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Abstract
We consider the problem of optimizing an unknown function given as an oracle over a
mixed-integer box-constrained set. We assume that the oracle is expensive to evaluate,
so that estimating partial derivatives by finite differences is impractical. In the litera-
ture, this is typically called a black-box optimization problem with costly evaluation.
This paper describes the solutionmethodology implemented in the open-source library
RBFOpt, available on COIN-OR. The algorithm is based on the Radial Basis Function
method originally proposed by Gutmann (J Glob Optim 19:201–227, 2001. https://
doi.org/10.1023/A:1011255519438), which builds and iteratively refines a surrogate
model of the unknown objective function. The twomain methodological contributions
of this paper are an approach to exploit a noisy but less expensive oracle to accelerate
convergence to the optimum of the exact oracle, and the introduction of an automatic
model selection phase during the optimization process. Numerical experiments show
thatRBFOpt is highly competitive on a test set of continuous andmixed-integer nonlin-
ear unconstrained problems taken from the literature: it outperforms the open-source
solvers included in our comparison by a large amount, and performs slightly better
than a commercial solver. Our empirical evaluation provides insight on which param-
eterizations of the algorithm are the most effective in practice. The software reviewed
as part of this submission was given the Digital Object Identifier (DOI) https://doi.
org/10.5281/zenodo.597767.
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1 Introduction

In this paper, we address a problem cast in the following form:

min f (x)
x ∈ [x L , xU ]
x ∈ Z

q × R
n−q ,

⎫
⎬

⎭
(1)

where f : Zq × R
n−q → R, x L , xU ∈ R

n are vectors of (finite) lower and upper
bounds on the decision variables, and q ≤ n. We assume that the analytical expression
for f is unknown and function values are only available through an oracle that is
expensive to evaluate, e.g., a time-consuming computer simulation. In the literature,
this is typically called a black-box optimization problem with costly evaluation.

This problem class finds many applications. Our work originated from a project in
architectural design where we faced the following problem (see also [12,53]). During
the design phase, a building can be described by a parametricmodel and the parameters
are the decision variables, which can be continuous or discrete. Lighting and heating
simulation software can be used to study energy profiles of buildings, simulating sun
exposure over a prescribed period of time. This information can be used to determine
a performance measure, i.e., an objective function, but the analytical expression is not
available due to the complexity of the simulations. The goal is to optimize this function
to find a good parameterization of the parametric model of the building. However, each
run of the simulation software usually takes considerable time: up to several hours.
Thus, we want to optimize the objective function within a small budget of function
evaluations to keep computing times under control. Other applications of this approach
can be found in engineering disciplines where the simulation relies on the solution of a
system of PDEs, for example in the context of performance optimization for complex
physical devices such as engines, see e.g., [4,25].

There is a very large stream of literature on black-box optimization in general,
also called derivative-free optimization (sometimes generating confusion). Numerous
methods have been proposed, and the choice of a particular method should depend
on the number of function evaluations allowed, the dimension of the problem, and
its structural properties. Heuristic approaches are very common thanks to their sim-
plicity, for example scatter search, simulated annealing and evolutionary algorithms;
see [19,20] for an overview. However, these methods are not specifically tailored for
the setting of this paper and often require a large number of function evaluations, as has
been noted by [22,47] among others. In general, methods that do not take advantage of
the inherent smoothness of the objective functionmay take a long time to converge [9].
Unfortunately, because of the assumption of expensive function evaluations, estimat-
ing partial derivatives by finite differencesmay be impractical and often has prohibitive
computational cost. A commonly used approach in this context is that of building an
approximate model of f , also called response surface or surrogate model. Examples
of this approach are the Gutmann’s Radial Basis Function (RBF) method [22] (see
also [46]), the stochastic RBF method [47], and the kriging-based Efficient Global
Optimization method (EGO) [33]. The surrogate model constructed by these methods
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RBFOpt: an open-source library for black-box optimization 599

is a global model that uses all available information on f , as opposed to methods
that only build a local model such as trust region methods [9,10]. Other methods for
black-box optimization rely on direct search, i.e., they do not build a surrogate model
of the objective function or of its gradient. An overview of direct search methods can
be found in [34], and a comprehensive treatment is given in [10]. We refer the reader
to [49] and the references therein for a recent survey on black-box methods with an
extensive computational evaluation.

In this paper we focus on problems that are potentiallymultimodal, relatively small-
dimensional, and for which only a small number of function evaluations is allowed.
For this type of problems, algorithms based on a surrogate model showed good perfor-
mance in practice. Empirical evidence reported in [27] suggests that Gutmann’s RBF
method is one of the most effective on engineering problems. Recent work showcases
the effectiveness of global optimization approaches that rely on RBF surrogate models
in a variety of contexts, see e.g. [29,39,53].

In this paper, we review Gutmann’s RBF method and present some extensions
aimed at improving its practical performance. Our contributions are a fast procedure
for automatic model selection, and an approach to accelerate convergence in case we
have access to an additional oracle that returns function values affected by error but is
less expensive to evaluate than the exact oracle for f . Althoughwe only test these ideas
in the context of Gutmann’s RBF method, these contributions can be adapted to other
surrogatemodelmethods that useRBF interpolants, and should therefore be considered
of general interest. Another contribution of this paper is the associated implementation
in an open-source library called RBFOpt. We show that RBFOpt is competitive with
state-of-the-art commercial software, and substantially more effective than several
black-box optimization methods taken from the literature.

The rest of the paper is organized as follows. In Sect. 2 we review Gutmann’s
RBF method. Sections 3 and 4 present our modifications of the algorithm (automatic
model selection and exploitation of a noisy oracle) to improve the efficacy of the
method. Section 5 describes our implementation. Section 6 reports the results of a
computational evaluation on a set of test problems taken from the literature. Section 7
concludes the paper.

2 The radial basis function algorithm for black-box optimization

Before we discuss global optimization algorithms based on RBFs, we must define the
surrogate model. Let Ω := [x L , xU ] ⊂ R

n , ΩI := Ω ∩ (Zq ×R
n−q), and we assume

that the box constraints on the first q variables have integer endpoints. Given k distinct
points x1, . . . , xk ∈ Ω , the radial basis function interpolant sk is defined as:

sk(x) :=
k∑

i=1

λiφ(‖x − xi‖) + p(x), (2)

where φ : R+ → R, λ1, . . . , λk ∈ R and p is a polynomial of degree d. The minimum
degree dmin to guarantee existence of the interpolant depends on the form of the
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Table 1 Common RBF
functions

φ(r) dmin

r (linear) 0

r3 (cubic) 1
√
r2 + γ 2 (multiquadric) 0

r2 log r (thin plate spline) 1

functionsφ. Typically, the polynomial is picked to be of degree exactly dmin in practical
implementations, and we follow this custom. Table 1 gives the most commonly used
radial basis functions φ(r) and the corresponding value of dmin. The parameter γ > 0
can be used to change the shape of these functions, but it is usually set to 1.

If φ(r) is cubic or thin plate spline, dmin = 1 and with d = dmin we obtain an
interpolant of the form:

sk(x) :=
k∑

i=1

λiφ(‖x − xi‖) + hT
(
x
1

)

, (3)

where h ∈ R
n+1. The values of λi , h can be determined by solving the following

linear system: (
Φ P
PT 0(n+1)×(n+1)

)(
λ

h

)

=
(

F
0n+1

)

, (4)

with:

Φ = (
φ(‖xi − x j‖)

)

i, j=1,...,k , P =
⎛

⎜
⎝

xT1 1
...

...

xTk 1

⎞

⎟
⎠ , λ =

⎛

⎜
⎝

λ1
...

λk

⎞

⎟
⎠ , F =

⎛

⎜
⎝

f (x1)
...

f (xk)

⎞

⎟
⎠ .

The algorithm presented later in this section ensures that the points x1, . . . , xk are
pairwise distinct and rank(P) = n + 1, guaranteeing that the system (4) is nonsingu-
lar [22]. We denote by Ak the matrix of (4) with points x1, . . . , xk .

If φ(r) is linear or multiquadric, dmin = 0 so that for d = dmin, P is the all-one
column vector of dimension k. The dimensions of the zero matrix and vector in (4)
are adjusted accordingly.

The above discussion shows that given a set of points, a RBF interpolant can be
computed by solving a linear system. The introduction of RBFs as a tool for the
global optimization of expensive black-box functions is due to [22], relying on the
work of [44]. Since then, several global optimization methods that follow the general
scheme given below have been proposed, see e.g. [38,41,47]:

– Initial step Choose affinely independent points x1, . . . , xn+1 ∈ ΩI using an ini-
tialization strategy. Set k ← n + 1.

– Iteration step Repeat the following steps.

(i) Compute the RBF interpolant sk to the points x1, . . . , xk , solving (4).
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(ii) Choose a trade-off between exploration and exploitation.
(iii) Determine the next point xk+1 based on the choice at step (ii).
(iv) Evaluate f at xk+1.
(v) If we exceed a prescribed number of function evaluations, stop. Otherwise, set

k ← k + 1.

At Iteration step (ii), exploration implies trying to improve the surrogate model in
unknown parts of the domain, whereas exploitation implies trying to find the best
objective function value based on the current surrogate model. To turn the general
scheme above into a fully specified algorithm, we must describe how to choose points
in the Initial step, and an implementation of Iteration steps (ii) and (iii).

