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Abstract
A(convex) polytope P is said to be2-level if for eachhyperplane H that supports a facet
of P , the vertices of P can be covered with H and exactly one other translate of H . The
study of these polytopes is motivated by questions in combinatorial optimization and
communication complexity, among others. In this paper, we present the first algorithm
for enumerating all combinatorial types of 2-level polytopes of a given dimension d,
and provide complete experimental results for d � 7. Our approach is inductive: for
each fixed (d − 1)-dimensional 2-level polytope P0, we enumerate all d-dimensional
2-level polytopes P that have P0 as a facet. This relies on the enumeration of the
closed sets of a closure operator over a finite ground set. By varying the prescribed
facet P0, we obtain all 2-level polytopes in dimension d.
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1 Introduction

A (convex) polytope P ⊆ R
d is said to be 2-level if every hyperplane H that is facet-

defining for P has a parallel hyperplane H ′ that contains all the vertices of P which
are not contained in H . The 3-dimensional 2-level polytopes are illustrated in Fig. 1
below.

Two-level polytopes appear in different areas of mathematics, in contexts related
to discrete optimization. These polytopes have beautiful properties. For instance, a
polytope is 2-level if and only if it is affinely equivalent to the convex hull of the
columns of its facet-vertex incidence matrix1 (see Lemma 4 or [18, Corollary 4.5] for
a proof).

Therefore, every 2-level polytope is affinely equivalent to a 0/1-polytope. Hence,
optimizing a linear function over a 2-level polytope amounts to solving an instance of
a certain combinatorial optimization problem. Moreover, as is explained below, every
linear program over a d-dimensional 2-level polytope can be reformulated in a very
succinct way as a semidefinite program over (d + 1) × (d + 1) matrices. Roughly
speaking, this means that the combinatorial optimization problem behind every family
of 2-level polytopes can be solved efficiently.

Since no characterization of 2-level polytopes is in sight, we do not know precisely
which combinatorial optimization problem can bemodeled by 2-level polytopes. Nev-
ertheless, some interesting families of polytopes studied in the literature turn out to be
2-level. For instance, cubes and cross-polytopes (more generally, Hanner polytopes
[26]), Birkhoff polytopes [4] and order polytopes [40] (more generally, polytopes of
the form P = {x ∈ [0, 1]d | Ax = b} where A ∈ Z

m×d is totally unimodular
and b ∈ Z

m), stable set polytopes of perfect graphs [8] and their twisted prisms, the
Hansen polytopes [27], and spanning tree polytopes of series-parallel graphs [23] all
are 2-level polytopes. See [2] for more examples. Outside this list, not many 2-level
polytopes are known.

The goal of this paper is to design an algorithm that enumerates small-dimensional
2-level polytopes. Using this algorithm, we built a database of d-dimensional 2-level
polytopes for d � 7. Before explaining in more detail why 2-level polytopes are
interesting objects and the contexts in which they appear, we give two reasons why we
think that enumerating 2-level polytopes is relevant. First, having a database of small-
dimensional 2-level polytopes provides a systematicway to find new2-level polytopes,
which could then be hopefully generalized to whole families. Second, it gives a way
to challenge existing conjectures about 2-level polytopes and can also inspire new
conjectures. In particular, any potential structural characterization of 2-level polytopes
should at least explain what we observe for small dimensions. Conversely, the small-
dimensional data can serve as a basis for guessing what the characterization could
be.

1 The facet-vertex incidencematrix of a polytope P withm facets andn vertices is thematrixM ∈ {0, 1}m×n

with Mi j = 1 if the i-th facet of P contains the j-th vertex of P , and Mi j = 0 otherwise.
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(a)

(b)

Fig. 1 a Representation of all combinatorially inequivalent 2-level polytopes in dimension 3. bNon 2-level
3-dimensional 0/1 polytopes. The highlighted facet violates the 2-level property

1.1 Relevance of 2-level polytopes

Let V ⊆ R
d be a finite set and k be a positive integer. We write R�k[x] to denote

the set of all polynomials of degree at most k over the field R in the variable x . A
polynomial f (x) ∈ R�1[x] is said to be (1, k)-SOS on V if there exist polynomials
g1(x), . . . , gn(x) ∈ R�k[x] such that

f (x) =
n∑

i=1

g2i (x) for every x ∈ V .

The k-th theta body of V is the convex relaxation of V defined by the linear inequalities
f (x) � 0where f (x) is (1, k)-SOSonV . The theta rank ofV is defined as the smallest
k such that this relaxation is exact, that is, the smallest k such that for every valid linear
inequality f (x) � 0, the affine form f (x) is (1, k)-SOS on V . These notions were
introduced by Gouveia, Parrilo and Thomas [18]. Answering a question of Lovász
[31], they proved that a finite set has theta rank 1 if and only if it is the vertex set of a
2-level polytope.

By virtue of this result and of the connection between sum-of-squares and semidef-
inite programming (see, e.g., [5] for more details), 2-level polytopes are particularly
well behaved from the point of view of optimization: any linear optimization problem
over a 2-level polytope in R

d can be reformulated as a semidefinite programming
problem over (d + 1) × (d + 1) symmetric matrices. More precisely, it is known that
2-level polytopes have minimum positive semidefinite rank (or positive semidefinite
extension complexity) among all polytopes of the same dimension. In other words,
2-level d-polytopes2 have positive semidefinite rank equal to d + 1 [17]. For exam-
ple, stable set polytopes of perfect graphs are one of the most prominent examples of
2-level polytopes. To our knowledge, the fact that these polytopes have small positive

2 A d-polytope is a polytope of dimension d.
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semidefinite rank is the only known reason why one can efficiently find a maximum
stable set in a perfect graph [24].

Moreover, 2-level polytopes are also of interest in communication complexity since
they provide interesting instances to test the log-rank conjecture [32], one of the
fundamental open problems in the area. This conjecture asserts that every 0/1-matrix
M can be computed by a deterministic communication protocol of complexity at most
polylog(rk(M)), which implies that the nonnegative rank of every 0/1-matrix M is
at most 2polylog(rk(M)). By results of Yannakakis [43], the log-rank conjecture implies
that every 2-level d-polytope has nonnegative rank (or linear extension complexity)
at most 2polylog(d). This is known for stable set polytopes of perfect graphs [43], but
appears to be open for general 2-level polytopes.

There are more reasons to study 2-level polytopes beyond those given above, in par-
ticular, in the context of Ehrhart theory in which 2-level polytopes originally appeared.
Stanley [39] introduced 2-level polytopes, under the name compressed polytopes,
because the Ehrhart polynomial of a 2-level polytope has a simple combinatorial
interpretation in terms of the f -vector of any pulling triangulation of P .3 Sullivant
[41] studied 2-level polytopes in the context of algebraic statistics.

1.2 Contribution and outline

In this paper we study the problem of enumerating all combinatorial types of 2-
level polytopes of a fixed dimension d. This is equivalent to enumerating all 2-level
polytopes up to affine equivalence because for 2-level polytopes the notions of combi-
natorial and affine equivalence coincide, see Lemma 5.We simply say that two 2-level
polytopes are isomorphic if they are combinatorially (or affinely) equivalent. (For a
definition of affine and combinatorial equivalence, see [44, Chapter 0].)

Since every 2-level polytope is affinely equivalent to a 0/1-polytope, one might
think to compute all 2-level polytopes of a given dimension simply by enumerating
all 0/1-polytopes of that dimension and discarding the polytopes which are not 2-
level. However, the complete enumeration of d-dimensional 0/1-polytopes has been
implemented only for d � 5 [1]. The author of the same paper has enumerated all 6-
dimensional 0/1-polytopes having up to 12 vertices, but the complete enumeration even
for this low dimension is not expected to be feasible: the output of the combinatorial
types alone is so huge that it is not currently possible to store it or search it efficiently
[45]. Thus for all but the lowest dimensions, there is no hope of working with a pre-
existing list of 0/1-polytopes, and it is desirable to find an algorithm that computes
2-level polytopes from scratch.

We present the first algorithm to enumerate all combinatorial types of 2-level poly-
topes of a given dimension d. The algorithm uses new structural results on 2-level
polytopes which we develop here.

Our starting point is a pair of full-dimensional embeddings of a given 2-level d-
polytope defined in Sect. 2. In one embedding, which we refer to as theH-embedding,
the facets have 0/1-coefficients. In the other —the V-embedding— the vertices have

3 See [44] for the definition of f -vector of a polytope or simplicial complex and [10] for the one of pulling
triangulation of a polytope.
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Enumeration of 2-level polytopes 177

Fig. 2 (Rotated) Hasse diagram of the poset of combinatorial types of 2-level polytopes with respect to
inclusion. In the figure, an edge between the combinatorial types of the polytopes P and F indicates that
P has a facet that is isomorphic to F . Combinatorial types of a fixed dimension are sorted top to bottom
lexicographically by their f -vector. Thus the first type is always that of the simplex. Labels on the nodes
of the diagram are the number of times a given combinatorial type appears as a facet of another type

0/1-coordinates. TheH- and V-embeddings are determined and linked by a structure,
which we call a simplicial core (see Sect. 2.2).

Our enumeration algorithm computes a complete list Ld of non-isomorphic 2-level
d-polytopes using the list Ld−1 of 2-level (d−1)-polytopes. The algorithm is based on
the fact that Ld is the union of Ld(P0) for P0 ∈ Ld−1, where Ld(P0) is the collection
of all 2-level d-polytopes that have a facet isomorphic to P0. Indeed, every facet of a
2-level polytope is 2-level (see Lemma 6 below) and thus the above union equals Ld .
Our enumeration strategy is inspired by Fig. 2.

For every polytope P0 ∈ Ld−1, we perform the following steps. First, we embed
P0 in the hyperplane {x ∈ R

d | x1 = 0} � R
d−1 (using an H-embedding). Then, we

compute a collectionA of point sets A ⊆ {x ∈ R
d | x1 = 1} such that for each 2-level

polytope P ∈ Ld(P0), there exists A ∈ A with P isomorphic to conv(vert(P0) ∪ A).
For each A ∈ A, we add the polytope P ′ := conv(vert(P0)∪A) to the list Ld , provided
that it is 2-level and not isomorphic to any of the polytopes already generated by the
algorithm.

The efficiency of this approach depends greatly on how the collectionA is chosen.
Our basic strategy is to exploit properties of the H- and V-embeddings of 2-level
polytopes to define: (i) a finite ground set X ⊆ {x ∈ R

d | x1 = 1}, (ii) an appropriate
family A of subsets of X that reflects some properties of the 2-level d-polytopes in
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Ld(P0). For various choices of X and A, we prove that this suffices to recover all
polytopes in Ld(P0).

We describe the enumeration algorithm in Sect. 3, as well as a first ground set X
and familyA. Then in Sect. 4, we explain how tomake bothX andA smaller by a finer
analysis. In Sect. 5, we explain in more detail how the members ofA are enumerated.

Section 6 discusses the implementation in detail. In particular, we develop tools
to compute convex hulls of 2-level polytopes combinatorially and avoid resorting to
standard convex hull algorithms, providing a considerable speedup in the computa-
tions.

We implemented the algorithm and ran it to obtain Ld for d � 7. The outcome of
our experiments is discussed in Sect. 7. In particular, our results show that the number
of combinatorial types of 2-level d-polytopes is surprisingly small for low dimensions
d.

We conclude the paper by discussing research questions inspired by our experi-
ments, see Sect. 8.

