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Abstract
We propose a new algorithm for the optimization of convex functions over a poly-
hedral set in R

n . The algorithm extends the spectral projected-gradient method with
limited-memory BFGS iterates restricted to the present face whenever possible. We
prove convergence of the algorithm under suitable conditions and apply the algo-
rithm to solve the Lasso problem, and consequently, the basis-pursuit denoise problem
through the root-finding framework proposed by van den Berg and Friedlander (SIAM
J Sci Comput 31(2):890–912, 2008). The algorithm is especially well suited to sim-
ple domains and could also be used to solve bound-constrained problems as well as
problems restricted to the simplex.
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1 Introduction

In this paper we propose an algorithm for optimization problems of the form

minimize
x

f (x) subject to x ∈ C, (1)

where f : Rn → R is a convex, twice continuously differentiable function, and C is a
polyhedral set inRn . The main focus of the paper is the application and specialization
of the framework to the Lasso problem [1]:
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2 E. van den Berg

minimize
x

1
2‖Ax − b‖22 subject to ‖x‖1 ≤ τ, (LSτ )

and its extension to the weighted one-norm. The work in this paper is motivated by
the need for an efficient and accurate solver for the Lasso subproblems appearing in
the spgl1 [2] solver for basis-pursuit denoise [3] problems of the form

minimize
x

‖x‖1 subject to 1
2‖Ax − b‖22 ≤ σ. (BPσ )

Both the (BPσ ) and (LSτ ) formulations are central to compressed sensing [4,5]
as a means of recovering sparse or approximately sparse vectors x0 from linearly
compressed and often noisy observations b = Ax0 + z. The basis-pursuit denoise
formulation (BPσ ) is often a more natural choice in practice compared to the Lasso
formulation, as it is parameterized in the noise level σ , rather than in τ , the one-norm
of the unknown signal x0, which may be more difficult to determine.

It was shown in [2] that basis-pursuit denoise and Lasso are connected through the
Pareto curve

p(τ ) = min
x

‖Ax − b‖2 subject to ‖x‖1 ≤ τ,

and that solving (BPσ ) can be reduced to finding the smallest τ for which the Lasso
solution x∗

τ satisfies ‖Ax∗
τ − b‖ ≤ σ . Denoting by τσ this critical value of τ and

assuming that b lies in the range space of A it was shown in [2] that the Pareto curve
is convex and differentiable at all τ ∈ [0, τ0) with gradient ‖AT r‖∞/‖r‖2 where r
denotes the misfit Ax∗

τ − b. Evaluation of both p(τ ) and p′(τ ) relies on the misfit r ,
which can be obtained by solving (LSτ ). The spgl1 solver proposed in [2] applies root
finding on the Pareto curve, as illustrated in Fig. 1, to solve p(τ ) = σ and thereby
reduce basis-pursuit denoise to a series of Lasso problems. In spgl1 these subproblems
are solved using the spectral projected-gradient (SPG) algorithm [6], which we discuss
in more detail in Sect. 2.

For certain problems it was observed that SPG generates long sequences of iterates
that all lie on the same face of the polyhedral set of feasible points. This suggests
the use of an active-set type method in which a quasi-Newton method, such as the
limited-memory BFGS (L-BFGS) method [7], is used to minimize the problem restricted
to the currently active face. In order to obtain an efficient solver it is important to avoid
unnecessarily costly subproblem solves or complicated heuristics to determine when
to switch between the solvers. In this paper we therefore propose a hybrid algorithm
that switches between the two methods in a seamless and lightweight fashion.

1.1 Paper outline

In Sect. 2 we provide a concise background on the SPG and L-BFGS methods along
with some of their theoretical properties. We then describe the proposed algorithm
for the general problem formulation (1) in Sect. 3. In Sect. 4 we study the geometry
of the constraints in the Lasso problem, and develop the tools needed for an efficient

123
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Fig. 1 Example of root finding on the Pareto curve p(τ )

implementation of the framework for Lasso. Numerical experiments are provided in
Sect. 5, followed by the conclusions in Sect. 6.

1.2 Notation and definitions

We use caligraphic capital letters for sets. Given any two set S1 and S2, we write
S1 + S2 for {x1 + x2 | x1 ∈ S1, x2 ∈ S2}, and likewise for S1 − S2. For a seeming
lack of established terminology, we define the difference hull of a set S, diff hull(S),
as the linear hull of differences, span{u1−u2 | u1, u2 ∈ S}. The difference hull can be
seen as the linear subspace corresponding to the affine hull of S translated to contain
the origin. For any x in a polyhedral set C, we define F(x) to be the unique face F of
C for which x ∈ relint(F); this may be C itself. The normal cone of C at x is given
by N (x) := {d ∈ R

n | P(x + d) = x}. The normal cones N (x) are identical for all
x ∈ relint(F), and we can therefore define the normal cone of a face N (F) as N (x)
evaluated at any arbitrary x ∈ relint(F). Orthogonal projection of any vector v ∈ R

n

onto C is defined as

P(v) := arg min
x

‖x − v‖2 subject to x ∈ C.

Given any point x ∈ relint(F) we are interested in the set of directions d ∈ R
n for

which there exists an ε > 0 such that the projection of x + εd lies in F . It can be
verified that

S(x) := {d ∈ R
n | ∃ ε > 0 : F[P(x + εd)] = F(x)}

= N (x) + diff hull(F(x)).

Because the normal cone N (x) is the same for all x ∈ relint(F) we can define the
self-projection cone of a face F as S(F) :=N (F)+ diff hull(F). Note thatN (F) ⊥
diff hull(F), or stronger yet, that the difference hull ofF is the orthogonal complement
of the linear hull ofN (F). For any k-faceF of C, k ≥ 1, we denote by Φ(F) ∈ R

n×k

an arbitrary but fixed orthonormal basis for diff hull(F). We will never use Φ(F)

whenF is a vertex and therefore leave it undefined. We denote by ei the i th column of
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4 E. van den Berg

an identity matrix whose size is clear from the context. The proximation of a function
f is defined as prox f (u) := arg minx f (x) + 1

2‖x − y‖22.

2 Background

2.1 The nonmonotone spectral projected-gradient method

Algorithm 1 The nonmonotone spectral projected-gradient method (SPG)
Inputs: A, b, τ , x0
Initialize i ← 0, choose α0 ∈ [αmin, αmax]
while not done do

Compute gi = ∇ f (xi )

# Compute the Barzilai-Borwein scaling parameter
if i > 0 then

Set s ← xi − xi−1, y ← gi − gi−1
if sT y > 0 then

αi ← max(min( s
T s

sT y
, αmax), αmin)

else
αi ← αmax

end if
end if

# Non-monotone curvilinear Armijo line-search
Initialize k ← 0
while condition (3) is not satisfied do

k ← k + 1
end while

# Proceed to the next iteration
Set xi+1 = x(βkαi )

Update i ← i + 1
end while

The nonmonotone spectral projected-gradient method (SPG), outlined in Algo-
rithm 1, was introduced by Birgin et al. [6] for problems of the form (1), with C
a closed convex set in R

n , and f : R
n → R a function with continuous partial

derivatives on an open set that contains C. The SPG algorithm is based on the curvi-
linear projected-gradient method, which performs a line search along the curvilinear
trajectory (see also [8]):

x(α) = P(xi − α∇ f (xi )), α ≥ 0. (2)

In order to speed up the method, two important modifications were introduced in
[6]. The first modification allows a limited level of nonmonotonicity in the objective
value. Givenμ, γ ∈ (0, 1), theArmijo-type line search starts with an initial step length
αi , and then finds the first nonnegative integer k such that
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A hybrid quasi-Newton projected-gradient method… 5

f (x(μkαi )) ≤ max
0≤ j≤min{i,M−1}{ f (xi− j )} + γ (∇ f (xi ))

T (x(μkαi ) − xi ). (3)

The right-hand side of this condition ensures sufficient descent, but only with respect
to the maximum of up to M of the most recent objective values. In case M = 1
this reduces to the standard Armijo line-search condition. The second modification is
the use of the spectral step length, as proposed by Barzilai and Borwein [9]. Given
s = xi − xi−1 and y = ∇ f (xi ) − ∇ f (xi−1), the initial step length at iteration i is
defined as

αi =
{
max

(
min

(
sT s
sT y

, αmax

)
, αmin

)
if sT y > 0,

αmax otherwise,

where 0 < αmin < αmax are fixed parameters. More information on the motivation
behind this particular choice of step length can be found in [6,10]. It was shown in [6]
that any accumulation point x∗ of the sequence {xi } lies in C and satisfies

‖P(x∗ − ∇ f (x∗)) − x∗‖2 = 0. (4)

Practical implementations of Algorithm 1 may use a relaxed version of (4) along with
other conditions as a stopping criterion.

2.2 Limited-memory BFGS

The L-BFGS algorithm by Liu and Nocedal [7] is a popular quasi-Newton method for
unconstrained minimization of smooth functions f̂ : Rn → R:

minimize
x

f̂ (x).

At each iteration, the algorithm constructs a positive-definite approximation Hi of
the inverse Hessian of f̂ at xi , based on an initial positive-definite matrix H along
with n̂ = min{i, N } of the most recent vector pairs {si− j , yi− j }n̂−1

j=0, where

s j = x j − x j−1, and y j = ∇ f̂ (x j ) − ∇ f̂ (x j−1), (5)

and N denotes the memory size for L-BFGS. The iterates in L-BFGS are of the form
xi+1 = xi + αi di , where the search direction di is given by

di = −Hi · ∇ f̂ (xi ), (6)

and the step size αi is chosen to satisfy the Wolfe conditions:

f̂ (xi + αi di ) ≤ f̂ (xi ) + γ1αi (∇ f̂ (xi ))
T di , (7a)

(∇ f̂ (xi + αi di ))
T di ≥ γ2(∇ f̂ (xi ))

T di . (7b)
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6 E. van den Berg

Parameters γ1 and γ2 are chosen such that 0 < γ1 < 1
2 , and γ1 < γ2 < 1. For details

on the structure of the inverse approximation Hi and efficient ways of evaluating the
matrix-vector product in (6), see [7,11].

2.2.1 Convergence results

For the analysis of the L-BFGS algorithm, Liu and Nocedal make the following assump-
tions [7]:

Assumption 1 Given starting point x0, we have:

(1) The objective function f̂ is twice continuously differentiable;
(2) The level set D := {x ∈ R

n | f̂ (x) ≤ f (x0)} is convex; and
(3) There exist positive constants μ1 and μ2 such that

μ1‖v‖2 ≤ vT [∇2 f̂ (x)] v ≤ μ2‖v‖2, (8)

for all x ∈ D and v ∈ R
n .

