Mathematical Programming Computation (2020) 12:39-68
https://doi.org/10.1007/s12532-019-00171-5

FULL LENGTH PAPER

®

Check for
updates

A branch-and-price algorithm for capacitated hypergraph
vertex separation

Michael Bastubbe'® - Marco E. Liibbecke'

Received: 26 January 2018 / Accepted: 10 May 2019 / Published online: 9 September 2019
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Abstract

We exactly solve the A'P-hard combinatorial optimization problem of finding a min-
imum cardinality vertex separator with k (or arbitrarily many) capacitated shores in a
hypergraph. We present an exponential size integer programming formulation which
we solve by branch-and-price. The pricing problem, an interesting optimization prob-
lem on its own, has a decomposable structure that we exploit in preprocessing. We
perform an extensive computational study, in particular on hypergraphs coming from
the application of re-arranging a matrix into single-bordered block-diagonal form.
Our experimental results show that our proposal complements the previous exact
approaches in terms of applicability for larger k, and significantly outperforms them
in the case k = oco.

Keywords Hypergraph - Balanced vertex separator - Matrix decomposition - Integer
programming

Mathematics Subject Classification 90C27 - 90C09 - 49M27

1 Introduction

Given a hypergraph H = (V, &) withe C V for all e € &, a capacity u € N.o,
and an upper bound k € N. g U {oo}, the capacitated (or balanced) hypergraph vertex
separator problem (CHVS) is to find a minimum cardinality subset of vertices S C V

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s12532-
019-00171-5) contains supplementary material, which is available to authorized users.

B Marco E. Liibbecke
marco.luebbecke @rwth-aachen.de

Michael Bastubbe
michael.bastubbe @rwth-aachen.de

I Lehrstuhl fiir Operations Research, RWTH Aachen University, Kackertstr. 7, 52072 Aachen,
Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-019-00171-5&domain=pdf
http://orcid.org/0000-0002-4416-925X
http://orcid.org/0000-0002-2635-0522
https://doi.org/10.1007/s12532-019-00171-5
https://doi.org/10.1007/s12532-019-00171-5

40 M. Bastubbe, M. E. Liibbecke

such that the remaining vertices decompose in at most kK components (not necessarily
connected) with at most u vertices each, i.e., there is no hyperedge incident to more
than one component. These components are called shores. The goal is equivalent to
maximizing the number of vertices in the shores.

The CHVS is not only A/P-hard, but also hard to approximate within an additive
term away from the optimum, even when restricted to graphs with maximum node
degree three and k = 2. This is an immediate consequence of Theorem 4.3 in [10].

We abbreviate [n] := {1, ...,n}foranyn € Nogand E(R) :={e € £ : RNe # @}
forany R C V.Forasingle vertex v € V we write £ (v) instead of £({v}). Furthermore,
we assume w.l.o.g. that there are no isolated vertices.

Applications and literature Our main motivation for studying the CHVS comes from
a matrix decomposition problem: given a matrix A € R"*™, a number k of blocks,
and a block capacity u, assign as many rows as possible to one of the blocks such that
the number of rows assigned to each block is at most . Two rows assigned to different
blocks must not share a column having a nonzero entry in both of them. The set of
unassigned rows is called the border. By re-arranging the rows and columns block-
wise the matrix attains the so-called single-bordered block-diagonal form. Identifying
rows with vertices and columns with nets (spanning exactly the vertices whose cor-
responding rows have a nonzero entry in this column), we obtain a bijection between
instances (and solutions) of CHVS and the matrix decomposition problem, see Fig. 1.
The single-bordered block-diagonal form has itself a vast number of applications in
e.g., numerical linear algebra, see [19] for a survey. Examples of particular interest are
the parallelized QR factorization [1], and determining how to apply a Dantzig-Wolfe
reformulation to a mixed-integer linear program [8].

The matrix decomposition problem also motivated the only exact approach to the
CHVS so far. Borndorfer et al. [9] propose a binary program which they solve by a
tailored branch-and-cut algorithm. It is based on binary variables xf that equal 1 if
and only if vertex v is part of shore £. Their model reads as follows.

14
m Y Y

Lelk]veV
st. Y xp<1 YveVp (B.1)
Lelk]
1 3 4 5 6 1 3 7 2 4 5 6
a o o o o b]
b |e ° ° e
c ° ° . c
d e o o d
e |eo ° a ‘ e o o o‘
f ° ° o f ° ° o

Fig.1 Exploiting a relation to the CHVS, we are able to re-arrange a matrix (left) to single-bordered block-
diagonal form (right). Black dots in the matrices represent non-zero entries. A smallest vertex separator
(here: vertices a and f) corresponds to a minimum size border

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 41

> xb<u Veelk (B.2)
vey

Xpxl <1 Ve elkl, €40, Yoo i E@NEW) £0, (B3
xt ef0,1), Veel[k], VYveV.

Every vertex can be part of at most one shore via Eq. (B.1) and each shore is
capacitated, ensured by Eq. (B.2). Central to this model is the conflict that vertices
that belong to a common net cannot be part of different shores, see Eq. (B.3). Based on
these latter packing type of constraints, the model is strengthened by several classes
of valid inequalities in [9]. Since formulation (B) is symmetric in index k, even the
tailored approach struggles with larger k. Oosten et al. [25] suggest a non-symmetric
binary program, however, they assume k£ = oo. For the variant where the difference
between component cardinalities is bounded by a parameter, Cornaz et al. [11] present
a compact and an exponential-size formulation. The latter one can be seen as an
intermediate step to what we propose in this paper. Yet, they can also hardly handle
larger k. Most recently, Cornaz et al. [12] independently used similar ideas for the
uncapacitated problem variant on graphs to cut into at least kK components.

The CHVS appears in several other contexts, in particular when restricted to graphs,
where network structure is of interest: removing few vertices from a graph such that a
certain number of components remain is a common topic in graph clustering [25] and
partitioning [15]. In communication applications such vertices have a certain criticality
for the network and the cardinality of a separator is a proxy for network robustness [6].

An overview of heuristic approaches, mainly for k = 2, is given in [15]. Polyhedral
results (other than those in [9] already mentioned) can be found in [3,13] (k = 2) and
[25] (k = o0). For k = oo, the problem is polynomially solvable for several graph
classes, also for the version with vertex weights [6].

Our contribution We model the CHVS as an exponential-size binary program in which
the symmetry in k is eliminated. Our approach is the first to consistently solve instances
with larger k and thus complements previous exact approaches that work better/only
for smaller k. We design a branch-and-price algorithm, for which it is remarkable that
branching on so-called aggregated original variables works well. One key component
of this (theoretically incomplete) branching scheme is a repair algorithm that might
solve an auxiliary BIN PACKING problem to find an integer solution based on a frac-
tional one. We discuss the complexity of the pricing problem, a variant of the NEXT
RELEASE PROBLEM [2], and solve it by heuristic and exact approaches. The optimal
re-arrangements of matrices into single-bordered block-diagonal form constitute a
contribution on their own.

2 Branch-and-price algorithm

A slight modification of formulation (B) for the CHVS reads as follows.

max Z x!
(k]

Lelk] veV

@ Springer

42 M. Bastubbe, M. E. Libbecke

st. Y yb=<1 Vee€, (P.1)
Lelk]
Zx{f <u Vlelk], (P.2)
veV
xb—yl <0 Vee[k],Veck, Vvee, (P3)

xb yEe{0,1) YoveV, Yeek, VEelk].

Binary variable x! equals 1 if and only if vertex v is part of shore £. There is a binary
variable y! for all e € £ and ¢ € [k] that equals 1 if x\ = 1 for some v € e which
is enforced by constraints (P.3). The inequalities (P.1) invoke that every hyperedge
touches at most one shore. Notice that since there are no isolated vertices, every vertex
is assigned to at most one shore. Furthermore constraints (P.2) accomplish that every
shore includes at most # many vertices. The objective function maximizes the number
of vertices assigned to some shore.

The drawbacks of this formulation are two-fold: firstly, the linear programming
(LP) relaxation is weak; assigning xf = yf := min{-, %} yields a feasible solution
with objective value equal to min {ku, m} which are trivial bounds. Secondly, the
formulation is highly symmetric, as for any feasible solution of (P) every permutation
of shore indices ¢ yields another feasible solution of (P).