1.3 Previous related work

The enumeration of all combinatorial types of point configurations and polytopes is
a fundamental problem in discrete and computational geometry. Latest results in [12]
report complete enumeration of polytopes for dimension d = 3, 4 with up to 8 vertices
and d = 5, 6, 7 with up to 9 vertices. For 0/1-polytopes this is done completely for
d � 5 and d = 6 with up to 12 vertices [1]. In our approach, we use techniques
from formal concept analysis, in particular we use a previously existing algorithm to
enumerate all concepts of a relation, see [14,30].

Regarding 2-level polytopes, Grande and Sanyal [23] give an excluded minor char-
acterization of 2-level matroid base polytopes. Grande and Rué [22] give a O(cd)
lower bound on the number of 2-level matroid d-polytopes for some constant c > 0.
Finally, Gouveia et al. [19] give a complete classification of polytopes with minimum
positive semidefinite rank, which generalize 2-level polytopes, in dimension d = 4.

1.4 Conference versions

A first version of the enumeration algorithm together with the experimental results for
d � 6 appeared in [6]. An improvement of the algorithm that yielded enumeration
results in d = 7 appeared as part of [11]. We point out that this paper is missing one 2-
level polytope for d = 7, see [11, Table 2]. The correct number of 2-level 7-polytopes
is provided here, see Table 3 below. Besides this correction, the present paper contains
a full correctness proof for the enumeration algorithm. Moreover, compared to [11],
the algorithm was further optimized. The two main differences are: the more drastic
reductions we perform on the ground set, and the fact that we bypass convex hull
computations completely. These are replaced by a combinatorial polytope verification
procedure. More details can be found in Sect. 6.
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Fig. 3 An example of a
simplicial core
(F1, F2, F3, F4; v1, v2, v3, v4)

for the 3-dimensional cube

2 Embeddings

In this section, after fixing some notation, we discuss the notion of simplicial core. This
is then used to define the two types of embeddings that we use for 2-level polytopes.
Finally, we establish important properties of these embeddings that are used later in
the enumeration algorithm.

2.1 Notations

For basic notions on polytopes that do not appear here, we refer the reader to [44]. We
use vert(P) to denote the vertex set of a polytope P . Let d denote a positive integer,
which we use most of the time to denote the dimension of the ambient space. We let
[d] := {1, . . . , d}. For x ∈ R

d and E ⊆ [d], we let x(E) := ∑
i∈E xi .

2.2 Simplicial cores

We introduce the structural notion of simplicial core of a polytope, which will be used
in the enumeration algorithm to ease the counting of combinatorial types of 2-level
polytopes.

Definition 1 (Simplicial core) A simplicial core for a d-polytope P is a (2d+2)-tuple
(F1, . . . , Fd+1; v1, . . . , vd+1) of facets and vertices of P such that each facet Fi does
not contain vertex vi but contains vertices vi+1, …, vd+1.

The concept of simplicial core appeared in relation with 2-level polytopes already
in [39] and with polytopes of minimum nonnegative rank in [20].

The following lemma proves the existence of simplicial cores. Although this is
known (see [20, Proposition 3.2]), we provide a proof for completeness. See Fig. 3
for an example of simplicial core.

Lemma 2 For every d-polytope P, there exist facets F1, …, Fd+1 and vertices v1, …,
vd+1 of P such that (F1, . . . , Fd+1; v1, . . . , vd+1) is a simplicial core for P.

Proof The proof is by induction on the dimension. For a 1-polytope P :=
conv({v1, v2})we can take F1 := {v2} and F2 := {v1}. For the induction step, let P ′ be
a facet of P . Thus P ′ is a (d−1)-polytope. By the induction hypothesis, there are facets
F ′
2, . . . , F

′
d+1 and vertices v2, . . . , vd+1 of P ′ such that (F ′

2, . . . , F
′
d+1; v2, . . . , vd+1)
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is a simplicial core for P ′. Now let F1 := P ′ and, for i , 2 � i � d + 1, let Fi be the
unique facet of P that contains F ′

i and is distinct from F1. Let v1 be any vertex of P
which does not belong to the facet F1.

By construction, each Fi contains vi+1, . . . , vd+1. Moreover, F1 does not contain
v1 and, for i � 2, facet Fi does not contain vi because otherwise F ′

i = F1 ∩ Fi would
contain vi , contradicting our hypothesis. �	

We point out that the proof of Lemma 2 gives us more than the existence of
simplicial cores: for every polytope P , every facet F1 of P and every simpli-
cial core Γ ′ := (F ′

2, . . . , F
′
d+1; v′

2, . . . , v
′
d+1) of F1, there exists a simplicial core

Γ := (F1, F2, . . . , Fd+1; v1, v2, . . . , vd+1) of P extending Γ ′ in the sense that
F ′
i = F1 ∩ Fi and v′

i = vi for i � 2.
Finally, we make the following observation. Let (F1, . . . , Fd+1; v1, . . . , vd+1) be

a simplicial core of some polytope P . For each i , the affine hull of Fi contains v j for
j > i , but does not contain vi . Therefore, the vertices of a simplicial core are affinely
independent. That is, v1, …, vd+1 form the vertex set of a d-simplex contained in P .

2.3 Slackmatrices and slack embeddings

Definition 3 (Slack matrix [43]) The slack matrix of a polytope P ⊆ R
d withm facets

F1, …, Fm and n vertices v1, …, vn is the m × n nonnegative matrix S = S(P) such
that Si j is the slack of the vertex v j with respect to the facet Fi , that is, Si j = gi (v j )

where gi : R
d → R is the affine form such that min{gi (x) | x ∈ P} = 0, max{gi (x) |

x ∈ P} = 1 and Fi = {x ∈ P | gi (x) = 0}.
The slack matrix of a polytope is unique up to permuting its rows and columns.

Notice that simplicial cores for P correspond to (d + 1) × (d + 1) submatrices of
S(P) that are invertible and lower-triangular, for some ordering of rows and columns.

The slackmatrix provides a canonicalway to embed any polytope,whichwe call the
slack embedding. This embedding maps every vertex v j to the corresponding column
S j ∈ R

m+ of the slack matrix S = S(P). The next lemma shows that every polytope is
affinely isomorphic to the convex hull of the columns of its slack matrix.

Lemma 4 Let P be a d-polytope having facet-defining inequalities g1(x) � 0, …,
gm(x) � 0, and vertices v1, …, vn. If σ denotes a map from the affine hull aff(P) of P
to R

m defined by σ(x)i := gi (x) for all x ∈ aff(P), then the polytopes P and σ(P)

are affinely equivalent.

Proof The map σ : aff(P) → R
m is affine, and injective because it maps the vertices

of any simplicial core for P to affinely independent points. The result follows. �	
By definition, a polytope P is 2-level if and only if S(P) is a 0/1-matrix. Notice that

the slack matrix of a 2-level polytope is also its (facet-vertex) non-incidence matrix,
where 0 indicates incidence and 1 indicates non-incidence. As a consequence, we have
the following result:

Lemma 5 Two 2-level polytopes are affinely equivalent if and only if they have the
same combinatorial type.
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Enumeration of 2-level polytopes 181

Proof The result follows directly from Lemma 4 and the fact that, since the slack
matrix of a 2-level polytope P is the non-incidence matrix of P , it depends only
on the combinatorial type of P . (We remark that this implies that P is also affinely
equivalent to the convex hull of the columns of its incidence matrix, as mentioned in
the introduction.) �	

For the sake of completeness, we state the following basic result about 2-level
polytopes, which easily follows from our discussion of slack matrices (see also [18,
Corollary 4.5 (2)]).

Lemma 6 Each face of a 2-level polytope is a 2-level polytope.

Proof Let S = S(P) ∈ {0, 1}m×n be the slack matrix of some 2-level polytope P ,
and let F be any face of P . If F is empty or a point, then F is 2-level by definition.
Otherwise, the slack matrix of F is a submatrix of S obtained by selecting one row
per facet of F and one column per vertex of F , which implies that F is 2-level. �	

2.4 H- andV-embeddings

Although canonical, the slack embedding is never full-dimensional, which can be a
disadvantage. To remedy this, we use simplicial cores to define two types of embed-
dings that are full-dimensional. Let P be a 2-level d-polytope with m facets and n
vertices, and let Γ := (F1, . . . , Fd+1; v1, . . . , vd+1) be a simplicial core for P . Since
v1,…, vd+1 are affinely independent, the images of v1,…, vd+1 uniquely define an
affine embedding of P .

The slack matrix S(P) is a 0/1-matrix. Moreover, we assume that the rows and
columns of the slack matrix S(P) are ordered compatibly with the simplicial core Γ ,
so that the i-th row of S(P) corresponds to facet Fi for i ∈ [d+1] and the j-th column
of S(P) corresponds to vertex v j for j ∈ [d + 1].
Definition 7 (H-embedding) The H-embedding of P with respect to the simplicial
core Γ := (F1, . . . , Fd+1; v1, . . . , vd+1) is defined by mapping v j , 1 � j � d to the
unit vector e j of R

d and mapping vd+1 to the origin.

Definition 8 (V-embedding) Let S := S(P) be the slack matrix of P . The V-
embedding of P with respect to the simplicial core Γ := (F1, . . . , Fd+1; v1, . . . ,

vd+1) is defined by mapping v j , j ∈ [d + 1] to the point of R
d whose i-th coordinate

is Si j for i ∈ [d].
Notice that every V-embedding can be obtained from the slack embedding by

dropping all but d coordinates.

Definition 9 Wecall embedding transformationmatrixwith respect toΓ the submatrix
of the slack matrix of P induced by the first d rows and columns, and denote it by
M(P, Γ ).

Note that every embedding transformation matrix M = M(P, Γ ) is unimodular.
Indeed, M is an invertible, lower-triangular, 0/1-matrix. Thus we have det(M) = 1.

123



182 A. Bohn et al.

Note also that the V-embedding can be equivalently defined by the mapping x �→
Mx where M = M(P, Γ ) and x ∈ R

d is a point in theH-embedding with respect to
Γ . In fact, for every i ∈ [d + 1], the matrix M maps the i-th vertex of the simplicial
core to the first d coordinates of the i-th column of the slack matrix of P , that are
precisely the vertices of P in the V-embedding.

The next lemma provides the main properties of the H- and V-embeddings.

Lemma 10 Let P be a 2-level d-polytope and Γ := (F1, . . . , Fd+1; v1, . . . , vd+1) be
some simplicial core for P. Then the following properties hold:

• in theH-embedding of P with respect to Γ , all the facets are of the form x(E) � 1
or x(E) � 0 for some nonempty E ⊆ [d].

• in the V-embedding of P with respect to Γ , the i-th coordinate of a vertex is the
slack with respect to facet Fi of the corresponding vertex in P. In particular, in
the V-embedding all the vertices have 0/1-coordinates.

Proof Let g(x) := a0 + ∑d
i=1 ai xi � 0 be a facet-defining inequality in the H-

embedding. Since P is 2-level, we may assume that g(x) takes 0/1-values on the
vertices of the H-embedding. That is, on the unit vectors e j (for j ∈ [d]) and the
origin. Thus, g(x) has either the form

∑
i∈E xi or the form 1 − ∑

i∈E xi for some
nonempty E ⊆ [d].

Consider the V-embedding with respect to Γ and fix i ∈ [d] arbitrarily. The i-th
coordinate of a point in theV-embedding and themap computing the slackwith respect
to the facet Fi are two affine forms on aff(P), and their value coincide on the vertices
v1, . . . , vd+1 ∈ P . The statement follows, since the affine hull of v1, . . . , vd+1 equals
aff(P). �	

Below, we use the shorthand M · X for the set {Mx | x ∈ X} where M is a d × d
matrix and X is a subset of R

d .