2.1 Choice of the initial sample points

One of the simplest methods to select the initial sample points is to pick the 2n corner
points of the box ΩI , but this is reasonable only for small values of n. A commonly
used strategy [22,26,27] is to choose n + 1 corner points of the box ΩI and the cen-
tral point of ΩI , but this could prioritize the exploration in a part of the domain.
Holmström et al. [27] chooses x L and x L + (xUi − x Li )ei for i = 1, . . . , n as initial
corner points, where ei is the i th vector of the standard orthonormal basis. Another
popular strategy is to use a Latin Hypercube experimental design, typically chosen
among some randomly generated Latin Hypercube designs according to a maximum
minimum distance or a minimum maximum correlation criterion. Points sampled this
way may not be feasible for ΩI because the integrality constrained variables may not
be integer valued. Rounding recovers feasibility for ΩI , but it may destroy the prop-
erties of the Latin Hypercube; even worse, some of the rounded points may coincide,
thereby preventing the computation of the RBF interpolant. However, in our experi-
ence simple rounding works well in practice, and in case the points in the resulting set
are not pariwise distinct, we generate a new random sample, which is computationally
inexpensive. This is our default strategy in the computational experiments, and it is
also the one followed by [38,41].

A few papers in the literature discuss how to choose the initial points when explicit
constraints are given in the problem formulation. This is not necessary in the setting
of this paper, but we refer the interested reader to [13,17,27].

2.2 Exploration versus exploitation: a measure of bumpiness

We now discuss the trade-off between exploration and exploitation from the point of
view ofGutmann’s RBFmethod [22], using ameasure of “bumpiness” of the surrogate
model. The implicit assumption is that the unknown function f does not oscillate too
much, therefore we aim for a model that interpolates the data and minimizes the
bumpiness. We now provide details on the measure of bumpiness σ used in [22]. This
will give us the foundations to describe how the trade-off between exploration and
exploitation is determined.
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Fig. 1 An example with four
interpolation points (circles) and
a value of f ∗

k represented by the
horizontal dashed line.
Gutmann’s RBF method
assumes that it is more likely that
a point with value f ∗

k is located
at the diamond rather than the
square, because the resulting
interpolant is less bumpy

f ∗

The motivation to use bumpiness comes from the theory of natural cubic spline
interpolation in dimension one (RBFs can be seen as its extension to multivariate
functions). It is well known that the natural cubic spline interpolant with n = 1
whose parameters are found by solving system (4) is the function that minimizes∫

R
[g′′(x)]2 dx among all the functions g : R → R such that ∀i ∈ {1, . . . , k} g(xi ) =

f (xi ). Hence,
∫

R
[g′′(x)]2dx is a possible measure of bumpiness for functions overR.

It is shown in [22] that in the case of RBF interpolants in dimension n, such a measure
of bumpiness can be written as:

σ(sk) = (−1)dmin+1
k∑

i=1

λi sk(xi ) = (−1)dmin+1
k∑

i=1

k∑

j=1

λiλ jφ(‖xi − x j‖) =

= (−1)dmin+1λTΦλ.

Let us assume that after k function values f (x1), . . . , f (xk) are evaluated, we want
to find a point in ΩI where it is likely that the unknown function attains a target value
f ∗
k ∈ R ∪ {−∞} (strategies to select f ∗

k will be discussed in Sect. 2.3). Let sy be the
RBF interpolant subject to the conditions:

sy(xi ) = f (xi ) ∀i ∈ {1, . . . , k} (5)

sy(y) = f ∗
k . (6)

The assumption of Gutmann’s RBFmethod is that a likely location for the point y with
function value f ∗

k is the one that minimizes σ(sy). That is, we look for the interpolant
that is “the least bumpy” and interpolates at (y, f ∗

k ) as well as at previously evaluated
points. A sketch of this idea is given in Fig. 1.

Instead of computing theminimumofσ(sy) as defined above to find the least bumpy
interpolant, we define an equivalent optimization problem that is easier to solve. Let
�k be the RBF interpolant to the points (xi , 0), ∀i ∈ {1, . . . , k} and (y, 1). A solution
to (5)–(6) can be rewritten as:

sy(x) = sk(x) + [ f ∗
k − sk(y)]�k(x), x ∈ R

n,
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which clearly interpolates at the desired points by definition of �k . Let μk(y) be the
coefficient corresponding to y of �k . μk(y) can be computed by extending the linear
system (4), which becomes (see [22]):

⎛

⎝
Φ u(y) P

u(y)T φ(0) π(y)T

PT π(y) 0

⎞

⎠

⎛

⎝
α(y)
μk(y)
b(y)

⎞

⎠ =
⎛

⎝
0k
1

0n+1

⎞

⎠ , (7)

where u(y) = (φ(‖y − x1‖), . . . , φ(‖y − xk‖))T and π(y) is
(
yT 1

)
when d = 1,

and it is 1when d = 0. With algebraic manipulations (see [22,46]) we can obtain from
the system (7) the following expression for μk(y):

μk(y) = 1

φ(0) − (
u(y)T π(y)T

)
A−1
k

(
u(y)
π(y)

) . (8)

A way of storing the factorization of Ak to speed up the computation of μk(y) is
described in [5].

It can be shown [22] that computing theminimumofσ(sy)over y ∈ R
n is equivalent

to minimizing the utility function:

gk(y) = (−1)dmin+1μk(y)[sk(y) − f ∗
k ]2, y ∈ Ω\{x1, . . . , xk}.

Unfortunately gk andμk are not defined at x1, . . . , xk , and limx→xi μk(x) = ∞, ∀i ∈
{1, . . . , k}. To avoid numerical troubles, [22] suggests maximizing the following func-
tion:

hk(x) =
{

1
gk (x)

if x /∈ {x1, . . . , xk}
0 otherwise,

(9)

which is differentiable everywhere on Ω .
We now have all the necessary ingredients to describe Iteration steps (ii) and (iii)

as in Gutmann’s RBF algorithm.

– Iteration step (for Gutmann’s RBF algorithm):

(ii) Choose a target value f ∗
k ∈ R ∪ {−∞} : f ∗

k ≤ minx∈ΩI sk(x).
(iii) Compute

xk+1 = arg max
x∈ΩI

hk(x), (10)

where h(x) is defined as in (9); depending on the choice of f ∗
k , we may solve

a variation of this problem instead, as discussed in Sect. 2.3.

We called this algorithm “Gutmann’s RBF algorithm”. We remark that q = 0 in the
framework of [22], i.e., there are no integer variables. Extensions to q > 0, similar to
the approach adopted in our paper, are given in [27,38,41].

A number of papers in the recent literature on surrogate model algorithms advocate
random sampling to select the next evaluation point (e.g., [41,47]) as opposed to
optimization of a performance criterion, which is the strategy followed by [22,33]
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among others. The two approaches are compared in [40], concluding that there appears
to be no clear winner. Both have advantages: sampling is faster, but optimization
typically allows the incorporation of convex constraints at little extra cost.

RBFOpt v1.0 only allowed a mathematical programming based optimization
approach, and in this paper we limit ourselves to this case. Subsequent versions of the
library introduced additional strategies to select the next evaluation point, e.g., differ-
ent evaluation criteria and a trust region method for local search, but the discussion
of these new strategies is beyond the scope of this paper. Some of them are described
in [11,14].We simply note that in our tests, the conclusions of the computational study
presented here are also valid for subsequent versions of RBFOpt, all of which adopt
the general global optimization scheme using RBFs given in Sect. 2.

We still need to specify strategies to choose the target value f ∗
k at Iteration step (ii).

This is the subject of the next section. Afterward, we discuss a number ofmodifications
to the basic algorithms that have been proposed in the literature and were typically
found to be beneficial in practice.

2.3 Selection of the target value f∗k

We use the technique proposed in [27] to select the target value f ∗
k at each Iteration

step (ii). It works as follows. Let y∗ := argminx∈ΩI sk(x), fmin := mini=1,...,k f (xi ),
and fmax := maxi=1,...,k f (xi ). We employ a cyclic strategy that picks target values
f ∗
k ∈ R ∪ {−∞} according to the following sequence of length κ + 2:

– Step −1 (InfStep): Choose f ∗
k = −∞. In this case the problem of finding xk+1

can be rewritten as:

xk+1 = arg max
x∈ΩI

1

(−1)dmin+1μk(x)
.

This is a pure exploration phase, yielding a point far from x1, . . . , xk .
– Step h ∈ {0, . . . , κ − 1} (Global search): Choose

f ∗
k = sk(y

∗) − (1 − h/κ)2( fmax − sk(y
∗)). (11)

In this case, we try to strike a balance between improvingmodel quality and finding
the minimum.

– Step κ (Local search): Choose f ∗
k = sk(y∗). Notice that in this case (9) is maxi-

mized at y∗. Hence, if sk(y∗) < fmin−10−10| fmin|we accept y∗ as the new sample
point xk+1 without solving (10). Otherwise we choose f ∗

k = fmin − 10−2| fmin|.
This is an exploitation phase, trying to find the best objective function value based
on current information.