Under these conditions, and with some simplifications, they prove that

Theorem 2 (Liu and Nocedal [7]) The L-BFGS algorithm generates a sequence {xi }
that converges to the unique minimizer x∗ in D. Moreover, there exists a constant
c > 0 such that

f̂ (xi+1) − f̂ (x∗) ≤ (1 − c)( f̂ (xi ) − f̂ (x∗)). (9)

3 Proposed algorithm

The proposed algorithm can be seen as amodification of the SPGmethod that allows the
use of quasi-Newton steps over a currently active face. The basic idea is that whenever
two successive iterates xi and xi−1 lie on the same face, we can form or update a
quadratic model of f̂ , the objective function restricted to the face. Whenever a model
for the current face is available, the algorithm will attempt a quasi-Newton step that is
restricted to the face and satisfies the Wolfe conditions (7). If the quasi-Newton step
fails, or is otherwise abandoned, the algorithm simply falls back to the SPG method
and takes a regular spectral projected-gradient step. After each step—regardless of the
type—we check the conditions required to update the quadratic model and initiate the
quasi-Newton step:

F(xi ) = F(xi−1) and − ∇ f (xi ) ∈ self proj(Fi ). (10)

If these conditions are not met, we discard the Hessian approximation used in the
quadratic model. The self-projection criterion in (10) is essential and omitting it could
cause the algorithm to take repeated quasi-Newton iterations converging to aminimum
on the relative interior of the face rather than the global minimum.
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A hybrid quasi-Newton projected-gradient method… 7

3.1 Quasi-Newton over a face

Oneway of performing quasi-Newton over a face is bymaintaining an inverse Hessian
approximation using the update vectors in (5), and computing the search direction di
using (6). However, this approach has some major disadvantages. First, we may have
that di /∈ diff hull(Fi ), which means that xi + αdi /∈ Fi for all nonzero α. This
could be partially solved by projection onto the face, but such a projected direction
is no longer guaranteed to be a descent direction [12]. This too could be addressed
by modifying the Hessian, but doing so would further complicate the algorithm. A
second disadvantage is that we maintain the inverse Hessian approximation for the
higher-dimensional ambient space, and the approximation may therefore not be very
accurate along aff(Fi ).

Algorithm 2Outline of the proposed hybrid quasi-Newton projected-gradient method
Inputs: A, b, τ , x0
Initialize H0 = ∅, F0 = F(x0), g0 = ∇ f (x0)
Set t ← 0, choose α0 ∈ [αmin, αmax]
while not done do

# Quasi-Newton step on current face
flagUpdated ← false
if (Ht �= ∅) then

dt = −Φt HkΦ
T
t gt

Perform Wolfe-type line-search on x(γ ):=x + γ d over {γ | x(γ ) ∈ Ft }
if (line search successful) then

Reset objective function history
xt+1 = xt + γt dt
flagUpdated ← true

end if
end if

# Projected-gradient step
if (flagUpdated = false) then

Compute Barzilai-Borwein scaling parameter
Nonmonotone curvilinear Armijo line-search along x(γ ):=P(xt − γ gt )
xt+1 = x(γt )

end if

t ← t + 1, gt = ∇ f (xt ), Ft = F(xt )

# Update the quadratic model of the current face
if (Ft = Ft−1 and −gt ∈ self proj(Ft )) then

if (Ht−1 = ∅) then
Initialize Ht−1 ← μI
Determine orthonormal basis Φt = Φ(Ft )

else
Set Φt = Φt−1

end if
Set Ht as L-BFGS update to Ht−1 using st = ΦT

t (xt − xt−1) and yt = ΦT
t (gt − gt−1)

else
Ht = ∅

end if
end while
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8 E. van den Berg

The solution of the above problems is straightforward: we simply work with a
representation for the function restricted to aff(Fi ). Let Fi be a k-dimensional face
with k > 0. Then we can find an orthonormal basis Φ := Φ(Fi ) ∈ R

n×k whose span
coincides with diff hull(Fi ). Using Φ we can write any point x ∈ Fi as x = v + Φc,
where v ∈ R

n is an arbitrary but fixed point in Fi , and c ∈ R
k is a coefficient in the

lower-dimensional space. The function f̂ : Rk → R, which restricts f to the current
face, is then given by f̂ (c) = f (v +Φc). The idea then is to form the inverse Hessian
approximation over f̂ , and use it to obtain a search direction d̂ ∈ R

k , which can
then be mapped back to the ambient space for the actual line search. In particular, we
can form the approximate inverse Hessian Hi ∈ R

k×k by updating an initial positive
definite H using

si = ΦT (xi − xi−1) and yi = ΦT (∇ f (xi ) − ∇ f (xi−1)). (11)

In order to obtain the search directionwe first compute∇ f̂ (ΦT (xi−v)) = ΦT∇ f (xi )
by projecting the gradient ∇ f (xi ) onto the lower-dimensional space. We then apply
the inverse Hessian followed by back projection, giving:

di = ΦHiΦ
T (−∇ f (xi )).

The resulting vector clearly lies in diff hull(Fi ) and we therefore have that xi +αdi ∈
Fi for all step sizes α ∈ [0, αbnd], for some αbnd > 0, possibly with αbnd = +∞.
Line search is equivalently done in the projected or ambient dimension, and we aim to
find a step size α within the above range, such that the Wolfe conditions (7) are met.
For the line search we could start with a unit step length, whenever αbnd ≥ 1, or we
could try α = αbnd first to encourage exploring lower-dimensional faces, provided of
course that αbnd < ∞. If no suitable step length can be found, or a certain maximum
number of trial steps is taken, we abandon the quasi-Newton step and take a spectral
projected-gradient step instead. As a final remark, note that condition (10) should
never be met for vertices, since that would imply not only that xi = xi−1, but also
that −∇ f (xi−1) ∈ self proj(Fi−1) = N (Fi−1), which means that the optimality
condition given in (4) would already have been satisfied at xi−1.

3.2 Convergence

For the convergence analysis of Algorithm 2 we rely on the results in [6] and [7],
and add a step in the algorithm that resets the objective-value history used by SPG

after each series of successful quasi-Newton iterations to ensure that any subsequent
iteration has a lower objective value. We use the following assumptions, which are
somewhat more restrictive than those in the aforementioned two papers (see for exam-
ple Assumption 1):

Assumption 3 We assume that

(1) Function f is twice continuously differentiable, and bounded below;
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A hybrid quasi-Newton projected-gradient method… 9

(2) There exist constants 0 < μ1 ≤ μ2 < ∞ such that for all x, v ∈ R
n :

μ1‖v‖22 ≤ vT∇2 f (x)v ≤ μ2‖v‖22. (12)

Under these assumptions, which imply convexity of f , we have the following result:

Theorem 4 Let f (x) satisfy Assumption 3 and let x0 ∈ C. Then the sequence {xt }
generated by Algorithm 2 converges to the unique minimizer of (1).

Proof Assumption 3 ensures the existence of a unique minimizer x∗ to (1), which
satisfies

−∇ f (x∗) ∈ N (x∗).

If there exists a finite t for which xt = x∗, we are done. Suppose, therefore that
xt �= x∗ for all t . We consider two cases. First, if there are finitely many quasi-Newton
steps, there must a t̄ such that all iterations t > t̄ are of the projected gradient type. In
this case the result follows directly from the analysis in [6]. Second, consider the case
where there are infinitely many quasi-Newton steps. For a fixed face F , minimizing
f̂ is equivalent to minimizing the objective over the affine hull of the current face F :

minimize
x

f (x) subject to x ∈ aff(F). (13)

For any successful step it follows from Theorem 2 that there exists a constant c > 0
such that the quasi-Newton step satisfies

f (xt+1) − f (x∗
F ) ≤ (1 − c)( f (xt ) − f (x∗

F )), (14)

where x∗
F denotes the minimizer of (13). Because the history of the M most recent

objective values is reset after each successful quasi-Newton step, any intermediate
projected-gradient step will not increase the objective. Based on this, Lemma 1 below,
shows that the number of quasi-Newton iterates on any F that does not contain x∗ is
finite. By polyhedrality of the domain, the number of faces is bounded, and we must
therefore take infinitely many iterations on at least one face that contains x∗. Repeated
application of (14) then shows that the objective value converges to f (x∗

F ) = f (x∗).
From Assumption 3 it then follows that {xt } converges to x∗. ��
Lemma 1 Let F be a face of C such that x∗ /∈ F . Then the number of quasi-Newton
steps on F taken by Algorithm 2 is finite.

Proof The quasi-Newton method is applied to f̂ , which is equivalent to f restricted
to F . We therefore focus on (13). Let x∗

F be the solution to (13), and denote by x[ j]
and x[ j]+1 the starting, respectively ending, point for the j th quasi-Newton step onF .
It follows from Theorem 4 that

f (x[ j]) − f (x∗
F ) ≤ f (x[ j−1]+1) − f (x∗

F ) ≤ (1 − c)( f (x[ j−1]) − f (x∗
F )), (15)
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10 E. van den Berg

for j ≥ 2. This holds since any intermediate quasi-Newton iteration can only reduce
the objective, and likewise for projected-gradient steps, as a consequence of resetting
the function-value history.

We consider two cases. First assume that x∗
F /∈ F . Let f̄ be the minimum of f (x)

over x ∈ F . Repeated application of (15) gives

f (x[ j]+1) − f (x∗
F ) ≤ (1 − c) j ( f (x[1]) − f (x∗

F )). (16)

For sufficiently large, but finite j , the right-hand side in (16)must fall below f̄ − f (x∗
F ),

which is strictly positive. Since every successful quasi-Newton step results in a vector
x[ j]+1 ∈ F by construction, it follows that the number of quasi-Newton iterates on F
must be bounded.

For the second case, assume that x∗
F ∈ F . Because optimization is done over

aff(F), it holds that −∇ f (x∗
F ) ⊥ diff hull(F). For −∇ f (x∗

F ) ∈ self proj(F), we
must therefore have −∇ f (x∗

F ) ∈ N (x∗
F ), but this cannot be the case since it would

imply that x∗
F is a global minimizer. (The same holds when x∗

F lies on a lower-
dimensional subface on the boundary ofF .) Since f is continuously differentiable by
assumption, it follows that −∇ f (x) /∈ self proj(F) for all points x ∈ F sufficiently
close to x∗

F . Assumption 3 then allows us to define a sufficiently close neighborhood as
the level set f (x) ≤ f̄ over x ∈ F , where f̄ > f (x∗

F ). Applying the same argument
we used above shows that the right-hand side of (16) again falls below f̄ − f (x∗

F )

for sufficiently large j . Once this happens all following iterates xt ∈ F must have
f (xt ) ≤ f̄ . Since the self-projection cone condition−∇ f (x) ∈ self proj(F) does not
hold at these points, no more quasi-Newton steps are taken on F . ��

A similar analysis holds when the spectral projected-gradient method is replaced
by another convergent algorithm, provided that the iterates do not exceed the initial
objective value.

4 Application to Lasso

The proposed algorithm depends on a number of operations on the constraint set.
In particular, it has to determine the face in which the current iterate lies, check
membership of the self-projection cone, and determine an orthonormal basis for the
current face. For the algorithm to be of practical use, the constraint set must therefore
be simple enough to allow efficient evaluation of these operations. As this work was
motivated by improving the Lasso problem, we focus on the weighted one-norm ball
(which for unit weights is also known as the cross-polytope or n-octahedron [13]):

Cw,1 = {x ∈ R
n | ‖x‖w,1 ≤ τ },

where ‖x‖w,1 := ∑
i wi |xi | positive wi . The proposed framework also applies natu-

rally to bound or simplex constrained problems, but these are outside the scope of this
paper. The objective function we consider throughout this section is
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A hybrid quasi-Newton projected-gradient method… 11

f (x) = 1
2‖Ax − b‖22 + μ

2 ‖x‖22 + cT x, (17)

which can also be written in the form 1
2‖Ax − b‖22 + cT x , with A and b appropriately

redefined. The benefit of having an objective function of the form (17) is that it permits
closed-form expressions for step lengths satisfying certain conditions. In the remainder
of this section we discuss practical considerations for the line-search conditions and
look at the specific structure and properties of the set Cw,1.