2.1 A shore based formulation

Let R := {R € V : |R| < u} denote the set of all possible shores, e.g., vertex
subsets with cardinality at most u. We consider the following natural shore-based ILP
formulation (M), which formally is a Dantzig-Wolfe reformulation of (P): for every
£ € [k] one reformulates the corresponding constraints (P.2) and (P.3) into a separate
subproblem, resulting in £ identical subproblems that will be aggregated into one single
subproblem, thereby eliminating the symmetry of (P). The remaining constraints (P.1)
form the master problem.

max Z |R|AR

ReR

st Y Ar=1 (B) Veek& (M.1)
ReR:

eNR#D
Yo ar<k () M.2)

ReR
Ar €{0,1} VR e R.

Variable A g takes value 1 if and only we select a shore consisting exactly of the vertices
in R. The objective function maximizes the number of vertices assigned to some shore.

Constraints (M.1) ensure that for every hyperedge e there is at most one shore
including a vertex incident to e. Hence there are no two shores sharing a hyperedge.

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 43

Constraint (M.2) assures that at most k shores are chosen. The LP relaxation of (M)
is denoted by (MLP), in which the upper bounds on the variables need not be explic-
itly stated because of Eq. (M.1). The dual variables to the respective constraints are
indicated in brackets.

Formulation (M) has)"/, (’:’) > 2! variables, therefore we solve it by branch-
and-price, i.e., the relaxation (MLP) is solved by column generation [23]. We assume
the reader to be familiar with both concepts. The restricted master problem arises from
(M) by only considering a subset R of R. Its LP relaxation is denoted by (RMLP).
If there is no R € R\R such that Az has positive reduced cost, an optimal solution
of (RMLP) is also optimal for (MLP). Otherwise, we add at least one R to R with
Ar having positive reduced cost, and solve (RMLP) again, see Sect. 2.3. Note that, in
principle, (RMLP) is feasible for R = @.

2.2 Branching

When (MLP) is solved to optimality, the optimal A" might not be integer, i.e., A’ ¢
{0, 1R, When there isav € V with 2’ := Y pcro.ocg Az € (0, 1) we branch on the
dichotomy that v is either part of the separator or a shore. This is realized by imposing
constraints zfj‘/ = 0 and zﬁ/ = 1, respectively, in the two child nodes in the branch-
and-price tree. Note that this can be interpreted as branching on aggregated original
x-variables of (P): Z]E: 1 xﬁ ¢ {0, 1} for v € V. However, this branching scheme is
not complete in theory, as the following example shows.

Example1 Let H = ({a,b,c,d, e, [}, {{a, b}, {c,d},{e, f}}), k = 2, and u = 6.
Then, for R := {{a, b}, {c,d}, {e, f},{a,b,c,d, e, f}} the solution A, = 0.5 for
R € R and Mp =0for R € R\7_3 is basic feasible and ziN = 1 fori € [4]. For
a visualization of the solution and the relevant full rank part of the basis matrix see
Fig. 2.

In the case that A’ ¢ {0, 1}R but zﬁ/ € {0, 1} we are able (under mild assumptions)
to retrieve an integral solution of the same objective function value as A’ by solving
an auxiliary BIN PACKING problem. Define V* := (v € V : 7%’ = 1} and let H[V*]
denote the hypergraph induced by v,

Proposition 1 Let A’ be a solution of (RMLP) with zﬁ/ € {0, 1}. Then for every con-
nected component C ofH[V’v] it holds that |C| < u.

Proof Let C be a connected component of H[V)‘,] and let v € C and e € £ with
v € e. Define R}, := {R €R: Ay >0,weR})Since{ReR:veR C{REe

Fig.2 Example for incomplete
branching, i.e., A ¢ {0, 1}~ but

Ry
A .
7y €10, 1} o ° e e Ry 1‘32 R3 R14
M.1(cd)
B) |

Ry Ry Rj

—_0 O -
[
R =E=]
== e

@ Springer

44 M. Bastubbe, M. E. Libbecke

R:eNR#Pwehave | =2 =Y pepuer Mo < LreRuenrg Mg < 1 which
holds with equality. Hence le = Rjz for adjacent vertices vy, v2 € C, and since C
is connected also R;}”] = R$ for arbitrary vertices wi, wy € C. Therefore, C € R
forall R € R (since R € R} forevery w € Candthus w € R)and |C| <u. O

Recall that for the BIN PACKING problem items of non-negative weight must be
assigned to bins such that the total weight in each bin does not exceed the bin capacity
and the number of used bins is minimum.

Definition 1 Let H be a hypergraph with connected components Cy, ..., Cp, and
u € N. The BIN PACKING instance associated to (H, u) has h items of size |C;| for
item i and bin capacity u.

The classical Gilmore-Gomory formulation [17] to solve such an instance reads:

w* = min Z wp
PeP
s.t. Z,Lp:l Vi € [h]
PeP:
ieP
up €{0,1} VP e P,

where we define P = {P C [h] :) ;cp |Cil < u}. Let wj'p denote the optimum of
its LP relaxation.

Following the general definition from [5], an instance of the BIN PACKING problem
has the integer round-up property if w* = [w{p] for that instance.

Proposition 2 Ler)" be a solution of (RMLP) with zf}/ € {0, 1}. If the BIN PACKING

instance associated to (HIV¥T, u) has the integer round-up property, there exists an
integer solution % of (M) with) p . IRINg = D per|RIAR.

Proof Let A’ be a solution of (RMLP) with zi‘/ € {0,1},v e V.Let Cy,...,Cj, be
the connected components of H [V*] and let the BIN PACKING instance B associated
to (H[V*], u) have the integer round-up property. We have seen in the proof of
Proposition 1 that for all connected components C of H[V*] with RN C # | for
R with A’y > 0 it holds that C € R. We define P(R) := {i € [h] : C; € R} for
R € R with Ay > 0. Since C;; N C;, = @ for iy, iy € [h] with i| # i we have
ZieP(R)|C,~| < |R| < u. We define u such that up(g) := Ay for R with A’y > 0 and
wp := 0 for all remaining P € P [with P # P(R) for all R with)\/R > 0]. Then u
is a fractional solution of the Gilmore-Gomory formulation of B with objective value
Wy = Y ger Mg- With w* and w{p denoting the optimum values of the Gilmore-
Gomory formulation of B and its LP relaxation, respectively, we get k > [wy/] >
[w{p] = w*. The last equality holds since B has the integer round-up property. Every
solution for B with objective function value of £ can be translated to a solution of
CHVS using ¢ shores by assigning all vertices of components with corresponding
item in the same bin to the same shore. Let A be such a solution originating from
an optimal solution of B. Then A is also feasible for (M) with V* = V* and thus

ZRE’R'RM,R = ZRER|R|5‘R' 0O

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 45

Based on these results, we formulate Algorithm 1 to retrieve an integer solution from
a fractional solution A’, showing that no branching is necessary for the current branch-
and-price node when zﬁ/ € {0, 1}. As a consequence of Proposition 1 Algorithm 1
never terminates in line 3 if the input hypergraph H is of the form ‘H = HIV*] with
zﬁ/ € {0, 1} for A’. Hence, it terminates either (a) by finding a feasible solution with the
same objective function value as an optimal solution of (RMLP) in the current node,
or (b) in line 9. Case (b) happens if and only if the integer round-up property does
not hold for the BIN PACKING instance associated to (H, u). It is an open question
whether this can actually occur, but in our numerous computational tests it never did.
However, we believe that a pathological example can be crafted, so we state.

Conjecture 1 The BIN PACKING instances constructed for use in Algorithm 1 do not
always have the integer round-up property.

To be on the safe side, in “Appendix A.2” (online only) we present a fallback branching
rule that is essentially Ryan-Foster’s [26], to cover this case theoretically.

Algorithm 1 Retrieve feasible integer solution

input: Hypergraph H, capacity #, maximal number of shores k
output: Feasible shores (57, ..., Si), encoded in 1
1 find C = (Cy, ..., Cr) connected components of H
if 3b € [r]: |Cp| > u then
‘ state that no such solution exists and return
if » > k then // found more components than shores allowed
R=(Ry,..., R}j,) < solve BIN PACKING problem associated to (H, u)
if » <k then // found assignment of components to shores
| setaccording to R
else
‘ state that no such solution exists and return
else
| setaccording to C
return A

e % 9 S n B oW N

e
[SE=———

Remark 1 The first BIN PACKING instance that does not have the integer round-up
property was found by Marcotte [24] in 1986. More recently, Kartak et al. [18] com-
putationally showed that there are instances with 10 items that do not have the integer
round-up property and that all instances with 9 or less items have it.

