
Math. Prog. Comp. (2018) 10:225–266
https://doi.org/10.1007/s12532-017-0128-z

FULL LENGTH PAPER

Algorithmic innovations and software for the dual
decomposition method applied to stochastic
mixed-integer programs

Kibaek Kim1 · Victor M. Zavala2

Received: 23 June 2015 / Accepted: 20 September 2017 / Published online: 3 November 2017
© Springer-Verlag GmbH Germany and The Mathematical Programming Society 2017

Abstract We present algorithmic innovations for the dual decomposition method
to address two-stage stochastic programs with mixed-integer recourse and provide
an open-source software implementation that we call DSP. Our innovations include
the incorporation of Benders-like cuts in a dual decomposition framework to tighten
Lagrangian subproblems and aid the exclusion of infeasible first-stage solutions for
problems without (relative) complete recourse. We also use an interior-point cutting-
planemethodwith new termination criteria for solving theLagrangianmaster problem.
We prove that the algorithm converges to an optimal solution of the Lagrangian dual
problem in a finite number of iterations, and we also prove that convergence can be
achieved even if the master problem is solved suboptimally. DSP can solve instances
specified in C code, SMPS files, and Julia script. DSP also implements a standard

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
contract number DE-AC02-06CH11357. V. M. Zavala acknowledges funding from the early career
program of the U.S. Department of Energy under grant DE-SC0014114. We gratefully acknowledge the
computing resources provided on Blues, a high-performance computing cluster operated by the Laboratory
Computing Resource Center at Argonne National Laboratory. We also thank Julie Bessac for providing
wind speed prediction data, Sven Leyffer for providing feedback on an earlier version of the manuscript,
the SCIP team at the Zuse Institute Berlin for valuable comments and support, and the anonymous
reviewers for constructive suggestions that considerably improved the original version of this article.

B Kibaek Kim
kimk@anl.gov

Victor M. Zavala
victor.zavala@wisc.edu

1 Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass
Avenue, Lemont, IL 60439, USA

2 Department of Chemical and Biological Engineering, University of Wisconsin-Madison,
1415 Engineering Drive, Madison, WI 53706, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-017-0128-z&domain=pdf

226 K. Kim, V. M. Zavala

Benders decomposition method and a dual decomposition method based on subgradi-
ent dual updates that we use to perform benchmarks. We present extensive numerical
results using SIPLIB instances and a large unit commitment problem to demonstrate
that the proposed innovations provide significant improvements in the number of iter-
ations and solution times. The software reviewed as part of this submission has been
given the Digital Object Identifier (DOI) https://doi.org/10.5281/zenodo.998971.

Keywords Stochastic mixed-integer programming · Decomposition · Parallel ·
Large-scale · Open-source software

Mathematics Subject Classification 90C15 · 90C11 · 49M27 · 65Y05

1 Problem statement

We are interested in computing solutions for two-stage stochastic mixed-integer pro-
grams (SMIPs) of the form

z := min
x

{
cT x + Q(x) : Ax ≥ b, x ∈ X

}
, (1)

where Q(x) = Eξφ(h(ξ) − T (ξ)x) is the recourse function and

φ(t) := min
y

{q(ξ)T y : W (ξ)y ≥ t, y ∈ Y }, t ∈ R
m2 . (2)

We assume that the random parameter ξ follows a discrete distribution with finite sup-
port {ξ1, . . . , ξr } and corresponding probabilities p1, . . . , pr (continuous distributions
can be handled by using a sample-average approximation [32]). The sets X ⊆ R

n1 and
Y ⊆ R

n2 represent integer or binary restrictions on a subset of the decision variables
x and y, respectively. The first-stage problem data comprise A ∈ R

m1×n1 , b ∈ R
m1 ,

and c ∈ R
n1 . The second-stage data are given by T (ξ j) ∈ R

m2×n1 , W (ξ j) ∈ R
m2×n2 ,

h(ξ j) ∈ R
m2 , and q(ξ j) ∈ R

n2 for j = 1, . . . , r . For simplicity, we use the notation
(Tj ,Wj , h j , q j) for j = 1, . . . , r to represent the scenario data.

The SMIP (1) can be rewritten in the extensive form

z = min
x j ,y j

r∑
j=1

p j

(
cT x j + qTj y j

)
(3a)

s.t.
r∑
j=1

Hj x j = 0 (3b)

(x j , y j) ∈ G j , ∀ j = 1, . . . , r, (3c)

where the scenario feasibility set is defined as

G j := {(x j , y j) : Ax j ≥ b, Tj x j + Wj y j ≥ h j , x j ∈ X, y j ∈ Y }. (4)

The nonanticipativity constraints in (3b) represent the equations x1 = xr and x j =
x j−1 for j = 2, . . . , r , and Hj is a suitable r · n1 × n1 matrix. We assume that SMIP

123

https://doi.org/10.5281/zenodo.998971

Algorithmic innovations and software for the dual... 227

does not necessarily have relatively complete recourse. We recall that, without this
property, there can exist an x̂ ∈ X satisfying Ax̂ ≥ b for which there does not exist a
recourse y ∈ R

m2 satisfying (x̂, y) ∈ G j for some j . In other words, not every choice
of the first-stage variables is guaranteed to have feasible recourse for all scenarios.