4.1 Line search

For most objective functions the line search is done by evaluating f (P(x + αd))

or f (x + αd) for a series of α values until all required conditions, such as Armijo
and Wolfe, are satisfied. The objective function in (17) has closed-form solutions for
some of the problems arising in the line search, thereby allowing us to simplify the
algorithms and improve their performance.

4.1.1 Optimal unconstrained step size

As a start we look at the step length that minimizes the objective along f (x + αd):

αopt = arg min
α

f (x + αd)

Differentiating f with respect to α and equating to zero leads to the following expres-
sion:

αopt = − (AT r + μx + c)T d

‖Ad‖22 + μ‖d‖22
,

with r = Ax − b. When μ = 0 and c = 0 this reduces to αopt = − rT Ad/‖Ad‖22.

4.1.2 Wolfe line search conditions

Themaximum step length for which theArmijo condition (7a) is satisfied can be found
by expanding the terms and simplifying. Doing so gives the following bound:

α ≤ αmax = 2(1 − γ1)αopt.

Likewise, the gradient condition (7b) reduces to

α ≥ αmin = (1 − γ2)αopt.
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12 E. van den Berg

4.1.3 Projection arc

Line search in gradient projectionmethods is often done by backtracking from a single
projection p(α) = x+α(PC(x+d)),with α ∈ [0, 1], or by search over the projection
arc p(α) = PC(x + αd), with α ≥ 0. The trajectory of the first method depends
strongly on the scaling of d and is more likely to generate points on the interior of the
feasible set. The second method better captures the structure of the domain, but can
also be more expensive computationally. In an earlier version of the present work [14]
we studied line search based on the entire projection arc (that is, over all values α ≥ 0)
along with its properties. Given the high computational complexity of the line search
in practice and the lengthy treatise we omit the details here and refer the interested
reader to [14].

4.2 Properties of the weighted one-norm ball

4.2.1 Facial structure

The weighted one-norm ball of radius τ is the convex hull of vertices {±τ/wi · ei }i .
Every proper k-faceF of the weighted one-norm ball Cw,1 can bewritten as the convex
hull of {σi/wi · ei }i∈I , where I is a subset of {1, . . . , n} with cardinality k + 1, and
σi ∈ {−1,+1}. Throughout this section we assume that τ > 0.

Given an x ∈ C we can determineF(x) as follows. First, we need to check whether
‖x‖w,1 < τ , in which case F(x) = C. Otherwise, x lies on a proper face, which
can be uniquely characterized by the sign vector sgn(x) whose i th entry is given by
sgn(xi ). Determining F(x) and checking equality of faces can therefore be done in
O(n) time.

4.2.2 Projection onto the feasible set

Projection onto the weighted one-norm ball is discussed in [15] and is based on the
solution of the prox function

xλ(u)=proxλ‖·‖w,1
(u) := arg min

x

1
2‖x − u‖22+λ‖x‖w,1= sign(u) · [|u|−λw]+ ,

(18)

where [·]+ = max(0, ·),the absolute value, sign function, and multiplication in the
right-hand side are evaluated elementwise. Projection onto Cw,1 then amounts to
finding the smallest λ ≥ 0 for which ‖xλ(u)‖w,1 ≤ τ . The entries in xλ(u), and
therefore ‖xλ(u)‖w,1, are continuous and piecewise linear in λ with break points
occurring at λ = |ui |/wi . We can obtain an O(n log n) algorithm that finds the
optimal λ and subsequent projection by sorting the break points [15]. This can
be reduced to an expected O(n) algorithm [16] by avoiding the explicit sorting
step.
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A hybrid quasi-Newton projected-gradient method… 13

4.2.3 Self-projection cone of a face

Given x ∈ Cw,1 and search direction d ∈ R
n , we want to know if d ∈ self proj(F(x)).

When‖x‖w,1 < τ it follows that x lies in the interior ofCw,1 meaning thatF(x) = Cw,1
and d ∈ self proj(Cw,1) = R

n , trivially. For the case where ‖x‖w,1 = τ , consider the
support I = {i | xi �= 0}.

We first show that I is included in the support of x(α) = P(x + αd) for all
α ∈ [0, ᾱ), for some ᾱ > 0. Since

‖x + αd‖w,1 ≤ ‖x‖w,1 + α‖d‖w,1 = τ + α‖d‖w,1, (19)

it follows that the projection threshold λ(α) ≤ α‖d‖w,1/mini {wi } =: να. At the
same time, a necessary condition for i ∈ I to be removed from the support is that
λ(α) ≥ (|xi | − α|di |)/wi . Combined with (19) this gives the necessary condition
(ν + |di |/wi )α ≥ |xi |/wi , which allows us to choose

ᾱ = min
i∈I

{
|xi |/(wiν + |di |)

}
> 0.

For d to be in the self-projection cone we therefore need to show that (1) x + αd does
not move into the polytope, and (2) the support does not increase. It can be verified that
the first condition is satisfied if and only if the directional derivative (‖ · ‖w,1)

′(x; d)

of ‖x‖w,1 in direction d is nonnegative:

∑
i∈I

sign(xi )diwi +
∑
i /∈I

|di |wi ≥ 0. (20)

For the second condition to be satisfied we require for all i /∈ I and sufficiently small
α that the absolute value of the entries remains less than or equal to the threshold
value, namely α|di | ≤ wiλ(α). When the support remains the same we find λ(α) by
solving

∑
i∈I

wi (|xi + αdi | − wiλ(α)) = τ, which gives λ(α) = α ·
∑

i∈I wi sign(xi )di∑
i∈I w2

i

,

after writing |xi + αdi | = |xi | + α sign(xi )di and recalling that ‖x‖w,1 = τ . A
necessary (and sufficient) condition for the support to remain the same is therefore
that

max
i /∈I

|di |/wi ≤
∑

i∈I wi sign(xi )di∑
i∈I w2

i

. (21)

Summarizing the above we have:
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14 E. van den Berg

Theorem 5 Given x ∈ Cw,1 with support I = {i | xi �= 0}, then d ∈ self proj(F(x))
if and only if ‖x‖w,1 < τ , or ‖x‖w,1 = τ and

∑
i∈I

sign(xi )diwi +
∑
i /∈I

|di |wi ≥ 0, and max
i /∈I

|di |/wi ≤
∑

i∈I wi sign(xi )di∑
i∈I w2

i

.

4.2.4 Orthogonal basis for a face

For the construction of a quadratic approximation of objective function f over a face
F , we require an orthogonal basisΦ for diff hull(F). For simplicity, consider the facet
of the unit cross polytope lying in the positive orthant in R3. In other words, consider
the unit simplex given by conv{e1, e2, e3}. A first vector for the basis can then be
obtained by normalizing e2 − e1 to have unit norm. A second vector orthogonal to the
first can be obtained by connecting the point halfway on the line segment e1–e2 to e3,
that is, e3 − (e1 + e2)/2, followed again by normalization. Extending this to general
k-simplices we find (k + 1) × k bases Q = [q1, q2, . . . , qk] with

q j =
⎛
⎝e j+1 − 1

j

j∑
i=1

ei

⎞
⎠/√

1 + 1/ j .

In other words

Qi, j =

⎧⎪⎨
⎪⎩

−√
1/( j2 + j) i ≤ j√

j/( j + 1) i = j + 1

0 otherwise.

It can be seen that the above procedure amounts to taking a QR factorization of the
k + 1× k matrix [−e, I ]T of differences between the first vertex and all others of the
k-simplex, and discarding the last column in Q whose entries are all equal to 1/

√
n.

The special structure of Q allows us to evaluate matrix-vector products with Q and its
transpose in O(k) time, without having to form the matrix explicitly. For the general
case, let F = F(x). For the case where F = C no projection is needed and we can
simply choose Φ = I . Otherwise, let I = {i | xi �= 0} denote the support of x . The
desired basis can then be obtained by first restricting the vector to its support and then
normalizing the sign pattern, thus giving:

Φ = II · diag(sgn(xI)) · Q.

Matrix-vector products with Φ can be evaluated inO(n) time, again without forming
the matrix.

Generic weighted one-norm ball For the weighted one-norm ball we consider a
simplicial face given by conv(w0e1, w1e2, . . . , wnen), with nonzeroweightsw0 town .
(Throughout this paragraph it is more convenient to work with a weight vector whose
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A hybrid quasi-Newton projected-gradient method… 15

v1 v1 v1 · · · v1

w1

w2

w3

. . .

wn

v1
v2 v2 · · · v2

w1

w2

w3

. . .

wn

v1
v2

v3 · · · v3w1

w2

w3

. . .

wn

vk vk vk
vk+1

wk

wk+1

wk

wk+1

(a) (b) (c) (d)

Fig. 2 Stages of the orthogonalization process

elements are the inverse of the weights appearing in the weighted one norm; the actual
vertices of theweightedonenormball are±w−1

i ei , not±wi ei .) Theorthonormal basis
corresponding to the face can again be found by applying the standard QR-algorithm
to the matrix of differences between the vertices, and taking advantage of the special
structure of the matrix. The initial setup is illustrated in Fig. 2a with v1 = −w0. The
two operations in this process are projecting out the contributions of all subsequent
columns and normalizing the columns to unit norm. We do not normalize until the
very end but do keep track of the squared two norm of the completed columns. Given
vectors a and bwe obtain the component in b orthogonal to a by evaluating b− 〈a,b〉

〈a,a〉a.
In the first step of the factorization (we are interested only in Q) we orthogonalize with
respect to the first column a. The inner product of each column with a is identical and
equal to α1 = 〈v1, v1〉 = ‖v1‖22. Using this we also compute the squared two norm of
the first column as γ1 = α1 + w2

1. After the sweep with the first column we are left
with the matrix shown in Fig. 2b where

v2 =
⎡
⎣ v1 − α1

γ1
v1

−α1
γ1

w1

⎤
⎦ =

⎡
⎣ γ1−α1

γ1
v1

−α1
γ1

w1

⎤
⎦ =

⎡
⎣ w2

1
γ1

v1

−α1
γ1

w1

⎤
⎦ .