2.3 Pricing

In the pricing problem we find a variable with (maximum) positive reduced cost to
add to (RMLP), or prove that none exists. In the root node of the branch-and-price tree
the reduced cost cg of variable Ag for R €V with [R| < uis |[R| =} ,ceryBe — V-
Branching decisions, further down the tree, can easily be respected (this is also true
for the fallback branching as described in “Appendix A.2”): if zﬁ/ = Oforsomev €V,
vertex v cannot be chosen for any shore; therefore we just do not consider it. If zﬁ/ =1
for some v € V), vertex v has to be chosen for exactly one shore. Hence we have to

@ Springer

46 M. Bastubbe, M. E. Liibbecke

consider the value of the corresponding dual variable o, of) pco.pcp AR = 1 and
the reduced costs become

GR=IRI— Dt D Bty | =D =)= > B—v.

vER ecE(R) vER ecE(R)

Hence, the pricing problem is to find a subset of vertices R € V with |R| < u such
that an objective function of the form ¢ = Y, g Pv — X_,cg(r) Ce fOr p € RY,

and ¢ € Ri is maximized. We denote this problem as PR and a specific instance as
PR(H, p, c, u). Note that we can assume w.l.0.g. that p, > 0 (v could otherwise be
excluded from any optimal solution) and ¢, > 0 (since B, > 0).

2.3.1 Applications

Problem PR can be seen as a variant of the NEXT RELEASE PROBLEM [2]: we are
given a set of customers / and a set of possible software enhancements R, with profits
pi for every customer i € I, programming costs c¢; for every enhancement j € R,
and a set of demanded enhancements R; € R for every customer i. The task is to
find a subset of customers S such that the total profit) ", ¢ p; is maximum and the
needed programming costs | jeUses Ri i do not exceed a given value. In problem PR
the programming costs are part of the objective function and the number of chosen
customers is bounded by a given value.

2.3.2 Complexity

Proposition 3 The pricing problem PR is N'P-hard.

Proof We reduce the CLIQUE problem to PR. Consider an instance of the decision
variant of CLIQUE, i.e., an integer £ and an undirected graph G = (V, E). The task
is to find a clique in G with at least £ nodes if one exists. The reduction works as
follows: we take G as input for PR assigning unit costs ¢, = 1, e € E, to the edges and
“irresistable” profits p, = |E|+ 1, v € V, to the vertices. By solving PR(G, p, c, u)
one gets a subset of nodes R with |[R| = u such that the number of edges £(R)
having at least one end point in R is minimum. Hence V\R is a subset of nodes
with |V\R| = |V| — u such that the number of edges with both end points in V\R
is maximized. Therefore it can be checked if there exists a clique in G with exactly
|V| — u nodes by checking if | E| — [£(R)| = (',). Thus by solving PR(G, p, ¢, u)
foru =0,1,...,|V|— £ one can check whether G has a clique with at least £ nodes.

O

The following result (we give a proof in “Appendix A.1”, online only) was already
observed by Barahona and Jensen [4], who found bounds for a location problem with
inventory cost by applying Dantzig-Wolfe decomposition. The pricing problem they
solved is PR with relaxed cardinality constraint, which is polynomially solvable, and
in particular an optimal solution can be calculated by finding a minimum s- cut:

Proposition 4 The problem PR is polynomially solvable for u = |V|.

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 47

2.3.3 Preprocessing the pricing problem

The following proposition states that unprofitable vertices can be identified by solving
what we call the uncapacitated instance PR(H, p, c, |V]),1i.e., withu = |V|. We denote
the set of optimal solutions to PR(H, p, ¢, u) by R.

Proposition5 Let R, € RTVI denote an optimal solution to the uncapacitated

instance PR(H, p, c, |V|). For all u € N there exists an optimal solution R € R}
with R C R..

Proof Consider an optimal solution R, € R for the capacitated instance. We show
that R := R), N Réo is an optimal solution for PR(H, p, c, u). Clearly, the vertex set
R := R, U R, is a solution for PR(H, p, c, |V|). Since E(R) = E(R,, N RL,) <
E(R))NE(RL,), and ¢, > 0 for all e € £, we obtain

* * * * *
cR+cRoo=cR+ch,l+cR/w— Z Pv + Z Ce

veR, MR, ecE(RINE(RL,)
* k *
> el F e, — Dot D e
vER ecE(R)

ok *
= CR{, +CR’oc’

By definition, R is feasible for PR(H, p, c, u), and because R,; and R/oo are optimal
for PR(H, p, ¢, u) and PR(H, p, c, |V]), respectively, also R and Ry, are optimal for
them, respectively. O

Remark 2 We use Proposition 4 to preprocess the instance of the pricing problem. More
precisely, we solve PR(H, p, c, |V|) and exclude (for this single pricing iteration) all
vertices that are not part of an optimal solution of PR(H, p, c, [V|).

In the following, we present several algorithms that solve the pricing problem
heuristically or exactly. All of them will be used in our implementation.

2.3.4 Greedy heuristic

For a subset of vertices R € V and a vertex v ¢ R we compute the change of the
objective function value that would occur by including v in R by ¢(R, v) := p, —
Y oee EW)\E(R) Ce- Starting with an initially empty set Algorithm 2 greedily adds a vertex
that is locally most profitable until u vertices are included. For every intermediate R
the corresponding variable A g is added if its reduced cost is positive.

@ Springer

48 M. Bastubbe, M. E. Liibbecke

Algorithm 2 Greedy pricing heuristic

input: Hypergraph H, capacity u, maximal number of shores k
output: Feasible shores (51, ..., Sg)
BR=Y
14 while [R| < u do
15 w = argmax c(R, v)
veV\R
16 R =R U {w}
17 if cg > O then
18 | add Ag to (RMLP)
19 end if
20 end while
21 return

2.3.5 Multi-start iterated local search

The following Algorithm 3 is a multi-start iterated local search with changing neigh-
borhoods. It is started for several runs with a random initial solution and in each
iteration a neighbor of largest improvement is chosen. For the number of neighbor-
hood types we choose £ = 4. In every iteration we have a feasible solution R € R for
PR(H, p, c, u) and a neighborhood level £ € [57]. Then R is set to a most profitable
improving neighbor in arg max gc zr, gy Cr7 With maxgren,(r) Cr > Cg that is found
by enumeration of Ny (R) if it exists, and the neighborhood level £ is reset to 1. Oth-
erwise, the neighborhood level is increased by one if £ £. If all neighborhoods are
exhausted we add Ag to (RMLP) if cg > 0.

Algorithm 3 Iterated local search pricing heuristic
input: A e R"*" ke N,ueN,ze{0,1}"
output: feasible solution to the pricing problem

22 create a random solution R

23 L=1

24 while ¢ < Cdo

25 if maxp/cpr,(r) CR > ER_then

26 R € argmaxgre Ny (R) CR/
27 =1

28 else

2 | | £=t+1

30 end while

31 if cg > 0 then

32 | add Ag to (RMLP)
33 end if

34 return

D=

The neighborhood types we use are N := N, N> := NE, N3 := NE, Ny := NE,
with VY (R) := {R € R : [RAR| = €} and N (R) := {R € R : |E(R)AE(R)| = ¢}
with the symmetric difference AAB := (A\B) U (B\A). In our implementation the
neighborhood N is explored at most once in every run of the algorithm.

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 49

2.3.6 Integer linear program

The following binary program (Pr) can be used to solve PR(H, p, c, u) if ¢, > O for
alle € &:

max Z PoXy — Z CeVe (Pr.1)

vey eeE

s.t. va <u (Pr.2)
veV
Xy —Ye <0 YveV,eef:veEe, (Pr.3)
Xy, Ve €{0,1}, YveV, ecf. (Pr.4)

Variable x, equals 1 if and only if R 5 v and Eq. (Pr.2) ensures that at most u
vertices are chosen. Variable y, attains value of 1 if £(R) > e which is guaranteed by
Eq. (Pr.3).

2.3.7 Complementary pricing

The greedy and local search heuristics and finally the exact ILP (Pr) are run in cas-
cade. Additionally, after any one pricing algorithm found a variable A g with positive
reduced cost, this algorithm is restarted on H' = (V\ R, E[V\R]). This can be applied
repeatedly in rounds. If no variable with positive reduced cost is found, no restart takes
place. The resulting complementary subsets are supposed to combine well to integer
feasible solutions, see e.g., [16].