Corollary 11 Let P be the H-embedding of a 2-level d-polytope with respect to a
simplicial core Γ . Then vert(P) = P ∩ (M−1 · {0, 1}d) = P ∩ Z

d ⊆ Z
d , where

M = M(P, Γ ) is the embedding transformation matrix of P with respect to Γ .

Proof First, vert(P) = M−1 · (vert(M · P)) = M−1 · (
(M · P) ∩ {0, 1}d), where

the last equality is due to the fact that M · P is a 0/1-polytope. Thus, vert(P) =
M−1 · (

M · P) ∩ (
M−1 · {0, 1}d) = P ∩ (

M−1 · {0, 1}d).
Using the exact same reasoning while replacing {0, 1}d byZ

d , we obtain vert(P) =
P ∩ (

M−1 · Z
d
) = P ∩ Z

d , where the last equality is due to the unimodularity of M .
�	

It follows from Lemma 10 that anyH-embedding of a 2-level d-polytope is of the
form P(H) := {x ∈ R

d | 0 � x(E) � 1 for each E ∈ E}, for some hypergraph
H = (V , E), with V = [d]. Observe that P(H) is 2-level if and only if it is integral.
For every hyperedge E ∈ E , we refer to a pair of inequalities 0 � x(E) � 1 as a pair
of hyperedge constraints.

Finally, we prove a surprising structural result for 2-level polytopes: the local infor-
mation of having a simple vertex has a huge impact on the entire structure of the

123



Enumeration of 2-level polytopes 183

polytope since it forces the polytope to be isomorphic to the stable set polytope of a
perfect graph. We recall that a vertex of a d-polytope is said to be simple if it is con-
tained in exactly d facets. We use this later in Sect. 7 to recognize stable set polytopes
of perfect graphs among 2-level polytopes.

Lemma 12 A 2-level d-polytope P has a simple vertex if and only if it is isomorphic
to the stable set polytope of a perfect graph on d vertices.

Proof The “if” direction follows from the fact that, in a stable set polytope, the origin
is always a simple vertex. We now prove the “only if” direction. Let v be some simple
vertex of P . Since P is a d-polytope, v is contained in exactly d edges of P , see e.g.
[44, Proposition 2.16]. We denote by [v, vi ], i ∈ [d], the d edges containing v. There
exist facets F1, …, Fd+1 of P such that Γ := (F1, . . . , Fd+1; v1, . . . , vd , vd+1) is a
simplicial core, where vd+1 := v. The first d facets are determined by the choice of v

since they are all the facets of P containing v, while Fd+1 is any facet not containing
v. By construction, M(P, Γ ) is the d × d identity matrix.

Consider the H-embedding of P with respect to Γ , which has the form P(H) =
{x ∈ R

d | 0 � x(E) � 1 for each E ∈ E}, for some hypergraph H = (V , E) with
V = [d]. Since M(P, Γ ) = Id , theH- and V-embeddings with respect to Γ coincide.
For this reason, P(H) = P+(H), where P+(H) := P(H) ∩ R

d+.
Since P is 2-level, P(H) = P+(H) is integral. By [9, Theorem 3.4], we conclude

that P+(H) is the stable set polytope of some perfect graph. The result follows. �	

3 The enumeration algorithm

As explained above, our enumeration algorithm for 2-level polytopes relies on the basic
fact that every facet of a 2-level d-polytope is a 2-level (d − 1)-polytope (Lemma 6).

This section establishes three specific structural properties that 2-level d-polytopes
P with a prescribed facet P0 possess. First, we prove that when P0 is embedded in
{0}×R

d−1 � R
d−1 with aH-embedding, it suffices to consider all subsets A of some

finite ground set in {1} × R
d−1 in order to generate all such d-polytopes P , by taking

the convex hull of vert(P0) ∪ A. Then, we give two properties that the sets A have to
satisfy in order to produce a 2-level polytope. Indeed, every set A such that the convex
hull of vert(P0) ∪ A is 2-level:

• is discretely convex, in the sense that it is a maximal subset of points of our
finite ground set that verify all 2-valued inequalities satisfied by vert(P0) ∪ A, see
Sect. 3.2.

• does not contain any incompatible triple of points. We call a triple of points in
A incompatible if there is a facet of P0 whose affine hull and whose translates
containing the three points cannot be covered by any two parallel hyperplanes
(other than {0} × R

d−1 and {1} × R
d−1), see Sect. 3.3.

Both these properties turn out to be closed under intersection, hence yield Moore
families. Their intersection is a complete family of sets for the given embedding of
P0 (Definition 18), in the sense that all 2-level d-polytopes P with a facet isomorphic
to P0 are affinely equivalent to the convex hull of vert(P0) ∪ A for some A in such
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family. The enumeration algorithm parses sets in this complete family. We conclude
the section by stating the enumeration algorithm, see Algorithm 1.

3.1 Combining embeddings

The first property allows us to confine the vertex set of the 2-level polytopes that the
algorithm has to enumerate in a finite point set.

Lemma 13 Let P0 be a 2-level (d −1)-polytopeH-embedded in {x ∈ R
d | x1 = 0} �

R
d−1 with respect to some simplicial core Γ0, and let Md−1 := M(P0, Γ0). Every 2-

level d-polytope P with a facet isomorphic to P0 admits an embedding transformation
matrix of the form

Md = Md(c) :=

⎛

⎜⎜⎜⎝

1 0 · · · 0
c1
...

cd−1

Md−1

⎞

⎟⎟⎟⎠ (1)

where c ∈ {0, 1}d−1, and thus P is isomorphic to conv(vert(P0) ∪ A) for some A
included in

Xfull = Xfull(P0, Γ0) :=
⋃

c∈{0,1}d−1

Md(c)
−1 · ({1} × {0, 1}d−1) . (2)

Proof It is useful to think of P0 and P as being represented by their slack matrices
S(P0) and S(P), respectively. Thus, S(P) contains S(P0) as a submatrix.

As in Definition 3, we order rows and columns of the slack matrices in such a way
that the i-th facet and j-th vertex of the chosen simplicial core index the i-th row
and j-th column respectively. Thus, the top left d × d submatrix of S(P0) gives the
non-incidences between the facets and vertices of simplicial core Γ0.

Now let F1 denote any facet of P that is isomorphic to P0. Through the isomorphism
between F1 and P0, the simplicial core Γ0 of P0 determines a simplicial core of
F1. Consider any simplicial core Γ = (F1, F2, . . . , Fd+1; v1, v2, . . . , vd+1) of P
extending the simplicial core of F1. Here, v1 is some vertex of P that is not in F1,
while the vertices v2,…, vd+1 are in F1.

All incidences between the facets and vertices of Γ are prescribed, except the
incidences between v1 and F2, …, Fd+1. In particular, the embedding transformation
matrix Md = M(P, Γ ) is as in (1).

A priori, we do not know the vector c ∈ {0, 1}d−1. Suppose for now that we fix
c ∈ {0, 1}d−1, so that Md is completely defined. Let P ′ denote theH-embedding of P
with respect toΓ . Thus P ′ is a 2-level d-polytope isomorphic to P . FromCorollary 11,
we have vert(P ′) ⊆ M−1

d · {0, 1}d .
By construction, F1 � P0 is the first facet of Γ . Moreover, P0 is the facet of P ′

defined by x1 � 0. Since P ′ is 2-level, we can decompose its vertex set as vert(P ′) =
vert(P0) ∪ A where A is the vertex set of the face of P ′ opposite to P0, defined by
x1 � 1. Notice that A ⊆ M−1

d · ({1} × {0, 1}d−1). The result follows. �	
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Fig. 4 H-embedding of P0 in
{0} × R

2 with respect to its
simplicial core Γ0. The black
points in {1} × R

2 form the
corresponding set Xfull

We point out that Xfull has size 3d−1, as we prove later in Lemma 23. Moreover, in
the proof above, we have e1 ∈ A, since we are considering an H-embedding of P .

Example 14 Let d = 3, let P0 be the 2-simplex, and let Γ0 be any of its simplicial
cores (there is just one, up to symmetry). Using (2), it is easy to compute that

Xfull =
⋃

c∈{0,1}2

(
1 0 0
c1 1 0
c2 0 1

)−1

· ({1} × {0, 1}2)

=
{(

1
−1
−1

)
,

(
1

−1
0

)
,

(
1

−1
1

)
,

(
1
0

−1

)
,

(
1
0
0

)
,

(
1
0
1

)
,

(
1
1

−1

)
,

(
1
1
0

)
,

(
1
1
1

)}
.

Notice that in this case Xfull can be more compactly expressed as {1} × {−1, 0, 1}2.
This leads to an alternative way to describe Xfull in general, which is discussed in
detail in Sect. 4.2. In Fig. 4, we represent the H-embedding of P0 in {0} × R

2 with
respect to Γ0 and the set Xfull.

3.2 Discrete convexity

The sets A ⊆ Xfull of Lemma 13 such that conv(vert(P0) ∪ A) is 2-level satisfy
stringent properties. First, we focus on a “discrete convexity” property that ismotivated
by Lemma 10.

Lemma 15 Let P0 be a 2-level (d − 1)-polytope H-embedded in {x ∈ R
d | x1 =

0} � R
d−1 with respect to some simplicial core Γ0, and let Md−1 := M(P0, Γ0). Let

Md(c) and Xfull be defined as in (1) and (2), respectively. For B ⊆ vert(P0) ∪ Xfull,
let E(B) be the set of all hyperedges E ⊆ [d], E �= ∅, whose corresponding slab
S(E) := {x ∈ R

d | 0 � x(E) � 1} contains all the points of B. That is,

E(B) := {E ⊆ [d], E �= ∅ | 0 � x(E) � 1 for every x ∈ B} . (3)
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Let A ⊆ Xfull be such that e1 ∈ A. If conv(vert(P0) ∪ A) is an H-embedded 2-level
polytope, then

A = {x ∈ Xfull | 0 � x(E) � 1 for every E ∈ E(vert(P0) ∪ A)} . (4)

Moreover, if A, B ⊆ Xfull both satisfy (4), then so does A ∩ B.

Proof Assume that P := conv(vert(P0) ∪ A) is anH-embedded 2-level polytope. By
Lemma 10, there exists a collection E of nonempty subsets E ⊆ [d] such that P is
defined by the hyperedge inequalities 0 � x(E) � 1 for E ∈ E . Since the hyperedge
inequalities for E ∈ E(vert(P0) ∪ A) are all those that are valid for P , we get

P = {x ∈ R
d | 0 � x(E) � 1 for every E ∈ E(vert(P0) ∪ A)} .

Let A′ denote the right hand side of (4). Then A is contained in A′. AsXfull ⊆ Z
d , we

have A′ ⊆ P∩Z
d = vert(P) ⊆ vert(P0)∪ A, where the equality holds by Lemma 11.

Since A′ ⊆ Xfull ⊆ {x ∈ R
d | x1 = 1} and vert(P0) ⊆ {x ∈ R

d | x1 = 0}, we actually
have A′ ⊆ A. Thus A′ = A.

Next, assume that A, B ⊆ Xfull satisfy (4). For X ⊆ Xfull, let X ′ := {x ∈ Xfull |
0 � x(E) � 1 for every E ∈ E(vert(P0) ∪ X)}. Thus A = A′ and B = B ′. Also,
X ⊆ X ′ for all X ⊆ Xfull, thus in particular A ∩ B ⊆ (A ∩ B)′.