The next step is to sweep with the updated second column. For this we compute
the inner product with the remaining columns and itself, yielding α2 = ‖v2‖22 and
γ2 = α2 + w2

2, respectively. After this sweep we arrive at the matrix given in Fig. 2c.
Proceeding like this we successively sweep with each of the column until we are done.
Consider now the sweep with some column k, illustrated in Fig. 2d. Given αk = ‖vk‖22
and γk = αk + w2

k we find

vk+1 =
⎡
⎣ vk − αk

γk
vk

−αk
γk

wk

⎤
⎦ =

⎡
⎣ w2

k
γk

vk

−αk
γk

wk

⎤
⎦ ,
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16 E. van den Berg

from which we derive recurrence relations γk+1 = αk+1 + w2
k+1 and

αk+1 =
(

w2
k

γk

)2
· ‖vk‖22 +

(
αk

γk

)2
· w2

k = w2
kw

2
k

γ 2
k

αk + α2
k

γ 2
k

w2
k

= αkw
2
k
αk + w2

k

γ 2
k

= αkw
2
k

γk
. (22)

With α1 and γ1 as given above, this allows us to compute all α and γ values. Ultimately
we are interested in the final orthonormal Q matrix. Defining scaling factors

μi, j =
j∏

k=i

w2
k

γk
for 1 ≤ i ≤ j ≤ n, (23)

as well as factors ui = −αi/γi for 1 ≤ i ≤ n and u0 := − 1, it can be found based on
the structure of vectors v that

Q = diag(w) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0 μ1,1u0 μ1,2u0 μ1,3u0 . . . μ1,n−1u0
1 u1 μ2,2u1 μ2,3u1 . . . μ2,n−1u1

1 u2 μ3,3u2 . . . μ3,n−1u2
. . .

. . .
. . .

...

1 un−2 μn−1,n−1un−2
1 un−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· diag(1/√γ ).

Multiplication with this matrix and its transpose may still seem expensive but we now
show how the structure enables O(n) algorithms for both operations. Multiplication
with the diagonal matrices is trivial so we focus only on multiplication with the central
part of the matrix. Looking at a small example we can decompose this matrix as

⎡
⎢⎢⎣
u0 μ1,1u0 μ1,2u0
1 u1 μ2,2u1

1 u2
1

⎤
⎥⎥⎦ =

[
0
I

]
+ diag(u)

⎡
⎢⎢⎣
1 μ1,1 μ1,2

1 μ2,2
1

⎤
⎥⎥⎦ =

[
0
I

]
+ diag(u)

[
M
0

]
.

The key part is multiplicationwith the last matrixM . To evaluate y = Mv we initialize
y3 = v3 and then work upwards. Direct evaluation gives y2 = v2 +μ2,2v3, which can
be rewritten as y2 = v2 +μ2,2y3. A pattern emerges when looking at the computation
of y1:

y1 = v1 + μ1,1v2 + μ1,2v3

= v1 + μ1,1(v2 + μ2,2v3)

= v1 + μ1,1y2,
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A hybrid quasi-Newton projected-gradient method… 17

where μ1,2 = μ1,1μ2,2, or more generally μi,k = μi, jμ j+1,k for i ≤ j ≤ k, follows
from the definition of μ in (23). Given yn = vn , we therefore obtain the recurrence
yk = vk + μk,k yk+1, which allows us to evaluate y = Mv in linear time. With v

appropriately redefined we now look at y = MT v:⎡
⎣ y1
y2
y3

⎤
⎦ =

⎡
⎣1

μ1,1 1
μ1,2 μ2,2 1

⎤
⎦

⎡
⎣ v1

v2
v3

⎤
⎦ .

Starting with y1 = v1 we find y2 = μ1,1y1 + v2 and y3 = μ2,2y2 + v3, using
μ1,2 = μ1,1μ2,2. This gives the recurrence yk+1 = μk,k yk + vk+1. We summarize
the initialization and multiplication with Q and QT in Algorithm 3. Note that these
algorithms use a different indexing scheme for a convenient implementation. For
practical implementations we can precompute and store 1/

√
γk instead of γk and

avoid storing α since it is not used during the evaluation of matrix-vector products.
Alternatively, we can reduce thememory footprint at the cost of increased computation
by storing only α and re-computing μk , uk , and γk whenever they are needed.

Algorithm 3 Implicit construction of Q and matrix-vector multiplication with Q and
QT

(a) Precomputing α, γ , u, and μ (b) Evaluating y = Qv (c) Evaluating y = QT v

Input: Weights w = [w1, . . . , wn ]
Initialize α1 = w2

1, u1 = −1
for k = 1 to n − 1 do

γk = αk + w2
k+1

μk = w2
k+1/γk

uk+1 = −αk/γk
αk+1 = αkμk

end for

Input: γ , u, w, μ; v ∈ R
n−1

s ← vn−1/
√

γn−1, t ← 0
yn = wns
for k = n−1 down to 2 do

t ← μk t + s
s ← vk−1/

√
γk−1

yk = wk (uk t + s)
end for
y1 = w1u1(μ1t + s)

Input: γ , u, w, μ; v ∈ R
n

t ← w1v1u1
s ← w2v2
y1 = (t + s)/

√
γ1

for k = 2 to n−1 do
t ← μk−1t + uks
s ← wk+1vk+1
yk = (t + s)/

√
γk

end for

4.2.5 Maximum step length along a face

Given a feasible search direction d it is useful to know the maximum α for which
x +αd ∈ Cw,1. When x lies in the interior of Cw,1 or when (20) is violated and x +αd
moves into the interior, we need to compute the first intersection with the boundary.
When x lies on a proper face of Cw,1 and d moves along the face or onto a higher
dimensional face, the maximum step length is determined by the first element to reach
zero. More details can be found in [14].

4.3 Stopping criteria

We now look at stopping criteria for optimizing f (x) as defined in (17) over the
weighted one-norm ball. A common stopping criterion for problem of this type is to
look at the relative norm of the projected gradient:
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18 E. van den Berg

ρ(x) := ‖PC(x − ∇ f (x)) − x‖2
max{1, ‖∇ f (x)‖} ,

which is zero if and only if x is optimal. In addition to this we can look at the relative
duality gap, which we define as the difference δ between f (x) and any dual feasible
objective, divided by max{1, f (x)}. Given that the dual feasible point will typically
not be optimal, the relative duality gap merely provides an upper bound on the actual
gap. Improving the estimate of the duality gap can cause the iterates to satisfy the
stopping criteria earlier and thereby help reduce the runtime.

For the derivation of the dual problem we follow [2,15] and rewrite the original
problem as:

minimize
x,r

1
2‖r‖22 + cT x + μ

2 ‖x‖22 subject to Ax + r − b = 0, ‖x‖w,1 ≤ τ.

The dual of this problem is given by

maximize
y,λ

L(y, λ) subject to λ ≥ 0,

where the Lagrange dual function L is given by

L(y, λ) := inf
x,r

{
1
2‖r‖22 + cT x + μ

2 ‖x‖22 − yT (Ax + r − b) + λ(‖x‖w,1 − τ)
}

= yT b − τλ + inf
r

{
1
2‖r‖22 − yT r

}
+ inf

x

{
(c − AT y)T x + μ

2 ‖x‖22 + λ‖x‖w,1

}
= yT b − τλ − 1

2‖y‖22 + inf
x

{
(c − AT y)T x + μ

2 ‖x‖22 + λ‖x‖w,1

}
. (24)

Here, the infimum over r is solved by equating the gradient to zero, giving y = r and
yT r = ‖y‖22. For the infimum over x we consider two cases, based on the value of μ.
Dual when μ = 0. Following the derivation given in [15], with minor changes to
account for the c term, it can be shown that

inf
x

{(c − AT y)T x + λ‖x‖w,1} =
{
0 ‖AT y − c‖ 1

w
,∞ ≤ λ

−∞ otherwise.

From this we then obtain the dual problem:

maximize
y, λ≥0

yT b − τλ − 1
2‖y‖22 subject to ‖AT y − c‖ 1

w
,∞ ≤ λ. (25)

As a dual-feasible point we can choose y = r . For any given y it can be verified that
choosing λ = ‖AT y − c‖ 1

w
,∞ always gives the largest dual objective value. Given x

and the corresponding residual r = b − Ax we therefore obtain the following duality
gap:

δ = ‖r‖22 + cT x − rT b + τ‖AT r − c‖ 1
w

,∞
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A hybrid quasi-Newton projected-gradient method… 19

Dual when μ > 0. The simplest way of dealing with μ > 0 is to rewrite the problem
as:

minimize
x

1
2‖ Ãx − b̃‖22 subject to ‖x‖w,1 ≤ τ

with Ã = [A; √
μI ], and b̃ = [b; 0]. This reduces the problem to the form where

μ = 0 and we can therefore directly use the dual formulation (25). Choosing y = r̃ ,
with r̃ = [r; −√

μx], and applying the same derivation as given above, we obtain a
dual objective value of

rT b − τλ − 1
2‖r‖22 − μ

2 ‖x‖22, with λ = ‖AT r − μx − c‖ 1
w

,∞, (26)

and a corresponding duality gap of

δ = ‖r‖22 + cT x − rT b + μ‖x‖22 + τ‖AT r − μx − c‖ 1
w

,∞. (27)

Another approach is to solve the original infimum over x in (24) for the case where
μ > 0. For a fixed y and λ we have

m(y, λ) := inf
x

{
(c − AT y)T x + μ

2 ‖x‖22 + λ‖x‖w,1

}
= μ inf

x

{
− 1

μ
(AT y − c)T x + 1

2‖x‖22 + λ
μ
‖x‖w,1

}
(28)

When λ = 0 it is easily seen that x∗ = 1
μ
(AT y−c), thus givingm(x) = − 1

2μ‖AT y−
c‖22. For the more general case where λ > 0, we first reformulate (28) as

m(y, λ) = μ inf
x

{
−vT x + 1

2‖x‖22 + h(x)
}

. (29)

with h(x) = λ
μ
‖x‖w,1 = ‖x‖ λw

μ
,1 and v = 1

μ
(AT y − c). For problems of the form

(29) we have:

Theorem 6 Let h(·) be any norm then

inf
x

−vT x + 1
2‖x‖22 + h(x) = − 1

2‖proxh(v)‖22

Proof Note that the objective is coercive and therefore attains the minimum. This
allows us to rewrite and solve the objective as follows:

u = arg min
x

1
2‖x − v‖22 + h(x) = proxh(v).

We then need to show that

−vT u + 1
2‖u‖22 + h(u) = − 1

2‖u‖22
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20 E. van den Berg

From the Moreau decomposition [17] we have v = proxh(v) + proxh∗(v), where h∗
is the conjugate of h. Using proxh∗(v) = v − u we have

− vT u + 1
2‖u‖22 + h(u) = −(u + (v − u))T u + 1

2u
T u + h(u)

= − 1
2‖u‖22 − (v − u)T u + h(u)

= − 1
2‖proxh(v)‖22 − proxh∗(v)T proxh(v) + h(proxh(v))

(a)= − 1
2‖proxh(v)‖22 − h∗(proxh∗(v))

(b)= − 1
2‖proxh(v)‖22,

where (a) follows from [18, Lemma 2.10], and (b) follows from the fact that h∗ is the
indicator function for the dual norm of h, which implies that proxh∗(v) is an element
of the dual norm ball, and h∗(proxh∗(v)) = 0. ��

Application of Theorem 6 to (29) with proximal operator [see also (18)]

proxh(v) = sign(v)
[|v| − λw

μ

]
+,

we obtain

m(y, λ) = −μ

2

∥∥∥∥sign( 1
μ
(AT y − c))

[∣∣ 1
μ
(AT y − c)

∣∣ − λw

μ

]
+

∥∥∥∥
2

2

= − 1

2μ

∥∥∥∥[∣∣AT y − c
∣∣ − λw

]
+

∥∥∥∥
2

2
.