2.4 Preprocessing the hypergraph

We preprocess H in two phases: in phase 1 we only remove hyperedges that are
contained in others. If there are identical hyperedges we remove all of them but one.
This can be easily done by enumeration.

The idea of phase 2 is to express the conflicts between vertices (imposed by hyper-
edges) by a smaller set of hyperedges. Consider the clique graph of H defined as
GH):= (V,E :={vw | Je € £ : v,w € e}). Two hypergraphs H, H; with iden-
tical clique graph G(H) = G(H;) yield identical solution spaces for the CHVS. In
order to find a simple such hypergraph H; we search for a minimum clique edge cover
in G(H). A (minimum) clique edge cover C = {Cy, ..., C¢} of a graph is a (minimum
cardinality) set of cliques such that each e € £ is a subset of at least one clique, i.e.,
there is an i € [£] with e € Cj,. Then we replace each clique C € C by a hyperedge
spanning exactly the vertices g € C. Thus we obtain H; with G(H) = G(H1).

Since the hyperedges of H represent a clique edge cover in G (H) of cardinality m,
we can assume that £ < m and hence the new number of hyperedges would not be
increased if the clique edge cover is minimum. In practice we use the polynomial-time
heuristic of Kou et al. [22] that was based on a heuristic by Kellerman [20] and replaces
the original hyperedges by the found ones if their number is decreased.

@ Springer

50 M. Bastubbe, M. E. Liibbecke

2.5 Primal heuristic

Algorithm 1 can be used to verify whether a subset of vertices S disconnects H in
at most k components of cardinality at most u. We exploit this fact by using it as a
primal heuristic during the solution of the restricted master problem. In order to get
a potential separator S we randomly round the possibly fractional solution values of
2 =Y rerover M- More specifically, a vertex v € V is added to S with probability

zﬁ + 8 where A is the current LP solution, and § € {—0.001, 0, 0.05, 0.1, 0.2, 0.3}
fixed randomly equally distributed for this run of the heuristic. The number of runs is
200 and the heuristic is called directly after solving a branch-and-price node and after
every 50 column generation iterations.

2.6 Exchange vectors

For a given subset of vertices R € V and ahyperedge e € £(R) one can easily construct
R'(R, e) := R\e. By adding an artificial variable v, for every e € £ corresponding to
removing e with all v € e from a shore one implicitly can use |z Uece R'(R, €)
pattern variables that are not explicit part of the model when solving (RMLP). Note
again that in formulation (MLP) the upper bound constraints Ag < 1 are already
implied by Eq. (M.1) (since there are no isolated vertices). We obtain the following
augmented master LP formulation (AMLP):

max Y [R|ig =) _lelve

ReR eef
s.t. Z AR—ve <1 Vee& (AMLP.1)
ReR:ecE(R)

Z AR <k (AMLP22)
ReR
AR>0 VReR

Ve >0 Veel&

The new variables, their coefficient columns are called exchange vectors, translate to
the following constraints in the dual (called dual-optimal inequalities [7]):

Be <le| Vee&

The following proposition states their validity, i.e., that (MLP) and (AMLP) are equiv-
alent.

Proposition 6 Let zy1p and zaypp denote the respective optima of (MLP) and (AMLP).
Then zyLp = zamLP-

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 51

Proof We use the dual (DMLP) of formulation (MLP)

min Z Be +ky
eef
st. > Pty =IRl VReR (DMLP.1)
ecE(R)

,36,720 Veeg,

of (DMLP). Assume by contradiction that there is a an optimal solution (8%, y*) to
(DMLP) with 8, > |¢'| for some ¢’ € £. Then, there exists at least one subset of
vertices R' € R withe' N R # P and), e gn Bs +v* = |R'| (otherwise B, could
be reduced, contradicting optimality). In particular, |R'| > B > le'| and hence,
R := R’\¢ is nonempty and |R| + |¢/| > |R'|. Since E(R’) 2 E(R) U {¢'}, we get

and show that the inequalities 8, < |e| for e € £ are fulfilled by all optimal solutions

D Bi+y I = R +1e'| = IR
ecE(R)

= > B4y =) BABL+Y

ecE(R)) ecE(R)

contradicting B}, > [e'l. O

3 Computational results

We first introduce our computational environment. We then compare our algorithm
with a commercial solver applied to the original formulation for different values of
k. Thirdly, we investigate the influence of different algorithmic ingredients proposed
in the previous section. Finally, we visualize some matrix decompositions comple-
menting those known from the literature. This section contains mainly aggregate
information; details can be found in the online appendix.

3.1 Implementation

Our algorithm denoted as base is a branch-and-price algorithm to solve formula-
tion (M). Its default settings were derived in extensive experiments with the described
features, see Sect. 3.7. The branching is executed as described in Sect. 2.2. The three
pricing algorithms (Sects. 2.3.4-2.3.6) run in the following order: greedy heuristic,
local search heuristic, and integer linear program (Pr). If a variable with positive
reduced cost is found, the remaining pricing algorithm(s) will not be called. We set
the maximal number of complementary pricing rounds (Sect. 2.3.7) for each algorithm
to 8. The local search pricing heuristic is restarted three times for each complemen-

@ Springer

52 M. Bastubbe, M. E. Liibbecke

tary round. The preprocessing of the pricing problem (described in Sect. 2.3.3) is
executed before each call of the exact pricing algorithm, i.e., solving formulation (Pr).
Primal heuristic and preprocessing (of the hypergraph) are implemented as described
in Sects. 2.4 and 2.5, respectively. The exchange vectors (cf. Sect. 2.6) are disabled
by default.

3.2 Environment

The branch-and price algorithm is implemented in SCIP 3.2.0 with CPLEX 12.6.1
running on a single thread using default settings (with the exception that dual simplex
optimizer is used) as a solver for the IP subproblems. The original formulation is
also solved by CPLEX 12.6.1 under exactly the same conditions. All computations
were performed on Intel Core i7-2600 CPUs with 16 GB of RAM on openSUSE 12.1
workstations running Linux kernel 3.1.10. The default time limit is 1800 s.

3.3 Instances

We consider four different groups of instances (details are in the online “Appendix A.3”):
netlib These 55 instances arise from basis matrices of linear programs in the
NETLIB. These were also used by Borndorfer et al. [9]. We select all instances with
up to 500 vertices (rows) that are not too small (more than 50 vertices). See Table 1
for more details on the instances.

dimacs The second group of 40 instances originates from graph coloring problems
that were solved at the second DIMACS challenge. These graphs were used in [13].
We select all non-tiny (at least 20 vertices) instances with up to 500 vertices. A detailed
description can be found in Table 2.
miplibThethird group consists of 37 coefficient matrices originating from presolved
mixed integer programs from MIPLIB2010 [21]. Borndorfer et al. [9] use similar
instances from MIPLIB 3.0. Our instances are presolved by SCIP 3.2.0 with default
settings. We report some characteristics in Table 3.
random Finally, we randomly constructed a test set of 50 hypergraphs based on 10
groups with different characteristics. The construction works as follows: for group
i ef{l,...,5 orgroup j € {6,..., 10}, the number of vertices is i.i.d. in [25(+
1),25@G + 2)] or [25(j — 4),25(j — 3)], respectively. The number of hyperedges is
i.i.d. in [50, 75] for groups 1 through 5 and from [75, 100] for groups 6 through 10.
The cardinality of each hyperedge isi.i.d. in [2, 4] and the spanning vertices are chosen
randomly as well. Details of the resulting instances can be found in Table 4.

Summarized instance information At the end of this paragraph we display some
aggregated instance information for the testsets. Columns headed |V;| list the arith-
metic mean of the number of vertices before (i = 0) and after (i = 1) presolving.
Columns headed |&;| contain the arithmetic mean of the number of hyperedges in the
original graph (i = 0), and in the presolved hypergraph after phase 1 (i = 1) and
phase 2 (i = 2), see Sect. 2.4. The columns that are indicated by Dig, i €1{0,1,2}
contain the average cardinality of a hyperedge in the respective hypergraph. The last
column shows the density of the clique graph G (H).

