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Abstract

We address combinatorial optimization problems with uncertain coefficients varying
over ellipsoidal uncertainty sets. The robust counterpart of such a problem can be
rewritten as a second-oder cone program (SOCP) with integrality constraints. We
propose a branch-and-bound algorithm where dual bounds are computed by means of
an active set algorithm. The latter is applied to the Lagrangian dual of the continuous
relaxation, where the feasible set of the combinatorial problem is supposed to be
given by a separation oracle. The method benefits from the closed form solution of
the active set subproblems and from a smart update of pseudo-inverse matrices. We
present numerical experiments on randomly generated instances and on instances
from different combinatorial problems, including the shortest path and the traveling
salesman problem, showing that our new algorithm consistently outperforms the state-
of-the art mixed-integer SOCP solver of Gurobi.
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1 Introduction

We address combinatorial optimization problems given in the general form

min c¢'x (CP)
xePNZ"
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where P C R" isacompactconvex set,say P C [[, u] with/, u € R", and the objective
function vector ¢ € R" is assumed to be uncertain. This setting appears in many
applications where the feasible set is certain, but the objective function coefficients
may have to be estimated or result from imprecise measurements. As an example,
when searching for a shortest path in a road network, the topology of the network
is usually considered fixed, but the travel times may vary depending on the traffic
conditions.

A classical way of dealing with uncertain optimization problems is the strictly
robust optimization approach, introduced in [3] for linear programming and in [2]
for general convex programming; we also refer the reader to the book by Ben-Tal
and Nemirovski [4]. In strictly robust optimization, we look for a worst-case solution,
where the uncertain parameter c is assumed to belong to a bounded set U € R”, called
the uncertainty set, and the goal of the robust counterpart is to compute the solution
of the following min-max problem:

min  max ¢ x (RP)
xePNZ* ceU

A natural choice in this approach are ellipsoidal uncertainty sets, defined as
U= {ceR” | (c—&) M(c—2¢) < 1},

where M € R"*" is a symmetric positive definite matrix and ¢ € R” is the center of
the ellipsoid. Assuming that the uncertain vector ¢ in (CP), considered as a random
variable, follows a normal distribution, we can interpret the ellipsoid U as a confidence
set of ¢; in this case, M is the inverse covariance matrix of ¢ and c is its expected value.
Unfortunately, for ellipsoidal uncertainty sets, the robust counterpart (RP) is usually
much harder to solve than the original problem (CP): it is known that Problem (RP)
is NP-hard in this case for the shortest path problem, for the minimum spanning tree
problem, and for the assignment problem [11] as well as for the unconstrained binary
optimization problem [6].

Even in the case of a diagonal matrix M, i.e., when ignoring correlations and only
taking variances into account, no polynomial time algorithm for the robust shortest
path problem is known. There exists however an FPTAS for the diagonal case whenever
the underlying problem (CP) admits an FPTAS [17], and polynomial time algorithms
for the minimum spanning tree problem and the unconstrained binary problem have
been devised for the diagonal case.

For general ellipsoids U, most exact solution approaches for (RP) are based on
solving SOCPs. In fact, it is easy to see that the optimal objective value of the inner
maximization problem

max CT.X
ceU

for fixed x is given by
x4+ VxTM1x.
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Therefore, Problem (RP) is equivalent to the integer non-linear problem

min f(x) =c'x+/xT Ox P)
st. xe PNZ"

where Q € R"*" is the symmetric and positive definite inverse of M and we replace
¢ by c for ease of notation. Note that, when addressing so called value-at-risk models

min z
S.t. Pr(ch >z)<e¢
xe PNz,

we arrive at essentially the same formulation (P), assuming normally distributed coef-
ficients again; see, e.g., [17].

In the following, we assume that the convex set P is given by a separation algorithm,
i.e., an algorithm that decides whether a given pointx € R” belongs to P or not, and, in
the negative case, provides an inequality a " x < b valid for P but violated by ¥. Evenin
cases where the underlying problem (CP) is tractable, the polytope conv(P NZ") may
have an exponential number of facets, so that a full linear description cannot be used
efficiently. This is true, e.g., for the standard formulation of the spanning tree problem.
However, we do not require that a complete linear description of conv(P N Z") be
known; it suffices to have an integer linear description, i.e., we allow P # conv(P N
7). In particular, our approach can also be applied when the underlying problem is
NP-hard, e.g., when (CP) models the traveling salesman problem.

As soon as P is given explicitly by linear constraints Ax < b with A € R™*"
and b € R™, the continuous relaxation of Problem (P) reduces to an SOCP of the form

min ¢'x +/x7T Ox
st. Ax <b (R2)
x € R".

Such SOCPs can be solved efficiently using interior point algorithms [16] and popular
solvers for SOCPs such as Gurobi [10], SeDuMi [19] or MOSEK [15] are based
on interior point methods. However, in our branch-and-bound algorithm, we need to
address a sequence of related SOCPs. Compared with interior point methods, active
set methods have the advantage to allow warmstarts.

For this reason, in order to solve the SOCP relaxations of Problem (RP), we devised
the active setalgorithm E11AS. Itis applied to the Lagrangian dual of (R2) and exploits
the fact that the active set subproblems can be solved by closed form expressions. For
this, the main ingredient is the pseudo-inverse of A Q_% . Since the matrix A is updated
in each iteration of the active set method, an incremental update of the pseudo-inverse
is crucial for the running time of E11AS. Altogether, we can achieve a running time
of O(n?) per iteration. Combined with an intelligent embedding into the branch-and-
bound scheme, we obtain an algorithm that consistently outperforms the MISOCP
solver of Gurobi 7.5.1, where the latter is either applied to a full linear description
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of P or, in case a compact linear description does not exist, uses the same separation
oracle as E11AS.

The rest of the paper is organized as follows: the Lagrangian dual of (R2) is derived
in Sect. 2. The closed-form solution of the resulting active set subproblems is developed
in Sect. 3. The active set algorithm E11AS is detailed and analyzed in Sects. 4 and 5.
In Sect. 6, we discuss how to embed E11AS into a branch-and-bound algorithm.
Numerical results for random SOCP instances, random integer instances as well as
instances of different combinatorial optimization problems are reported in Sect. 7.
Section 8§ concludes.