The same expression holds for λ = 0 and substitution into (24) therefore gives the
following dual problem:

maximize
y, λ≥0

yT b − τλ − 1
2‖y‖22 − 1

2μ

∥∥∥∥[∣∣AT y − c
∣∣ − λw

]
+

∥∥∥∥
2

2
. (30)

Even when restricting y to the current residual r in the primal formulation, it can
be seen that the value of (30) is never smaller than that of (26) and, consequently,
that the duality gap never exceeds the value in (27). In particular, by choosing λ =
‖AT y + μx − c‖ 1

w
,∞, it follows that for any index i we have

λ ≥ 1
wi

∣∣∣[AT x − c]i + μxi
∣∣∣ ≥ 1

wi

∣∣∣[AT x − c]i
∣∣∣ − μ

wi
|xi |.

Multiplying either side by wi and rearranging gives

∣∣∣[AT y − c]i
∣∣∣ − λwi ≤ μ|xi |.
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A hybrid quasi-Newton projected-gradient method… 21

Because the right-hand side is always nonnegative, this continues to hold when apply-
ing the [·]+ operator on the left-hand side, and as a result we have

1
2μ

∥∥∥∥[∣∣AT y − c
∣∣ − λw

]
+

∥∥∥∥
2

2
≤ μ

2 ‖x‖22,

from which the desired result immediately follows.

Finding a dual-feasible solution It follows from Slater’s condition and strong duality
that, at the solution (x , r ) for (25), we have y = r and, without loss of generality,
λ = ‖AT r − c‖ 1

w
,∞. When r is not optimal, we can still choose y = r and obtain a

dual-feasible solution. For (30) we can also take y = r , but finding λ requires some
more work. In general, given any y we want to find a λ that maximizes the objective.
Writing z = |AT r − c| and ignoring constant terms, this is equivalent to solving

λ∗ := arg min
λ≥0

τλ + 1
2μ‖[z − λw]+‖22.

With I(λ) := {i | zi ≥ λwi } we can write the objective as

f (λ) = τλ + 1
2μ

∑
i∈I(λ)

(zi − λwi )
2

Discarding all zero terms with zi = 0, this function is piecewise quadratic with break-
points atλi = wi/zi .We canwrite the sequence of breakpoints in non-decreasing order
as λ[i] for i = 0, . . . , n, with λ[0] := 0. The gradient between successive breakpoints
is linear and continuously increases from f ′(0) = τ − 1/μ

∑
i wi zi to f ′(λ[n]) = τ .

In order to find the optimal point λ∗, we consider two cases. In the first case we
have f ′(0) ≥ 0, or equivalently τ ≥ 1/μ

∑
i wi zi , which means that the function is

non-decreasing and we find λ∗ = 0. In the second case we need to find λ for which
the gradient vanishes. This can be done by traversing the breakpoints until the first
breakpoint is found where the gradient is nonnegative. The desired solution λ∗ is then
found by linear interpolation over the last segment. Including sorting this can be done
inO(n log n) time. This problem is very similar to projection onto the one-norm ball,
and can also be evaluated in expected O(n) time using an algorithm similar to that
proposed in [16].

Primal-dual pairs Using the methods described above, we can compute an upper
bound on the duality gap given a feasible x and the corresponding residual r . We can
do at least as good, and often better, bymaintaining themaximum dual objective found
so far, and using this to determine the relative duality gap. This way it is possible for
the primal objective for the current iterate x to attain the desired optimality tolerance
while the corresponding dual estimate is far from optimal. Within the root-finding
framework this means that we cannot simply use the latest residual r to evaluate the
gradient of the Pareto curve. Instead we should maintain the value of λ corresponding
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22 E. van den Berg

to the best dual solution at any point, and use this as the gradient approximation. In
other words, we need to keep track of the best primal and dual variables separately.

4.4 Convergence

In many practical situations, the m × n matrix A in (LSτ ) will have more columns
than rows (m < n). Due to the presence of a null space, it follows that Assumption 3
is not satisfied, and the convergence result in Theorem 4 does not apply as is. For
the result to apply it suffices to ensure that condition (12) applies to the restriction
f̂ of f on each of the faces of C. A sufficient condition for this is that the columns
in A are in general position, such that there does not exist any subset of m or fewer
columns of A that is rank deficient. The hybrid algorithm can be updated to check for
the self-projection cone and perform quasi-Newton steps only when the number of
nonzeros in the current iterate are at most m.

5 Numerical experiments

In this section we evaluate the performance of the hybrid approach on the Lasso
problem (LSτ ) both independently and within the spgl1 root-finding framework [2]
described in the introduction. The spgl1 solver can be used both for stand-alone Lasso
problems, as well as for basis-pursuit denoise (BPσ ) problems. For the hybrid method
we aremostly concernedwith the performance of the former andwe therefore changed
spgl1 in two stages. First we modified the stopping criteria used in the Lasso mode,
now declaring a solve successful only if the relative duality falls below a certain
tolerance level. We then added all modifications needed for the implementation of
the hybrid approach. To distinguish between the different algorithms, we use the
convention that spgl1 is used only to refer to the existing implementation provided
by [2]. We refer to the version of spgl1 with the more stringent stopping criteria as
the spgmethod, which is then extended with the techniques described in this paper to
obtain the hybrid method. For the hybrid method we use an L-BFGS memory size of
eight for all experiments.

When used in the root-finding mode to solve (BPσ ), spgl1 uses several different
criteria to decide when to update τ . Each subproblems in spgl1 is considered solved
when the relative change in objective is small, and at least one iterationwas takenwithin
the current subproblem. The overall problem is declared solved when ‖AT y‖∞, the
relative difference between ‖r‖2 and σ , or the relative duality gap is sufficiently small.
For the basis-pursuit denoise experiments based on the spg and hybrid algorithms, we
use a separate implementation of the root-finding framework in which each Lasso
subproblem is fully solved before updating τ . The differences in stopping criteria,
and especially the lack of guarantees on the duality gap for the final subproblem
in spgl1, make it difficult to compare the performances directly. We therefore focus
predominantly on how the performance of the hybridmethod differs from the reference
spg method.
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Fig. 3 Comparison of qpOASES with spg and spg-hybrid on random gaussian problems of size m × 2m.
The different curves from bottom to top correspond to increasing τ values. In qpOASES the curves overlap

5.1 Lasso problems

5.1.1 Active-set type method

Given their similarity, we first compare the performance of the hybrid method with an
active-set type method. For this, we rewrite the Lasso subproblem (LSτ ) as a quadratic
program (QP) by splitting x into its positive and negative components:

min
x̄

1
2‖[A,−A]x̄ − b‖22 subject to x̄ ≥ 0, eT x̄ ≤ τ. (31)

As a solver we choose qpOASES [19], a parametric active-set method that relies on
solving linear systems of equations, and therefore generally works best for small to
medium scale problems.

For the comparison we generate 20 random m × 2m matrices A and vectors b
with i.i.d. random gaussian elements and columns normalized to unit length. For
each problem instance we use spgl1 to solve the basis-pursuit denoise problem with
σ ∈ {0.2, 0.1, 0.05, 0.02, 0.01} to get corresponding τ values. We then solve the first
Lasso problemwith qpOASES, aswell as spg and the hybridmethod, bothwith relative
duality tolerance 10−6. In preliminary runs it was found that the runtime for qpOASES
is insensitive to the problem instance and we therefore ran only the first problem
instance for each τ value. For the spg and hybrid methods we ran all 20 instances. The
(average) runtime for the three methods is plotted against problem size m in Fig. 3.
The first thing to notice is that the runtime of qpOASES is insensitive to the value of τ ,
whereas the runtime for spg and the hybrid method increases with τ (corresponding
to smaller σ ). As expected, qpOASES performs well on small problems. However, it
scales poorly with increasing problem size, and becomes uncompetitive beyond m ≈
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200. Using the procedure described in Sect. 4.3 we generated dual-feasible solutions
for each of the primal solutions obtains with qpOASES. This showed that the relative
duality gap for solutions by qpOASES was around 10−12, which is much smaller than
the threshold used for spg and the hybrid method. To ensure the comparison is fair we
modified qpOASES to keep track of the relative duality gap at each iteration to see if
early stopping was possible. This turned out not to be the case, since the one-norm of
the iterates was found to substantially exceed τ for all but the last several iterations,
thereby prohibiting early stopping.

The total runtime over all problem instances using qpOASES amounted to 24,725s.
Even with additional problem instances for m = 1536 and m = 2048, the total of the
(average) runtime for spg and the hybrid method were 1492s and 1206s. The total
runtime for the hybrid method is 19% less than that of spg.

5.1.2 Comparison with pnopt

The pnopt algorithm, introduced by Lee et al. [20], is a proximal Newton-typemethod
for solving problems of the form

min
x

f (x) + h(x),

where f (x) is convex and continuously differentiable, and h(x) is convex, but not
necessarily differentiable. By choosing f (x) = 1

2‖Ax − b‖22 and setting h(x) to
the indicator function of the one-norm ball of radius τ , pnopt can solve the Lasso
formulation (LSτ ). We configure pnopt to use an L-BFGS quadratic model for f (x)
with the default memory size of 50 (using a memory size of eight, as used in the hybrid
method, gave similar results). Differences in the stopping criteria make it difficult
to directly compare the performance of pnopt with spg and the hybrid method. We
determine relative duality gap tolerance values and pnopt runtimes using the following
steps:

1. We run pnopt on each of the problem instances from Sect. 5.1.1 using solver-
specific tolerance values of 10−4, 10−5, and 10−6.

2. Given the solutions for each of the three settings, we determine the relative
duality gap, as described in Sect. 4.3, and choose this value as the reference
tolerance. The median of the resulting tolerance values are plotted in Fig. 4a.

3. In order to ensure that pnopt did not reach the stopping criterionmuch earlier, we
created a modified version of pnopt to evaluate the duality gap at each iteration
to determine the first iteration at which the reference tolerance is attained. In
most cases this number is equal to the number of iterations in step 1, in the
remaining cases it is less due to the choice of the threshold value.

4. Finally, we rerun the original pnopt solver with the number of iterations limited
to the value found in the previous step. This is the first iteration at which the
relative duality gap tolerance is attained.

5. The time reported for each problem instance and setting for pnopt is then chosen
as the minimum of the runs in steps 1, 3, and 4. Note that this approach is advan-
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Fig. 4 Plots of a the median relative duality gap for ten problem instances solved with pnopt, and b the
median runtime over the problem instances using pnopt, spg, and the hybrid method with a relative duality
gap threshold corresponding to the settings in plot (a)

tageous to pnopt because it effectively excludes the time needed to evaluate the
relative duality gap.

For spg and the hybrid method we use the reference tolerance found in step 2 above as
the stopping criterion. Figure 4b plots the median runtimes over 10 problem instances
for the problem sizes in Sect. 5.1.1 and the relative duality tolerances corresponding to
the three original tolerance values (we plot the median rather than the average runtime
due to the presence of problem instances that take excessive time to solve using pnopt;
for spg and the hybrid method the mean and median are quite similar). It can be seen
that both spg and the hybrid method are much faster than pnopt for all problem sizes.
Between spg and the hybrid method we see that the hybrid method is slightly slower
than spg, especially on the small problem sizes. This can be attributed to the large
tolerance values for the relative duality gap and the low number of iterations needed
to reach it, which means that the quasi-Newton method either never activates or only
activates several iterations before spg finishes. In this case, the overhead associated
with maintaining the support cannot be offset by the benefits of any quasi-Newton
steps.