The choice of the target values is important for the convergence of the method.
Since all variables are bounded, the integer variables take values from a finite set. In
order to show ε-convergence to a global optimum for any continuous function, it is
necessary and sufficient [51] that for every value of the integer variables in Zq ∩ ΩI ,
the sequence of points (xk) generated by the algorithm is dense in the projection of
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ΩI overRn−q , i.e., the space of the continuous variables. Gutmann [22] considers the
case where q = 0 and proves that if f ∗ is “small enough” throughout the optimization
algorithm, the sequence of points {xk}k=1,...,∞ generated byGutmann’sRBFalgorithm
is dense over Ω when φ is linear, cubic or thin plate spline. A consequence of this
fact, remarked in [22], is that if Infstep is performed for infinitely many k ∈ N then
the algorithm converges to a global optimum as k → ∞.

Despite what the theoretical analysis suggests, the computational evaluations of
Gutmann’s RBF method in the literature typically skip InfStep ( f ∗

k = −∞). This
can be explained by the fact that InfStep completely disregards the objective function,
hence it rarely helps speeding up convergence in practice.

2.4 Improvements over the basic algorithm

Several modifications of Gutmann’s RBF algorithm have been proposed in the litera-
ture, with the aim of improving its practical performance. We now describe the most
impactful modifications tested in the computational experiments of Sect. 6, which are
active by default in our implementation.

(a) In the Global search step, [22,46] replace fmax in Eq. (11) with a dynamically
chosen value f (xπ(α(k))), defined as follows. Let k0 be the number of initial
sampling points, h the index of the current Global search iteration as in Sect. 2.3,
π a permutation of {1, . . . , k} such that f (xπ(1)) ≤ f (xπ(2)) ≤ · · · ≤ f (xπ(k)),
and

α(k) =
{
k if h = 0

α(k − 1) −
⌊
k−k0

κ

⌋
otherwise.

As a result, fmax is used to define the target value f ∗
k only at the first step (h = 0) of

eachGlobal search cycle. In subsequent steps, we pick progressively lower values
of f (xi ), with the goal of stabilizing search by avoiding too large differences
between the minimum of the RBF interpolant and the target value.

(b) If the initial sample points are chosen with a random strategy (for example, a
Latin Hypercube design), whenever we detect that the algorithm is stalling, we
apply a complete restart strategy [46, Sect. 5]. Restart strategies have been applied
to numerous combinatorial optimization problems, such as satisfiability [21] and
integer programming [1]. In the context of Gutmann’s RBF algorithm, the strategy
introduced in [46] consists in restarting the algorithm from scratch (including the
generation of new initial sample points) whenever the best known solution does
not improve by at least a specified value (0.1% by default) after a given number
of optimization cycles (5 by default). In our experience restarts are more useful if
the initial sample points are chosen according to a randomized strategy, because
otherwise, the solution run after the restart may be similar to, or even the same as,
before the restart. Hence, we only apply restarts if the initial sampling strategy is
randomized.

(c) Aknown issue ofGutmann’sRBFmethod, explicitly pointed out in [46, Sect. 4], is
that large values of h inGlobal search do not necessarily imply that the algorithm
is performing a “relatively local” search as intended. In fact, the next iterate

123



606 A. Costa, G. Nannicini

can be arbitrarily far from the currently known best point, and this can severely
hamper convergence on problems where the global minimum is in a steep valley.
To alleviate this issue, [46, Sect. 4.3] proposes a “restricted global minimization
of the bumpiness function”. The idea is to progressively restrict the search box
around the best known solution during aGlobal search cycle. In particular, instead
of solving (10) over ΩI , we intersectΩI with the box [miny∈ΩI sk(y)−βk(xU −
x L),miny∈ΩI sk(y)+βk(xU −x L)], where βk = 0.5(1−h/κ) if (1−h/κ) ≤ 0.5,
and βk = 1 otherwise (the numerical constants indicated are the values suggested
by [46]). It is easy to verify that this restricts the global search to a box centered
on the global minimizer of the RBF interpolant: the box coincides with ΩI at
the beginning of every Global search cycle, but gets smaller as h increases. This
turns out to be very beneficial on problems with steep global minima.

3 Automatic model selection

One of the drawbacks of RBF methods is that there is no built-in mechanism to assess
model quality: there are many possible surrogate models depending on the choice of
the RBF function (see Table 1), and it is difficult to predict a priori which one has the
best performance on a specific problem.

Wepropose an assessment ofmodel quality using a cross validation scheme, in order
to dynamically choose the surrogate model that appears to be the most accurate for
the problem at hand. Cross validation is a commonly used model validation technique
in statistics. Given a data set, cross validation consists in using part of the data set to
fit a model, and testing its quality on the remaining part of the data set. The process is
then iterated, rotating the parts of the data set used for model fitting and for testing.

Let sk be the surrogate model for f based on k evaluation points x1, . . . , xk . We
assume that the points are sorted by increasing function value: f (x1) ≤ f (x2) ≤ · · · ≤
f (xk); this is without loss of generality as we can always rearrange the points. We
perform cross validation as follows. For j ∈ {1, . . . , k}, we can fit a surrogate model
s̃k, j to the points (xi , f (xi )) for i = 1, . . . , k, i �= j and evaluate the performance
of s̃k, j at (x j , f (x j )). We use an order-based measure to evaluate performance of
the surrogate model. For a given scalar y, let orderk, j (y) be the position at which
y should be inserted in the ordered list f (x1) ≤ · · · ≤ f (x j−1) ≤ f (x j+1) ≤
· · · ≤ f (xk) to keep it sorted. Since orderk, j ( f (x j )) = j , we use the value qk, j =
|orderk, j (s̃k, j (x j )) − j | to assess the predictive power of the model. We then average
qk, j with j ranging over some subset of {1, . . . , k} to compute a model quality score.
This approach is a variation of leave-one-out cross validation in which we look at
how the surrogate model ranks the left-out point compared to the other points, rather
than evaluate the accuracy of the prediction in absolute terms. This is motivated by
the observation that for the purpose of optimization, a surrogate model that ranks
all points correctly is arguably more useful than a surrogate model that attains small
absolute errors, but is not able to predict how points compare to each other. The idea
of order-based performance metrics to evaluate surrogate models is explored in [3].

We perform model selection at the beginning of every cycle of the search strategy
to select f ∗

k , see Sect. 2.3. Our aim is to select the RBF model with the best predictive
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power. We choose two different models: one for local search, one for global search,
corresponding to different Iteration steps of the algorithm. We do this by computing
the average value q̄10% of qk, j for j = 1, . . . , �0.1k�, and the average value q̄70% of
qk, j for j = 1, . . . , �0.7k�, for a subset of the basis functions of Table 1. The rationale
of our approach is that q̄10% is an estimate of how good a particular surrogate model
is at ranking function values for the points that have a low function value, which are
arguably the most important for local search. On the other hand, for global search it
seems reasonable to choose a model that has good predictive performance on a larger
range of function values, hence we use q̄70%. The points with the highest function
values are the farthest from the minimum and our assumption is that they can be
disregarded.

The RBF model with the lowest value of q̄10% is employed in the subsequent
optimization cycle for the Local search step and theGlobal search stepwith h = κ−1,
while the RBF model with lowest value of q̄70% is employed for all the remaining
steps. The RBF models that we consider in our experiments are those with linear,
cubic, multiquadric (with γ = 1) or thin plate spline basis functions. It is possible to
consider additional models, such as those obtained using different scaling techniques
(see Sect. 5.2.1), but we did not pursue this possibility because we prefer to choose
among a small number of diverse models.

A drawback of leave-one-out cross validation is that it is typically expensive to
perform. We show that the values q̄10%, q̄70% can be computed in time O(m3), where
m is the number of rows of (4) (i.e., m = k + n + 1 for cubic and thin plate spline
RBF,m = k+1 for linear and multiquadric). To carry out the cross validation scheme
we must compute several RBF interpolants, each one of which interpolates at the
points x1, . . . , xk except a single point x j . Instead of repeatedly solving (4), we notice
that the linear system with the interpolation conditions for all points except x j is
obtained from (4) by deleting the j th row and column. By construction, the reduced
linear system is also nonsingular. Thus, we use an iterative procedure to compute the
solution of each of the (at most) k linear systemswith one row and one column deleted,
starting from the solution of the full system (4) and the LU factorization of its matrix
Ak . For convenience, denote the system (4) as Akx = b, where Ak ∈ R

m×m and all its
first k ≤ m principal minors are nonzero. Our goal is to solve a sequence of systems
A j x j = b j , where A j is obtained from Ak deleting the j th row and column, b j is
obtained from b deleting the j th row, x j is (m − 1)-dimensional, and j ≤ k.

We first compute the decomposition Ak = LU , and using this factorization, find
x̄ = A−1

k b. The vector x̄ is the base solution. For a given j , there are two cases to
consider.

1. Case x̄ j = 0. Then the vector x̃ j = (x̄i )i �= j , obtained by dropping the j th compo-
nent of x̄ , is such that A j x̃ j = b j by definition of x̄ , and is the desired solution.

2. Case x̄ j �= 0. Let e j be the j th basis vector of dimensionm, i.e., e jj = 1 and all its

other components are zero. Let ȳ j be such that Ak ȳ j = e j ; notice that this is the
j th column of A−1

k , and we can find it with one LU solve starting from the existing

factorization of Ak . Since A j is nonsingular we must have ȳ j
j �= 0 (otherwise, the
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nonzero vector ỹ j obtained by dropping the j th component of ȳ j would satisfy
A j ỹ j = 0, a contradiction). Define w̄ j = x̄ − x̄ j

ȳ j
j

ȳ j . Then we have:

Akw̄
j = Ak

⎛

⎝x̄ − x̄ j

ȳ j
j

ȳ j

⎞

⎠ = Ak x̄ − x̄ j

ȳ j
j

Ak ȳ
j = b − x̄ j

ȳ j
j

e j .