2 Dual problem

The algorithm we propose for solving Problem (RP) uses the Lagrangian dual of
relaxations of the form (R2). Let £ (x,1) : R" x R” — R be the Lagrangian
function associated to (R2):

L) =c x+/xT0x+ 1T (Ax — b).
The Lagrangian dual of Problem (R2) is then

max inf Z(x,A). (1

reRY xeR?

1
After applying the bijective transformation z = Q2 x, the inner minimization problem
of (1) becomes

.
—bTA+ inf (Q—% <c+AT/\>) 2+ izl

zeR"

for fixed 4 € R’. It is easy to see that

inf (Q_% (c + ATA))TZ + lzll = erelkl}i (Q_% (c + ATA)>TZ +lzll =0

zeR?
if || Q’% (c+ ATL)|| < 1 and —oo otherwise. Therefore, Problem (1) reduces to

max —b ' A
st. (c+ AT)»)T O '(ce+ATA) <1 (D)
A>0.

Theorem 1 For the primal-dual pair of optimization problems (R2) and (D), strong
duality holds as soon as one of the two problems is feasible. Moreover, if one of the
problems admits an optimal solution, the same holds for the other problem.

Proof This follows from the convexity of (R2) and from the fact that all constraints
in (R2) are affine linear. O
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In order to solve Problem (R2), we have devised the dual active set algorithm E11AS
detailed in Sect. 4. Along its iterations, E11AS produces dual feasible solutions of
Problem (D), converging to a KKT point of Problem (R2) and therefore producing
also a primal optimal solution when terminating.

3 Solving the active set subproblem

At every iteration, the active set algorithm E11AS presented in the subsequent sec-
tions fixes certain dual variables to zero while leaving unconstrained the remaining
variables. In the primal problem, this corresponds to choosing a set of valid linear
constraints Ax < b for P and replacing inequalities by equations. We thus need to
solve primal-dual pairs of problems of the following type:

min f(x) =c'x++/xTOx (P-AS)
S.t. Ax = 5
x e R"
max —b' A (D-AS)

~ T ~
s.t. (c n AT/\) o~! <c + ATA) <1
A eR™

where A € R"™*" p € R"™, For the efficiency of our algorithm, it is crucial that this
pair of problems can be solved in closed form. For this, the pseudo-inverse (AQ~ > )t
of A Q_% will play an important role. It can be used to compute orthogonal projections
onto the kernel and onto the range of Q’% AT as follows: we have

PO (gir) ) = Aot (Ao )"y @
and .
PPl (g4 r) ) (Ao77) 4o iy, 3

see e.g. [13]. We later explain how to update the pseudo-inverse incrementally instead
of computing it from scratch in every iteration, which would take O(n®) time; see
Sect. 5.2.

In the following, we assume that the dual problem (D-AS) admits a feasible solution;
this will be guaranteed in every iteration of our algorithm; see Lemma 1 below.
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3.1 Dual unbounded case

Ith ¢ ran(A), or equivalently, if b is not orthogonal to ker(AT) = ker(Q’% AT), then
the dual problem (D-AS) is unbounded, and the corresponding primal problem (P-AS)
is infeasible. When this case occurs, E1 1AS uses an unbounded direction of (D-AS) to
continue. The set of unbounded directions of (D-AS) is ker(Q_% AT). Consequently,
the unbounded direction with steepest ascent can be obtained by projecting the gradient

of the objective function —bto ker(Q_% AT). According to (2), this projection is

S
S

ol (o Lar) P = () (A0 ) -

3.2 Bounded case

Ifh e ran(A), we first consider the special case b = 0. As we assume (D-AS) to
be feasible, its optimum value is thus 0. Therefore, the corresponding primal prob-
lem (P-AS) admits x* = 0 as optimal solution. In the following, we may thus assume
b # 0. The feasible set of problem (D-AS) consists of all A € R such that

H 02 (c + AT,\) H <1,

i.e., such that the image of A under — Q’% AT belongs to the ball Bj(Q~ > ¢). Consider
the orthogonal projection of Q_%c to the subspace ran(Q_%AT), which by (3) is

nlQ 2A

q = Plijral ( _ AT> (Q_%C) = (Q_%AT> (Q_%AT)+ Q‘%c.

1 1 1 A
If lg — O 2¢|| > 1, then the intersection Bj(Q~2¢) Nran(Q " 2A") is empty, so
that Problem (D-AS) is infeasible, contradicting our assumption. Hence, we have that
this intersection is a ball with center ¢ and radius

_1
ri= 1= llg - 0 belP

and A € R is feasible for (D-AS) if and only if —Q~2ATA € B (q). Since b €
ran(A Q’%), we have (A Q’%)(A Q’%)Jrl; = b. This allows us to rewrite the objective
function —b ' A of (D-AS) in terms of Q_%AT)» only, as

N ~ N + ~
—bTa=—pT (Q—%AT) (Q—%AT) A
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. . 14
We can thus first compute the optimal solution v* € ran(Q"2A ") of

N a\
max b’ (Q*%AT) v

1
st. [|Q72c—vl[ =1,

which is unique since b # 0, and then solve v* = —(Q_%AT))». We obtain

r _1
v =g+ ——————(do71) b, 4)
1(Ag~2) al
so that we can state the following

Proposition 1 Let b e ran(A)\{O} and let v* be defined as in (4). Then, the unique
optimal solution of (D-AS) with minimal norm is

A= — (Q_%AT)+ v,

From A*, itis possible to compute an optimal solution x* of the primal problem (P-AS)
as explained in the following result.

Theorem ZA Leth ran(A)\{O}. Let \* be an optimal solution of (D-AS) and x =
O e+ AT,
(a) If hTax = 0, then the unique optimal solution of (P-AS) is x* = ax, with

bTAx

(b) Otherwise, there exists a unique o < 0 such that aAx = b. Then, x* = ax is the
unique optimal solution of (P-AS).

o= —

Proof Let (x*, A*) be a primal-dual optimal pair for (P-AS) and (D-AS), which exists
by the same reasoning as in the proof of Theorem 1. Since b # 0 and Ax™* = b, it
follows that x* # 0. The gradient equation yields

20x*

2/ ()T o)

0=V, Zx* 1" =c+ +ATa*

which is equivalent to

Q1x*

1 =-0
1Q2x*|

=
—~
o
+
2>
-
>
*
SN—"

and hence to
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for some B # 0. Since B = —|| Q%x*ll, we have B < 0. By strong duality, we then
obtain

—b"a =T+ V() TO(*) = Be 4+ IBIVETQF = B(cTF — VET QF).