5.1.3 Lasso on sparse problems

We now take a closer look at the occurrence of line-search errors in spg and the speed
up obtained using the hybrid method. For this we generate test problems following a
conventional compressed-sensing scenario and choose A to be a random 1024×2048
matrix with i.i.d. normal entries with columns normalized to unit norm. We set b =
Ax0, for k-sparse vectors x0 with random support and its non-zero entries generated
i.i.d. from (1) the normal distribution; (2) the uniform distribution over [− 1, 1]; and
(3) the discrete set {− 1,+1} with equal probability. We set τ = 0.99 · ‖x0‖1 and
terminate the algorithm whenever the relative duality gap, defined here as ( f (x) −
fdual)/max{ f (x), 10−3}, falls below a given tolerance level. We run 50 instances for
each of the three distributions used above and report in Table 1 the results obtained
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Table 1 Comparison between the spg and the hybrid method on exact sparse problems with k non-zero
entries

k Runtime spg (s) Rel.gap � Runtime hybrid (s) Rel.gap � (%)

50 0.17 0.16 0.16 3.8e−7 100 0.20 0.19 0.19 4.0e−7 100 − 17

75 0.24 0.21 0.21 5.8e−7 99 0.24 0.23 0.23 4.7e−7 100 − 7

100 0.28 0.27 0.31 5.8e−7 95 0.28 0.27 0.28 5.3e−7 100 3

125 0.39 0.36 0.37 6.5e−7 91 0.34 0.32 0.31 6.2e−7 100 14

150 0.44 0.42 0.45 7.3e−7 92 0.39 0.39 0.37 6.7e−7 100 13

175 0.64 0.53 0.55 7.7e−7 81 0.46 0.44 0.45 6.9e−7 100 21

200 0.74 0.66 0.73 8.2e−7 75 0.58 0.54 0.53 7.1e−7 100 23

225 0.90 0.88 0.86 8.5e−7 71 0.71 0.68 0.65 7.5e−7 100 23

250 1.30 1.10 1.17 9.7e−7 55 0.93 0.86 0.84 7.6e−7 100 26

275 1.65 1.54 1.42 1.0e−6 50 1.30 1.14 1.07 8.3e−7 100 24

300 2.39 2.01 1.85 2.1e−6 35 1.86 1.53 1.44 8.3e−7 100 23

325 3.60 2.76 2.66 4.7e−6 26 3.08 2.04 2.00 8.8e−7 100 22

350 6.61 4.31 3.91 7.6e−6 15 5.68 3.30 3.08 9.0e−7 100 19

375 31.82 8.27 7.15 1.5e−5 7 20.09 6.19 5.68 9.1e−7 100 28

400 218.46 23.16 16.16 3.0e−5 9 129.42 14.65 10.93 9.5e−7 89 37

The first three columns for either method give the average runtime over 50 instances when the non-zero
entries are sampled i.i.d. from respectively the discrete {−1, 1}, uniform (−1,1), and the normal distribution.
The fourth column gives the median relative duality gap at the final iteration taken over all 150 problem
instances and should be compared with the optimality tolerance, which was set to 10−6. The fifth column
for each of the two blocks, indicated by the check mark, gives the percentage of runs that completed
successfully, that is, completed without a line-search error. The right-most column gives the average of the
speed-up values for each of the three distributions

with an optimality tolerance of 10−6. In general we see that the runtime goes up
considerable as we keep increasing k. Moreover, the results show clear differences
in the runtime for the three distributions with a much higher runtime for problems
based on sparse vectors with ± 1 entries. For sparsity levels up to around one hundred
the number of iterations in the spg method is relatively small (between 25 and 50).
For these problems the hybrid method may complete before or soon after the first
quasi-Newton step is taken. The slight overhead of the method and occasionally a
small number of additional iterations make the hybrid method somewhat slower on
average for these problems than the spg method. For larger values of k, the number
of iterations goes up, and the effect of the quasi-Newton steps in the hybrid method
becomes apparent with average speed up values between 20 and 30%. Aside from
reduced runtime we see from Table 1 that the hybrid method also manages to solve
many more problems to the desired accuracy level compared to the spg method; the
number of solved problems steadily falls to around 9% with increasing k for the spg
method, but remains at 100% for all but the largest k for the hybrid method. The
median relative duality gap provides further information about the level of accuracy
reached before the algorithm completes or terminates with a line-search error. For the
largest values of k, the spgmethod fails to complete with a relative duality gap of even
10−5 for at least half of the problems.
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5.2 Root finding

Given that most of the runtimes appearing in Table 1 are of the order of seconds,
it is valid to question whether these problems are too idealized and well behaved to
give a good idea about the practical performance of the algorithms. In this section
we therefore look at two different types of problems. First we introduce a class of
random problems that better reflect conditions found in practical problems. Second
we evaluate the performance on the Sparco [21] collection of test problems for sparse
reconstruction.

5.2.1 Coherent test problem generation

In the compressed-sensing literature it is well known that a random Gaussian matrix
satisfies with high probability that all sufficiently small subsets of columns form a
near-orthogonal basis for the subspace spanned by these columns—a property known
as the restricted isometry [22]. Another quantity used to characterize matrices is the
mutual coherence, defined as the maximum absolute pairwise cosine distance between
the columns. In practical applications the matrix A is often quite coherent [23], and
although there are no theoretical results on how this affects the complexity of one-
norm minimization, it has been observed empirically that more coherent problems
are harder to solve. The construction we propose for generating such problems is by
means of a random walk on the (m − 1)-sphere with a step size parameterized by γ .
Starting with a unit-norm column a1 we construct successive columns by sampling a
vector vk with i.i.d. Gaussian entries and setting ak+1 = α1ak + α2vk , where α1 and
α2 are chosen such that ‖ak+1‖2 = 1 and 〈ak, ak+1〉 = 1 − γ . In other words, ak+1
lies on the boundary of a spherical cap with center center ak and angle θ such that
cos(θ) = 1 − γ . The mutual coherence of the resulting matrix is lower bounded by
1− γ , and an example of the distribution of the pairwise cosine distance between the
columns is given in Fig. 5a. An example Gram matrix, plotted in Fig. 5b, shows that
aside from the banded structure, there are regions of increased coherence whenever
the random walk approaches earlier locations. From Fig. 5c we see that lowering γ

while keeping a1 and vk fixed leads to an increase of the top singular value σ1 as
the columns become more and more similar. Figure 5d illustrates that the maximum
pairwise coherence μ does not necessarily have a relationship with the top singular
value.

5.2.2 Highly coherent measurement matrices

We apply spg and the hybrid method to solve (BPσ ) using the root-finding framework
explained in Sect. 1. Each Lasso subproblem (LSτ ) is optimized to a certain optimality
tolerance, and the overall problem is considered solved whenever the relative misfit
|σ − ‖r‖2|/max(σ, 10−3) falls below 10−5. For completeness we also compare the
performance with the spgl1 algorithm as provided by [2].

For the first set of experiments we use the highly coherent matrices described in
Sect. 5.2.1. As before we create a k-sparse vector x0 with non-zero entries sampled
from different distributions, and set b = Ax0 +v, where the entries in v are zero in the
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Fig. 5 a Distribution of pairwise mutual coherence between vectors of two types of 64 × 2048 matrices
with unit-normalized columns generated as: (i) random vectors with i.i.d. normal entries, and (ii) a random
walk over the sphere with the mutual coherence between successive columns equal to 1−γ ; bGrammatrix
of a 200× 2000 matrix generated with γ = 0.01; c the top singular value of a 200× 500 matrix generated
with the same a1 and vk for different values of λ; and d the mutual coherence and top singular value for
1000 random Gaussian 200 × 500 matrices with columns scaled to unit norm

noiseless case, and sampled i.i.d. from the normal distribution and scaled to the desired
noise level otherwise. For the noiseless results in Table 2a–c we run ten instances for
each of the three distributions and report the average run time over all thirty runs.
The percentage reduction in runtime is computed based on the total runtime and was
found to closely match the percentage obtained for each of the three signal classes
independently. For the root-finding columns we solve (BPσ ) with σ = 0.01‖b‖2
and optimality tolerance levels of 10−4 and 10−6. For the Lasso columns we solve
(LSτ ) on equivalent problems with τ set to the value obtained using the root-finding
procedure. The results in Table 2d–f apply to noisy problems where ‖v‖2 is scaled to
the given percentage of ‖Ax0‖2, and σ is set accordingly. For these experiments we
only consider sparse x0 with random ± 1 entries. The percentage decrease in runtime
relative to spg, for spgl1 and the hybrid method for all problem instances in Table 2
is given in Fig. 6. A summary of the total runtime for the different solvers along with
the percentage of solutions with relative duality gap within given ranges is provided
by Table 3.

The first thing to note from the results in Table 2 is that the problems generated
with lower values of γ are indeed more difficult to solve for both spg and the hybrid
method. Compared to the spgmethod, the hybrid method reduces the average runtime
for nearly all problems, and does so by a percentage that increases as the problems
get harder, a trend clearly seen in Fig. 6. From Table 3 we see that the hybrid method
with optimality tolerances of 10−4 and 10−6 reduces the total runtime respectively
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Table 2 Comparison between spgl1 and root finding with strict tolerance levels using the spg and hybrid
method