Let x ∈ (A ∩ B)′. We have 0 � x(E) � 1 for every E ∈ E(vert(P0) ∪ (A ∩ B)),
and thus for every E ∈ E(vert(P0) ∪ A) and every E ∈ E(vert(P0) ∪ B). Hence,
x ∈ A′ ∩ B ′. Using A′ = A and B ′ = B, we get (A ∩ B)′ ⊆ A′ ∩ B ′ = A ∩ B. It
follows that (A ∩ B)′ = A ∩ B, that is, A ∩ B satisfies (4). This concludes the proof.

�	
A property that we will use often is that the point e1 always satisfies all inequalities

in (4), therefore all sets A ⊆ Xfull satisfying (4) contain e1.

3.3 Incompatibilities from the base

This section discusses a second property that sets A ⊆ Xfull have to satisfy in order
for the polytope conv(vert(P0) ∪ A) to be 2-level. For simplicity, we let P denote
this 2-level d-polytope. Every facet F0 of P0 can be uniquely extended to a facet F
of P distinct from P0, see e.g. [44, Theorem 2.7]. Since P is 2-level, we see that the
vertices of P are covered by at most two translates of aff(F), the affine hull of F .

In order to model this fact, we declare three points u, v, w ∈ vert(P0) ∪ Xfull
to be incompatible whenever there exists a facet F0 of P0 such that aff(F0) and
its three translates containing u, v and w respectively cannot be covered by any
two parallel hyperplanes other than {0} × R

d−1 and {1} × R
d−1 (see Fig. 5 for an

illustration).
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Fig. 5 An example of
incompatible triple of points. As
in Example 14, P0 is the
2-simplex. The facet F0 of P0
depicted in the figure certifies
that the displayed triple
{a, d, e1} is incompatible.
Notice that {0, a, e1} is also
incompatible

Lemma 16 Let P0 be a 2-level (d −1)-polytopeH-embedded in {x ∈ R
d | x1 = 0} �

R
d−1 with respect to some simplicial core Γ0, and let Md−1 := M(P0, Γ0). As before,

let Md(c) andXfull be defined as in (1) and (2), respectively. Let A be a subset ofXfull.
If conv(vert(P0) ∪ A) is 2-level, then

vert(P0) ∪ A has no incompatible triple. (5)

Moreover, if A satisfies (5) then every A′ ⊆ A satisfies (5).

Proof By contradiction, assume that P := conv(vert(P0) ∪ A) is 2-level and u, v and
w form an incompatible triple in vert(P) = vert(P0) ∪ A. Let F0 be a facet of P0 that
witnesses this in the sense that no pair of parallel hyperplanes other than {0} × R

d−1

and {1} × R
d−1 cover F0, u, v and w.

Since P0 is a facet of P , there is unique facet F of P distinct from P0 that extends
F0. Let H := aff(F). Because P is 2-level, there exists a hyperplane H ′ parallel to H
that contains all the vertices of P that are not in F . Then H and H ′ are two parallel
hyperplanes distinct from {0} × R

d−1 and {1} × R
d−1 that cover F0, u, v and w, a

contradiction. Hence, A satisfies (5).
The fact that (5) is monotone for inclusion is straightforward. �	

3.4 Moore families

In the literature, every collection of subsets of some set X that is closed under inter-
section and contains X itself is called Moore family on X . The members of a Moore
family are usually called closed sets. The notion of Moore family was introduced by
Birkhoff in [3], referring to Moore’s book [34], that dates back to the beginning of the
last century.

Definition 17 Let P0 be a 2-level (d − 1)-polytope H-embedded in {0} × R
d−1 with

respect to some simplicial core Γ0, and let Xfull be defined as in (2). Let Adc =
Adc(P0, Γ0) denote the family of subsets A of Xfull satisfying (4). Let Acomp =
Acomp(P0, Γ0) denote the family of subsets A of Xfull satisfying (5), to which Xfull is
added.
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By Lemmas 15 and 16, both families are in fact Moore families, as well as their
intersection Adc ∩ Acomp.

Each one of these families is “sufficient” in the sense that enumerating its members
allows to recover all 2-level d-polytopes P with a facet isomorphic to the fixed 2-level
(d − 1)-polytope P0. The next definition formalizes this. Notice that e1 ∈ A for all
A ∈ Adc, and thus for all A ∈ Adc ∩ Acomp.

Definition 18 Let P0 be a 2-level (d − 1)-polytope H-embedded in {0} × R
d−1

with respect to some simplicial core Γ0, and let Xfull be defined as in (2). A fam-
ily A of subsets of Xfull is called complete with respect to P0, Γ0 every 2-level
d-polytope having a facet isomorphic to P0 is affinely equivalent (and thus isomorphic)
to conv(vert(P0) ∪ A) for some A ∈ A.

We get the following result.

Lemma 19 Using the notation of Definition 17, Adc ∩ Acomp is a complete family.

Proof The result follows directly from Lemmas 13, 15 and 16. �	

3.5 Pseudocode

To conclude this section, we provide a sketch of the pseudocode of the enumeration
algorithm.

As before, let P0 be a fixed 2-level (d − 1)-polytope and let Γ0 be a simplicial
core for P0. The algorithm enumerates all candidate sets A ∈ A for some complete
family A = A(P0, Γ0) and checks, for each of them, if it yields a 2-level polytope
P = conv(vert(P0) ∪ A) that we did not previously find. In case the latter holds, the
algorithm adds P to the list Ld of d-dimensional 2-level polytopes.

Clearly, the strength of the algorithm relies on how accurate is our choice ofA, and
how efficiently we can enumerate the sets A ∈ A. By Lemma 19, we can define A to
beAdc∩Acomp for now. In Sect. 4, we will introduce two extra ideas that will allow us
to replace the ground set Xfull by a smaller ground set and reduce the complete family
Adc ∩ Acomp.

The pseudocode of the enumeration algorithm is presented below, see Algorithm 1.
The correctness of the algorithm is a direct consequence of the fact that, for each
P0 ∈ Ld−1 with simplicial core Γ0, A = A(P0, Γ0) is a complete family. We remark
that forA = Adc ∩Acomp we can always take the first vertex v1 of the simplicial core
of the output polytope P to be e1.

4 Reductions of the ground set and complete family

In the previous section, we divided the task of enumerating all 2-level d-polytopes
into the subtasks of enumerating all 2-level d-polytopes P with a prescribed facet P0,
where P0 is a fixed 2-level (d − 1)-polytope. Prescribing P0 as a facet (sometimes
referred to as the base) yields constraints that were exploited to define a first ground
set and complete family to be used by our enumeration algorithm. In this section, we
discuss more properties that allow us to reduce both ground set and complete family.
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Algorithm 1: Enumeration algorithm
Input : a complete list Ld−1 of (d − 1)-dimensional 2-level polytopes, each stored with a

simplicial core
Output: a complete list Ld of d-dimensional 2-level polytopes, each stored with a simplicial core

1 Set Ld := ∅;
2 foreach P0 ∈ Ld−1 with simplicial core Γ0 := (F ′

2, . . . , F
′
d+1; v2, . . . , vd+1) do

3 Construct theH-embedding of P0 in {0} × R
d−1 � R

d−1 with respect to Γ0;
4 Let Md−1 := M(Γ0);
5 Construct Xfull as in (2);

6 Let A = A(P0, Γ0) ⊆ 2Xfull be a complete family with respect to P0, Γ0 ;
7 foreach A ∈ A do
8 Let P = conv(vert(P0) ∪ A);
9 if P is not isomorphic to any polytope in Ld and is 2-level then

10 Let F1 := P0 and v1 be any point in A;
11 for i = 2, . . . , d + 1 do
12 Let Fi be the facet of P distinct from F1 s.t. Fi ⊇ F ′

i ;
13 end
14 Add polytope P to Ld with simplicial core Γ := (F1, . . . , Fd+1; v1, . . . , vd+1);
15 end
16 end
17 end

First, we observe that some points of the ground set Xfull are never part of any
proper closed set in Adc ∩ Acomp (Lemma 20). Here, we call proper every closed set
in Xfull that is distinct from the whole ground set Xfull.

Next, we introduce a covering of Xfull by tiles, see (8). We prove that every proper
closed set in Adc ∩ Acomp is contained in some tile, and that there exists a collection
of translations that move proper candidate sets across tiles (Lemma 23) and preserve
membership in bothAdc (Lemma27) andAcomp (Lemma28), thus in their intersection.

Both these arguments lead to the construction of a reduced ground setXfinal ⊆ Xfull,
defined in (10). As we prove towards the end of the section, the collection of all sets in
Adc ∩Acomp that are contained in Xfinal is a complete family. This crucially improves
the efficiency of the enumeration algorithm, see Sect. 7.1.

4.1 Removing points that always cause incompatibilities

Lemma 20 Let P0 bea2-level (d−1)-polytopeH-embedded in {0}×R
d−1 with respect

to some simplicial coreΓ0, and letXfull be defined as in (2). LetF = F(P0, Γ0) denote
the collection of nonempty subsets E ⊆ {2, . . . , d} such that x(E) � 0 or x(E) � 1
defines a facet of P0.4 Finally, let

Xcomp = Xcomp(P0, Γ0) := {u ∈ Xfull | u(E) ∈ {−1, 0, 1} for every E ∈ F} . (6)

Every proper closed set A ∈ Acomp that contains e1 is contained in Xcomp.

4 Recall that x(E) := ∑
i∈E xi for every x ∈ R

d and every E ⊆ [d].
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Fig. 6 The black points in the
hyperplane {1} × R

2 represent
Xcomp when P0 is the 2-simplex

Proof By contradiction, suppose that there exists a point u ∈ A\Xcomp. Let E ∈ F be
a hyperedge such that u(E) /∈ {−1, 0, 1}, and let F0 denote a corresponding facet of
P0. Let v be any vertex of P0 not in F0.

The four affine spaces {x ∈ R
d | x(E) = 0, x1 = 0}, {x ∈ R

d | x(E) = 1, x1 =
0}, {x ∈ R

d | x(E) = 0, x1 = 1} and {x ∈ R
d | x(E) = u(E), x1 = 1} cannot

be covered by two parallel hyperplanes other than {0} × R
d−1 and {1} × R

d−1. This
implies that {u, v, e1} is an incompatible triple in vert(P0) ∪ A, and thus A /∈ Acomp,
a contradiction. (Here we used A �= Xfull. Notice that the “full” closed set A = Xfull
does not yield a 2-level polytope.) �	
Example 21 Let d = 3, let P0 be the 2-simplex, see Example 14. Using (6), we deduce
that

Xcomp =
{(

1
−1
0

)
,

(
1

−1
1

)
,

(
1
0

−1

)
,

(
1
0
0

)
,

(
1
0
1

)
,

(
1
1

−1

)
,

(
1
1
0

)}
.

Indeed, the facet x2 + x3 � 1 of P0 is such that x2 + x3 = 2 and x2 + x3 = −2 for

the points

(
1
1
1

)
,

(
1

−1
−1

)
∈ Xfull respectively, hence these points do not figure in Xcomp.

See Fig. 6 for an illustration.

Lemma 20 directly gives a first way to reduce the ground set Xfull and complete
family Adc ∩ Acomp. Along with this first reduction of the ground set, we are able to
simplify the description of the Moore familyAdc ∩Acomp. (Recall that e1 ∈ A for all
A ∈ Adc.)