Now if b1 A* # 0, also the right hand side of this equation is non-zero, and we obtain
as claimed. Otherwise, it still holds that there exists 8 < 0 such that S is optimal. In
particular, Bx is primal feasible and hence ﬂAx = A(,Bx) =b.Ash # 0, we derive
Ax # 0, as B < 0. This in particular shows that § is uniquely defined by ﬂAx =b.o

Note that the proof (and hence the statement) for case (b) in Theorem 2 are formally
applicable also in case (a). However, in the much more relevant case (a), we are able
to derive a closed formula for 8 in a more direct way.

4 The dual active set method E11AS

As all active set methods, our algorithm E11AS tries to forecast the set of constraints
that are active at the optimal solution of the primal-dual pair (R2) and (D), adapting this
forecast iteratively: starting from a subset of primal constraints AV x < (), where
AD g RmYxn gnd p(D) ¢ Rm(l), one constraint is removed or added per iteration by
performing a dual or a primal step; see Algorithm 1. We assume that a corresponding
dual feasible solutions A(!) > 0 is given when starting the algorithm; we explain below
how to obtain this initial solution.

Algorithm 1 Ellipsoidal Active Set algorithm E11AS

Input: Q € RV ¢ e R7, A e gV xn () ¢ gV,
A > 0 with (¢ + (AD) AT 9= 4+ (AD) TAD) < 1;
1
pseudo-inverse (A(D Q7 2)
Output: optimal solutions of (R2) and (D)

1: fork=1,2,3,... do

2:  solve (D-ASk) and obtain optimal 7. with minimal norm

3: if problem (D-ASKk) is bounded and ) > 0 then

4: set 1.0 .= 10

5: perform the primal step (Algorithm 3) and update x® A0 pk)
6: else

7 perform the dual step (Algorithm 2) and update PRONIONAD)
8: endif

9: end for

At every iteration k, in order to decide whether to perform the primal or the dual
step, the dual subproblem is addressed, namely Problem (D) where only the subset of
active constraints is taken into account. This leads to the following problem:
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max —b(k)TA

.
.. (c + A(")TA) 0! (c n A(k)TA> <1 (D-ASK)

m®

LeR™T

The solution of Problem (D-ASk) has been explained in Sect. 3. Note that formally
Problem (D-ASKk) is defined in a smaller space with respect to Problem (D), but its
solutions can also be considered as elements of R by setting the remaining variables
to zero.

In case the dual step is performed, the solution of Problem (D-ASk) gives an ascent
direction p along which we move in order to produce a new dual feasible point with
better objective function value. We set

200 3D o ) )

where the steplength ® is chosen to be the largest value for which non-negativity
is maintained at all entries. Note that the feasibility with respect to the ellipsoidal
constraint in (D), i.e.,

.
(c n ATA> 0! (c n AT,\) <1,

is guaranteed from how p* is computed, using convexity. Therefore, «®) can be derived
by considering the negative entries of p®). In order to maximize the increase of —b " A,
we ask «® to be as large as possible subject to maintaining non-negativity; see Steps
9-10 in Algorithm 2.

The constraint index j computed in Step 9 of Algorithm 2 corresponds to the primal
constraint that needs to be released from the active set. The new iterate A**1) is then
obtained from A by dropping the jth entry.

Algorithm 2 Dual Step
1: if problem (D-ASk) is bounded then

2: set p®) .= 5k _ (k=1

3: else

4: et p(k) be an unbounded direction of (D-ASk) with steepest ascent
5. if p(k) > 0 then

6: STOP: primal problem is infeasible

7:  endif

8: end if

9: choose j € argmin{fkfkfl)/pi(k) li=1,..., m® plfk) <0}

. k) . _ 5 k=1, (k)
10: set «'\®/ = }Lj /pj
11 set 200 = 20D 1 o) (0
12: compute (A(k‘H), b“‘"‘”) by removing row j in (A(k), b(k))
13: compute A+ by removing entry j in A
14: set m*+1D) .= ® _q

1 1

15: update (A®+D 07 2)* from (A® @~ 2)*
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764 C. Buchheim, M. De Santis

Proposition 2 The set considered in Step 9 of Algorithm 2 is non-empty.

Proof If Problem (D-ASKk) is bounded, there is an index i such that ):;k) < 0, since 2.0
is dual infeasible. As A*=D > 0, we derive p(k) = )N\Ek) — )Ll(,kfl) < 0. If Problem

i
(D-ASK) is unbounded, we explicitly check whether p® > 0 and only continue
otherwise. O

The primal step is performed in case the solution of Problem (D-ASk) gives us a dual
feasible solution. Starting from this dual feasible solution, we compute a corresponding
primal solution x®) according to the formula in Theorem 2. If x*) belongs to P we
are done: we have that (x &) k(k)) is a KKT point of Problem (R2) and, by convexity
of Problem (R2), x® is its global optimum. Otherwise, we compute a cutting plane
violated by x® that can be considered active and will be then taken into account in
defining the dual subproblem (D-ASk) at the next iteration. The new iterate A%+ is
obtained from A*) by adding an entry to A*) and setting this additional entry to zero.

Algorithm 3 Primal Step

1: if b® =0 then

2:  STOP: (0, %)) is an optimal primal-dual solution

3: else

4:  compute x® from 1 &) according to Theorem 2

5:  if xX) ¢ P then

6: STOP: (x®), A ®)) is an optimal primal-dual solution
7:  else

8: compute a cutting plane a'x < b violated by x®

9: compute (AKHD pktl)y by appending (@', b)to (AR pk))
10: compute Ak+D by appending zero to A0

11: set m*tD .= ®) 4

12: update (A*+D Q*%)+ from (AK) Q*%ﬁ

13:  endif

14: end if

Theorem 3 Whenever Algorithm E11AS terminates, the result is correct.