Since e ji = 0 for i �= j , (b − x̄ j

ȳ j
j

e j )i = bi for all i �= j . Furthermore, w̄
j
j =

x̄ j − x̄ j

ȳ j
j

ȳ j
j = 0. Then we can simply drop the j th component of w̄ j to obtain a

solution for A j x j = b j . Notice that w̄ j is obtained with a single LU-solve plus m
additions and m multiplications.

The two cases above show that to solve A j x j = b j , we can reuse the LU factorization
of Ak and perform a single LU solve for each j . The initial LU factorization of Ak takes
time O(m3), and we perform O(k) LU solves requiring time O(m2) each, yielding
total execution time O(m3).

4 Taking advantage of a faster but less accurate oracle

In practical applications it is common to have a trade-off between computing time
and accuracy of the black-box function f : for example, if f is evaluated through a
computer simulation, the simulator can often be parameterized to achieve different
levels of precision. In particular, accuracy of simulations is typically not linear in
computing time, and in practice one can get relatively good estimations of the true
value of f (x) in a fraction of the time.

To accelerate the optimization process, we would like to exploit low-accuracy but
faster simulations. We assume that, in addition to the oracle f , we have access to an
oracle f̃ := ( f̃ x , f̃ �, f̃ u) with the properties that f̃ �(x) ≤ f̃ u(x) and f (x), f̃ x (x) ∈
[ f̃ �(x), f̃ u(x)]. The oracle f̃ x (x) represents an approximation of the function value
f (x), and f̃ �(x), f̃ u(x) provide (possibly loose) lower and upper bounds on the true
function value f (x). We assume that evaluating f̃ is less expensive than evaluating f ,
i.e., f̃ can be computed significantly faster; the three values ( f̃ x (x), f̃ �(x), f̃ u(x))
are returned at the same time when f̃ is evaluated.

Our approach consists in: a first phase (the “fast phase”) where we aim to solve
(1) using both f and f̃ , and a second phase (the “accurate phase”), where (1) is
reoptimized performing additional function evaluations using f . We describe each
phase below.

In the first phase, oracle evaluations are performed using f̃ unless otherwise spec-
ified (exceptions are given below). Let N be the set of indices of the points evaluated
via f̃ , for which we have stored the triples ( f̃ x (xi ), f̃ �(xi ), f̃ u(xi )), i ∈ N ; we define
the vectors f L , f U ∈ R

k with entries f Li = f̃ �(xi ), f Ui = f̃ u(xi ) for i ∈ N , and
f Li = f Ui = f (xi ) for i /∈ N . Because function values f̃ x (xi ), i ∈ N are not exact, it
is reasonable to allow the interpolant to deviate from them while imposing the looser
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Fig. 2 Function evaluations
affected by errors: the values
returned by f̃ are the circles and
the lower/upper limits of the
vertical bars. The dashed line
interpolates exactly at the
circles, the solid line is a less
bumpy model, and is still within
the allowed intervals. Problem
(12) would prefer the latter
model

restriction that the interpolant at xi should belong to the interval [ f Li , f Ui ]. To do so,
instead of solving (4) to determine the interpolant, we solve the problem:

min (−1)dmin+1λTΦλ

s.t.: f L ≤ Φλ + Ph ≤ f U

PT λ = 0n+1.

(12)

Problem (12)minimizes the bumpiness of the RBF interpolant, subject to interpolation
conditions in which we only require that the value of the surrogate model at x1, . . . , xk
is within the bounds f L , f U . A sketch of this idea is given in Fig. 2. If we set f Li =
f Ui = f (xi ) for all i we recover the original system (4). Note that (12) admits at least
one solution if (4) admits a solution, however because Φ is not positive semidefinite
(although it is positive semidefinite subject toΦλ+Ph = F , see [22]) the problemmay
not be convex. In our approach, a local optimum is sufficient. After the computation
of the RBF model solving (12), the algorithm proceeds as usual to compute the new
point xk+1. At every iteration of the fast phase, f̃ is evaluated at xk+1, and k + 1 is
added to the set N of indices of interpolation points affected by error. However, the
exact oracle f is immediately reevaluated at xk+1, and k + 1 is removed from N , if
one of the following two conditions hold:

(a) A target objective function value for the problem is known, and it is contained in
the interval [ f̃ �(xk+1), f̃ u(xk+1)]; in other words, xk+1 could be optimal.

(b) The value f̃ (xk+1) represents a sufficient improvement over known values, and in
particular it is a relative improvement (with a given tolerance, set to 10−3 in our
tests) over the value:

fB := min

{
f (xi ) i ∈ {1, . . . , k}\N ,

f̃ �(xi ) i ∈ N .

Note that from a practical perspective, while we cannot expect that the optimal objec-
tive function value be known in advance, domain knowledge can often provide a target
value and an optimality tolerance such that solutions within the specified tolerance are
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considered satisfactory, hence condition (a) can be applied. We remark that evaluating
xk+1 with both f̃ and f is expensive under our assumptions, therefore we want to do
it sparingly. However, our empirical evaluation found that it is beneficial to evaluate a
new point with the exact oracle if it is sufficiently good: this is because interpolation
points evaluated with f act as “anchors” for the surrogate model computed via (12),
and we must have at least a few such anchors for the RBF model to be informative.
The fast phase ends after a pre-specified number of iterations, or after a pre-specified
number of restarts; the latter criterion is due to the fact that restarts are triggered if the
search is not making significant progress, and if this happens repeatedly, is is likely
that the noisy oracle f̃ is not providing enough information, and we should change
our strategy.

We now discuss the second phase. In this phase, all function evaluations employ
the exact oracle f . The second phase receives as input from the first phase a set of
points, some of which are evaluated via f̃ . Recall that Gutmann’s RBF algorithm, as
described in Sect. 2, does not allow new function evaluations at previously evaluated
points x1, . . . , xk . This is problematic, because it is possible that the optimum of the
function is located at a point xi for i ∈ N , i.e., a point that was previously evaluated
with the noisy oracle f̃ . We must therefore allow new function evaluations to take
place at points xi , i ∈ N . Our approach is the following. We compute xk+1 solving
(10) where the target value f ∗

k is chosen according to the cyclic strategy described in
Sect. 2. We have xk+1 ∈ ΩI \{x1, . . . , xk} by construction. For w ∈ N , let sk,w be the
least bumpy RBF model subject to the conditions:

f̃ �(xi ) ≤ sk,w(xi ) ≤ f̃ u(xi ) ∀i ∈ N\{w},
sk,w(xi ) = f (xi ) ∀i ∈ {1, . . . , k}\N ,

sk,w(xw) = f ∗
k , (13)

and let s∗
k be the least bumpy RBF model subject to the conditions:

f̃ �(xi ) ≤ s∗
k (xi ) ≤ f̃ u(xi ) ∀i ∈ N ,

s∗
k (xi ) = f (xi ) ∀i ∈ {1, . . . , k}\N ,

s∗
k (xk+1) = f ∗

k , (14)

both of which can be computed solving a straightforward modification of (12). When
we are in the Local search phase of the target value selection strategy, we compare the
bumpiness σ(s∗

k )with the bumpiness σ(sk,w) for allw ∈ N such that f ∗
k ∈ [ f Lw , f Uw ].

In other words, we compare the bumpiness of the RBF interpolant at the suggested new
point xk+1, with the bumpiness of the RBF model obtained if the function value at xw

were set to the target f ∗
k . We do this only for points xw such that f could take the value

f ∗
k at xw, according to the bounds specified by f̃ . This way, we can verify whether we

obtain a smoother interpolant by placing the target value at an unexplored location,
or at one of the previously existing points. If this is the case, i.e., σ(sk,w) < σ(s∗

k )

for some w ∈ N , we evaluate the exact oracle f (xw) rather than f̃ (xw), replace the
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corresponding value in F , and set N ← N\{w}. Note that this step will be performed
at most |N | times and does not affect global convergence in the limit.

A drawback of the approach described in this section is that it requires the black
box to return lower and upper bounds on the function value. A related approach
was adopted by [30], whereby all function values are allowed to deviate from the
given f (x1), . . . , f (xk), but these deviations are penalized in the objective function
in a symmetric way, according to a pre-specified penalty parameter. The difference
between our approach and the one of [30] is that we require to specify the range
within which function values are allowed to vary, whereas [30] requires to specify
the value of the penalty parameter in the objective function and computes the error
terms accordingly. We believe that estimating a penalty parameter may prove harder
in practice than providing an error range, hence our approach may be more natural
for practitioners. Clearly, if the ranges given by f̃ �, f̃ u are too large the resulting
interpolant can be overly smooth and would not provide much information to the
optimization procedure, therefore we expect our approach to fail if the error estimates
are large compared to the amplitude of the function values.