Lemma 22 Assume the same notations as in Lemma 20. A proper subset A of Xfull
containing e1 belongs to Acomp if and only if A ⊆ Xcomp and

u(E) · v(E) ∈ {0, 1} for every u, v ∈ A and every E ∈ F . (7)

Proof First, consider a closed set A ∈ Acomp containing e1 and distinct fromXfull. By
Lemma 20, A ⊆ Xcomp. That is, x(E) ∈ {−1, 0, 1} for all x ∈ A and E ∈ F . So that
u(E) · v(E) ∈ {−1, 0, 1} for all u, v ∈ A and E ∈ F .
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By contradiction, suppose that there exist E ∈ F and u, v ∈ A such that u(E) ·
v(E) = −1. Up to renaming u and v, we may assume u(E) = 1 and v(E) = −1.
From the definition of F , we have x(E) ∈ {0, 1} for every x ∈ vert(P0). Therefore
vert(P0) ∪ A contains the triple of incompatible points {u, v, e1}, a contradiction.

Next, let A be a subset of Xcomp containing e1 and satisfying (7). Then for every
E ∈ F , either x(E) ∈ {0, 1} for all x ∈ A, or x(E) ∈ {−1, 0} for all x ∈ A, or both.
This implies that vert(P0) ∪ A contains no incompatible triple. Thus A ∈ Acomp. �	

4.2 Removing points that can be avoided by translating the candidate set

We now establish useful properties of Xfull that will lead to a second reduction of the
ground set. (Recall that Xfull is defined in (2) and Md(c) is defined in (1).)

For each fixed c ∈ {0, 1}d−1, we define a corresponding tile5

T (c) := Md(0)
−1 ·

(
{1} ×

d−1∏

i=1

{0 − ci , 1 − ci }
)

. (8)

Thus each tile is the vertex set of a (d − 1)-parallelepiped in {1} × R
d−1.

Lemma 23 Consider the set Xfull defined as in (2) and, for some c ∈ {0, 1}d−1 let the
matrix Md(c) be defined as in (1) and T (c) as in (8). Then T (c) = Md(c)−1 · ({1} ×
{0, 1}d−1). Thus Xfull is the union of the 2d−1 tiles T (c) for c ∈ {0, 1}d−1. Moreover,
Xfull = Md(0)−1 · ({1} × {−1, 0, 1}d−1).

Proof Letting c′ := −M−1
d−1 · c, we have

Md(c)
−1 =

⎛

⎜⎜⎜⎝

1 0 · · · 0
c′
1
...

c′
d−1

M−1
d−1

⎞

⎟⎟⎟⎠ , and thus Md(0)·Md(c)
−1 =

⎛

⎜⎜⎜⎝

1 0 · · · 0
−c1

...

−cd−1

I

⎞

⎟⎟⎟⎠ .

Hence, we have

Md(0) · Md(c)
−1 · ({1} × {0, 1}d−1) =

(
1

−c

)
+ {0} × {0, 1}d−1

= {1} ×
d−1∏

i=1

{0 − ci , 1 − ci } .

By applying Md(0)−1, this implies immediately that T (c) = M−1
d (c) · ({1} ×

{0, 1}d−1). Moreover, taking the union over all c ∈ {0, 1}d−1, we get Xfull =
Md(0)−1 · ({1} × {−1, 0, 1}d−1). �	
5 As is standard, we use

∏
to denote the Cartesian product of sets.
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As established in the next lemma, the closed sets ofAdc∩Acomp either are included
in a tile or equal to the full ground set Xfull.

Lemma 24 Assume the notations of Definition 17. Consider A � Xfull be an element
of the family Adc ∩ Acomp. Then A is contained in some tile.

Proof By contradiction, assume that A is not contained in a tile. Then, A contains two
points u and v such that (Md(0) · u)i · (Md(0) · v)i = −1 for some index i > 1. But
then the set E ∈ F corresponding to the (i − 1)-th facet of the simplicial core Γ0 has
u(E) · v(E) = −1. Since A belongs to Adc, we have e1 ∈ A. Lemma 22 gives the
desired contradiction. �	

In the following lemma, we introduce certain translations that when applied to a
tile produce another tile.

Lemma 25 Consider the tile T (c) for some c ∈ {0, 1}d−1, see (8). Then for every
a ∈ T (c), there exists c′ ∈ {0, 1}d−1 such that T (c) + e1 − a = T (c′).

Proof Let T = T (c) for some c ∈ {0, 1}d−1 and fix a ∈ T .Wewant to prove that there
exists c′ such that, for each x ∈ T we have x + e1 − a ∈ T (c′). The statement then
follows from the fact that each tile has the same number of points and the translation
is an invertible map. Fix x ∈ T and let b := Md(0) · a and y := Md(0) · x . We can
write bi+1 = bi − ci and yi+1 = yi − ci for i ∈ [d − 1], where b and y are some
vectors in {0, 1}d−1. Then we have

yi+1 − bi+1 = (yi − ci ) − (bi − ci ) = yi − bi

for i ∈ [d − 1]. It follows that y + e1 − b ∈ {1} × ∏d−1
i=1 {0 − bi , 1 − bi }, and

thus x + e1 − a ∈ T (b). Since b only depends on a, the thesis follows by setting
c′ = b. �	

Let � denote the usual lexicographic order on R
d : a � b whenever a = b or there

is an index j ∈ [d] with a j < b j and ai = bi for all i < j . Notice that � is invariant
under translation: a � b iff a + c � b+ c, for every a, b, c ∈ R

d . Below, we will use
the linear ordering �0 on R

d defined through the linear isomorphism x �→ Md(0) · x
by

a �0 b ⇐⇒ Md(0) · a � Md(0) · b . (9)

This linear ordering is also invariant under translation.
Consider a subset A of some tile T . By Lemma 25, for every a ∈ A, the translate

A′ := A+e1−a is contained in some tile T ′, and thus in particular contained inXfull.
Moreover, the d-polytopes conv(vert(P0) ∪ A) and conv(vert(P0) ∪ A′) are affinely
equivalent since A′ is a translated copy of A in the hyperplane {1} × R

d−1. In order
to eliminate some redundancies, we wish to choose a such that A′ is contained in a
smaller portion of the ground set Xfull. Lemma 26 proves that this can be achieved.

Lemma 26 Let Xfull and �0 be defined as above, see (2) and (9) respectively. Let A
be a subset of Xfull that is contained in some tile. Then there exists a∗ ∈ A such that
A + e1 − a∗ is contained in {x ∈ Xfull | e1 �0 x}.
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(a) (b)

Fig. 7 H-embedding of P0 in {0}×R
2 with respect to its simplicial coreΓ0, togetherwith the corresponding

ground set Xfinal = Xfinal(P0, Γ0) in {1} × R
2 (indicated by black points). a Xfinal if P0 is a 2-simplex. b

Xfinal if P0 is a 2-cube

Proof Let a∗ be the minimum of A for �0. By Lemma 25, A + e1 − a∗ is contained
in Xfull. By contradiction, assume that there exists a ∈ A such that a + e1 − a∗ ≺0 e1.
Since �0 is invariant under translation, we get a ≺0 a∗, a contradiction. The lemma
follows. �	

Lemma 26 motivates the following definition of our final ground set, that we use
in our actual implementation of Algorithm 1 (see Fig. 7 for an illustration):

Xfinal = Xfinal(P0, Γ0) := {x ∈ Xcomp | e1 �0 x}. (10)

We establish an invariance property for closed sets of Adc and then Acomp under
translations, that will be useful to prove that the closed sets of the restriction ofAdc ∩
Acomp forms a complete family.

Lemma 27 Let Adc be as in Definition 17. Consider a set A ∈ Adc that is contained
in some tile. Then A + e1 − a ∈ Adc for every a ∈ A.

Proof For convenience, define A′ := A+ e1 − a. By Lemma 25, A′ is also contained
in some tile. In particular, A′ ⊆ Xfull.

First, we establish a bijection between E(vert(P0)∪A) and E(vert(P0)∪A′) (see (3)
for the definition of the collection E( · )). Notice that for every E ∈ E(vert(P0) ∪ A),
we have (e1 − a)(E) ∈ {−1, 0, 1}, hence a(E) ∈ {0, 1}.

For E ∈ E(vert(P0) ∪ A), we let E ′ := E if (e1 − a)(E) = 0 and E ′ := E � {1}
if (e1 − a)(E) �= 0, where � denotes symmetric difference. Observe that we always
have (e1 − a)(E) = (e1 − a)(E ′), since E ∩ {2, . . . , d} = E ′ ∩ {2, . . . , d} and
e1, a ∈ {1} × R

d−1.
Take E ∈ E(vert(P0) ∪ A). For all x ∈ Xfull, we find

(x + e1 − a)(E ′) = x(E ′) + (e1 − a)(E ′) = x(E ′) + (e1 − a)(E) = x(E) ∈ {0, 1} .

(11)
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Indeed, if (e1 − a)(E) = 0 then E ′ = E . Second, if (e1 − a)(E) = −1 then 1 /∈ E ,
E ′ = E ∪ {1} and x(E ′) = x(E) + 1. Finally, if (e1 − a)(E) = 1 then 1 ∈ E ,
E ′ = E \ {1} and x(E ′) = x(E) − 1.

Moreover, for all x ∈ vert(P0), we have

x(E ′) = x(E) ∈ {0, 1}

since x ∈ vert(P0) implies x1 = 0. Therefore, E ′ ∈ E(vert(P0) ∪ A′).
So far, we obtained a map ψ : E(vert(P0) ∪ A) → E(vert(P0) ∪ A′) defined

as E �→ ψ(E) := E ′. This map is injective since if E, F ∈ E(vert(P0) ∪ A) have
ψ(E) = ψ(F) then E∩{2, . . . , d} = F∩{2, . . . , d} so that (e1−a)(E) = (e1−a)(F).
It follows that E = F .

Since A ∈ Adc, we have e1 ∈ A and hence 2e1 − a ∈ A′. Let a′ := 2e1 − a. By
applying the reasoning above to A′ and A = A′ + e1 − a′, we know that there exists
an injective map from E(vert(P0) ∪ A′) to E(vert(P0) ∪ A). This implies that ψ is in
fact a bijection.

Let A′′ be the set of points y ∈ Xfull such that 0 � y(E ′) � 1 for every E ∈
E(vert(P0)∪ A′). Notice that A′ ⊆ A′′. Now take x ′ ∈ A′′. Then letting x := x ′ −e1+
a = x ′+e1−a′ and using (11),wefind that x(E) = x ′(E ′) for all E ∈ E(vert(P0)∪A),
and thus x(E) ∈ {0, 1} for all E ∈ E(vert(P0) ∪ A). Hence x = x ′ − e1 + a ∈ A. We
deduce that A′′ − e1 + a ⊆ A, or equivalently, A′′ ⊆ A + e1 − a = A′. Using this,
we conclude that A′ verifies (4), or equivalently A′ ∈ Adc, as desired. �	

A similar property is satisfied by the sets inAcomp. The proof directly follows from
the definition of incompatible triple, since vert(P0)∪A contains no incompatible triple
if and only if vert(P0) ∪ (A + e1 − a) contains no incompatible triple.

Lemma 28 Let Acomp be as in Definition 17. Consider a set A ∈ Acomp that is con-
tained in some tile. Then A + e1 − a ∈ Acomp for every a ∈ A.

Lemmas 24, 27 and 28 imply that if a set A �= Xfull is inAdc∩Acomp, then A+e1−a
belongs to Adc ∩ Acomp for every a ∈ A.

4.3 Final complete family

Consider some general Moore family A on some ground set X and Y ⊆ X . There is
a natural way to construct a new Moore family starting from A and restricting to Y .
In fact, as A is a Moore family on X , the collection A∣∣Y := {A ∈ A | A ⊆ Y} ∪ {Y}
is a Moore family over Y . We call the Moore family A the restriction of A to Y .

Now consider Xfull as in (2) and Xfinal as in (10). We have the inclusions Xfinal ⊆
Xcomp ⊆ Xfull. In this section, we finally prove that the collection (Adc ∩Acomp)

∣∣Xfinal
constitutes a complete family. This is the family of sets that the enumeration algorithm
constructs, parses and tests for 2-levelness.