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 53

Table 1 Instance information of net1ib testset

Name Dol il 1l €1 &2l D§ Df D§ d
vtpbase 51 50 51 38 19 3.8 4.7 8.6 0.277
bore3d 52 52 52 29 26 5.9 9 9.5 0.463
adlittle 53 51 53 37 34 3.8 4.5 4.7 0.173
blend 54 52 54 30 23 5.7 9.2 9.6 0.382
recipe 55 55 55 24 24 1.8 2.8 2.8 0.086
scagr7 58 58 58 34 33 4.1 6.1 6.2 0.399
sc105 59 57 59 50 50 3.7 4.1 4.1 0.208
stocforl 62 53 62 34 34 29 4.4 4.4 0.143
scsdl 77 76 77 71 67 2.7 2.9 29 0.069
beaconfd 90 90 90 48 48 6.8 12 12 0.299
share2b 93 93 93 37 37 5.1 9.1 9.1 0.144
sharelb 102 100 102 58 57 4.7 6.3 6.4 0.095
forplan 104 102 104 72 71 5.5 7.4 7.5 0.215
scorpion 105 94 105 57 45 3.6 54 5.3 0.091
brandy 113 113 113 83 78 7.7 9.3 9.7 0.254
sc205 113 113 113 104 104 6.1 6.5 6.5 0.246
boeing2 122 112 122 80 80 3.5 49 49 0.1
lotfi 122 112 122 70 70 2.8 3.9 3.9 0.071
tuff 137 131 137 90 79 59 8.3 8.7 0.157
grow7 140 140 140 51 51 11.8 4.7 4.7 0.14
scsd6 147 145 147 140 140 2.6 2.6 2.6 0.031
€226 148 147 148 90 79 6.4 9.1 9.3 0.141
israel 163 162 163 38 26 8.1 26.7 38.2 0.804
agg 164 159 164 58 58 4 9.7 9.7 0.126
capri 166 159 166 110 108 4.9 6.6 6.8 0.195
woodlp 171 165 171 61 52 13.9 22 22.3 0.227
bandm 180 177 180 93 81 59 8.7 9.2 0.147
scrs8 181 168 181 123 112 49 5.5 6 0.112
shipO4s 213 197 213 192 191 2.6 2.8 2.8 0.017
scagr25 221 221 221 91 89 7.3 16.1 16.4 0.331
scfxm1 242 236 242 160 145 4.3 5.8 6.1 0.07
stair 246 246 246 217 217 13.8 14.6 14.6 0.374
shell 252 238 252 249 249 1.9 1.9 1.9 0.007
standata 258 211 258 156 156 1.9 2.6 2.6 0.012
sctapl 269 202 269 144 144 2.3 3 3 0.019
agg?2 280 266 280 123 123 52 10.4 10.4 0.102
agg3 282 265 282 116 116 5.1 10.1 10.1 0.103
boeing1 284 284 284 174 174 4.8 73 7.3 0.068
ship08s 284 233 284 252 252 2.4 2.6 2.6 0.011
growl5 300 300 300 102 102 12.2 4.7 4.7 0.065

@ Springer

54

M. Bastubbe, M. E. Libbecke

Table 1 continued

Name Vol il 1&l €1 &2l D§ Dt p§ d
800 306 274 306 214 170 4.5 59 7.1 0.083
etamacro 307 302 307 220 220 3.2 4.1 4.1 0.031
ship041 313 305 313 282 282 2.7 2.9 2.9 0.012
gfrdpne 322 278 322 320 320 1.9 1.9 1.9 0.006
ship12s 344 304 344 287 286 2.4 2.7 2.7 0.01
finnis 350 279 350 249 248 2.3 2.9 2.9 0.015
pilot4 352 349 352 268 262 8.9 11.1 11.3 0.092
standmps 360 282 360 295 295 2.3 2.6 2.6 0.009
degen2 382 376 382 268 268 6.3 8.3 8.3 0.078
scsd8 397 397 397 394 394 2.8 2.8 2.8 0.013
grow22 440 440 440 161 161 11.9 4.5 4.5 0.044
bnll 448 438 448 317 317 3.6 4.7 4.7 0.02
czprob 475 464 475 475 475 1.9 1.9 1.9 0.004
scfxm?2 485 474 485 325 298 4.4 59 6.1 0.036
perold 500 499 500 425 413 6.5 7.2 7.3 0.046
Table 2 Instance information of dimacs testset

Name Vol Vil &l €1 &l p§ bt DY 4
myciel4 23 23 71 71 71 2 2 2 0.28
queen5_5 25 25 160 160 34 2 2 3.9 0.533
queen6_6 36 36 290 290 65 2 2 3.8 0.46
myciel5 47 47 236 236 236 2 2 2 0.218
queen7_7 49 49 476 476 91 2 2 4 0.404
queen8_8 64 64 728 728 126 2 2 4.1 0.361
huck 74 74 301 301 34 2 2 4.5 0.111
jean 80 77 254 254 55 2 2 3.5 0.08
queen9_9 81 81 1056 1056 175 2 2 42 0.325
david 87 87 406 406 65 2 2 4.3 0.108
myciel6 95 95 755 755 755 2 2 2 0.169
queen8_12 96 96 1368 1368 218 2 2 4.2 0.3
queenl0_10 100 100 1470 1470 218 1.9 1.9 4.3 0.296
games120 120 120 638 638 202 2 2 2.9 0.089
queenll_11 121 121 1980 1980 255 2 2 4.6 0.272
miles1000 128 128 3216 3216 96 2 2 14.6 0.395
miles1500 128 128 5198 5198 60 2 2 254 0.639
miles250 128 125 387 387 89 2 2 3.6 0.047
miles500 128 128 1170 1170 104 2 2 6.4 0.143
miles750 128 128 2113 2113 112 2 2 9.3 0.259

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 55
Table 2 continued

Name Vol Vil 1€l €1 &l p§ pf D 4
anna 138 138 493 493 115 2 2 3.6 0.052
queenl2_12 144 144 2596 2596 315 2 2 4.6 0.252
queenl3_13 169 169 3328 3328 345 2 2 4.9 0.234
mulsol.i.3 184 174 3916 3916 177 2 2 13.3 0.232
mulsol.i.4 185 175 3946 3946 177 2 2 13.3 0.231
mulsol.i.5 186 176 3973 3973 181 2 2 13.4 0.23
mulsol.i.2 188 173 3885 3885 175 1.9 1.9 13.3 0.221
myciel7 191 191 2360 2360 2360 2 2 2 0.13
queenl4_14 196 196 4186 4186 419 2 2 4.9 0.219
mulsol.i.1 197 138 3925 3925 109 1.9 1.9 17.3 0.203
zeroin.i.3 206 157 3540 3540 173 2 2 13 0.167
zeroin.i.l 211 126 4100 4100 99 2 2 21.5 0.185
zeroin.i.2 211 157 3541 3541 172 2 2 12.9 0.159
queenl5_15 225 225 5180 5180 433 2 2 5.3 0.205
queenl6_16 256 256 6320 6320 450 2 2 5.7 0.193
schooll_nsh 352 352 14612 14612 1204 1.9 1.9 8 0.236
schooll 385 385 19095 19095 1485 2 2 8.6 0.258
fpsol2.i.3 425 363 8688 8688 404 2 2 13.4 0.096
fpsol2.i.2 451 363 8691 8691 398 2 2 13.4 0.085
fpsol2.i.1 496 269 11654 11654 205 2 2 25.2 0.094
Table 3 Instance information of miplib testset

Name Vol il &l €1 &l Dp§ pf DS 4
b-ball 19 19 89 89 8 2.1 2.1 12 0.836
eil33.2 32 32 4484 2558 1 9.8 10.4 32 1
neos-911880 83 83 888 840 840 2.8 3 3 0.5
harp2 92 92 2967 999 999 0.6 2 2 0.238
eilB101 100 100 2718 2284 1391 8.8 9.2 9.6 0.792
m100n500k4r1 100 100 500 500 498 4 4 4 0.454
mik.250-1-100.1 100 100 251 1 1 21.1 100 100 1
ns1766074 110 110 100 100 100 4.5 4.5 4.5 0.292
neos858960 128 128 160 80 80 17.3 17.3 17.3 0.298
pg 135 135 2690 2500 2500 2 2.1 2.1 0.305
dfn-gwin-UUM 156 156 937 469 469 2.8 3 3 0.116
noswot 172 172 121 50 50 5.6 8.9 8.9 0.098
pg5_34 225 225 2600 2500 2500 2.9 3 3 0.202
50v-10 233 233 2013 183 183 1.3 3 3 0.02
neos-1228986 241 241 245 160 160 5 7.7 7.7 0.1
k16x240 256 256 480 240 240 2 3 3 0.018

