300.21 5041.30 5041.30

20 5912.15 3051.69 3051.69

30 915.35 423.02 423.02

40 199.87 75.02 75.02

50 54.77 2.95 2.95

60 50.65 1.32 1.32

70 46.36 1.52 1.52

80 18.42 0.29 0.29

90 1.44 0.31 0.31

Table 6 Percentage of time used for bound generation and number of times an improving primal feasible
solution was found for independent set instances of size 300 from Sect. 7.1

Density (%) Percentage of time
on bound
generation

Percentage of time
on DD
compilation

Number of primal
improvements

40 35.67 33.98 3.04

50 20.26 19.11 2.50

60 5.20 4.94 1.55

70 0.72 0.71 1.74

80 0.35 0.35 0.37

90 0.07 0.07 0.62

123



Incorporating bounds from decision diagrams into integer… 253

Table 7 Number of times an improving boundwas found or resulted in pruning for independent set instances
of size 300 from Sect. 7.1

Density (%) Number of calls
tobound generator

Number of
improvements

Number of
prunings

40 11296.06 6692.04 5686.14

50 1808.46 1072.50 953.09

60 245.09 184.12 172.39

70 107.77 104.52 102.65

80 98.34 98.34 97.96

90 7.35 7.34 6.72

Table 8 Percentage of time used for bound generation and number of times an improving primal feasible
solution was found for independent set + knapsack instances from Sect. 7.2

Graph size Percentage of time
on bound
generation

Percentage of time
on DD
compilation

Number of primal
improvements

300 2.87 2.86 0.97

350 5.23 5.19 1.09

400 8.20 8.20 1.46

450 10.17 10.16 2.19

Table 9 Number of times an improving bound was found or resulted in pruning for independent set +
knapsack instances from Sect. 7.2

Graph size Number of calls
tobound generator

Number of
improvements

Number of
prunings

300 192.86 190.51 188.87

350 567.40 564.95 563.30

400 1940.51 1939.24 1937.21

450 5639.30 5636.89 5633.71

is at most 1000. We chose a threshold that is not problem-dependent to avoid building
large decision diagrams in large problems.

We ran afirst passwith the intention tofilter out instanceswhere our approach is very
unlikely to help. For this pass, we used a time limit of 30min and one random seed. Out
of the 109 instances, there were only 38 of themwhere the bound generator was called,
or in other words, the solver did not observe a subproblem of size at most 1000 within
the time limit of 30min.Out of these 38 instances, in only 9 instances the bound genera-
tor found a bound better than the LP bound at least 20 times. These were the following
9 instances: bnatt400, eil33-2, eilC76-2, mine-166-5, mine-90-10,
neos18, ponderthis0517-inf, reblock115, reblock166.

In the second pass, we reran the same experiment for these 9 instances, but with
five random seeds and a higher time limit of 3 hours.We analyze the 4 instances of this

123



254 C. Tjandraatmadja, W.-J. van Hoeve

Table 10 Solving time in seconds and number of nodes for a subset of MIPLIB 2017 instances

Instance Solving time (s) Number of nodes

MIP MIP + DD MIP MIP + DD

eil33-2 213.89 235.33 328.55 334.14

mine-166-5 161.46 664.70 2630.97 1947.59

mine-90-10 1119.07 7197.87 30864.59 23528.99

neos18 122.96 5084.48 2100.63 1972.28

Table 11 Number of times an improving bound was found or resulted in pruning for a subset of MIPLIB
2017 instances

Density (%) Number of calls
tobound generator

Number of
improvements

Number of
prunings

eil33-2 213.8 163.6 156.8

mine-166-5 1763.4 337.2 188.0

mine-90-10 20593.2 3244.0 2162.0

neos18 1655.8 152.4 112.4

subset that did not hit the time limit for the runs with bounds from decision diagrams.
We report the solving times and number of nodes in Table 10, and number of bound
improvements (over LP) and pruning in Table 11.

In all cases, the overhead of generating bounds increases the solving time, some-
times substantially. However, for the instances mine-166-5 and mine-90-10, we
do obtain relevant reductions in the number of nodes by 25.97% and 23.77% respec-
tively. Moreover, we observe that in all four instances, a significant portion of bounds
generated improve over the corresponding LP bounds.

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4(1), 4–20 (2007)
2. Achterberg, T.: Constraint integer programming. PhD thesis. Technische Universität Berlin (2009)
3. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer

programming. In: ZIB Report, pp. 16–44 (2016)
4. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 100(6), 509–516 (1978)
5. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued

decision diagrams. In: Principles and Practice of Constraint Programming—CP 2007. Springer, pp.
118–132 (2007)

6. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified
boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

7. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.: Conflict graphs in solving integer programming
problems. Eur. J. Oper. Res. 121(1), 40–55 (2000)

8. Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut framework. In: Experi-
mental and Efficient Algorithms. Springer, pp. 452–463 (2005)

9. Behle, M.: Binary decision diagrams and integer programming. PhD thesis. Saarbrücken, Germany:
Max Planck Institute for Computer Science (2007)