Lemma 29 Assume the notations of Definition 17, and define Xfinal as in (10). Then
(Adc ∩ Acomp)

∣∣Xfinal
is a complete family with respect to P0, Γ0.

123



Enumeration of 2-level polytopes 195

(a) (b)

Fig. 8 Exploded view of the sets in Adc ∩ Acomp contained in Xfinal, with respect to two different bases
P0. In the upper part of the figure, all points joined by dotted lines are identified. a Complete family when
P0 is the 2-simplex. b Complete family for when P0 is the 2-cube

Proof Let P be some 2-level d-polytope having a facet isomorphic to P0. By Lemma
19, there is a closed set A inAdc∩Acomp such that P is isomorphic to conv(vert(P0)∪
A).

Lemma 24 implies that A is contained in some tile. By Lemma 26, there exists
a∗ ∈ A such that A∗ := A+ e1 − a∗ is contained in Xfinal. By Lemmas 27 and 28, the
set A∗ belongs to Adc ∩ Acomp. Since A∗ is a translated copy of A in the hyperplane
{1} × R

d−1, conv(vert(P0) ∪ A) and conv(vert(P0) ∪ A∗) are affinely equivalent. In
particular, the latter polytope is 2-level.

We conclude that A∗ is a closed set in (Adc∩Acomp)
∣∣Xfinal

such that P is isomorphic
to conv(vert(P0) ∪ A∗). Since this holds for an arbitrary 2-level d-polytope P with a
facet isomorphic to P0, the family (Adc ∩ Acomp)

∣∣Xfinal
is complete. �	

Example 30 Figure 8a represents the collection of all closed sets in Adc ∩ Acomp
contained in Xfinal = Xfinal(P0, Γ0) when P0 is the 2-simplex. The six sets in Fig. 8a
yield four nonisomorphic 2-level polytopes, namely: the simplex, the square based
pyramid, the triangular prism and the octahedron.

Similarly, Fig. 8b represents the collectionof all closed sets inAdc∩Acomp contained
in Xfinal when P0 is the 2-cube. The four sets depicted in Fig. 8b correspond to the
square based pyramid, the triangular prism, the 3-cube. The latter is not a 2-level
polytope, the remaining ones are.
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5 Closure operators

When implementing the enumeration algorithm (see Algorithm 1 above), we take A
to be the Moore family from Lemma 29. We representA by its corresponding closure
operator. The reason for doing this is that we use Ganter’s Next-Closure algorithm [13,
14] for enumerating the closed sets ofA. This algorithm is one of the best known and
most versatile algorithms for the enumeration of closed sets, initially originating from
formal concept analysis [15]. Ganter’s algorithm takes as input the closure operator
generating the Moore family. It was employed, e.g., in [28] for constructing face
lattices of polytopes. More recently, the same algorithm was used for computations in
tropical geometry, see [25].

The goal of this section is to give the closure operator corresponding to the Moore
familyA used in the algorithm. In order to do this, we give the closure operators over
Xfull for the familiesAdc,Acomp and their intersectionAdc ∩Acomp. Then, we explain
how to obtain the closure operator for the restriction of Adc ∩ Acomp to Xfinal.

First, let us recall the definition of closure operator.

Definition 31 LetX be an arbitrary ground set. A closure operator overX is a function
cl : 2X → 2X on the power set of X that is

(i) idempotent: cl(cl(A)) = cl(A) for every A ⊆ X ,
(ii) extensive: A ⊆ cl(A) for every A ⊆ X ,
(iii) monotone: A ⊆ B ⇒ cl(A) ⊆ cl(B) for every A, B ⊆ X .

A set A ⊆ X is said to be closed with respect to cl provided that A is a fixed point of
cl, i.e., cl(A) = A.

If cl is a closure operator over X , then Acl := {A ⊆ X | cl(A) = A} is a Moore
family on X . Conversely, let A be a Moore family on X . The closure operator clA
canonically associated toA is defined as clA(A) := ⋂{B ∈ A | A ⊆ B}. It is known
that the two correspondences cl �→ Acl and A �→ clA defined above are bijective,
and moreover each one is the inverse of the other. See for instance [7] for a survey.

5.1 Discrete convex hull operator

Lemma 32 Assume the notations of Definition 17. Let cldc : 2Xfull → 2Xfull be the map
defined as:

cldc(A) := {x ∈ Xfull | 0 � x(E) � 1 for every E ∈ E(vert(P0) ∪ A)} . (12)

Then cldc is the closure operator associated to the Moore family Adc.

Proof First, we prove that cldc is a closure operator.

• cldc is extensive, since for every A ⊆ Xfull, every point of A belongs to all the
slabs S(E) for E ∈ E(A ∪ vert(P0)).

• cldc is monotone. Let A ⊆ B ⊆ Xfull. Then, we have E(vert(P0) ∪ B) ⊆
E(vert(P0) ∪ A) and hence cldc(A) ⊆ cldc(B).
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• cldc is idempotent. Let A ⊆ Xfull. Notice that all slabs S(E) containing vert(P0)∪A
also contain vert(P0) ∪ cldc(A). We get that E(vert(P0) ∪ A) ⊆ E(vert(P0) ∪
cldc(A)), and the converse inclusion by extensitivity. Thus, E(vert(P0) ∪ A) =
E(vert(P0) ∪ cldc(A)). We conclude that cldc(A) = cldc(cldc(A)).

By (4) and (12), it follows that cldc is the closure operator associated to Adc. �	

5.2 Incompatibility operator

Lemma 33 Assume the notations of Definition 17. For every A ⊆ Xfull, let

clcomp(A) :=

⎧
⎪⎨

⎪⎩

A if A ∪ vert(P0) does not contain any

incompatible triple of points,

Xfull otherwise.

(13)

Then clcomp is the closure operator associated to Acomp.

Proof Take A ⊆ Xfull. The claim follows by proving that clcomp(A) is equal to the
intersection of all closed sets in Acomp that contain A.

If A contains some incompatible triple of points, then the only closed set ofAcomp
that contains A is Xfull itself and thus clcomp(A) = Xfull.

Otherwise, A is a closed set in Acomp thus it coincides with the intersection of all
closed sets in Acomp that contain it. Moreover, by (13), clcomp(A) = A. �	

5.3 Closure operator for the intersection

Lemma 34 Assume the notations of Definition 17, and let cldc and clcomp be as in (12)
and (13). The following two properties hold:

(i) if A ∈ Adc, then clcomp(A) ∈ Adc.
(ii) if A ∈ Acomp, then cldc(A) ∈ Acomp.

Proof Property (i) follows from (13).
We prove Property (ii). Let A ∈ Acomp. We claim that, since A ∪ vert(P0) does

not contain any incompatible triple of points, neither does cldc(A) ∪ vert(P0). From
the notion of incompatibility in Sect. 3.3, since clcomp(A) = A, we deduce that for
every E ∈ F , defined in Lemma 20, there exists some nonempty E ′ ⊆ [d] such that
each point of A ∪ vert(P0) is either on the hyperplane x(E ′) = 0 or on x(E ′) = 1
and E = E ′ ∩ {2, . . . , d}. In other words, E ′ ∈ E(A ∪ vert(P0)), see (3). By (12), the
same holds for cldc(A)∪ vert(P0), thus clcomp(cldc(A)) = cldc(A), the claim follows.

�	
Lemma 35 Assume the notations of Definition 17, and let cldc and clcomp be as in (12)
and (13). The operator clcomp ◦ cldc is the closure operator for the Moore family
Adc ∩ Acomp.
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Proof For simplicity, let cl := clcomp◦cldc andA := Adc∩Acomp. First, we check that
cl is a closure operator. The extensivity and monotonicity of cl directly follow from
the analogous properties of clcomp and cldc. Moreover, the operator cl is idempotent.
In fact, by (i) in Lemma 34, cl(A) ∈ Adc, hence cl(cl(A)) = clcomp(cldc(cl(A))) =
clcomp(cl(A)) = cl(A), where in the last identity we used the fact that cl(A) =
clcomp(cldc(A)) ∈ Acomp.

If A ∈ A then cldc(A) = A and clcomp(A) = A, thus cl(A) = A. Now let A ⊆ Xfull
be such that cl(A) = A. By (i) in Lemma 34, we have cldc(A) = A. Thus clcomp(A) =
cl(A) = A. This implies A ∈ A. We conclude that A = {A ⊆ Xfull | cl(A) = A}. �	

In the notations of Definition 17, we remark that the map obtained composing cldc
and clcomp in the inverse order with respect to the one in the previous lemma is a
closure operator over Xfull and thus the collection of all its closed sets isAdc ∩Acomp
as well. The proof is analogous to the one of Lemma 35, and uses (ii) in Lemma 34.

In our enumeration algorithm we implement clcomp ◦ cldc because the number of
closed sets produced by just cldc is considerably less than the number of closed sets
produced by just clcomp, compare Table 2b and c.

5.4 Restricting to the final ground set

Our final lemma gives the closure operator for the complete family that we use in the
implementation of the enumeration algorithm. The proof is almost identical to that of
Lemma 35, and therefore not included.

Lemma 36 Assume the notations of Definition 17, and let cldc and clcomp be as in (12)
and (13). Finally, let Xfinal be as in (10). Consider the operator cl : 2Xfinal → 2Xfinal

defined by cl(A) := (clcomp ◦ cldc)(A) if (clcomp ◦ cldc)(A) ⊆ Xfinal and cl(A) :=
Xfinal otherwise. The operator cl is the closure operator for the Moore family (Adc ∩
Acomp)

∣∣Xfinal
.

6 Implementation

We implemented Algorithm 1 in C++, using the Boost Dynamic Bitset library [38] for
set manipulations, and the Boost uBLAS library [42] for basic linear algebra compu-
tations. Besides this, our implementation heavily relies on the C library nauty [33].
We use nauty for rejecting every d-polytope P = conv(vert(P0)∪ A) that is isomor-
phic to some already computed 2-level d-polytope P ′ ∈ Ld , and also to test whether
a given d-polytope P is 2-level. We provide more detail about the implementation
below.

6.1 Storing and comparing 2-level polytopes

Two-level polytopes P are stored via their 0/1 slack matrices S(P). We order the rows
and columns of S(P) in such a way that the upper left corner of the matrix gives the
non-incidences of the preferred simplicial core. Let us call two 0/1 matrices M1 and
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M2 isomorphic if the rows and columns of M1 can be permuted to give M2, that is,
there exist permutation matrices L and R such that LM1R = M2. In order to detect
isomorphism between two 2-level polytopes P1 and P2, we test whether their slack
matrices S(P1) and S(P2) are isomorphic. Notice that if we have any 0/1matrixM , we
can check whether it is the slack matrix of a 2-level (d − 1)-polytope by comparing it
to each S(P0), for P0 ∈ Ld−1. Similarly, we can check whether M is the slack matrix
of an already enumerated 2-level d-polytope by using Ld instead.

Isomorphism tests of two 0/1 matrices can be efficiently performed by nauty. We
represent each 0/1 matrix M ∈ {0, 1}m×n by a bipartite graph G = G(M) with m + n
vertices, togetherwith a 2-coloring of its vertex set, in the obviousway. For instance,we
may let V (G) := ({0} × [m]) ∪ ({1} × [n]) and E(G) := {{(0, i), (1, j)} | Mi j = 1}.
The 2-coloring is then φ : V (G) → {0, 1} : (c, k) �→ c. Now, two 0/1 matrices
M1 and M2 are isomorphic if and only if the colored graphs G(M1) and G(M2) are
isomorphic, which can be tested by nauty.