We remark that problem (12) depends on the bounds f̃ �(xi ) and f̃ u(xi ) only, rather
than the approximate function values f̃ x (xi ). However, the values f̃ x (xi ), i ∈ N are
used directly in two steps of the optimization algorithm: (a) we determine a starting
solution for (12) by solving (4) with the right-hand side vector set to f̃ x (xi ) for i ∈ N
and f (xi ) for i /∈ N ; (b) when applying the automatic model selection procedure
described in Sect. 3, we again set the right-hand side vector to f̃ x (xi ) for i ∈ N and
f (xi ) for i /∈ N .

5 Implementation

We implemented Gutmann’s RBF method in Python, using Pyomo [23,24] to model
the auxiliary optimization problems.

Our implementation is included in the open-source library calledRBFOpt, available
in the COIN-OR repository. RBFOpt is released under the Revised BSD license; it
can be installed automatically using the Python Package Index (PyPI), and the source
code can be downloaded at https://github.com/coin-or/rbfopt. RBFOpt’s GitHub page
contains links to the documentation and usage examples.

Besides our own version of Gutmann’s RBF method, the commercial TOMLAB
toolkit forMATLAB contains one, called rbfSolve. A Python toolbox for optimization
using surrogate models called pySOT [16] was developed concurrently with RBFOpt.
pySOT is based on the general optimization scheme discussed in Sect. 2, but does not
implement Gutmann’s method.

5.1 Solvers for auxiliary problems

To solve the nonlinear (mixed-integer in the presence of integer variables) opti-
mization problems generated during the various steps of the algorithm, appropriate
solvers are necessary. RBFOpt can employ any solver that is compatible with the
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AMPL Solver Library. In our tests, we use IPOPT [52] for continuous problems, and
BONMIN [6] with the NLP-based Branch-and-Bound algorithm for mixed-integer
problems. To optimize nonconvex functions such as (9), we rely on a simplemulti-start
strategy for IPOPT if there are no integer variables, and on BONMIN’s Branch-and-
Bound algorithm in the presence of integer variables. BONMIN is parameterized
with num_resolve_at_root 10, num_retry_unsolved_random_point
5, num_resolve_at_infeasible 5, with a time limit of 45 seconds. IPOPT
is parameterized with acceptable_tol 10−3, honor_original_bounds no,
max_iter 1000, and a time limit of 20 seconds. We remark that the performance of
the algorithm in practice is dependent on the quality of the solutions to the auxiliary
subproblems, and for this reason, the time limit and the number multistart iterations
impact the solution process. However, in our experience it is only important to find
a good quality solution to these subproblems, rather than an optimal solution. The
parameter values above were chosen by observing that in our tests the performance of
the algorithm did not increase in a noticeable way by allowing for larger computing
time or additional multistart iterations. If CPU time per iteration is an important factor,
it is likely that a better trade-off between computing time and solution quality can be
achieved by reducing these time limits.

5.2 Addressing numerical issues

In global optimization, numerical troubles arise very frequently in practice, therefore
we take special care to ensure that our implementation is stable in a wide range of
situations. We briefly describe here the steps taken to prevent numerical problems.

5.2.1 Rescaling

A key decision to be taken in the implementation is the scaling technique for domain
and codomain values of the objective function. Rescaling the domain affects the left-
hand side of the system (4), while rescaling the codomain affects the right-hand side.
[26] suggests transforming the domain of f into the unit hypercube. This strategy
is implemented in the rbfSolve function of the MATLAB toolkit TOMLAB. In our
tests, we found this transformation to be beneficial only when the bounds of the
domain are significantly skewed. When all variables are defined over an interval of
approximately the same size we did not observe any benefit from this transformation,
and in fact sometimes the performance deteriorated. Note that the transformation
cannot be applied on integrality-constrained variables. After computational testing,
our default strategy is to transform the domain into the unit hypercube on problems
with no integer variables and such that the ratio of the lengths of the largest to smallest
variable domain exceeds a given threshold, set to 5 by default.

To prevent harmful oscillations of theRBF interpolant due to large differences in the
function values, it has been proposed to rescale the codomain of f , see e.g. [27,48]. Our
numerical tests show that rescaling is necessary when the original objective function
has values with large magnitude, or exhibits large oscillations. Our default approach
is to apply a logarithmic scaling whenever the difference between the median and the
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minimum objective function value among the interpolation points exceeds a certain
threshold, set to 106 by default, and leave the function values unscaled otherwise.
When the logarithmic scaling is applied, if fmin ≥ 1 we replace each f (xi ) with
log( f (xi )), otherwise we replace it with log( f (xi )+ 1+ | fmin|) (similar to [27]). We
additionally tested affine function scaling (replacing each f (xi ) with

f (xi )− fmin
fmax− fmin

), but
it did not show any advantage over unscaled function values in our tests.

In addition to rescaling the function codomain if necessary, we follow the approach
suggested by [22] consisting in clipping the function values f (xi ) at the median (in
other words, we replace values larger than the median by the median). The procedure
is also adopted by [5,46]. We follow this approach with one small change: function
values are clipped at the median only if the ratio of the largest to smallest absolute
function value exceeds a given threshold, set to 103 by default.

5.2.2 Ill-conditioned linear system and restoration step

When two or more interpolation points are close to each other, the matrix Ak of (4)
and (8) becomes nearly singular. This can have serious consequences: we may not be
able to compute the RBF interpolant, or (8) could become numerically ill-behaved.
We have several mechanisms in place to prevent this from happening. First, at every
iteration, say iteration k, we only accept the new point xk+1 if mini=1,...,k ‖xk+1 − xi‖
is larger than a given threshold, set to 10−5 by default. Second, if the problem has
integer variables and the initial sample points are generated according to a Latin
hypercube design, we check the smallest singular value of the matrix Φ obtained after
rounding the points. If this singular value is close to zero, we generate a different Latin
hypercube. Finally, if at any iterationwe cannot solve the linear system (4) or invert the
matrix Ak , we perform a restoration step: the last iterate xk is discarded and replaced
with a new point. In our experiments the restoration step was never necessary thanks
to the other numerical safety mechanisms, hence we do not provide details here.

5.2.3 Starting point for local solvers

The auxiliary problems solved during the course of Gutmann’s RBFmethod are highly
nonconvex, and it can be difficult for a nonlinear solver to achieve feasibility on
formulations that use auxiliary variables defined through equality constraints, such as
those in our implementation. On the other hand, generating an initial feasible solution
exploiting the problem structure is very easy. Thus, when solving an auxiliary problem,
we generate an initial feasible solution by sampling a point uniformly at random over
the domain and setting the auxiliary variables accordingly to make sure all the equality
constraints are satisfied. We provide this feasible solution as a starting point for the
local solver. As mentioned in Sect. 4, for the solution of problem (12) we use a local
solver starting from the solution of (4).
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6 Computational experiments

In this section we discuss computational experiments performed with RBFOpt version
1.0. All experiments were carried out on a server equipped with four Intel Xeon E5-
4620 CPUs (2.20 GHz, 8 cores, Hyper Threading and Turbo Boost disabled) and
128GB RAM (32GB for each processor), running Linux.

6.1 Test instances

We test our implementation on 20 box-constrained continuous problems (called NLP
in the following) and 16 box-constrained integer or mixed-integer problems (called
MINLP in the following), taken from the literature. The problems are listed in Table 2.
Most of these problems are nonconvex with multiple local minima. We provide more
information on the instances below. Many of these problems were originally proposed
as a testbed for global optimization solvers, and are now considered fairly easy in
terms of global optimization. However, they can prove very challenging for black-box
solvers that do not exploit analytical information on the problems.

– Dixon–Szegö [15] problems: we included the most common instances in the test
set. These instances are used in all computational evaluations of Gutmann’s RBF
method and in many other derivative-free approaches, see e.g., [22,26,46].

– GLOBALLIB problems: we selected a subset of the unconstrained instances in the
library. Some problems were excluded because they were too easy or too similar
to other problems in our collection.

– Schoen [50] problems: we randomly generated two problems of dimension 6 and
two of dimension 10. All problems have 50 stationary point, three of which are
global minima with value −1000, and the remaining ones attain a value picked
uniformly at random in the interval [0, 1000]. Having steep global minima allows
us to test the performance of our implementation in a situation that is considered
difficult to handle for Gutmann’s RBF method, see [46]. Another advantage of
using problems of this class is that we can choose the dimension of the space. In
particular, we test problems with 10 decision variables, which is larger than the
other continuous problems in our test set. To avoid overrepresentation of a class
of instances in our test set, we generate only four random problems of this class.

– Neumaier [43] problems: we included one problem of class “perm”, and one of
class “perm0”, generated with parameters n = 6, β = 60 and n = 8, β =
100 respectively. These problems were conceived to be challenging for global
optimization solvers, and are extremely difficult to solvewith a black-box approach
in our experience. The global minimum of these instances is originally 0, but
achieving a near-optimal solution in relative or even absolute terms (e.g., less than
1% or 0.01 from the optimum) is essentially hopeless for these problems. Hence,
we translated the functions up by 1000.