123



Incorporating bounds from decision diagrams into integer… 255

10. Benhamou, F.,McAllester, D.A., VanHentenryck, P.: CLP(intervals) revisited. In: Proceedings of ILPS,
pp. 124–138 (1994)

11. Bergman, D., Cire, A.A.: Decomposition based on decision diagrams. In: International Conference
on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems.
Springer, pp. 45–54 (2016)

12. Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decompositions. Manag. Sci.
64(10), 4700–4720 (2017)

13. Bergman, D., Cire, A.A., van Hoeve, W.-J.: Improved constraint propagation via Lagrangian decom-
position. In: International Conference on Principles and Practice of Constraint Programming. Springer,
pp. 30–38 (2015)

14. Bergman, D., Cire, A.A., van Hoeve, W.-J.: Lagrangian bounds from decision diagrams. Constraints
20(3), 346–361 (2015)

15. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial opti-
mization. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems. Springer, pp. 20–35 (2011)

16. Bergman, D., Cire, A.A., van Hoeve, W.-J., Yunes, T.: BDD-based heuristics for binary optimization.
J. Heuristics 20(2), 211–234 (2014)

17. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.: Decision Diagrams for Optimization. Springer,
Berlin (2016)

18. Bergman,D., Cire, A.A., vanHoeve,W.-J., Hooker, J.N.: Discrete optimizationwith decision diagrams.
INFORMS J. Comput. 28(1), 47–66 (2016)

19. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Optimization bounds from binary decision
diagrams. INFORMS J. Comput. 26(2), 253–268 (2013)

20. Bergman, D., Cire, A.A., vanHoeve,W.-J., Hooker, J.N.: Variable ordering for the application of BDDs
to the maximum independent set problem. In: International Conference on Integration of Artificial
Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming. Springer, pp.
34–49 (2012)

21. Bryant, R.E.: Graph-based algorithms for boolean functionmanipulation. IEEETrans. Comput. 100(8),
677–691 (1986)

22. Cire, A.A., van Hoeve, W.-J.: Multivalued decision diagrams for sequencing problems. Oper. Res.
61(6), 1411–1428 (2013)

23. Davarnia, D., van Hoeve, W.-J.: Outer approximation for integer nonlinear programs via decision
diagrams. Mathematical Programming (2020)

24. Davis, E.: Constraint propagation with interval labels. Artif. Intell. 32(3), 281–331 (1987)
25. DIMACS maximum clique benchmark set. http://iridia.ulb.ac.be/~fmascia/maximum_clique/

DIMACS-benchmark (2018). Accessed 14 Dec 2018
26. Fisher, M.L.: An applications oriented guide to Lagrangian relaxation. Interfaces 15(2), 10–21 (1985)
27. Hoda, S., Van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint program-

ming. In: International Conference on Principles and Practice of Constraint Programming. Springer,
pp. 266–280 (2010)

28. Kinable, J., Cire, A.A., van Hoeve,W.-J.: Hybrid optimizationmethods for time-dependent sequencing
problems. Eur. J. Oper. Res. 259(3), 887–897 (2017)

29. Lai, Y.-T., Pedram, M., Vrudhula, S.B.: EVBDD-based algorithms for integer linear programming,
spectral transformation, and function decomposition. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 13(8), 959–975 (1994)

30. Lee, C.-Y.: Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J. 38(4),
985–999 (1959)

31. Lozano, L., Smith, J.C.: A binary decision diagram based algorithm for solving a class of binary
two-stage stochastic programs. In: Mathematical Programming, pp. 1–24 (2018)

32. MIPLIB 2017. http://miplib.zib.de (2018). Accessed 14 Dec 2018
33. O’Neil, R.J., Hoffman, K.: Decision diagrams for solving traveling salesman problems with pickup

and delivery in real time. Oper. Res. Lett. 47(3), 197–201 (2019)
34. Savelsbergh, M.W.: Preprocessing and probing techniques for mixed integer programming problems.

ORSA J. Comput. 6(4), 445–454 (1994)
35. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)
36. Tjandraatmadja, C., van Hoeve, W.-J.: Target cuts from relaxed decision diagrams. INFORMS J.

Comput. 31(2), 285–301 (2019)

123

http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
http://miplib.zib.de


256 C. Tjandraatmadja, W.-J. van Hoeve

37. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440
(1998)

38. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications, vol. 4.
SIAM, Philadelphia (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Incorporating bounds from decision diagrams into integer programming
	Abstract
	1 Introduction
	2 Decision diagrams
	3 Framework
	4 Decision diagrams for conflict graphs
	4.1 Dynamic programming formulation
	4.1.1 Correctness
	4.1.2 Completeness

	4.2 Variable ordering

	5 Generic constraints
	5.1 Lagrangian relaxation
	5.2 Constraint propagation

	6 Primal bounds
	7 Computational experiments
	7.1 Independent set constraints
	7.2 Independent set and knapsack constraints
	7.3 Computational limitations

	8 Conclusion
	A Additional computational observations
	B Experiments on MIPLIB 2017
	References