6.2 Testing for 2-levelness

Now we describe how, for a given A ⊆ Xfinal, we check whether the polytope P :=
conv(vert(P0)∪A) is 2-level or not. Roughly speaking, we build a 0/1matrixM which
is the slack matrix of P , provided that P is 2-level. For each row of this matrix M ,
we extract one submatrix of M , which is the slack matrix of the corresponding facet
of P , provided that P is 2-level. Then we check that each one of these submatrices is
the slack matrix of a 2-level (d − 1)-polytope, using Ld−1. We now provide further
details about this procedure.

First, we need to recall the general notion of slack matrix of a pair polytope-
polyhedron, the first nested into the second. This definition first appeared in [16,36].

Definition 37 (Reduced slack matrix of a pair) Let P be a polytope and Q be a poly-
hedron with P ⊆ Q ⊆ R

d . Consider an inner description P = conv({v1, . . . , vn})
and an outer description Q = {x ∈ R

d | Ax � b}, where the system Ax � b consists
of the m inequalities A1x � b1, . . . , Amx � bm . The slack matrix of the pair (P, Q)

with respect to these inner and outer descriptions is the m × n matrix S = S(P, Q)

with Si j := bi − Aiv j .
The reduced slack matrix Sred(P, Q) of the pair (P, Q), is the matrix obtained

from S by removing the rows, whose support properly contains the support of some
other row or whose support is the same as the support of a row with a smaller index.

Given A ⊆ Xfinal, let P be conv(vert(P0)∪ A) and let Q be the polyhedron defined
by the inequalities x(E) � 0 and x(E) � 1 for E ∈ E(vert(P0) ∪ A). Define

M := Sred(P, Q) . (14)

Observe thatM is the slackmatrix of a polytope if and only if P = Q. By construction,
M is a 0/1-matrix. By Lemma 10, P is 2-level if and only if M is the slack matrix of a
polytope. Thus we can reduce testing for 2-levelness to testing whether a 0/1-matrix
is a slack matrix. This is in fact a particular case of the problem of recognizing under
what assumptions a matrix is the slack matrix of a polytope, see [17].
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Take a polyhedral pair (P, Q) and the corresponding reduced slack matrix M =
Sred(P, Q). As inDefinition 37, let vert(P) := {v1, . . . , vn} and let Ai x � bi , i ∈ [m′]
be the inequalities that index the rows of M . Moreover, let us assume that M ∈
{0, 1}m′×n . For every row index i ∈ [m′], we construct the set of column indices
corresponding to zeros in the i-th row, Fi := { j ∈ [n] | Mi j = 0}. We write i ∼ j for
distinct indices i, j ∈ [m′] if there is no index k ∈ [m′] distinct from i and j such that
Fi ∩ Fj ⊆ Fk . We consider the polytope Pi and the polyhedron Qi defined as:

Pi := conv({v j | j ∈ Fi }) , (15)

Qi :=
{
x ∈ R

d
∣∣∣ Ai x = bi ,
A j x � b j , for all j ∈ [m′], j ∼ i

}
. (16)

We remark that Pi ⊆ Qi as all inequalities defining Q are valid for P . Moreover, the
slack matrix of the pair (Pi , Qi ) is reduced by the definition of ∼.

Algorithm 2: Combinatorial test for 2-levelness
Input : The list Ld−1 of 0/1 slack matrices of 2-level (d − 1)-polytopes; a pair (P, Q), as in

Definition 37, where P and Q are d-dimensional; the reduced slack matrix
M = Sred(P, Q) ∈ {0, 1}m′×n .

Output: true if P = Q (and thus M is the slack matrix of the 2-level d-polytope P), false
otherwise.

1 for i = 1, . . . ,m′ do
2 Let Pi be as in (15);
3 Let Qi be as in (16);
4 if Sred(Pi , Qi ) is not isomorphic to any matrix listed in Ld−1 then
5 return false
6 end
7 end
8 return true

Lemma 38 Let a pair (P, Q) be as in Definition 37 and let M = Sred(P, Q) ∈ R
m′×n

be the reduced slack matrix of (P, Q). Moreover, assume that M is a 0/1-matrix. Then
Algorithm 2 correctly detects whether P = Q i.e., whether M is the slack matrix of
a 2-level d-polytope.

Proof It suffices to show that M is the slack matrix of the d-polytope P if and only if
for every i ∈ [m′], the matrix Sred(Pi , Qi ) is the slack matrix of Pi , where Pi is as in
(15) and Qi is as in (16).

The implication ‘⇒’ is trivial. In order to show ‘⇐’, we prove the contrapositive
implication: suppose thatM is not the slackmatrix of P , thenM is not the slackmatrix
of any d-polytope. Consider the set Q̃ = ⋃

i∈[m′]{x ∈ R
d | Ai x = bi , A j x � b j ,

j ∈ [m′]}. Note, that in general Q̃ is not the boundary of Q, but it is the boundary of a
polyhedron containing Q. Thus, there exists a point q ∈ Q̃ \ P . Indeed, if every point
x ∈ Q̃ lies in P , then Q is completely contained in P , contradicting the assumption.
This point q ∈ Q̃ lies in Qi for some i ∈ [m′]. Since this point q is not in P , it is not
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in Pi either. For this reason, q is a witness to the fact that Pi � Qi , thus Sred(Pi , Qi )

is not a slack matrix. �	
We point out that this test only uses combinatorial information that can be found

in the non-incidence matrix M . Therefore there is no need to explicitly compute the
convex hull of P0 and A in order to determine whether P = conv(vert(P0) ∪ A) is
2-level. This improves over the algorithm presented in [6] and [11].

6.3 Generating the complete family

We implement Ganter’s Next-Closure algorithm (see, e.g., [15]), which we use to
enumerate all closed sets of the closure operator cl, defined in Lemma 36. The Next-
Closure algorithm generates all the closed sets one after the other in lexicographic
order, starting with the closure of the empty set, which is cl(∅) = {e1} in our case,
and ending with Xfinal. To find the closed set that comes right after the current closed
set A, the Next-Closure algorithm computes at most |Xfinal \ A| closures, see [13,14].
Notice that each time we compute the discrete convex hull closure of a set B ⊆ Xfinal,
we may record the corresponding set E(vert(P0) ∪ B), since this is information that
is useful for the 2-levelness test.

6.4 Further optimizations

We discard the candidate set A if the maximum number of zeros per row of M =
Sred(P, Q), as defined in (14), is greater than the number of vertices of the base P0.
In this way we avoid adding multiple times different isomorphic copies of the same
2-level polytope to the list Ld . If there exists a facet having more vertices than P0 and
it is also 2-level, the polytope P will be constructed when that facet will be taken as
base. In particular, if the base P0 is the simplex, only simplicial polytopes are tested
for 2-levelness.

Example 39 In order to enumerate all the 3-dimensional 2-level polytopes, the enu-
meration algorithm considers all the polytopes constructed using the closed sets in
Fig. 8a when P0 is the 2-simplex and Fig. 8b when P0 is the 2-cube. Obviously some
polytopes are computed twice as the base changes, for instance the square-based pyra-
mid and the triangular prism. With the optimization described above, we construct the
square base pyramid, or the triangular prism only when we take the 2-cube as base.

A final optimization concerns the 2-levelness test: if some index i is found such
that the number of indices j such that j ∼ i is less than d, then we can safely reject the
matrix M = Sred(P, Q) in (14). Indeed, if M was the slack matrix of a d-polytope,
then every facet Fi would have at least d adjacent facets Fj .
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Table 1 Comparison of numbers for combinatorially inequivalent 0/1-polytopes [1], 2-level polytopes and
their sub-classes. polar: 2-level polytopes whose polar is 2-level, CS: centrally symmetric 2-level polytopes,
Δ-f: 2-level polytopes with one simplicial facet, STAB: stable set polytopes of perfect graphs, Birk: faces
of Birkhoff polytopes from [35]

d 0/1 2-level Polar CS STAB Δ-f Birk

3 8 5 4 2 4 4 4

4 192 19 12 4 11 12 11

5 1,048,576 106 42 13 33 41 33

6 – 1150 276 45 148 248 129

7 – 27,292 3526 238 906 2687 661

7 Experimental results

As our main experimental result, we obtain a database of all 2-level polytopes of
dimension d � 7, up to isomorphism.6 Table 1 summarizes these results regarding
the number of 2-level polytopes and interesting subclasses.

We give the number of combinatorial types in the class of polar 2-level polytopes,
those whose polar is 2-level. In fact, 2-levelness is in general not preserved under the
operation of taking polars, and data show that the fraction of such polytopes rapidly
decreases with the dimension.

A subset of polar 2-level polytopes is the class of centrally symmetric 2-level
polytopes. From the analysis of the data we noticed that, among all 2-level polytopes,
the centrally symmetric ones maximize the product of number of facets and number
of vertices, see Fig. 10a.

Another well known class of 2-level polytopes are the stable set polytopes of perfect
graphs. Lemma 12 provides an elementary way to recognize them: they are exactly
2-level polytopes with a simple vertex. Table 1 also shows the number of polytopes
having a simplicial facet. This is a natural property to consider, being dual to the one
of having a simple vertex.

Finally, we list the number of faces of Birkhoff polytopes, forwhichwe refer to [35].
Birkhoff polytopes are a classical family of 2-level polytopes, and they correspond to
the perfect matching polytopes of complete bipartite graphs.

7.1 Computational times

With our latest implementation, the databases for d � 6 were computed in a total time
of about 3min on a computer cluster,7 which improves the computational times of our
previous implementations [6,11]. However, we remark that a direct comparison of
the running times is not possible because the code presented here is not a secondary
implementation of the same one used in [6,11]. We were able to cut down the running

6 The complete list of all slack matrices of combinatorially inequivalent 2-level polytopes up to
dimension 7 is available online at http://homepages.ulb.ac.be/~mmacchia/data.html.
7 Hydra balanced cluster: https://cc.ulb.ac.be/hpc/hydra.php with AMD Opteron(TM) 6134 2.3
GHz processors.
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Fig. 9 Histogram representing the running time for the enumeration of all 2-level 7-polytopes with a base
P0 as a function of the number of vertices of P0. Each bar represents the sum of the running times for bases
corresponding to the same number of vertices

time by rewriting it from scratch in C++ and using a reduced ground set, a new closure
operator (Lemma 36 in Sect. 5 and (10) in Sect. 4) and a new, combinatorial 2-levelness
test (Sect. 6).

The d = 7 is the first challenging case for our code. We noticed that the time to
compute all 2-level polytopes with a given base P0 is sharply decreasing as a function
of the number of vertices of P0, see Fig. 9. When P0 is the simplex, the computational
time is maximum and close to 5

6 of the total time for d = 7.
Recall that our code discards candidate sets that give polytopes having a facet with

more vertices than the prescribed base P0. Thus the code enumerates all simplicial
2-level polytopes when P0 is a simplex. In fact, it is known that the simplicial 2-level
d-polytopes are the free sums of d/k simplices of dimension k, for k a divisor of d
[21]. For instance, for d = 7 there exist exactly two simplicial 2-level 7-polytopes: the
simplex (obtained for k = 1) and the cross-polytope (obtained for k = 7). Thus, we
could in fact have skipped the job that corresponds to taking a simplex as the base P0.

The current implementation provided a list of all combinatorial types of 2-level
polytopes up to dimension 7 in about 53 h. There might still be ways to further
improve it, for instance generalizing the closure operator and reducing the number of
times isomorphic copies of the same 2-level polytope is constructed.