Proof If Algorithm E11AS stops at the primal step, the optimality of the resulting
primal-dual pair follows from the discussion in Sect. 3. If Algorithm E11AS stops at
the dual step, it means that the ascent direction p® computed is a feasible unbounded
direction for Problem (D), so that Problem (D) is unbounded and hence Problem (R2)
is infeasible. O

It remains to describe how to initialize E11AS. For this, we use the assumption of
boundedness of P and construct AV, 5D and 1) as follows: foreachi = 1, ..., n,
we add the constraint x; < u; if ¢; < 0, with corresponding %; := —c;, and the
constraint —x; < —/; otherwise, with A; := ¢;. These constraints are valid since we
assumed P C [/, u] and it is easy to check that (A(]))Tk(l) = —c by construction, so
that (1 is dual feasible for (D). Moreover, we can easily compute (A(D 0~ 3 )T in this

case, as A() is a diagonal matrix with =1 entries: this implies (A1) 0~ 2)* = 024D,
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An active set algorithm for robust combinatorial optimization 765

To conclude this section, we shortly discuss how to deal with linear equations
in E11AS. While itis perfectly feasible to replace each equation by two linear inequal-
ities and then apply the algorithm exactly as described above, its performance can be
improved by dealing with equations directly. For an equation, the corresponding dual
variable in (D) is not restricted to be non-negative any more. In particular, in Step 9
of Algorithm 2 we only need to take the minimum over those indices corresponding
to bounded variables. In other words, dual variables corresponding to equations will
never leave the active set again, so that the presence of equations does not significantly
increase the number of active set iterations.

5 Analysis of the algorithm

In this section, we show that Algorithm E11AS converges in a finite number of steps
if cycling is avoided. Moreover, we prove that the running time per iteration can be
bounded by O(n?), if implemented properly.

5.1 Convergence analysis

Our convergence analysis follows similar arguments to those used in [18] for the
analysis of primal active set methods for strictly convex quadratic programming prob-
lems. In particular, as in [18], we assume that we can always take a nonzero steplength
along the ascent direction. Under this assumption we will show that Algorithm E11AS
does not undergo cycling, or, in other words, this assumption prevents from having
20 = 2@ and AV, p®)) = (AD pD) in two different iterations k and I. As for
other active set methods, it is very unlikely in practice to encounter a zero steplength.
However, there are techniques to avoid cycling even theoretically, such as perturbation
or lexicographic pivoting rules in Step 9 of Algorithm 2.

Lemma 1 At every iteration k of Algorithm E11AS, Problem (D-ASk) admits a fea-
sible solution.

Proof 1Tt suffices to show that the ellipsoidal constraint
(c + A(k)TA(k))T o' (c n A(")TA(")) <1 (5)

is satisfied for each k. For k = 1, this is explicitely required for the input of Algo-
rithm E11AS. Let %) be computed from 1%~ by moving along the direction p®.
The feasibility of %) with respect to (5) then follows from the definition of p® and
from the convexity of the ellipsoid, taking into account that ¢ < 1, since otherwise
we would not enter the dual step. O

Proposition 3 At every iteration k of Algorithm E11AS, the vector A% is feasible
for (D).

Proof Taking into account the proof of Lemma 1, it remains to show nonnegativity of
2% which is guaranteed by the choice of the steplength o®). O
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766 C. Buchheim, M. De Santis

Proposition 4 Assume that the steplength o is always non-zero in the dual step. If
Algorithm E11AS does not stop at iteration k, then one of the following holds:

() —pEDTHRHD) o Ty,
(i) —b*FD D = 0T 0 g kD) < a0,

Proof In the primal step, suppose that .*) > 0 solves Problem (D-ASk) and that the
corresponding unique primal solution satisfies x®) ¢ P. After adding a violated
cutting plane, the optimal value of Problem (P-AS) strictly increases and the same is
true for the optimal value of Problem (D-AS) by strong duality. Then,

p(kJrl) — ):(kJrl) _ )\(k) — X(kJrl) _ i(k)
is a strict ascent direction for —b ' A and case (i) holds.

In the dual step, if p(k+1) is an unbounded direction, case (i) holds again. Otherwise,
observe that 1) £ A*+D a5 &+ jg not feasible with respect to the nonnegativity
constraints. Then, since A**+1 is the unique optimal solution for Problem (D-ASk)
with minimal norm, p(k+1) = J&+D _ 5 (®) g either a strict ascent direction for —bT,
or —b " p®*+D = 0 and p*+D is a strict descent direction for ||A]|, so that case (ii)
holds. O

Lemma 2 At every iteration k of Algorithm E11AS, we have m® < n + 1. Further-
more, if Algorithm E11AS terminates at iteration k with an optimal primal-dual pair,
then m® < n.

Proof As only violated cuts are added, the primal constraints A®x = »® either
form an infeasible system or are linearly independent. If m® = n + 1, the primal
problem is hence infeasible. Thus Problem (D-ASk) is unbounded, so that at iteration
k a dual step is performed and a dependent row of (A®), p(®)) is deleted, leading to
an independent set of constraints again. O

Theorem 4 Assume that whenever a dual step is performed, Algorithm E11AS takes a
non-zero steplength o*. Moreover, assume that P is a polytope and that the separation
oracle can produce at most m different inequalities. Then, after at most n2"™ iterations,
Algorithm E11AS terminates with a primal-dual pair of optimal solutions for (R2)
and (D).

Proof First note that, by Lemma 2, at most n dual steps can be performed in a row.
Hence, it is enough to show that in any two iterations k # [ where a primal step is
performed, we have (A® p®) £ (AD pD) Otherwise, assuming (A, p*)) =
(AD, pD), we obtain AX) = 1® and hence X = 1D This leads to a contradiction
to Proposition 4. O

5.2 Running time per iteration

After computing Q! in the preprocessing, the running time in iteration k of E11AS
is O(n* + m®n) and hence linear in the size of the matrices Q and A®, if imple-

mented properly. The main work is to keep the pseudo-inverse (A®) 0~ 3 )T up-to-date.
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An active set algorithm for robust combinatorial optimization 767

Since A®) Q7 is only extended or shrunk by one row in each iteration, an update
of (A®Q=3)* is possible in O (m®n) time by a generalization of the Sherman—
Morrison-formula [12]. Exploiting the fact that the matrix A% has full row rank in
most iterations, we can proceed as follows. If A®*1D is obtained from A® by adding
anew row a, we first compute the row vectors

hi=aQ"? (A<’<>Q—%)+ Cvi=aQt —hA® b
Now v # 0 if and only if A®*+1 has full row rank, and in the latter case
1\t 1
(A%075)" = ((a® o 5" 0) - LT | -1,

Otherwise, if v = 0, we are adding a linearly dependent row to A making the
primal problem (P-AS) infeasible. In this case, an unbounded direction of steepest
ascent of (D-AS) is given by (—A | 1) and the next step will be a dual step, meaning
that a row will be removed from A®*D and the resulting matrix A%**+2) will have full
row rank again. We can thus update (A% Q_%)+ to (AK+2) Q_%)+ by first removing
and then adding a row, in both cases having full row rank.