– MINLPLib2 [7,36] problems: we included all unconstrained instances in the
library, and several problems with at most three constraints that were reformu-
lated as box-constrained problems by penalizing the constraint violation in the
objective function. The penalty parameter was chosen so that that global mini-

123



RBFOpt: an open-source library for black-box optimization 615

Table 2 Details of the instances used for the tests

Instance Dimension (# integer) Domain Type Source

branin 2 (0) [−5, 10] × [0, 15] NLP Dixon–Szegö [15]

camel 2 (0) [−3, 3] × [−2, 2] NLP Dixon–Szegö [15]

ex4_1_1 1 (0) [−2, 11] NLP GLOBALLIB

ex4_1_2 1 (0) [1, 2] NLP GLOBALLIB

ex8_1_1 2 (0) [−1, 2] × [−1, 1] NLP GLOBALLIB

ex8_1_4 2 (0) [−2, 4] × [−5, 2] NLP GLOBALLIB

goldsteinprice 2 (0) [−2, 2]2 NLP Dixon–Szegö [15]

hartman3 3 (0) [0, 1]3 NLP Dixon–Szegö [15]

hartman6 6 (0) [0, 1]6 NLP Dixon–Szegö [15]

least 3 (0) [0, 600] × [−200, 200] × [−5, 5] NLP GLOBALLIB

perm0_8 8 (0) [−1, 1]8 NLP Neumaier [43]

perm_6 6 (0) [−6, 6]6 NLP Neumaier [43]

rbrock 2 (0) [−10, 5] × [−10, 10] NLP GLOBALLIB

schoen_10_1 10 (0) [0, 1]10 NLP Schoen [50]

schoen_10_2 10 (0) [0, 1]10 NLP Schoen [50]

schoen_6_1 6 (0) [0, 1]6 NLP Schoen [50]

schoen_6_2 6 (0) [0, 1]6 NLP Schoen [50]

shekel10 4 (0) [0, 10]4 NLP Dixon–Szegö [15]

shekel5 4 (0) [0, 10]4 NLP Dixon–Szegö [15]

shekel7 4 (0) [0, 10]4 NLP Dixon–Szegö [15]

gear 4 (4) [12, 60]4 MINLP MINLPLib2 [36]

gear4 5 (4) [12, 60]4 × [0, 100] MINLP MINLPLib2 [36]

nvs02 5 (5) [0, 200]5 MINLP MINLPLib2 [36]

nvs03 2 (2) [0, 200]2 MINLP MINLPLib2 [36]

nvs04 2 (2) [0, 200]2 MINLP MINLPLib2 [36]

nvs06 2 (2) [1, 200]2 MINLP MINLPLib2 [36]

nvs07 3 (3) [0, 200]3 MINLP MINLPLib2 [36]

nvs09 10 (10) [3, 9]10 MINLP MINLPLib2 [36]

nvs14 5 (5) [0, 200]5 MINLP MINLPLib2 [36]

nvs15 3 (3) [0, 200]3 MINLP MINLPLib2 [36]

nvs16 2 (2) [0, 200]2 MINLP MINLPLib2 [36]

prob03 2 (2) [1, 5]2 MINLP MINLPLib2 [36]

sporttournament06 15 (15) [0, 1]15 MINLP MINLPLib2 [36]

st_miqp1 5 (5) [0, 1]5 MINLP MINLPLib2 [36]

st_miqp3 2 (2) [0, 3] × [0, 50] MINLP MINLPLib2 [36]

st_test1 5 (5) [0, 1]5 MINLP MINLPLib2 [36]
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mizers of the penalized objective are exactly the global minimizers of the original
constrained problem. All problems in this class, except one, have integer variables
only: despite MINLPLib2 being the largest available library of MINLP problems,
all mixed-integer problems contained in it are either too large or too heavily con-
strained for us to handle.

An extensive computational evaluation of black-box solvers is discussed in [49], which
uses a much larger test set than ours. However, the setting of that paper is different
because some variables are unbounded or with large bounds, the problem dimension
is typically higher, and a larger number of function evaluations is allowed (up to
2500, while we limit ourselves to 30(n p + 1) where n p is the dimension of problem
p). [49] does not provide computational results for any implementation of Gutmann’s
RBF method or its derivatives despite discussing them, and we attribute this to the
fact that Gutmann’s RBF method targets problem with bounded variables on which
few function evaluations are allowed. Furthermore, since we test many variants of
the algorithms with 20 different random seeds per instance, a larger set would have
required prohibitive computation times.

6.2 Evaluationmethodology

Our evaluation relies on performance profiles and data profiles, as described in [37].
We review their definition.

Define the budget for an algorithm as the maximum number of function evaluations
allowed. In our experiments the budget is set to 30(n p + 1). This is a relatively
small number relative to other computational studies of derivative-free methods in
the literature, but in our experience it is a reasonable number for many real-world
applications, and reinforces our focus on small-dimensional problems on which we
aim to achieve very fast convergence.

For a given instance and a set of algorithms A, let f ∗ be the best function value
discovered by any algorithm, and x0 the first point evaluated by each algorithm, which
we impose to be the same. Let τ be a tolerance; we use 10−3 in this paper.We also tried
τ = 10−2, but we do not report the corresponding results unless they yield further
insight. We say that an algorithm solves an instance if it returns a point x̄ such that:

f (x0) − f (x̄) ≥ (1 − τ)( f (x0) − f ∗), (15)

and the algorithm fails otherwise.
LetP be the set of problem instances in the test set. Let tp,a be the number of function

evaluations required by algorithm a to solve problem p (tp,a = ∞ if algorithm a fails
on problem p according to the convergence criterion (15)), and n p the number of
variables of problem p. The data profile for an algorithm a is the fraction of problems
that are solved within budget α(n p + 1), formally defined as:

da(α) := 1

|P| size
{

p ∈ P : tp,a
n p + 1

≤ α

}

.

123



RBFOpt: an open-source library for black-box optimization 617

The scaling factor n p +1 tries to account for the fact that problems with more decision
variables are expected to be more difficult.

The performance ratio of algorithm a on problem p is defined as:

rp,a := tp,a
min{tp,a : a ∈ A} .

Note that the performance ratio is 1 for the best performing algorithm on a problem
instance. The performance profile of algorithm a is defined as the fraction of problems
where the performance ratio is at most α, formally defined as:

pa(α) := 1

|P| size
{
p ∈ P : rp,a ≤ α

}
.

Since the algorithms tested in this paper include some elements of randomness (e.g.,
the initial points), every algorithm is executed 20 times on each problem instance with
different random seeds. Each of the 20 runs is associated with an initial experimental
design that is given to all algorithms (if the algorithm requires a single initial point,
we provide the first point of the experimental design), to make the initialization phase
more uniform across the algorithms and reduce variance. We use the median over 20
executions of the best objective function value known at every iteration to compute data
and performance profiles. In addition to this, we built graphs using the best objective
function value over 20 executions rather than the median, but we find the median to
be more indicative of the overall performance, because in our experience out of 20
executions it is common to have an exceptional run that performs much better than
the remaining ones.

We remark that our choice of using τ = 10−3 is dictated by the fact that the method
we are testing is essentially a global method, therefore convergence to very high levels
of precision can be too slow for efficient benchmarking.

We would like to answer the following research questions, that are investigated in
Sects. 6.3 through 6.6:

1. Which algorithmic configuration is the best, and in particular, are the improvements
of Sect. 2.4 beneficial in practice?

2. Is our approach to handle noisy function evaluations effective?
3. Is automatic model selection using cross validation beneficial in practice?
4. Is our implementation competitive with the state-of-the-art?

6.3 Comparison of algorithmic settings

In this section we are concerned with investigating the effect of the most important
algorithmic parameters of RBFOpt. The following list summarizes the different set-
tings that we considered, see Sect. 2.4 for details:

– “R”: restart the algorithm after 6 cycles without improvement of the best solution
found [item (b) in Sect. 2.4];
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Fig. 3 Data profiles for different parametrizations of RBFOpt. aMedianNLP, τ = 10−3. bMedianMINLP,
τ = 10−3

– “B”: apply restricted global minimization of the bumpiness function [(item (c) in
Sect. 2.4];

– “L”: if the local search step improves the best solution, it is immediately repeated
a second time;

– “S”: in (11), disable the dynamic selection of f (xπ(α(k))) to replace the statically
chosen fmax [item (a) in Sect. 2.4].

The basic configuration, labeled “def”, employs the thin plate spline basis function,
a random Latin Hypercube design (generated with the maximum minimum distance
criterion) for the selection of the initial sample, no InfStep, and 5 global search steps
(i.e., κ = 5). This is similar to [22,46], with the only difference being the choice of the
radial basis function: in our experiments, thin plate splines tend to perform better than
the other types of RBFs with all tested parametrizations of the algorithm, therefore we
report results with thin plate splines. This is supported by the data reported in Sect. 6.5.

We tested most of the possible combinations or “R”, “B”, “L” and “S” when applied
on top of our default configuration. We report data profiles in Fig. 3, and performance
profiles in Fig. 4. Recall that the x-axis refers to the number of function evaluations
in data profiles, whereas it represents upper bound values for the performance ratio of
the algorithms in performance profiles. As can be seen in Fig. 3, all configurations of
the algorithm coincide on data profiles for the first few data points, but they start to
diverge after ≈ 3(np + 1) iterations. This is consistently true throughout our analysis.
The performance profiles are clearer and allow us to rank the algorithms. For this
reason, in the rest of the paper we only report performance profiles.