Profiling the code, we determined that 60-70% of the running time is dedicated to
construction of incidences of points of vert(P0) ∪ A and facet defining inequalities
of the form x(E) ≥ 0 or x(E) ≤ 1 for E ∈ E(vert(P0) ∪ A) while pushing the
embedding transformation matrix it top-left position, 8-9% to the computation of
cldc(A) and 5-8% to clcomp(A) of subset A of the ground set.

Refer to Table 2a for more details about computational times. A comparison of
the three sub-tables in Table 2 immediately shows the effect of using the composite
closure operator cl defined in Lemma 36 as opposed to the use of just cldc or clcomp.
As expected, the number of closed sets and the running times corresponding to cl are
considerably reduced when compared to the ones corresponding to just cldc (compare
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Table 2 (a) Computational
results of enumeration
algorithm, using
cl = clcomp ◦ cldc (sequential
time), (b) Number of closed sets
and 2-level tests using just cldc,
up to d = 6, (c) Number of
closed sets and 2-level tests
using just clcomp, up to d = 6

d 2-level Closed sets 2-level tests Time (s)

(a)

3 5 13 6 0.003

4 19 132 45 0.034

5 106 3828 456 1.2

6 1150 500,072 6875 205.7

7 27,292 563,695,419 159,834 218,397

d Closed sets 2-level tests Time (s)

(b)

3 13 6 0.005

4 226 45 0.038

5 14,895 456 1.593

6 6,423,012 6875 973

d Closed sets 2-level tests Time (s)

(c)

3 32 10 0.005

4 884 85 0.12

5 186,876 893 31.27

6 > 109 – > 8 · 105

Table 2a and b) or just clcomp (compare Table 2a and c). Moreover, the computation
for d = 6 using just clcomp did not finish after about ten days and it already produced
109 closed sets.

7.2 Parallelization of the computation

We split the computation into several independent jobs, each corresponding to a certain
set of bases P0. We created jobs testing all closed sets corresponding to only 1 base
for the first 100 2-level 6-dimensional bases, corresponding to 5 bases for the bases
between the 101st and the 500th, corresponding to 20 bases for the bases between the
501st and the 1000th and to 50 bases for the bases between the 1001st and the 1150th
(bases are ordered by increasing number of vertices). In total we submitted 208 jobs
to the cluster. All jobs but the one corresponding to the 6-simplex as base, finished in
less than 3 h. Of these jobs, all but two finished in less than 20min. Notice that we
could use the characterization in [21] and skip the job that corresponds to taking a
simplex as the base P0.

7.3 More statistics

Taking advantage of the data obtained, we computed a number of further statistics to
understand the structure and properties of 2-level polytopes.
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(a) (b)

Fig. 10 a Relation between number of facets and number of vertices for 2-level 7-polytopes; b histogram
of the number of 2-level 7-polytopes as a function of the number of vertices (in log scale)

First, we considered the relation between the number of vertices and the number
of facets in d = 7, see Fig. 10a. The results are discussed in the next section.

Second, we inspected the number of 2-level polytopes as a function of the number
of vertices in dimension 7, see Fig. 10b. Interestingly, most of the polytopes, namely
94%, have 13 to 34 vertices.

Finally, our experiments show that all 2-level centrally symmetric polytopes, up
to dimension 7, validate Kalai’s 3d conjecture [29]. Note that for general centrally
symmetric polytopes, Kalai’s conjecture is known to be true only up to dimension
4 [37]. Dimension 5 is the lowest dimension in which we found centrally symmet-
ric polytopes that are neither Hanner nor Hansen (for instance, one with f -vector
(12, 60, 120, 90, 20)). In dimension 6 we found a 2-level centrally symmetric poly-
tope with f -vector (20, 120, 290, 310, 144, 24), for which therefore f0 + f4 = 44.
This is a stronger counterexample to conjecture B of [29] than the one presented in
[37] having f0 + f4 = 48.

8 Discussion

The experimental evidence we gathered leads to interesting research questions. As a
sample, we propose three conjectures.

The first conjecture concerns the asymptotic growth of the function �(d) that counts
the number of (combinatorially distinct) 2-level polytopes in dimension d. All the
known constructions of 2-level d-polytopes are ultimately based on graphs (sometimes
directed) with O(d) vertices. As a matter of fact, the best lower bound we have on
the number of 2-level polytopes is �(d) � 2Ω(d2). For instance, stable set polytopes
of bipartite graphs give �(d) � 2d

2/4−o(1).
Furthermore, Fig. 11a strongly suggests that �(d) might be 2O(d2). This would

have a big impact since, as mentioned above, every 2-level d-polytope gives rise to
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(a) (b)

Fig. 11 Bounds on number of 2-level polytopes, suspensions and faces. a Numbers of 2-level polytopes
and 2-level suspensions. bMaximum number f (d) of faces of 2-level polytopes

Table 3 Number of 2-level
suspensions s(d), 2-level
polytopes �(d), ratio of number
of 2-level suspensions to 2-level
polytopes

d �(d) s(d)
s(d)
�(d)

3 5 4 .8

4 19 15 .789

5 106 88 .830

6 1150 956 .831

7 27,292 23,279 .854

a 0/1-optimization problem in d variables that can be efficiently solved. If indeed
�(d) = 2Θ(d2), then intuitively every such optimization problem is some problem on
a graph with O(d) vertices. This motivates our first conjecture.

Conjecture 1 The number �(d) of combinatorially distinct 2-level d-polytopes satisfies
�(d) � 2poly(d).

A suspension of a polytope P0 ⊆ {x ∈ R
d | x1 = 0} is any polytope P obtained as

the convex hull of P0 and P1, where P1 ⊆ {x ∈ R
d | x1 = 1} is the translate of some

non-empty face of P0. For instance, the prism and the pyramid over a polytope P0 are
examples of suspensions. Also, any stable set polytope is a suspension.

Analyzing our experimental data, we noticed that a majority of 2-level d-polytopes
for d � 7 are suspensions of (d − 1)-polytopes. Let s(d) denote the number of
(combinatorially distinct) 2-level suspensions of dimension d. In Table 3, we give the
values of the �(d) and s(d) coming from our experiments, for d � 7, see also Fig. 11a.

In view of Table 3, it is natural to ask what is the fraction of 2-level d-polytopes
that are suspensions. Excluding dimension 3, we observe that this fraction increases
with the dimension. This motivates our second conjecture.

Conjecture 2 Letting �(d) and s(d) respectively denote the number of combinatorially
distinct 2-level polytopes and 2-level suspensions in dimension d, we have �(d) =
Θ(s(d)).

Our last conjecture is motivated by Fig. 10a.

Conjecture 3 For every 2-level d-polytope P, we have f0(P) fd−1(P) � d2d+1
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Experiments show that this upper bound holds up to d = 7. A recent work subsequent
to the conference version of the current paper established that this conjecture is true
for several infinite classes of 2-level polytopes [2]. It is known that f0(P) � 2d is
satisfied with equality if and only if P is a cube and fd−1(P) � 2d is satisfied with
equality if and only if P is a cross-polytope [18]. Notice that, in both of these cases,
f0(P) fd−1(P) = d2d+1.
We conclude by proving some dependence between the above conjectures.

Proposition 40 Conjecture 2 implies Conjecture 1.

Proof Let us prove by induction that Conjecture 2 implies �(d) � cd
3
for a sufficiently

large constant c > 1. Let c � 2 be large enough so that �(d) � c · s(d) for all
dimensions d. Notice that the maximum number f (d) of faces of a 2-level d-polytope
satisfies f (d) � (2d)d = 2d

2 � cd
2
since 2-level d-polytopes have at most 2d

vertices. Now using the induction hypothesis �(d − 1) � c(d−1)3 , we have

�(d) � c · s(d) � c · �(d − 1) · f (d − 1) � c · c(d−1)3 · c(d−1)2 � cd
3
,

which proves the claim. �	
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Appendix: On the implementation of the Enumeration algorithm

This appendix is meant to provide a high level description of the implementation of the
Enumeration algorithm, Algorithm 1.8 We implemented the Enumeration algorithm
in C++.

It is possible to run the code by passing it two parameters:

./2L_enum d verbose_flag

where:

• d is an integer between1 and7, denoting thedimensiond of the list of combinatorial
inequivalent 2-level polytopes to enumerate. The algorithm creates a text file with
the list of their slack matrices. The algorithm reads a file named (d − 1).txt
in input, containing the list of all (d − 1)-dimensional slack matrices of 2-level
polytopes.

• verbose_flag is an integer between 0 and 3.

– verbose_flag = 0 : minimal output.

8 Available at https://doi.org/10.5281/zenodo.1405386.
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– verbose_flag = 1 : the output includes all closed sets and tests for classes
of 2-level polytopes.

– verbose_flag = 2 : the output includes all closed sets, H-embedding of
ground set and tests for classes of 2-level polytopes (see Table 1).

– verbose_flag=3 : the output includes all closed sets,V- andH-embedding
ground sets, the slabs vs ground set incidence matrix and tests for classes of
2-level polytopes (see Table 1).

Our implementation of Algorithm 1 is organized as follows. Fix d ≥ 1.

• We read the complete list Ld−1 of d − 1-dimensional 2-level polytopes through
their slack matrices. Moreover for every d − 1-dimensional 2-level polytope P0,
we assume we are given the embedding transformation matrix Md−1 := M(Γ0)

for some simplicial core Γ0 := (F ′
2, . . . , Fd+1; v2, . . . , vd+1) of P0. In particular,

the top left d×d submatrix of the slack matrix S(P0) that we pass in input is lower
triangular, and corresponds to the rows and columns of S(P0) which are indexed
by facets F ′

2, . . . , Fd+1 and vertices v2, . . . , vd+1, respectively.
• We construct the H-embedding of P0 in the hyperplane {x ∈ R

d | x1 = 0} with
respect to the simplicial core Γ0.

• Using the definition of H-embedding and the slack matrix S(P0), we build the
list of all sets E such that either x(E) ≥ 0 or x(E) ≤ 1 is a facet of P0 in the
H-embedding of P0 in the hyperplane {x ∈ R

d | x1 = 0} with respect to the
simplicial core Γ0.

• We construct the H-embedding of the ground set Xfinal in the hyperplane {x ∈
R
d | x1 = 1} with respect to the simplicial core Γ0, see (10).

• We build the list of all possible slabs (as in Lemma 15) that extend facets of P0 to
R
d .

• We build incidence matrices between points of Xfinal and slabs.
• At this point we are ready to start Ganter’s Next-Closure algorithm [13,14] to
enumerate all closed sets with respect to closure operator cl in Lemma 36.

• According to Lemma 15), for every A ⊆ Xfinal, the set cldc(A) is the set of row
indices that contains A and corresponds to a maximal rectangle of ones in the
ground set points vs slabs incidence matrix.

• For a set A ⊆ Xfinal, we compute clcomp by using the list of facets of P0 in
its H-embedding and applying the definition of incompatible pair of points in
Lemma 22.

• For every closed set A ⊆ Xfinal with respect to cl, we construct the incidencematrix
S of points of vert(P0) ∪ A and the subset of slabs constructed as in Lemma 15
and containing a maximal set of point in vert(P0) ∪ A.

• We test every such candidate martix S for 2-levelness using nauty and Algo-
rithm 2.

• If we obtain a positive answer, that is, S is the slack matrix of some d-dimensional
2-level polytope, we browse the list Ld of slack matrices of d-dimensional 2-level
polytopes that we constructed until that moment and check whether an S already
exists there, up to permutation of rows and columns. This test is performed by
nauty, as explained in Sect. 6.1. If S is not listed, then it is added to Ld .
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