It thus remains to deal with the case of deleting the rth row a of a matrix A% with

full row rank. Here we obtain (A*+D Q_%)‘Ir by deleting the rth column in
~INT ~INT
(49072) "~ ppuw” (a0 072)

where w is the rth column of (A®) Q7).
Theorem 5 The running time per iteration of Algorithm E11AS is O (n?).

Proof This follows directly from Lemma 2 and the discussion above. O

Clearly, the incremental update of the pseudo-inverse (A(")Q_%)Jr may cause
numerical errors. This can be avoided by recomputing it from scratch after a certain
number of incremental updates. Instead of a fixed number of iterations, we recompute
(AR Q_%)+ whenever the primal solution computed in a primal step is infeasible,
1.e., violates the current constraints, where we allow a small tolerance.

In order to avoid wrong solutions even when pseudo-inverses are not precise, we
make sure in our implementation that the dual solution A *) remains feasible for (D-AS)
in each iteration, no matter how big the error of (A®) Q_%)+ is. For this, we slightly
change the computation of 2®): after computing %) exactly as explained, we deter-
mine the largest § € R such that (1 — §)A*=D 4 §1% is dual feasible. Such § must
exist since A~V is dual feasible, and it can easily be computed using the midnight
formula. We then replace A® by (1 — §)2*~D 4+ 51(®) and go on as before.
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6 Branch-and-bound algorithm

For solving the integer Problem (RP), the method presented in the previous sections
must be embedded into a branch-and-bound scheme. The dual bounds are computed
by Algorithm E11AS and the branching is done by splitting up the domain [/;, u;] of
some variable x;. Several properties of Algorithm E11AS can be exploited to improve
the performance of such a branch-and-bound approach.

Warmstarts Clearly, as branching adds new constraints to the primal feasible region
of the problem, while never extending it, all dual solutions remain feasible. In every
node of the branch-and-bound-tree, the active set algorithm can thus be warm started
with the optimal set of constraints of the parent node. As in [7,8], this leads to a
significant reduction of the number of iterations compared to a cold start. Moreover,
the newly introduced bound constraint is always violated and can be directly added
as a new active constraint, which avoids resolving the same dual problem and hence
saves one more iteration per node. Finally, the data describing the problem can either
be inherited without changes or updated quickly; this is particularly important for the

pseudo-inverse (AQ~ 3 )*.

Early pruning Since we compute a valid dual bound for Problem (RP) in every iteration
of Algorithm E11AS, we may prune a subproblem as soon as the current bound exceeds
the value of the best known feasible solution.

Avoiding cycling or tailing off Last but not least, we may also stop Algorithm E11AS
at every point without compromising the correctness of the branch-and-bound algo-
rithm. In particular, as soon as an iteration of Algorithm E11AS does not give a strict
(or a significant) improvement in the dual bound, the active set algorithm is stopped
and we resort to branching. This excludes any potential cycling of the algorithm.

7 Numerical results

To test the performance of our algorithm E11AS, we considered convex SOCP
instances (Sect. 7.1), random binary instances with up to one million constraints
(Sect. 7.2), and combinatorial instances of Problem (RP), where the underlying prob-
lem is the Shortest Path problem (Sect. 7.3), the Assignment problem (Sect. 7.4), the
Spanning Tree problem (Sect. 7.5), and the Traveling Salesman problem (Sect. 7.6).
Concerning our approach, these combinatorial problems have different characteris-
tics: while the first two problems have compact and complete linear formulations, the
standard models for the latter problems use an exponential number of constraints that
can be separated efficiently. In the case of the Spanning Tree problem, this exponential
set of constraints again yields a complete linear formulation, while this is not the case
for the NP-hard Traveling Salesman problem. In the latter case, however, we still have
a complete integer programming formulation, which suffices for the correctness of
our approach.

For all problems, we consider instances where the positive definite matrix Q €
R™" js randomly generated. For this, we chose n eigenvalues A; uniformly at random
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from [0, 1] and orthonormalized n random vectors v;, each entry of which was chosen
uniformly at random from [—1, 1]. Setting Q = Do Ay v,.T, the entries of Q are
givenas Q;; = c¢ic; Qi j» where c is the vector defining the linear term. For the random
instances, the entries of ¢ were chosen uniformly at random from [—1, 0], while for all
remaining instances the entries of ¢ were chosen uniformly at random from [0.5, 1.5].
In the (very few) cases where the smallest eigenvalue of Q turned out to be smaller
than 10~%, we discarded the instance and produced a new one.

In the following, we present a comparison of BB-E11AS, an implementation of
the branch-and-bound-algorithm based on E11AS in C++, with the MISOCP solver
of Gurobi 7.5.1 [10]. According to the latest benchmark results of Hans D. Mittelmann
[14], Gurobi is currently the fastest solver for SOCPs and MISOCPs. Furthermore, in
order to analyze the performance of E11AS as an algorithm for convex SOCPs, we
report in Sect. 7.1 a comparison between E11AS and the SOCP solver of Gurobi 7.5.1
[10].