From the figures, we see that the settings “L” (repeat the local search phase if
successful) and “S” (use a static value of fmax instead of dynamic selection) are
generally detrimental for both NLP and MINLP problems, and should therefore be
disabled. The detrimental effect of “S” is obvious on MINLP problems, where there
are often very large differences between the function values at the initial sample points
and at theminimum. Interestingly, the simple idea of repeating a local searchwhenever
successful has a negative impact in the long run.We attribute this to two facts: first, the
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Fig. 4 Performance profiles for different parametrizations of RBFOpt. aMedian NLP, τ = 10−3. bMedian
MINLP, τ = 10−3

accuracy of the surrogate model typically improves only slightly after a local search,
therefore the second local search in a row uses essentially the same information as the
previous one, which hinders its chances of success; second, the strength of Gutmann’s
RBF algorithm is the effectiveness of the global search, and delaying the global search
by introducing additional local search steps is not a good idea. However, we remark
that in our experiments the “L” setting performs very well if we consider the best run
out of the 20 trials per instance, instead of the median: this is because the “L” setting
aggressively tries to improve the objective function value, and this typically allows
one of the 20 trials to converge very quickly.

The best performing parametrization on NLP problems is clearly “B” and its vari-
ants (“BL”, “BS”), followed by “RB” and its variants. These two groups obtain very
similar performance for τ = 10−3. On MINLP problems, “RB” is arguably the best
performing parametrization, followed closely by “B”. On both NLP andMINLP prob-
lems, the improvement with respect to “def” is very significant. The ranking of the
various parametrizations in terms of performance does not change too much between
NLP and MINLP (notable exceptions are the “S” variants), suggesting that some
parametrizations may be better altogether, regardless of the class of problems.

A closer analysis of the results suggested that the excellent performance of “B”with
τ = 10−3 onNLP problems is due to occasional restarts of “RB”when relatively close
to the optimum because the relative improvement criterion is not satisfied, i.e., only
small improvements are recorded and the algorithm detects that stalling has occurred,
forcing a restart. The “B” parametrization does not allow restarts, and repeated local
searches in the region suspected to contain the optimum eventually pay off. However,
this comes at a rather large computational cost: “B” is, on average, ≈ 4.3 times
slower than “RB”, because the time per iteration decreases significantly after restarts
thanks to a smaller number of interpolation nodes and easier auxiliary problems.
When a smaller precision is required for convergence, i.e., τ = 10−2 (not reported
in the paper), “RB” already performs as well as “B” on NLP problems. On MINLP
problems, our experience is that restarts can be very important: occasionally, the local

123



620 A. Costa, G. Nannicini

search phase of the algorithm becomes ineffective because all the integer points around
the suspected optimum of the RBF model have already been evaluated, and no further
improvement is achieved. In these cases, a restart is often beneficial, hence “RB” tends
to perform better than “B” onMINLP problems. Hereafter, we use “RB” as our default
configuration.

6.4 Experiments with a noisy oracle

We want to assess the effectiveness of the method proposed in this paper to exploit
access to a noisy oracle f̃ that is faster than the exact oracle f . For ease of bench-
marking, we need a way to simulate f̃ . Our approach is to simulate the noisy oracle
by applying to f a relative noise generated uniformly at random between ±10% or
±20%, as well as an absolute noise generated uniformly at random between ±0.01
(to avoid exact oracle evaluations around zero). Here we report results with a relative
error of±10%.We performed experiments with a relative error of±20%, and the con-
clusions are similar. The lower and upper bounding function values f̃ �, f̃ u returned
by the noisy oracle are computed as f̃ �(x) = f̃ x (x) − εr | f̃ x (x)| − εa, f̃ u(x) =
f̃ x (x) + εr | f̃ x (x)| + εa , where εr , εa are parameters of the numerical experiments
that determine how accurately the bounding functions estimate the true amount of
noise applied to f .

Remember that the approach described in Sect. 4 uses both the exact and the noisy
oracle, in a “fast” phase and an “accurate” phase. To build data and performance pro-
files, at every point xi evaluated with the noisy oracle f̃ we attribute the worst-case
objective function value f̃ u(xi ). We assume that each noisy oracle evaluation has a
computational cost equal to 1/c of an exact oracle evaluations, where c ≥ 1 is a param-
eter and we test c = 1, . . . , 5. In other words, the total number of function evaluations
at any given time is computed as (# exact evaluations) + (# noisy evaluations)/c. Even
though the maximum relative error applied to f is fixed at ±10%, we set εr to three
different values in our experiments: 10%, 30%, 50% (we tested additional values but
we do not report them for space reasons). This corresponds to overestimating the true
error by up to a factor 5. The absolute variation εa is always set to 0.01. By varying
c and εr , we can determine for which speed/accuracy trade-offs it is advantageous
to exploit the noisy oracle rather than rely on the exact oracle only. The limits for
the algorithm are set to 30(n p + 1) evaluations for f , 60(n p + 1) evaluations for f̃ ,
and at most 20(n p + 1) iterations in the “fast” phase. The limit on the number of
evaluations of f̃ was never reached. In the graphs we only report the equivalent to the
first 30(n p + 1) exact evaluations, to conform to the rest of the paper.

Figure 5 contains performance profiles to compare the “RB” configuration of
RBFOpt with and without exploitation of the noisy oracle. For simplicity, in the rest of
this section we call the two version of the algorithm “exact” and “noisy” respectively.
only report τ = 10−3,

The graphs show that “noisy” performs worse than “exact” for c = 1, which is
expected, but already for c = 2 “noisy” is superior as long as the error estimate is
accurate, i.e., εr = 10%. Even if the error estimate is very loose, i.e., εr = 50%,
“noisy” typically converges faster than “exact” for c ≥ 3, as can be seen from the
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Fig. 5 Performance profiles for “RB” with different surrogate models and τ = 10−3. The labels for
the “noisy” algorithm indicate the value of εr , which determines the looseness of the lower and upper
bounding functions f̃ �, f̃ u , and c. aMedian MINLP, εr = 10%, c = 1, . . . , 5. bMedian NLP, εr = 10%,
c = 1, . . . , 5. c Median MINLP, εr = 30%, c = 1, . . . , 5. d Median NLP, εr = 30%, c = 1, . . . , 5. e
Median MINLP, εr = 50%, c = 1, . . . , 5. fMedian NLP, εr = 50%, c = 1, . . . , 5
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Fig. 6 Performance profiles for “RB” with different surrogate models. a “RB”, median NLP, τ = 10−3. b
“RB”, median MINLP, τ = 10−3

performance profiles.When c = 4 or 5, corresponding to a situation in which the noisy
oracle is computationally inexpensive, our approach to exploit the noisy evaluations
is largely superior to the traditional “exact” algorithm, converging significantly faster
on the vast majority of the MINLP and NLP instances. We remark that there is a small
fraction of the instances (MINLP and NLP) on which “exact” converges but “noisy”
does not within the equivalent of 30(n p +1) “exact” iterations, but overall, our results
show that the “noisy” approach described in Sect. 4 can be very beneficial in practice
and find good solutions much faster than the traditional Gutmann’s RBF algorithm.
To summarize, in applications where it is possible to obtain a fast but noisy oracle for
the unknown objective function, and a reasonable error estimate for such noisy oracle
is available, the methodology that we propose can yield a much faster convergence.

6.5 Automatic model selection using cross validation

We now test the automatic model selection method presented in Sect. 3. We label this
configuration “auto”, as opposed to the default configuration that uses a predetermined
basis function. We test the “auto” configuration against four commonly used types of
basis functions: linear, cubic, thin plate spline, and multiquadric. In Fig. 6 we compare
the results obtainedwith andwithout automaticmodel selection using cross validation,
using the “RB” parametrization.

The first observation we make from the graphs is that thin plate splines and cubic
perform better than linear and multiquadric on our test set. The two RBFs have com-
parable performance, with thin plate splines emerging as the marginally better choice
on MINLP problems, and cubic on NLP; however, performance profiles constructed
without the “auto” configuration suggest that thin plate splines is generally the best
choice of RBF, even on NLP (performance profiles depend on the set of tested algo-
rithms, and removing one algorithm from the set can alter the resulting ranking). This
is consistent with our experience on simulation-based optimization problems that are
not part of this benchmark, see e.g. [54].
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Table 3 Average CPU times, in seconds, (standard deviation reported in brackets) to perform leave-one-out
cross validation using brute force computation or the procedure based on reusing the LU factorization. Each
point is 10-dimensional and we perform full leave-one-out cross validation, i.e., for k points we solve k
linear system, each excluding one point

# Points Brute force
avg. (SD) [s]

LU-based
avg. (SD) [s]

20 0.0035 (0.0005) 0.0011 (0.0002)

50 0.0082 (0.0048) 0.0017 (0.0007)

100 0.0217 (0.0196) 0.0030 (0.0019)

200 0.0956 (0.1300) 0.0058 (0.0051)

500 1.5753 (3.0150) 0.0297 (0.0545)

1000 62.6155 (1.0256) 1.1477 (0.0477)

The second observation is that the automatic model selection method has better
performance than any of the individual RBFs, achieving faster convergence across
the board. This is noteworthy because automatic model selection not only improves
performance, but eliminates the difficult choice of a parameter for the algorithm (the
choice of RBF). The benefits of the automatic model selection method were confirmed
also in additional numerical experiments not reported here, i.e., with different values
of τ , and with other RBF-based optimization methods following the scheme discussed
in Sect. 2.