γ SPGL1
runtime

Root finding
tolerance
10−4

Root finding
tolerance
10−6

Lasso
tolerance
10−4

Lasso
tolerance
10−6

(a) Sparsity k = 10

.100 0.7 0.7 0.8 − 4 0.7 0.8 − 4 0.7 0.7 − 4 0.7 0.7 − 3

.050 1.6 1.7 1.7 2 1.9 1.7 12 1.8 1.7 1 1.9 1.8 7

.020 6.8 6.6 5.8 12 7.6 5.9 22 6.5 6.0 7 7.1 6.1 14

.010 17.8 17.7 14.7 17 21.4 15.0 30 16.7 15.5 7 18.3 15.6 15

.005 51.9 43.6 36.8 16 52.6 38.2 27 40.6 37.9 7 42.7 38.2 11

(b) Sparsity k = 50

.100 1.8 3.1 2.7 11 5.0 3.2 37 1.8 1.7 7 2.5 1.8 29

.050 5.1 8.2 7.1 13 11.3 7.9 30 4.7 4.3 8 5.8 4.6 21

.020 19.8 29.4 23.2 21 36.5 25.8 29 17.5 15.5 11 18.9 16.1 15

.010 48.5 77.7 58.9 24 92.5 63.0 32 45.9 40.0 13 47.9 41.2 14

.005 145.7 221.9 144.9 35 263.4 153.4 42 127.7 101.9 20 134.9 104.7 22

(c) Sparsity k = 100

.100 3.2 5.2 4.5 13 7.8 5.3 32 2.8 2.6 8 3.6 2.8 23

.050 8.6 14.9 12.4 17 19.4 13.8 29 7.6 6.9 10 8.8 7.3 17

.020 29.9 55.1 41.7 24 65.8 45.2 31 29.3 25.3 14 31.0 26.1 16

.010 72.4 158.9 110.5 30 188.0 115.3 39 84.4 68.7 19 88.3 70.5 20

.005 224.2 502.7 302.4 40 596.0 312.6 48 251.3 187.1 26 261.5 189.8 27

(d) Sparsity k = 50, noise level 1%

.100 2.2 4.7 4.2 12 8.3 5.3 37 2.3 2.1 9 2.9 2.3 22

.050 7.3 12.5 10.0 20 18.1 12.0 34 5.8 5.4 8 6.7 5.7 15

.020 28.7 43.6 33.1 24 54.9 37.7 31 23.0 19.9 14 24.4 20.6 15

.010 68.8 118.0 84.1 29 140.5 93.4 34 59.4 51.5 13 62.3 52.9 15

.005 233.1 367.5 221.5 40 447.5 234.4 48 180.1 140.6 22 189.9 143.0 25

(e) Sparsity k = 50, noise level 5%

.100 1.8 3.9 3.3 13 5.6 4.2 26 1.6 1.5 4 2.0 1.6 16

.050 4.6 9.3 7.7 17 13.1 9.3 29 3.8 3.6 4 4.5 3.9 13

.020 15.2 30.8 23.7 23 42.3 27.1 36 13.0 11.4 12 15.1 12.1 20

.010 32.4 78.5 55.2 30 109.6 62.3 43 33.2 27.9 16 39.2 28.7 27

.005 66.5 219.2 131.4 40 334.7 139.7 58 90.2 68.6 24 115.8 70.1 39

(f) Sparsity k = 50, noise level 10%

.100 1.5 3.4 3.0 10 4.5 3.7 18 1.4 1.3 8 1.7 1.4 13

.050 3.3 7.9 6.7 16 10.9 8.2 25 3.2 2.8 13 3.8 3.1 18

.020 9.5 24.7 19.1 23 34.3 22.2 35 10.0 8.3 17 12.0 8.8 27

.010 19.5 61.7 44.6 28 85.9 50.9 41 24.5 19.2 22 29.1 20.2 31

.005 33.2 154.5 98.1 37 263.1 107.7 59 60.5 43.1 29 84.7 44.8 47

The columns within the root finding and Lasso blocks are respectively the runtime in seconds of the spg
and hybrid method, and (in bold) the reduction in runtime in percent of the hybrid method compared to the
spg method
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Fig. 6 Percentage runtime
reduction relative to spg for
solvers spgl1 and the hybrid
method on a set of highly
coherent problems. The hybrid
method is run on both the
root-finding and lasso problems
with two optimality tolerance
levels each
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Table 3 Total runtime for the coherent problems with different methods and optimality tolerances, along
with the percentage of instances that attain a relative duality gap in the given intervals at the final iteration

Type Method Tol. Time Relative duality gap (log10)

≤ − 6 (− 6,− 5] (− 5,− 4] (− 4,− 3] (− 3, − 2] > − 2

BPσ spgl1 10−6 7h25 0.2 1.5 4.6 15 49 29

spg 10−6 17h29 39 33 28 0.2 – –

Hybrid 10−6 9h53 100 – – – – –

spg 10−4 14h02 0.2 0.6 99 0.5 – –

Hybrid 10−4 9h18 0.2 0.8 99 – – –

LSτ spg 10−6 7h55 36 33 30 0.5 – –

Hybrid 10−6 6h02 100 – – – – –

spg 10−4 7h20 – 1.2 98 0.5 – –

Hybrid 10−4 5h54 – 1.2 99 – – –

The reduction in runtime for the successive spg-hybrid pairs are 43, 34, 24, and 20%, respectively

by 34% and 43% for the basis-pursuit problems, and 20% and 24% for the Lasso
problems. The larger relative reduction in runtime for basis pursuit is due to the use of
warm starting in the root-finding procedure, which removes a substantial number of
iterations that would otherwise be identical for the hybrid and spg methods. Despite
the improvements, the hybrid method still has a larger runtime than spgl1 on most
problems. However, from Table 3 we see that spgl1 does not even reach a relative
duality gap of 10−3 for nearly 80% of the problems, as a result of the relaxed stopping
criteria. Tightening these criteria, as done in what we label the spg method, increases
the number of solutions that attain the desired optimality tolerance. Nevertheless, the
spg method still fails to reach an optimality of 10−6 for some 60% of the problems.
Finally,we see that the hybridmethodnot only improves the runtimeof the spgmethod,
but also manages to reach the requested optimality on all problems from Table 2.
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Table 4 Selected Sparco problems

Problem ID m n ‖b‖2 Scale ‖x∗
1e−2‖1 ‖x∗

1e−3‖1
blurrycam 701 65,536 65,536 1.3e+2 100 2.8e+5 9.1e+5

blurspike 702 16,384 16,384 2.2e+0 100 2.5e+4 3.4e+4

soccer1 601 3200 4096 5.5e+4 1 7.9e+1 3.1e+2

spiketrn 903 1024 1024 5.7e+1 100 1.3e+3 1.3e+3

yinyang 603 1024 4096 2.5e+1 100 2.5e+4 2.6e+4

srcsep1 401 29,166 57,344 2.2e+1 1 1.0e+3 1.0e+3

srcsep2 402 29,166 86,016 2.3e+1 1 1.1e+3 1.1e+3

5.2.3 Sparco test problems

Sparco [21] provides a standard collection of test problems for compressed sensing
and sparse recovery. The problems in Sparco are of the form b = Ax + v, where
A is represented as a linear operator rather than an explicit matrix. After excluding
problems that are too easy to solve or require access to third-party software, we obtain
the problem selection listed in Table 4. For some problems we scale the original b to
avoid a very small objective value at the solution, which causes the duality gap relative
to max( f (x), 1) to be satisfied more easily. The table also lists the one-norm of the
solutions found when solving with σ = 0.01‖b‖2 and σ = 0.001‖b‖2, respectively,
for the scaled b.

We run the spg and hybrid methods with optimality tolerances ranging from 10−2

down to 10−4. Beyond that, some of the problems simply took too long to finish. For
spgl1 we use optimality tolerance values set to 10−6 and 10−9. By comparison these
may seem excessively small, and we certainly do not expect the relative duality gap to
reach these levels. Instead,we choose the small values to help control the other stopping
criteria, such as the relative change in the objective value, which are parameterized
using the same tolerance parameter. The results of the experimentswith the two choices
of σ , are summarized in Tables 5 and 6. The hybrid method reduces the runtime of the
spg method in 42 out of the 56 settings, often considerably so. For a tolerance level
of 10−4 the hybrid method consistently outperforms the spg method with an average
time reduction of 38%. The required optimality level is reached on all problems except
for problem 903 with the smaller σ and optimality tolerance 10−4. For this problem
the spg method stops with a relative duality gap of 2 × 10−4 following a line-search
error. The runtime for spgl1 with optimality tolerance 10−6 is very low overall, but
comes at the cost of a rather large relative duality gap at the solution. Lowering the
tolerance to 10−9 reduces the gap, but also leads to a considerable increase in runtime.
In either case the number of root-finding iterations can be very large, especially if
the target value of τ is exceeded and gradual reduction follows. The lowest relative
duality gap reached by spgl1 over all problems in Tables 5 and 6 is 4 × 10−3. The
varying optimality levels make it difficult to compare results, so of special interest
are problem instances where spgl1 simultaneously has a lower runtime and relative
duality gap with either the spg or hybrid method, or vice versa. From the tables we see
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Table 5 Sparco problems with σ = 0.01‖b‖2, (a) runtime in seconds, (b) relative duality gap, (c) number
of root-finding iterations

spgl1 spg Hybr. spg Hybr. spg Hybr.

10−6 10−9 Tol = 10−2 Tol = 10−3 Tol = 10−4

Runtime (s) 18.0 32.2 44.6 54.0 84.1 75.9 91.1 66.7

Rel.gap 3e−1 2e−2 9e−3 9e−3 9e−4 1e−3 1e−4 8e−5

Outer iterations 144 246 12 12 12 10 10 10

� Problem 701—blurrycam −21.2 9.7 26.8

Runtime (s) 9.7 16.7 27.8 28.0 38.9 38.2 38.2 35.4

Rel.gap 6e−1 3e−2 9e−3 1e−2 1e−3 1e−3 1e−4 1e−4

Outer iterations 191 296 10 10 10 10 8 8

� Problem 702—blurspike −0.5 1.8 7.2

Runtime (s) 133 206 28.0 20.1 34.0 17.7 38.0 17.2

Rel.gap 1.5 6e−2 7e−3 6e−3 1e−3 4e−4 1e−5 2e−5

Outer iterations 1274 1945 9 9 12 9 8 9

� Problem 601—soccer1 28.2 47.8 54.7

Runtime (s) 2.8 6.6 5.6 3.8 7.6 5.6 11.2 5.3

Rel.gap 3.6 1e−1 8e−3 8e−3 1e−3 8e−4 1e−4 1e−4

Outer iterations 448 1120 6 6 6 10 5 5

� Problem 903—spiketrn 31.3 27.2 53.0

Runtime (s) 1.8 2.7 2.5 2.9 2.9 3.1 4.2 4.0

Rel.gap 3e−1 2e−2 7e−3 6e−3 8e−4 8e−4 7e−5 8e−5

Outer iterations 38 60 7 8 7 7 7 7

� Problem 603—yinyang −13.5 -4.5 3.7

Runtime (s) 79.0 418 299 331 1404 1047 6351 2447

Rel.gap 5e−2 1e−1 9e−3 9e−3 1e−3 1e−3 1e−4 1e−4

Outer iterations 37 213 9 20 8 9 9 8

� Problem 401—srcsep1 −10.5 25.5 61.5

Runtime (s) 114 622 441 409 1114 1023 2447 1565

Rel.gap 5e−1 1e−1 1e−2 9e−3 9e−4 1e−3 1e−4 6e−5

Outer iterations 30 198 9 9 8 7 7 9

� Problem 402—srcsep2 7.1 8.2 36.1

The percentage reduction in time of the hybrid method over spg is given in bold next to the problem index

that spgl1 outperforms the spgmethod on both instances of problem 702. For problem
401 in Table 5, spgl1 with an optimality tolerance of 10−6 is better, but aside from this
problem, spgl1 consistently has the lowest runtime, but also the largest duality gap.
The spg method with more stringent root-finding iterations dominates spgl1 with a
tolerance level of 10−9 on all remaining problems aside from the instance of problem
701 in Table 5. As we saw earlier, the hybrid method performs especially well when
the desired relative duality gap is small. Nevertheless, even for large duality gaps it
still dominates spgl1 on nine out of the fourteen problem instances and is dominated
on only one.
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5.2.4 Primal-dual gap

We now consider the formulation

minimize
x

1
2‖Ax − b‖22 + μ

2 ‖x‖22 subject to x ∈ C, (32)

forμ > 0. In Sect. 4.3 we described two different ways of deriving a dual formulation.
In the first approach we augment A and b to account for the μ

2 ‖x‖22 term and reduce
the problem to the standard Lasso formulation. The derivation of the dual for this
formulation in [2,15] provides a way of generating a dual-feasible point (ȳ, λ̄) from a
primal-feasible x by choosing ȳ = Āx − b̄ and solving a trivial optimization problem
for λ̄. In the second approach we deal with formulation (32) directly and obtain a
dual problem parameterized in (y, λ). As before we can choose y to be equal to
the residual, now in terms of the original A and b, and remain with a non-trivial
optimization problem for λ that is nevertheless easily solved using the algorithm
described in Sect. 4.3. We refer to the two derivations as the augmented derivation
and the optimized derivation. The term ‘optimized’ refers to the need to solve for λ,
but more importantly, to the fact that the dual objective generated from any x using
the optimized derivation is never smaller than that using the augmented derivation, as
shown in Sect. 4.3.