For BB-E11AS, we use a simple home-made branch-and-bound framework using a
straightforward depth first search. The most fractional variable is chosen for branching.
We use an optimality tolerance of 10~%. The same tolerance is applied when deciding
whether a constraint is violated in a separation procedure. For Gurobi, we use standard
settings, except that we apply the same optimality tolerance as in BB-E11AS, setting
the absolute optimality tolerance MI PGapAbs to 10™*. All other standard parame-
ters are unchanged. In particular, Gurobi uses presolve techniques that decrease the
solution times significantly. In case of the Spanning Tree problem and the Traveling
Salesman problem, we apply dynamic separation algorithms using a callback adding
lazy constraints. Again, constraints are added if the violation exceeds 104

All our experiments were carried out on Intel Xeon processors running at 2.60 GHz.
All running times were measured in CPU seconds (not including the time needed for
instance generation) and the time-limit was set to one CPU hour for each individual
instance. All tables presented in this section include the following data for the compar-
ison between BB-E11AS and Gurobi: the number of instances solved within the time
limit (#sol), the average running time, and the average number of branch-and-bound
nodes where applicable. For BB-E11AS, we also report the average total number
of active set iterations (iter) and the average number of times the pseudo-inverse

(A© Q_%)‘Ir is recomputed from scratch, the latter in percentage with respect to the
number of iterations (% ps). All averages are taken over the set of instances solved to
optimality within the time limit. For all applications, we also present performance pro-
files, as proposed in [9]. Given our set of solvers S and a set of problems P, we compare
the performance of a solver s € S on problem p € P against the best performance
obtained by any solver in S on the same problem. To this end we define the perfor-
mance ratio r, s = tp s/ min{t, s : s’ € S}, where tp,s 1s the computational time, and
we consider a cumulative distribution function ps(v) = {p € P : rps < T}|/|P].
The performance profile for s € § is the plot of the function pj.
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7.1 Random SOCP instances

We first consider continuous relaxations of Problem (P), where the vector ¢ € R" and
the positive definite matrix Q € R"*" are randomly generated as described above. The
objective function is of the form ¢ " x + B /x T Qx, where weuse f = /(I — €) /€ as
proposed in [5]. In order to study the effect of changing the weight § of the non-linear
term, as done in [1], we consider instances with € € {0.5,0.2, 0.1, 0.05, 0.02, 0.01},
corresponding to values of B between 1 and 7. The set P is explicitely given as {x €
[0,1]" | Ax < b}, where A € R™*" and b € R™ are also randomly generated: the
entries of A were chosen uniformly at random from the integers in the range [0, 10] and
we set b; = 0.5 Z?:l ajj] fori =1, ..., m. Altogether, we generated 480 different

instances: for each combination of €, n € {25, 50}, and m € {103, 104, 105, 106}, we
generated 10 instances. Since the set P is explicitely given here, the linear constraints
are separated by enumeration in BB-E11AS. More precisely, at Step 8 of Algorithm 3,
we pick the linear constraint most violated by x®.

In Table 1, we report the comparison between E11AS and the SOCP solver of
Gurobi. Gurobi is not able to solve any instance with n = 50 variables and m = 10°
constraints within the time limit. On the other hand, E11AS is in general very fast, but
there are some instances where it stops without reaching optimality (these instances are
counted as unsolved). Our implementation of E11AS is in fact tuned to compute valid
lower bounds for Problem (P) quickly: we stop our algorithm as soon as an iteration
does not give us a strict (or significant) improvement in the dual bound. Nevertheless,
E11AS is able to compute the optimum for 444 out of 480 instances and the average
running time is below four CPU seconds for all instance types. In Fig. 1, we report
the performance profiles for all the instances.

7.2 Random binary instances

We next consider instances of Problem (P) where the vector ¢ € R" and the positive
definite matrix Q € R"*" as well as the polyhedron P are created exactly as described
in the previous section, except that b; = |g Z;zl ajjl fori =1,...,m, withg €
{0.1, 0.2, 0.5}. However, we now allow only binary solutions, i.e., we require x &€
P N {0, 1}". Altogether, we generated 1440 different problem instances for (P): for
each combination of g, €, n € {25,50}, and m € {103, 104, 103, 106}, we generated
10 instances.

In Tables 2, 3 and 4, we report the results for ¢ = 0.5, ¢ = 0.2, and ¢ = 0.1,
respectively. Besides the results of BB-E11AS and Gurobi, we report the results
obtained by BB-E11AS without using warmstarts (BB-E11AS NW) and by Gurobi
where all constraints are defined as lazy constraints (Gurobi LC). The latter has been
considered in order to improve Gurobi’s performance: from the results shown, it is
clear that Gurobi benefits from the use of lazy constraints. It is also evident how
the use of warmstarts improves the performance of BB-E11AS: the average number
of iterations decreases up to a factor of 100. For BB-E11AS, smaller values of g
lead to shorter running times in general. For Gurobi, instances with ¢ = 0.2 are the
hardest to solve, while instances with ¢ = 0.1 are the easiest for both BB-E11AS
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;?)l’(':‘i)1in§‘;$§fis"“ onrandom . T Rjas Gurobi
#sol Time iter J%ps  #sol  Time
05 25 10> 10 000 1ld4e+2 084 10  0.04
25 10* 10 001 20e+2 071 10 037
25 100 10 0.5 23e+2 074 10 632
25 106 10 192  26e+2 065 10  90.18
50 10> 9 001 25e+2 135 10  0.09
50 10 10 0.03 34e+2 191 10  1.20
50 10° 9 029 4let2 082 10 4445
50 10° 9 385 5let2 065 0 -
02 25 10> 10 000 13e+2 032 10  0.03
25 10* 10 001 15e+2 019 10 038
25 10° 10 013 19e+2 016 10 599
25 10° 8 161 21e+2 012 10  79.70
50 103 9 001 21e+2 074 10  0.08
50 104 9 003 28e+2 1.03 10 121
50 100 9 028 3.6e+2 092 10 4823
50 10° 7 343  42¢+2 038 0 -
01 25 10> 10 000 llet2 009 10  0.04
25 10 10 001 15e+2 000 10 039
25 10° 9 012 1.7e+2 000 10 632
25 106 10 148 19e+2 0.0 10  81.80
50 10° 10 001 20e+2 059 10 0.9
50 10* 8 002 27e+2 028 10 117
50 10° 8 026 32e+2 056 10  46.04
50 106 9 306 3842 061 0 -
005 25 10> 10 000 l.le+2 028 10  0.04
25 10 9 001 13e+2 018 10 040
25 10° 10 010 15e+2 0.4 10 539
25 106 10 123  16e+2 012 10  67.40
50 10> 10 001 19e+2 021 10  0.09
50 10 10 0.02 25e+2 067 10  1.12
50 10° 8 025 3.0e+2 063 10  43.19
50 10° 9 280 34e+2 069 0 -
002 25 105 9 000 89+1 000 10  0.04
25 10 10 001 1.0e+2 0.00 10 040
25 10° 10 008 12e+2 008 10  5.65
25 10° 10 088 13e+2 015 10  68.63
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Table 1 continued