In the experiments in this section we use the methodology described in Sect. 3 to
perform the leave-one-out cross validation procedure. The improvement over a brute
force computation is significant: we provide some numbers in Table 3 to give a sense
of the gain in terms of speed. The table reports the CPU time required to perform
brute force cross validation resolving all linear systems from scratch, and to perform
the same procedure reusing the LU factorization. The numbers are computed over 40
trials with randomly generated interpolation points, for a 10-dimensional problem.
Already for a 10-dimensional problem, the savings can be of almost two orders of
magnitude: the brute force computation is only viable for small problems and with a
small number of interpolation points, while the procedure that we propose employs a
fraction of a second even with 500 points.

To summarize, the automatic model selection procedure shows excellent perfor-
mance on our test set, improving over each of the individual RBFs. If a single RBF
has to be selected, cubic and thin plate splines are to be preferred over linear and
multiquadric. The computational overhead of running the automatic model selection
procedure every few iterations of the optimization algorithm is very small, using the
scheme proposed in this paper.

6.6 Comparison with other existing software

We now compare the performance of RBFOpt with other derivative-free optimization
software. Despite the fact that there is a large body of literature in this area of opti-
mization, the availability of free software is considerably less substantial. Rios [49]
benchmarks numerous solvers, but as discussed above, many of those are not suitable
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for the type of problems discussed here. We remark that in order to plot performance
profiles, we must be able to determine the value of every single function evaluation
performed by the algorithm, and we cannot simply rely on results reported in the lit-
erature. Hence, our comparison is limited to software that we could obtain and run
within a reasonable amount of time. After examining the available possibilities, we
decided to include the following software in our comparison:

– NOMAD 3.7.1: NOMAD [35] is an open-source C++ implementation of
MADS [2], and it is well documented and supported. NOMAD can be applied on
both continuous and discrete problems.We test two parametrizations of NOMAD:
one uses a pure MADS search, and the other uses a hybrid Variable Neighborhood
Search (VNS) / MADS search (parameter VNS_SEARCH 0.75, as suggested by
the documentation). VNS is supposed to help the algorithm escape local minima,
increasing the global search capabilities. The other parameters are left to default
values.

– SNOBFIT 2.1: SNOBFIT implements theBranch-and-Fit algorithmof [28], which
subdivides the domain into hyperrectangles, and fits a quadratic model for each
rectangle. The algorithm is globally convergent. We used the available MATLAB
implementation. SNOBFIT handles continuous box-constrained problems, and is
one of the best performing solvers in the tests of [49].

– KNITRO 9.1: KNITRO [8] is a commercial optimization software package that
includes several algorithms. In particular, it has an SQP algorithm that is designed
for derivative-free problems for which the number of function evaluations has
to be kept small. The gradient of the objective function is estimated via forward
finite-differences, and the Hessian is estimated via quasi-Newton BFGS (option
hessopt = 2, label “H2” on the graphs), which constrains the Hessian to be
positive semidefinite, or via quasi-Newton SR1 (option hessopt = 3, label
“H3” on the graphs). KNITRO was the best performing derivative-free solver in
the 2015 GECCO Black-Box Competition, see Sect. 6.7.

– BOBYQA: BOBYQA [45] is a local algorithm for derivative-free bound-
constrained optimization that uses a quadratic approximation of the objective
function. We use the implementation given in NLopt 2.4.2 [31].

– DIRECT: the DIRECT algorithm [32] is a well-known global algorithm for
derivative-free bound-constrained optimization, based on dividing the domain in
hyper-rectangles. We test the original algorithm, label “DIRECT”, as well as the
locally-biased modification proposed in [18], label “DIRECT-L”, as implemented
in NLopt.

– Nelder–Mead: the Nelder–Mead simplex algorithm [42] is one of the most endur-
ing algorithms for derivative-free optimization, dating back from the 60s. Despite
its lack of strong convergence properties, it is very popular and we test its imple-
mentation given in NLopt.

The budget of function evaluations is the same for all solvers, and set to 30(n p + 1)
where n p is the number of variables of problem p. All local optimization algorithms
(NOMAD, KNITRO, BOBYQA, Nelder–Mead) are embedded into a multistart algo-
rithm that is executed until the budget is depleted. The starting point for the first
multistart iteration is the same used for RBFOpt, as is required for the computation of
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Fig. 7 Performance profiles for different parametrizations of RBFOpt and several algorithms taken from
the literature. aMedian NLP, τ = 10−3. b Median MINLP, τ = 10−3

performance and data profiles. We use the same framework as for RBFOpt, i.e., we
perform 20 runs with different random seeds for each problem instance, and take the
median value of the best known point for each run at every iteration.

Performance profiles are reported in Fig. 7. We use the “B” parametrization of
RBFOpt for NLP problems, and “RB” for MINLP problems, which are the best for
the respective class. We use thin plate splines as RBF, disabling the automatic model
selection because none of the other solvers uses a similar model selection approach,
even though some of them could in principle benefit from it (e.g., NOMAD allows
usage of surrogate models, but not in its default version). Of the solvers described
above, only NOMAD supports integer or mixed-integer domains. Thus, the compari-
son on our MINLP test set is restricted to RBFOpt and NOMAD only.

The results show that RBFOpt is highly competitive with existing software, and
in fact it typically performs better on our test set, even without the automatic model
selection procedure that would further improve its performance. On continuous prob-
lems, the best performing algorithm is RBFOpt: in the performance profiles, KNITRO
is slightly below RBFOpt. All remaining solvers are not competitive on this test set,
and are significantly outperformed for any budget of function evaluations within the
30(n p+1) tested here.Onmixed-integer problems, RBFOpt once again clearly outper-
forms NOMAD, although the difference does not seem to be as large as on continuous
problems.NOMADeventually converges on the samenumber of problems asRBFOpt,
but the performance profiles indicate that RBFOpt is more consistent on the mixed-
integer test set: RBFOpt’s curve lie fully above NOMAD’s.

6.7 Results of the 2015 GECCO black-box competition

RBFOpt was one of the 28 participants of the 2015 GECCO Black-Box Competition,
whose results can be found at http://bbcomp.ini.rub.de/results/BBComp2015GECCO/
summary.html. The problem instances for the competition are of dimension up to 64
and with a budget up to 6400, which is larger than the problems Gutmann’s RBF algo-
rithm is usually applied to. More specifically, while the budget was set to 30(n p + 1)
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Fig. 8 Number of problems in
the 2015 GECCO Black-Box
Competition solved within a
certain (relative and absolute)
tolerance. For each value k on
the x-axis, each curve indicates
on how many instances out of
1000 each solver found a
solution at least as good as
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in the experiments discussed so far, the budget was as large as 100n p in the competi-
tion. Our implementation performed relatively well, ranking seventh overall and first
among the open-source solvers. Two of the algorithms discussed in Sect. 6.6, KNI-
TRO and NOMAD, participated to the competition as well, ranking first and twentieth
respectively.

RBFOpt was parametrized with the “RBL” configuration and automatic model
selection; in hindsight, this choice may not have been ideal because our experiments
in this paper suggest that “B”usually performsbetter on continuous problems, although
it is slower in terms of time per iteration. This parametrization restarted multiple times
on instances with large budget, whichmay have been detrimental. The code used in the
competition was a version of RBFOpt prior to 1.0, and the automatic model selection
procedure did not employ an order-based performance metric as described in this
paper. In our tests this negatively affects performance in a significant way. We did
not encounter any fatal numerical issue despite the fact that several of the black-box
functions were very ill-conditioned, with amplitudes exceeding 1020: this indicates
that our implementation is numerically stable.

To give a sense of the performance of RBFOpt as compared to KNITRO and
NOMAD, we report in Fig. 8 a graph indicating the number of problems for which
each solver found a solution within a given (absolute or relative) distance from the best
solution found by any of the three solvers. Clearly KNITRO is the winner here, and
RBFOpt performed much better than NOMAD. We attribute the better performance
of KNITRO to the larger budget of function evaluations: estimating the gradient at
each point requires (n p + 1) evaluations, therefore KNITRO could perform at most
30 major iterations in the experiments of Sect. 6.6, whereas here the budget is not so
tight.

7 Conclusions

In this paper we provided an overview of Gutmann’s RBF method for black-box
optimization, which is considered one of the best surrogate model based methods for
derivative-free optimization. We proposed some modifications of the algorithm with
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the aim of improving practical performance. Besides the numerically stable open-
source implementation, our two main contributions are an efficient methodology to
perform automatic model selection using a cross-validation scheme, and an approach
to exploit noisy but faster function evaluations. Computational experiments show that
automatic model selection improves over each of the individual radial basis functions
and eliminates the need for the user to pre-select the type of surrogate model, and
exploitation of a noisy oracle yields a noticeable reduction in the number of function
evaluations to achieve convergence, when reasonable error bounds are available. Our
tests suggest that parametrizations of the algorithm that are effective on continuous
problems are typically effective on mixed-integer problems as well. One exception is
given by complete restarts: in our experiments, allowing the algorithm to restart from
scratch when no progress is detected is often harmful on continuous problems, while
we found it to be beneficial on mixed-integer problems. However, complete restarts
of the algorithm can significantly improve the average CPU time per iteration, and
therefore they are enabled in the default settings of our implementation.

The software discussed in this paper is available as part of the COIN-OR repository
in a library called RBFOpt. On our test set that comprises low-dimensional problems
(up to 15 variables) with a small budget of function evaluations, RBFOpt is compet-
itive with all derivative-free solvers included in our computational study: it obtains
significantly better results than other open-source solvers, and slightly better results
than a commercial solver.
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