To evaluate the practical difference between the two approaches we generate a large
number of randomized test problems of the form b = Ax0 + v, where x0 are random
vectors with sparsity levels ranging from 50 to 350 in steps of 50 and on-support
entries draw i.i.d. from the normal distribution. The m × n measurement matrices A
are drawn i.i.d. from N (0, 1/m), with m = 1000 and n = 2000. Finally, the additive
noise vectors v are drawn from the normal distribution and scaled to have Euclidean
norm equal to 0, 0.01, 0.1, and 1% of that of the clean observation Ax0. For the
problem formulation we set τ to ‖x0‖1 scaled by 0.7–1.2 in 0.1 increments, and range
μ log-linearly from 10−1 to 10−4 in four steps. As a result of the additive μ

2 ‖x‖2 term
in the objective, the solutions are no longer sparse. As a result the hybrid method tends
to coincide with the spg method, and we therefore only consider the latter for these
experiments.

For each of the settings we evaluate the time required by the augmented and opti-
mized formulations to reach a relative duality gap of 10−4. Figure 7a, b plot the speed
up obtained using the optimized formulation along with the runtime of the augmented
formulation for different problem instances with two levels of μ. Despite the slightly
more expensive evaluation of the dual, we see that the optimized formulation is around
1.5–4 times faster for μ = 0.01, and up to 7 times faster for μ = 0.001. For μ = 0.1
(not shown in the plot) the speedup ranges from 1.2 to 3, and for μ = 0.001 the speed
up exceeds 10 on many problem instances and reaches a maximum of around 30.

We now take a closer look at the relative distance of the primal and dual objective
to the optimum for the two circled problems in Fig. 7c,d. The progress of the primal
objective over the iterations, indicated by the gray line, is the same for both formula-
tions. For the dual objective there is a marked difference between the two. Notably,
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Fig. 7 Plots a, b the time required to reach the desired relative optimality gap of 10−4 using the augmented
formulation, and the corresponding speed up obtained using the optimized formulation; each point indicates
a single problem instance. Plots c,d the relative distance of the primal (gray) and dual objective (red for the
augmented formulation and blue for the optimized formulation) to the optimal objective as a function of
iterations for the two circled problem instances (color figure online)

the augmented formulation converges much slower than the optimized formulation,
thereby preventing the stopping criterion frombeing satisfied formanymore iterations.

We now take another look at the Sparco problems from Tables 5 and 6. For each
of the settings we record the optimal τ and then run the hybrid solver with a target
optimality tolerance of 10−8 to obtain a best-effort optimum (for some problems the
line search failed before reaching the desired tolerance). We then run the spg and
hybrid solvers with a target accuracy of 10−5 and record the relative distance of
the primal and dual objective to the optimum at every iteration. The results for four
representative problems are plotted in Fig. 8. From the plots we see that the iterates
of the hybrid method initially coincide or otherwise closely follow those of the spg
method. Once the hybrid method starts using quasi-Newton iterates increasingly often
we see a sharp decrease in the relative distance to the optimum of the primal and
dual iterates. The iterates of the spg method, by contrast, continue to decrease very
slowly. Indeed, of the fourteen problem settings, the spg method managed to solve
only two to the desired level of accuracy. Of the remaining problems, two reach the
default iteration limit of ten times the number of rows in A, while all other problems
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Table 6 Sparco problems with σ = 0.001‖b‖2, (a) runtime in seconds, (b) relative duality gap, (c) number
of root-finding iterations

spgl1 spg Hybr. spg Hybr. spg Hybr.

10−6 10−9 Tol = 10−2 Tol = 10−3 Tol = 10−4

Runtime (s) 121 200 272 300 316 342 430 333

Rel.gap 2.1 1e−1 9e−3 6e−3 1e−3 8e−4 9e−5 9e−5

Outer iterations 485 640 12 12 11 12 11 11

� Problem 701—blurrycam −10.4 −8.2 22.5

Runtime (s) 28.8 34.9 45.8 49.3 56.1 59.8 74.4 68.1

Rel.gap 4e−1 7e−2 9e−3 1e−2 9e−4 9e−4 9e−5 9e−5

Outer iterations 127 151 11 11 10 10 10 10

� Problem 702—blurspike −7.7 −6.5 8.5

Runtime (s) 278 368 155 56.4 203 53.2 257 47.8

Rel.gap 1.1 7e−2 9e−3 8e−3 1e−3 7e−4 1e−4 7e−5

Outer iterations 2059 2707 11 10 9 9 9 10

� Problem 601—soccer1 63.6 73.8 81.4

Runtime (s) 4.8 9.4 9.2 6.2 11.7 6.6 13.5 6.6

Rel.gap 22.5 1.3 1e−2 1e−2 1e−3 9e−4 2e−4 1e−4

Outer iterations 700 1253 8 8 6 8 5 5

� Problem 903—spiketrn 33.1 43.7 51.0

Runtime (s) 9.0 19.0 37.4 26.8 55.1 29.4 71.8 35.8

Rel.gap 1.2 9e−1 1e−2 7e−3 9e−4 1e−3 1e−4 1e−4

Outer iterations 90 190 8 10 8 8 8 8

� Problem 603—yinyang 28.4 46.7 50.1

Runtime (s) 241 3309 394 360 2803 2253 21,829 11,193

Rel.gap 3e−3 4e−3 1e−2 9e−3 1e−3 1e−3 1e−4 1e−4

Outer iterations 32 264 13 12 20 11 10 10

� Problem 401—srcsep1 8.5 19.6 48.7

Runtime (s) 272 5999 518 477 2041 1787 8631 6486

Rel.gap 6e−3 2e−2 8e−3 8e−3 1e−3 9e−4 1e−4 9e−5

Outer iterations 18 324 11 14 9 10 10 10

� Problem 402—srcsep2 8.0 12.5 24.9

The percentage reduction in time of the hybrid method over spg is given in bold next to the problem index.
Entries marked in italic indicate a solution that is not a root

fail with a line-search error. The hybrid method manages to solve all problems except
for problem 401 with multiplier 10−3. This problem reached the iteration limit, but
could otherwise be solved successfully to a tolerance level of even 10−8.

As before, we see that the dual objective converges to the optimum much slower
than the primal, and unfortunately, there is no clear way to extend the optimized dual
formulation from Sect. 4.3 to the standard Lasso formulation where μ = 0. Given
that the satisfaction of the optimality condition depends almost entirely by the dual
objective value, it makes sense to look at the speed up that would be attained if the
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Fig. 8 Relative distance of primal (solid) and dual iterates (dashed) to the optimum as a function of time
using the spg (red) and hybrid method (blue) on four Sparco problems for fixed τ corresponding to the root
for σ equal to the given multiple of ‖b‖2 (color figure online)

optimal objective value were to be known and satisfaction of the optimality condition
depends only on the primal objective. In Table 7 we provide the attainable speed up for
the different Sparco problems with varying optimality tolerance levels. Clearly, both
the spg and hybrid methods would benefit greatly from an improved dual, although
the effect is less for the hybrid method, due to the already fast convergence of the dual
objective in the final iterations.

6 Conclusions

In this paper we have presented a hybrid algorithm for minimization of quadratic
functions over weighted one-norm balls. The method extends the spectral projected
gradient method with L-BFGS iterations applied to reparameterizations of the objective
function over active faces of the one-norm ball. For the decision of the iteration typewe
introduce the self-projection cone of a face and provide a complete characterization
of this cone for weighted one-norm balls. The reparameterization uses an implicit
orthonormal basis for the current face, and we provide an efficient algorithm for
matrix-vector multiplication with this basis and its transpose.

As part of the numerical experiments we propose a challenging class of test prob-
lems in which the columns of them×n measurement matrix A are generated based on
a random walk over the (m−1)-sphere. Based on extensive numerical experiments on
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Table 7 Speed up for different tolerance levels when the optimal objective value is given and satisfaction
of the optimality condition depends only on the primal objective value

(σ = 0.01) (σ = 0.001)

10−3 10−4 10−5 10−6 10−3 10−4 10−5 10−6

(a) spg

701—blurrycam 5.93 3.79 >3.66 >2.79 2.73 >2.21 >1.94 >1.61

702—blurspike 2.39 2.16 >1.93 >1.66 2.48 2.20 2.07 >1.81

601—soccer1 1.25 1.07 1.02 1.02 2.84 2.88 >2.57 >2.09

903—spiketrn 1.64 1.73 >1.83 >1.63 1.53 >1.64 >1.56 >1.44

603—yinyang 1.70 1.62 1.64 1.52 3.02 >2.76 >2.24 >1.81

401—srcsep1 40.72 26.71 >9.49 >4.15 75.78 >49.75 >12.30 >2.38

402—srcsep2 15.96 9.81 >4.35 >2.94 56.53 22.74 9.88 >2.78

(b) Hybrid

701—blurrycam 5.51 3.20 2.27 1.93 3.62 2.73 1.90 1.48

702—blurspike 2.20 1.81 1.56 1.45 2.30 1.82 1.61 1.42

601—soccer1 1.19 1.08 1.01 1.02 1.11 1.03 1.02 1.02

903—spiketrn 1.23 1.14 1.09 1.11 1.13 1.13 1.11 1.09

603—yinyang 1.80 1.64 1.55 1.45 2.12 1.63 1.52 1.33

401—srcsep1 24.83 11.83 3.72 1.81 65.28 46.18 >13.44 >2.61

402—srcsep2 11.62 6.45 2.60 1.72 44.70 16.92 6.07 1.99

We give a lower bound (indicated by the ‘> ’ sign)when the dual objective failed to reach the given optimality
level, either because themaximum number of iterations was reached, or because a line-search error occurred

these and other test problemswe showed that the hybrid method outperforms the origi-
nal spectral projected gradient methods on a large fraction of the problems. Especially
for medium to high accuracy solves and more challenging problems the spg method
was found to either take much more time to reach the desired level of accuracy, or fail
prematurely due to line-search problems. Both methods performed favorably against
the parametric active-set solver qpOASES [19] and the proximal Newton-type solver
pnopt [20].

The current stopping criterion used in both spg and the hybrid method relies on
the generation of a dual feasible point from the primal iterate to determine the relative
optimality of the iterate. From the experiments we found that the primal objective
converges to the optimum much faster than the dual objective, and that satisfaction
of the stopping criterion therefore depends entirely on the dual objective reaching
the critical threshold. The performance of both methods could therefore be improved
substantially given a better dual estimate.

In this paper we have studied the application of the hybrid method to the Lasso
problem. Other important problems that may benefit from the approach but were not
discussed in this paper include box-constrained optimization and minimization of
quadratic functions over the simplex.
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