e n m EIIAS Gurobi

#sol Time iter J%ps  #sol  Time

50 103 9 0.01 1.7e+2 033 10 0.09

50 104 8 0.02 24e+2 032 10 1.25
50 109 8 0.22 2.5¢e+2 035 10 46.39

50 106 7 263 2942 045 0 -

001 25 10 10 0.00 7.4e+1 0.14 10 0.03

25 10 10 0.01 8.6e+1 023 10 0.39

25 10° 8 0.07 1.0e+2 0.12 10 5.60
25 10° 10 0.79 1.le+2 0.10 10 65.06

50 103 10 0.01 1.6e+2 0.19 10 0.09

50 10% 9 0.02 2.0e+2 0.17 10 1.33

50 109 9 0.19 2.3e+2 0.10 10 46.91

50 100 8 2.25 2.5¢e+2  0.35 0 -
Random SOCP Instances
1, i i i i i i i i 4 L i i 4
0.8 + 1 r 1
0.6 1t 1
0.4 1t 1
02} 1t 1
E11AS
Gurobi
0 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 qpf 102 103

Fig.1 Performance profile with respect to running times for convex SOCP instances

and Gurobi. Note that the average number of branch-and-bound nodes enumerated
by BB-E11AS is generally larger than the number of nodes needed by Gurobi, but
always by less than a factor of 10 on average. On all instance classes, BB-E11AS is
able to solve significantly more instances than Gurobi and Gurobi LC within the time
limit, and in general has a faster running time. This is confirmed by the performance
profiles presented in Fig. 2, where BB-E11AS clearly outperforms both Gurobi and

the improved Gurobi LC.
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Random Binary Instances - q = 0.5
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Fig.2 Performance profiles with respect to running times for random binary instances
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Table 5 Comparison on robust shortest path instances

r n m BB-EIIAS Gurobi
#sol Time Nodes iter Jops #sol Time Nodes
10 180 360 10 27.28 2.0e+3  2.le+4 597 10 34.08 1.3e+3

11 220 440 10 197.61 52e+3  58e+4  9.65 10 149.82 2.5e+3
12 264 528 10 174.58 1.2e+4 1.5e+5 1.71 10 505.00 5.5e+3
13 312 624 8 1103.26  2.le+4  3.le+5 3.45 10 1451.29 1.2e+4
14 364 728 4 1307.92  4.6e+4  73e+5  0.82 5 2530.77 1.6e+4
15 420 840 0 - - - - 0 - -

7.3 Shortest path problem

Given a directed graph G = (V, E), where V is the set of vertices and E is the
set of edges, and weights associated with each edge, the Shortest Path problem is
the problem of finding a path between two vertices s and ¢ such that the sum of the
weights of its constituent edges is minimized. Our approach uses the following flow
based formulation of the Robust Shortest Path problem:

min ¢'x +/x 1 Ox

S DeestiyXe = Lees—(yXe =0 Vi€ V\{s, 1}

D eest(s) e — Dees—(s) Xe = 1 ©®)
Z865"’(0 Xe — Zeeé‘(x) Xe = —1
x e {0, 1}F

In our test set, we produced squared grid graphs with r rows and columns, where all
edges point from left to right or from top to bottom. In this way, we produced graphs
with |V| = r? vertices and |E| = 2r> — 2r edges. In the IP model (6), we thus
have n := 2r> — 2r many variables, |V| = r?> many equations, and m := 2|E| =
4r% — 4r many inequalities, all being box constraints. Since this number is polynomial
in n, we can separate them by enumeration within E11AS, whereas we can pass
the formulation (6) to Gurobi directly. Concerning the objective function of (6), we
determined the expected lengths ¢; uniformly at random in [0.5, 1.5] and built the
positive definite matrix Q as described above. Altogether, we generated 60 different
problem instances for (6): for each r € {10, ..., 15} we generated 10 instances.

In Table 5, we report the comparison between BB-E11AS and the MISOCP
solver of Gurobi. The average number of branch-and-bound nodes enumerated
by BB-E11AS is almost in the same order of magnitude of that needed by Gurobi.
However, E11AS is able to process the nodes very quickly, leading to a branch-and-
bound scheme that is faster than Gurobi in terms of computational time for the majority
of the instances, as confirmed by the performance profiles shown in Fig. 3.

In terms of robustness, Gurobi outperforms BB-E11AS, being able to solve three
instances more within the time limit. In fact, the running times of BB-E11AS exhibit
a larger variance than those of Gurobi. This is mostly due to numerical issues: in
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Robust Shortest Path

0.8

BB-E11AS

Gurobi

1 2 3 4 5 6 7 8 9 10 49! 102 108

Fig.3 Performance profile with respect to running times for shortest path instances

instances without numerical difficulties, the incremental update of pseudo-inverses
works very well and saves a lot of running time. However, in a few instances, we often
have to recompute the pseudo-inverse from scratch to avoid numerical errors. E.g.,
when considering r = 10, 11, 12 in Table 5, it can be observed that average running
times for r = 11 are larger than for r = 12, even if the number of nodes enumerated
is smaller. This is due to the larger number of pseudo-inverse recomputations (9.65 %
of all iterations for r = 11 vs. 1.71 % for r = 12). Note that these percentages are
significantly smaller for all other types of instances.

7.4 Assigment problem

Given an undirected, bipartite and weighted graph G = (V, E) with bipartition V =
V1 U V,, the Assignment problem consists in finding a one-to-one assignment from
the nodes in V] to the nodes in V> such that the sum of the weights of the edges used
for the assignment is minimized. In other words, we search for a minimum-weight
perfect matching in the bipartite graph G. Our approach uses the following standard
formulation of the Assignment problem:

min ¢'x ++/x 1 Ox
St Y eesiyXe=1 VieV
x €{0, 1}E

In the bipartite case, the above formulation yields a complete description of conv(P N
Z'), which is not true in the case of general graphs.