@ Springer

56

M. Bastubbe, M. E. Libbecke

Table 3 continued

Name Vol Vil &l €1 & by pf pf 4
csched007 271 271 1656 1653 1565 3.4 3.4 3.5 0.148
csched008 271 271 1480 1479 1397 3.4 34 3.5 0.135
csched010 272 272 1654 1654 1505 34 34 3.6 0.144
ranl14x18 284 284 504 252 252 2 3 3 0.018
ran16x16 288 288 512 256 256 2 3 3 0.018
probportfolio 302 302 320 301 2 20.6 2.9 301 0.999
neos-1440225 328 328 1285 1277 512 10.9 11 14.1 0.16
timtabl 332 332 214 53 50 5.9 18.1 19 0.228
gmu-35-40 357 357 1202 265 239 3.4 8 79 0.054
gmu-35-50 358 358 1917 373 276 3.8 9.7 10 0.069
gol9 361 361 441 361 361 3.9 4.7 4.7 0.03
glass4 392 392 322 317 91 5.5 5.6 17.6 0.323
neos788725 433 433 352 352 352 139 13.9 13.9 0.074
ran14x18.disj-8 447 447 504 502 502 20.3 20.4 20.4 0.159
p80x400b 474 474 798 396 396 1.9 3 3 0.008
neos-777800 475 475 6400 6400 6400 49 49 49 0.345
swath 482 482 6804 6260 6239 3.7 4 4 0.19
neos-1426635 486 486 510 320 320 5 7.9 7.9 0.052
30n20b8 490 490 18375 1092 208 2.6 12.8 19.4 0.235
neosl5 492 492 677 443 438 2.4 32 32 0.013
ger50_17_trans 498 498 22414 8240 4459 7.6 72 6.7 0.113
Table 4 Instance information of random testset

Name Vol Wil = €1 &l p§ Df D§ d
grpl_1 68 67 55 54 54 3.1 3.1 3.1 0.083
arpl_2 68 64 60 59 59 2.7 2.7 2.7 0.074
grpl_3 58 57 73 71 71 2.9 2.9 2.9 0.131
agrpl_4 60 58 58 58 56 3 3 3 0.105
grpl_5 75 67 52 51 48 3.1 3.1 3.2 0.066
arp2_1 75 70 62 62 62 3.2 3.2 3.2 0.082
grp2_2 95 78 50 48 48 3.1 3.2 3.2 0.04
grp2_3 87 76 63 62 62 3 3 3 0.058
grp2_4 98 85 68 66 66 29 2.9 29 0.042
grp2_5 93 77 50 49 49 29 2.9 29 0.037
arp3_1 102 90 65 64 64 3.1 3.1 3.1 0.045
grp3_2 108 96 71 70 70 2.9 2.9 2.9 0.037
grp3_3 122 101 69 67 67 2.9 2.9 2.9 0.028
erp3_4 104 89 61 61 60 3 3 3.1 0.04
erp3_5 107 89 67 67 67 2.9 2.9 2.9 0.038

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 57
Table 4 continued

Name Vol Vil €0l €11 =] D§ pf D d
arp4_1 142 103 66 66 65 3 3 3 0.022
grp4_2 125 106 72 72 72 3 3 3 0.031
grp4_3 135 96 55 54 54 3 3 3 0.02
arpd_4 128 96 59 59 58 2.7 2.7 2.8 0.019
arp4_5 126 100 63 63 61 2.9 2.9 2.9 0.024
arp5_1 173 125 75 75 74 2.8 2.8 2.8 0.014
arp5_2 161 99 50 50 50 2.8 2.8 2.8 0.012
arp5_3 158 105 64 63 63 2.9 2.9 2.9 0.015
arp5_4 159 114 59 59 59 2.9 2.9 2.9 0.015
arp5_5 158 110 59 58 58 3 3 3 0.016
arp6_1 69 68 91 38 85 3 3 3.1 0.124
arp6_2 74 71 79 78 76 3.1 3.1 3.1 0.098
arp6_3 50 50 96 89 81 2.8 2.9 3.1 0.204
arp6_4 52 52 89 85 84 3 3 3 0.207
arp6_5 63 63 95 89 86 3 3.1 3.1 0.152
arp7_1 96 85 77 75 75 2.8 2.9 2.9 0.048
arp7_2 77 74 95 89 87 2.8 2.9 2.9 0.092
arp7_3 77 75 98 97 92 3.1 3.1 33 0.119
arp7_4 87 86 98 95 94 2.9 3 3 0.084
arp7_5 78 77 90 90 87 3 3 3 0.096
arp8_1 115 108 94 93 93 3 3 3 0.049
arp8_2 121 112 98 95 95 2.9 2.9 2.9 0.041
arp8_3 118 106 95 94 94 3 3 3 0.043
arp8_4 122 108 86 86 86 3 3 3 0.04
arp8_5 108 101 86 85 85 3.1 3.1 3.1 0.052
arp9_1 136 123 98 96 95 3 3 3.1 0.037
grp9_2 143 110 78 77 77 2.8 2.9 2.9 0.023
arp9_3 146 129 98 98 97 3 3 3.1 0.032
arp9_4 139 128 89 89 89 3.1 3.1 3.1 0.034
arp9_5 138 118 94 93 93 2.9 2.9 2.9 0.031
arpl0_1 168 139 98 94 94 3 3 3 0.022
arpl0_2 169 141 100 98 97 3 3.1 3.1 0.024
arpl0_3 161 134 90 90 90 3 3 3 0.022
arpl0_4 157 126 79 78 78 3.1 3.1 3.1 0.022
arpl0_5 164 123 79 79 79 3 3 3 0.019

@ Springer

58 M. Bastubbe, M. E. Liibbecke

1+ A A A A A S
% S T
o
Z 0.75 . T -
PR I
-5 -
E ‘p X X x) * *
8 + % *
% 05 1 o y % X . *
<
g
g
*
S 025 *
o * .
* * netlib +
;% * dimacs x
g miplib
0 random &
16 8§ 10 12 16 24 32 64 128 256
k

Fig.3 Ratio of optimally solved instances in each testset for different values of k

Testset Vol Wil 1€o] €1 &l p§ p{ DS 4

miplib 2777 2777 24212 12378 9686 60 9.1 186 0.264
netlib 2181 2063 218.1 150.7 1464 51 67 71 0.136
random 1123 945 763 75.0 74.1 30 30 30 0056

dimacs 168.4 151.5 3507.6 3507.6 311.4 2.0 2.0 8.3 0.236

3.4 Fixed maximum number of shores

When reporting on a fixed maximum number k of shores we set capacity u := |'|kﬂ1,
see Fig. 3. With increasing k the ratio of optimally solved instances also increases for
every testset. Furthermore the order of the testsets according to the ratio of optimally
solved instances is the same for every k. Considering this as measure for difficulty
(according to base) we get in increasing order of difficulty: random, netlib,
dimacs, miplib. Note that for k < 12 there are instances in every testset that
could not be solved optimally.

Figure 4 gives more detail on solution quality. We plot the ratio of instances that
were solved with optimality gap worse than o for different values of k. On the one
hand, the ratio of instances with optimality gap o > 50% is varying not much but on
the other hand, the ratio of instances with gap o < 25% decreases with increasing k.
This shows that finding some solution is generally not so hard, but closing the gap is
easier for larger k. About 5% of the instances could not be solved with a gap better
than 200% for every k.

In Fig. 5 we display the dependence of the clique graph density d. The instances
are grouped according to their density. The performance for instances with d < 0.05
seems to be most k-sensitive in the sense that these instances are the hardest to solve

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 59

0.6 4

=1 o =0.05 +

E oc=0.1 x

+ 0.5 o =0.25 *

% B0 + g = 05 O

= oc=1.0 n

I3 x + oc=20 O

o 044 +

< X

=

2 03 L

o= . -1 +

2 * N

n * * * X

o)

) | *

g 02 o o o * I *

+ * %

n O *

.E ™ [m] a [m} *

S 014 m " " om ; = = g #

o o

9 o o o o o o) j

=

=0

— T T T T T T T T T T 1
4 6 8 10 12 16 24 32 64 128 256

k

Fig.4 Ratio of instances solved with optimality gap worse than o for different values of o and k

w0 14
3] +
X
= PR
% 0 f
E0.75 1 o, -
*

)
g) * ¥ g O O
= (]
) * + O
w
2 057 o g O
=
= .
2
o 0.25 -
3 00<d<005 +
2 005<d<0.1 x
ke 01<d<0.15 =«
" 0.15<d o
~ 0 T T T T T T T T T T 1

I 6 & 10 12 16 24 32 64 198 256

Fig.5 Ratio of optimally solved instances for different density d and k

for k = 4 and the easiest to solve for k = 256. In contrast the difficulty of instances
with d > 0.15 seems to be least k-sensitive in the sense that the ratio of optimally
solved instances is changing the least for increasing k.