We consider complete bipartite graphs, so that the number of variablesisn = }‘ V2.
The number of equations is | V| while the number of inequalities is equal to n, since only
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An active set algorithm for robust combinatorial optimization 785
Table 6 Comparison on robust assignment instances
4 n m BB-EIIAS Gurobi
#sol Time Nodes iter Jops  #sol Time Nodes
20 100 100 10 4.10 1.1e+4 8.7e+4 0.10 10 56.13 4.1e+3
22 121 121 10 33.87 4.6e+4  38e+5 038 10 237.45 1.3e+4
24 144 144 9 156.24 1.9e+5 1.7e+6  0.23 10 742.23 3.0e+4
26 169 169 10 941.32 58e+5 S4e+6  0.50 7 232894  6.7e+4
28 196 196 2 2723.25 1.5e+6  1.5e+7  0.28 0 - -
30 225 225 - - - - 0 - -
Robust Assigment Problem
1+ T T T T T T T T 4 k 4
0.8 g H g
0.6 A H .
0.4 g
02t g H g
BB-E11AS
Gurobi
0 1 1 1 1 1 1 1 1 1 1
1.2 3 4 5 6 7 8 9 10 4o 102 103

Fig.4 Performance profile with respect to running times for assignment instances

box constraints of the type x > 0 need to be added; the remaining box constraints are
then implied by the equations. In our instances, we use randomly generated expected
weights ¢; € [0.5, 1.5] again, while the non-linear part of the objective function is
generated as before. Altogether, we generated 60 different problem instances: for each
V| € {20, 22, ..., 30} we generated 10 different instances. Results are presented in
Table 6 and Fig. 4. BB-E11AS is able to solve four instances more than Gurobi within
the time limit and outperforms Gurobi in terms of computational time.

7.5 Spanning tree problem

Given an undirected weighted graph G = (V, E), a minimum spanning tree is a
subset of edges that connects all vertices, without any cycles and with the minimum
total edge weight. Our approach uses the following formulation of the Robust Spanning
Tree problem:
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786 C. Buchheim, M. De Santis

Table 7 Comparison on robust minimum spanning tree instances (complete graphs)

[Vl n m BB-EIIAS Gurobi

#sol  Time Nodes iter J%ps  #sol  Time Nodes
12 66 4160 10 53.51  9.5e+4  59e+5 283 10 110.61 1.1e+4
13 78 8268 10 231.11  1.9e+5 13e+6 592 10 546.84 2.9e+4
14 91 16,473 10 31234 59e+5 45e+6 021 7 1802.43  7.2e+4

15 105 32,871 5 2388.39  2.8e+6  23e+7 0.64 2 3271.12  1.0e+5
16 120 65,654 1 1490.94  lde+6  1.3e+7 0.50 0 - -

Table 8 Comparison on robust minimum spanning tree instances (grid graphs)

ron m BB-EIIAS Gurobi
#sol  Time Nodes iter %ps  #sol  Time Nodes
6 60 6.9e+10 10 296  19e+3  2.0e+4 137 10 389.07 23e+4

7 84 5.6e+14 10 340.57  6.7e+4  83e+5 474 2 701.55  1.9e+4
8§ 112 1.8e+19 3 2112.00  2.2e+5 3.le+6 232 0 - -

min ¢ x ++/xT Ox

St Y epte =1V —1
YecxXe <|X|— IV #£XCV
x € {0, 1}

(N

In the above model, the number of inequalities, taking into account also the non-
negativity constraints, is m = 2!V — 2 4 | E|. Since this number is exponential in the
input size, we also have to use a separation algorithm for Gurobi. For both BB-E11AS
and Gurobi, we essentially use the same simple implementation based on the Ford—
Fulkerson algorithm.

For our experiments, we considered both complete graphs and grid graphs, the latter
being produced as for the Shortest Path Problem. In both cases, expected edge weights
are randomly generated in [0.5, 1.5] again, while we built the positive definite matrix Q
as above. Altogether, we generated 80 different problem instances: for each |V| €
{12, ..., 16} we generated 10 different complete instances, while foreachr € {6, 7, 8}
we generated 10 different grid instances. As shown in Tables 7 and 8, BB-E11AS
clearly outperforms the MISOCP solver of Gurobi on all the instances considered. For
the performance profile, see Fig. 5.

7.6 Traveling salesman problem

Given an undirected, complete and weighted graph G = (V, E), the Traveling Sales-
man problem consists in finding a path starting and ending at a given vertex v € V such
that all the vertices in the graph are visited exactly once and the sum of the weights
of its constituent edges is minimized. Our approach uses the following formulation of
the Traveling Salesman problem:
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Robust Minimum Spanning Tree
1+ T T T T T T T T 4 k T T 4
0.8 g H g
L —
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0 . . . . . . . . . .
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Fig.5 Performance profile with respect to running times for spanning tree instances
Table 9 Comparison on robust traveling salesman instances
VI n m BB-EIIAS Gurobi
#sol  Time Nodes iter Jps  #sol  Time Nodes
14 91 16,564 10 29.34 9.3e+4 6.le+5 0.08 10 213.86 1.5e+4
15 105 32,976 10 266.85 44e+5 3.de+6 071 10 1027.32  5.5e+4
16 120 65,774 10 932.06 1.7e46  1.3e+7 0.12 4 1897.40  8.0e+4
17 136 131,342 3 2148.13  29e+6 23e+7 0.16 - -
18 153 262,448 0 - - - - - -
min ¢'x ++/xT Ox
St D eesiy¥e=2 VieV )
sy Xe =2 YOEXCYV

x €{0,1}E

Again, we consider complete graphs. The number of inequalities including the bounds
x € [0, 11F ism := 2!Vl -2 42| E| and hence again exponential. For both BB-E11AS
and Gurobi, we basically use the same separation algorithm as for the Spanning Tree
problem; see Sect. 7.5. Instances are identical to those generated for the Spanning
Tree problem, but we can consider slightly larger graphs, namely graphs with |V | €

{14, ..., 18}. See Table 9 and Fig. 6 for the results.
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Fig.6 Performance profile with respect to running times for traveling salesman instances

8 Conclusions

We presented a new branch-and-bound algorithm for robust combinatorial optimiza-
tion problems under ellipsoidal uncertainty. We assume that the set of feasible solutions
is given by a separation algorithm that decides whether a given point belongs to the
convex hull of the feasible set or not, and, in the negative case, provides a valid but
violated inequality. The branch-and-bound algorithm is based on the use of an active
set method for the computation of dual bounds. Dealing with the Lagrangian dual
of the continuous relaxation has the advantage of allowing an early pruning of the
node. The closed form solution of the active set subproblems, the smart update of
pseudo-inverse matrices, as well as the possibility of using warmstarts, leads to an
algorithm that clearly outperforms the mixed-integer SOCP solver of Gurobi on most
of the problem instances considered.
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