Aggregated report of results for all instances In the following we want to compare the
performance of base with the performance of CPLEX 12.6 working on the original
formulation (P). We call this algorithm cplex. In order to compare the performance on
all instances for every k we use performance profiles [14], displayed in Fig. 6. Algo-
rithms cplex and base are represented by the dashed and the solid line, respectively.
We realize that for k < 8 algorithm cplex performs better while for £ = 8 both algo-
rithms have a similar performance. For k > 8, however, algorithm base outperforms

@ Springer

60 M. Bastubbe, M. E. Liibbecke

Tpmmmmmmmmm e 1 1
0.8 081 - 0.8
0.6 0.6 0.6
0.4 04 L 0.4 R
0.2 0.2 2]
0 5 35 41 5 6 0 53 4 5 6 0 33 4 5 6
T T T
k=4 k=6 k=28
1 L 1
osb—"____ 08 0.8
0.6 0.6 0.6
0.4 04 0.4
02} ---- omsTTTTT T 0.2 0.2
0 5 3 41 5 6 0 2 3 4 5 6 L R B ma
T T T
k=10 k=12 k=16
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
02 0.2 0.2
N R S E] 0 2 3 4 5 6 0 2 54 5 6
T
k=24
1
0.8
0.6
0.4 . o
02 !
0 53 4 5
T
k=128

Fig.6 Performance difference between branch-and-price and branch-and-cut, over all instances: base (solid)
on model (M) versus cplex (dashed) on model (P)

algorithm cplex. Furthermore we observe for increasing k that instances overall get
easier to solve for base. On the contrary for algorithm cplex for increasing k instances
get harder to solve (up to k = 32 then easier again). The results for each testset are
similar to the aggregated ones. Performance profiles for each testset can be found in
“Appendix A.4” (online only). We want to point out that Borndorfer et al. [9] also
solved instances from the net1ib testset for k = 4 but since base ist outperformed
by cplex for k = 4, a comparison between base and the algorithm in [9] is obsolete.

3.5 Arbitrarily many shores

In the next experiment we do not bound k and adapt u accordingly, but consider the
reverse setting: set a specific capacity and allow arbitrarily many shores. We report on

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 61

1 4 A

3} + +

)

2

Z 0.75 1 .

=

(&)

= x +

% X X

0.5

= * X

< *

g '

=, A

O X

w, 0.25 4 .

2 netlib -+ *

= dimacs X

= miplib *

= random 2

0 ' ' ' V| oy
4 12 36 My rosl

u

Fig.7 Ratio of optimally solved instances by algorithm base for k = co and varying capacity u

base 08 . basel base
0.8 original ----- : orgimnat ----- 0.8 original -----

k=12

Fig.8 Impact of hypergraph preprocessing as described in Sect. 2.4: algorithm base (with phase 2 prepro-
cessing) versus original (only phase 1 preprocessing) on all instances for k € {4, 8, 12}

u € {4, 12, 36, (%L (1.05%1}. In Fig. 7 the success rate for the different testsets
and values of u is displayed. For u € {4, 12} all random and a large share of net1ib
instances can be solved optimally. We further find that for all testsets with increasing
u less instances can be solved optimally. This is to be expected as pricing problems
get combinatorially richer. One might expect the results for k = 4 and k = oo with
u = f%] to be similar, but in fact the latter one is much better. A possible reason is
the absence of constraint (M.2) for k = oo.

Oosten et al. [25] tested their approach for a subset of the net1ib instances
foru = (l%]. Algorithm base solves all instances they tested within 25 s in total
(including the three instances scsdl, beaconfd, and share2b that could not be solved
within the time limit of 60 min in [25]).

3.6 Strength of formulations

Phase 2 of hypergraph preprocessing may find an alternative hypergraph with the same
clique graph as the input hypergraph (Sect. 2.4). The corresponding formulations (M)

@ Springer

62 M. Bastubbe, M. E. Liibbecke

1 1 b 1
base ase base
0.8 edge ,,,,, 0.8 6dg€ 77777 0.8 edge 77777
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
ole===s==-s---p---2--- [e e e O e e
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
T T T
k=4 k=28 k=12

Fig. 9 Impact of working with a hypergraph based formulation (algorithm base) versus an edge based
formulation using clique graphs (algorithm edge) on all instances for k € {4, 8, 12}

[

= 100 ~

S 75 A Xbase +

2 50 4 edge x

§ % original *

g 25 A

% x

o 10

o T X

‘% * x * x x
X

E 57 x * oy

5 3 x T £

- +

= X

g L.t ¥

o

b . *

£ ¥

g 0.5 N

5]

D

o0 *

=

L

E 0.1 1 1 1 1 1 1 1 1 1 1 1 1

n 4-n 8n 12-n 4-d 8d 12-d 4-r 8r 12-r 4-m 8m 12-m

combination k-testset

Fig. 10 Shifted (by 1) geometric mean of the integrality gap in the root node (in percent, for instances with
solved root node) for combinations of k and testset (abbreviated by their first letter)

have the same integer solutions but the respective LP relaxations may differ in strength.
To evaluate the impact of that reformulation we compare against the case with only
phase 1 preprocessing enabled (called algorithm original). As a third reference we
also compare against using the corresponding clique graph in formulation (M) (called
algorithm edge).

For a fixed maximum number of shores the particularly interesting (since difficult)
shore numbers are k € {4, 8, 12}. The performance profiles in Figs. 8 and 9 reveal
that for these k algorithm base outperforms original and massively outclasses edge.
More specifically, algorithm base solves between 10 and 20 percent more instances
for k € {4, 8, 12} than algorithm original.

In order to get an idea of the strength of the formulations we look at the integrality
gap at the root node (if it is solved for this instance). Figure 10 shows the shifted (by
1) geometric mean for k € {4, 8, 12} and each instance set. Algorithm base delivers
the smallest shifted geometric mean of the integrality gap in almost every case.

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 63

3.7 Feature impact

Presolving of pricing problem The pricing problem is preprocessed as described in
Sect. 2.3.3. The influence of the preprocessing is displayed in the three performance
profiles in Fig. 11. As one can see the performance is slightly improved in particular
for k = 8.

Exchange vectors We tested the model modifications discussed in Sect. 2.6. Unfortu-
nately, it turns out that the described exchange vectors (which in fact are rather removal
vectors) are not involved enough and lead to a slightly worse performance. Therefore
we decided to disable them by default, see Fig. 12.

1 L 1
base 08 . base base
i, nobricPresolve === : noPricPresolve ----- 0.8 noPricPresolve - ----
0.6
04l e -
0.2
0 5 5 " :)
T
k=8

Fig. 11 Performance profiles base versus base with unpresolved pricing problem on all instances for
k € {4,8,12}

base . base base
0.8 withBExchVees ----- 0.8 withBrchVees - ---- 0.8 withExchVecs -----

base 0.8 _bqsc E — base
0.8} noComplPricing ----- : noComplPricing ----- 0.8 noComplPricing - ----

k=4 k=28

Fig. 13 Performance profiles base versus base without complementary pricing on all instances for k €
{4.8, 12}

@ Springer

64 M. Bastubbe, M. E. Liibbecke

1 1 1
base base base
0.8 noHill 0.8 noHill ----- 0.8 noHill - —---
noGreedy - noGreedy noGreedy
0.6 0.6 noGreedyNoHill ---------

06} noGreedyNoHill ————- : noGreedyNoHill ————-

k=8 k=12

Fig. 14 Performance profiles base versus base without some heuristic pricing algorithm(s) on all instances
fork € {4, 8, 12}

anna for u =12, k = oo anna for u = 36, k = oo

huck for u =12, k = oo

Fig. 15 Examples of (optimally) decomposed matrices corresponding to graphs of dimacs instances

huck for u = 36, k = oo

Complementary pricing In the performance profiles in Fig. 13 one can see the influ-
ence of the complementary pricing described in Sect. 2.3.7. For k € {4, 8, 12} base
outperforms the variant with disabled complementary pricing.

Pricing algorithms The performance profiles in Fig. 14 give an overview over the
performance when disabling one or both of the heuristic pricing approaches for k €
{4, 8, 12} over all instances. It turns out that enabling both heuristic pricing algorithms
overall outperforms the other approaches.

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 65

timtabl for u =12, k = oo

:

p8OX400b for u = 12, k = 0o

ranl4xl8.disj-8 for u =12, k = oo ranl4xzl8.disj-8 for u = 36, k = oo

Fig. 16 Examples of (optimally) decomposed coefficent matrices of presolved MIPLIB2010 mixed integer
programs

3.8 Optimal decompositions of matrices
Examples for coefficient matrices of dimacs, miplib, and netlib instances into

single-bordered block-diagonal form with minimum cardinality border are shown in
Figs. 15, 16 and 17.

@ Springer

66 M. Bastubbe, M. E. Libbecke

TEAT Ny DA% hes @Bo oH
\ : |

i)

standmps for u =12, k = oo standmps for u = 36, k = oo

ship12s for u =12, k = oo

L
l""knw."

iy

Tt e]

finnis for u = 36, k = oo

i 1

finnis for u =12, k = oo

Fig. 17 Examples of (optimally) decomposed coefficent matrices of net1ibinstances

@ Springer

A branch-and-price algorithm for capacitated hypergraph... 67

4 Conclusion

In this paper we studied the capacitated vertex separator problem on hypergraphs
(CHVS). We presented a branch-and-price approach for fixed and arbitrary number
of shores, and reported and compared our results to the existing approaches whenever
possible. It is the first successful algorithm for the CHVS for a large number of shores
k > 8 that is especially interesting for the matrix decomposition application. It uses
state-of-art methods that highlight the impact of exploiting problem structure, e.g., in
preprocessing. We tested on a large set of instances from several applications. The
complexity of the pricing problem, which has an interesting application on its own, is
studied and we give furthermore three approaches to solve it. The non-trivial branching
scheme uses results on the integer round-up property for BIN PACKING.

More than 20 years have passed since the first presentation of an exact algorithm
for the CHVS [9]. At the time, elaborate valid inequalities were needed to strengthen
the LP relaxation. Such cutting planes are part of generic solvers nowadays and make
them successful tools as can be seen in our experiments for fixed k < 12. For larger
k, our exponential-size reformulation, and the resulting branch-and-price algorithm,
still significantly outperform the standard state-of-the-art solver. We may hope that 20
years from now, such reformulations be part of generic solvers as well.

References

1. Aykanat, C., Pinar, A., Catalyiirek, U.V.: Permuting sparse rectangular matrices into block-diagonal
form. SIAM J. Sci. Comput. 25(6), 1860-1879 (2004)

2. Bagnall, A., Rayward-Smith, V., Whittley, I.: The next release problem. Inf. Softw. Technol. 43(14),
883-890 (2001). https://doi.org/10.1016/S0950-5849(01)00194-X

3. Balas, E., de Souza, C.C.: The vertex separator problem: a polyhedral investigation. Math. Program.
103(3), 583-608 (2005). https://doi.org/10.1007/s10107-005-0574-7

4. Barahona, F,, Jensen, D.: Plant location with minimum inventory. Math. Program. 83(1), 101-111
(1998). https://doi.org/10.1007/BF02680552

5. Baum, S., Trotter Jr., L.: Integer rounding for polymatroid and branching optimization problems. SIAM
J Algebra Discrete Methods 2(4), 416425 (1981)

6. Ben-Ameur, W., Mohamed-Sidi, M.A., Neto, J.: The k-separator problem: polyhedra, complexity and
approximation results. J. Combinatorial Optim. 29, 1-32 (2015)

7. Ben Amor, H., Desrosiers, J., Valério de Carvalho, J.: Dual-optimal inequalities for stabilized column
generation. Oper. Res. 54(3), 454—463 (2006). https://doi.org/10.1287/0pre.1060.0278

8. Bergner, M., Caprara, A., Ceselli, A., Furini, F,, Liibbecke, M., Malaguti, E., Traversi, E.: Automatic
Dantzig-Wolfe reformulation of mixed integer programs. Math. Prog. 149(1-2), 391-424 (2015).
https://doi.org/10.1007/s10107-014-0761-5

9. Borndorfer, R., Ferreira, C.E., Martin, A.: Decomposing matrices into blocks. SIAM J. Optim. 9(1),
236-269 (1998)

10. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process.
Lett. 42(3), 153-159 (1992)

11. Cornaz, D., Furini, F., Lacroix, M., Malaguti, E., Mahjoub, A.R., Martin, S.: Mathematical formulations
for the balanced vertex k-separator problem. In: Control, Decision and Information Technologies
(CoDIT), 2014 International Conference on, pp. 176-181. IEEE (2014)

12. Cornaz, D., Furini, F., Lacroix, M., Malaguti, E., Mahjoub, A.R., Martin, S.: The vertex k-cut problem.
Tech. rep., Optimization Online (2017)

13. de Souza, C., Balas, E.: The vertex separator problem: algorithms and computations. Math. Program.
103(3), 609-631 (2005). https://doi.org/10.1007/s10107-005-0573-8

@ Springer

https://doi.org/10.1016/S0950-5849(01)00194-X
https://doi.org/10.1007/s10107-005-0574-7
https://doi.org/10.1007/BF02680552
https://doi.org/10.1287/opre.1060.0278
https://doi.org/10.1007/s10107-014-0761-5
https://doi.org/10.1007/s10107-005-0573-8

68

M. Bastubbe, M. E. Libbecke

14.

15.
16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program.
91, 201-213 (2002)

Evrendilek, C.: Vertex separators for partitioning a graph. Sensors 8(2), 635-657 (2008)

Ghoniem, A., Sherali, H.D.: Complementary column generation and bounding approaches for set
partitioning formulations. Optim. Lett. 3(1), 123-136 (2009)

Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Oper. Res.
9(6), 849-859 (1961)

Kartak, V.M., Ripatti, A.V., Scheithauer, G., Kurz, S.: Minimal proper non-irup instances of the one-
dimensional cutting stock problem. Discrete Appl. Math. 187, 120-129 (2015)

Kayaaslan, E., Pinar, A., Catalyiirek, Umit, Aykanat, C.: Partitioning hypergraphs in scientific com-
puting applications through vertex separators on graphs. SIAM J. Sci. Comput. 34(2), A970-A992
(2012). https://doi.org/10.1137/100810022

Kellerman, E.: Determination of keyword conflict. IBM Tech. Discl. Bull. 16(2), 544-546 (1973)
Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G.,
Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Stefty, D.E., Wolter,
K.: MIPLIB 2010. Math. Program. Comput. 3(2), 103-163 (2011). https://doi.org/10.1007/s12532-
011-0025-9

Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering edges by cliques with regard to keyword con-
flicts and intersection graphs. Commun. ACM 21(2), 135-139 (1978). https://doi.org/10.1145/359340.
359346

Liibbecke, M.E., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53(6), 1007-1023
(2005)

Marcotte, O.: An instance of the cutting stock problem for which the rounding property does not hold.
Oper. Res. Lett. 4(5), 239-243 (1986)

Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: Disconnecting graphs by removing vertices: a poly-
hedral approach. Stat. Neerl. 61(1), 35-60 (2007). https://doi.org/10.1111/j.1467-9574.2007.00350.
X

Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. Comput. Sched. Public
Transp. Urban Passeng. Veh. Crew Sched. 269-280 (1981)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1137/100810022
https://doi.org/10.1007/s12532-011-0025-9
https://doi.org/10.1007/s12532-011-0025-9
https://doi.org/10.1145/359340.359346
https://doi.org/10.1145/359340.359346
https://doi.org/10.1111/j.1467-9574.2007.00350.x
https://doi.org/10.1111/j.1467-9574.2007.00350.x

	A branch-and-price algorithm for capacitated hypergraph vertex separation
	Abstract
	1 Introduction
	2 Branch-and-price algorithm
	2.1 A shore based formulation
	2.2 Branching
	2.3 Pricing
	2.3.1 Applications
	2.3.2 Complexity
	2.3.3 Preprocessing the pricing problem
	2.3.4 Greedy heuristic
	2.3.5 Multi-start iterated local search
	2.3.6 Integer linear program
	2.3.7 Complementary pricing

	2.4 Preprocessing the hypergraph
	2.5 Primal heuristic
	2.6 Exchange vectors

	3 Computational results
	3.1 Implementation
	3.2 Environment
	3.3 Instances
	3.4 Fixed maximum number of shores
	3.5 Arbitrarily many shores
	3.6 Strength of formulations
	3.7 Feature impact
	3.8 Optimal decompositions of matrices

	4 Conclusion
	References