Different techniques exist for solving SMIPs; Benders decomposition (also known
as the L-shapedmethod) can be applied for problems in which integer variables appear
only in the first stage [6,33,50]. When integer variables appear in the second stage, the
recourse value function is nonconvex and discontinuous in the first-stage variables;
consequently, more sophisticated approaches are needed. These include convexifica-
tion of the recourse function (e.g., [16,30,51,52,59]) or specialized branch-and-bound
schemes (e.g., [3,48]). These approaches are not able to tackle the general SMIP
(1), except [48] that may not be computationally practical. For instance, convexifica-
tion techniques are based on either finite cutting-plane methods (i.e., lift-and-project
cuts [52], Gomory cuts [16,59], and no-good cuts [2]) or disjunctive program-
ming [51]. Consequently, these approaches are limited to certain problem classes (i.e.,
mixed-binary second-stage variables [52], pure-integer variables [2,16,59], integral
technology matrix [52], and special second-stage matrix structures [30]). For exam-
ple, the method proposed in [2] cannot be applied for some of the standard benchmark
problems (the dcap problem instances) used in this paper.

Carøe and Schultz [8] proposed a dual decomposition method for SMIPs. Dual
decomposition solves a Lagrangian dual problem by dualizing (relaxing) the nonan-
ticipativity constraints to obtain lower bounds. Such lower bounds are often tight and
can be used to guide the computation of feasible solutions (and thus upper bounds)
using heuristics or branch-and-bound procedures. Tarhan and Grossmann [55] applied
mixed-integer programming sensitivity analysis [10] within a dual decomposition
method to improve bounds during the solution, and this approach was shown to reduce
the number of iterations. A crucial limitation of dual decomposition is that it is not
guaranteed to recover feasible solutions for problems without (relatively) complete
recourse, which often appear in applications. As a result, the method may not be able
to obtain an upper bound, and it is thus difficult to estimate the optimality gap and
stop the search.

Dual variables can be updated in a dual decompositionmethod by using subgradient
methods [2,8,45,46,55], cutting-plane methods [38], or column-generation meth-
ods [38,40]. The efficiency of dual decomposition strongly depends on the update
scheme used, and existing schemes are limited. For instance, it is well known that
cutting-plane schemes can lead to strong oscillations of the dual variables, and sub-
gradient schemes require ad-hoc step-length selection criteria and can exhibit slow
convergence [12,43].

Progressive hedging is a popular and flexible method for solving SMIPs and can
handle problemswithmixed-integer recourse [9,26,36,56]. Connections between pro-
gressive hedging and dual decomposition have also been established recently to create
hybrid strategies [26]. Progressive hedging has no convergence guarantees. Conse-
quently, it is often used as a heuristic to find approximate solutions. Moreover, this
method is not guaranteed to find a feasible solution for problems without relatively
complete recourse.

123

228 K. Kim, V. M. Zavala

Few software packages are available for solving large-scale stochastic programs.
SMI [31] is an open-source software implementation that can read SMPS files and
solve the extensive form of the problem by using COIN-OR solvers such as Cbc
[13]. FortSP is a commercial solver that implements variants of Benders decompo-
sition [44,60]. The C package ddsip [41] implements dual decomposition for SMIPs
and uses the ConicBundle [28] package for updating dual variables. This package
was unable to solve many small-size SIPLIB instances [38]. Moreover, ddsip does
not support parallelism and does not support model specification through SMPS files
and algebraic modeling languages. PIPS provides a parallel interior-point method for
solving continuous stochastic programs and provides a basic implementation of the
dual decomposition method for solving SMIPs [38,39]. PySP is a Python-based
open-source software package that can model and solve SMIPs in parallel computing
environments by using progressive hedging and Benders decomposition [57].

Open source software packages are also available to decompose general MIPs.
GCG is a generic branch-and-cut solver based on Dantzig–Wolfe decomposition [17].
DIP implements Dantzig–Wolfe decomposition and Lagrangian relaxation [47]. Both
packages can automatically detect decomposition structure of MIP problem and find
an optimal solution using branch-and-cut and branch-and-price methods. Hence, these
solvers can potentially be used for solving SMIP problems. However, none of these
packages provide parallel implementations.

In thiswork,wepresent algorithmic innovations for the dual decompositionmethod.
We develop a procedure to generate Benders-like valid inequalities (i.e., Benders fea-
sibility and optimality cuts) that tighten Lagrangian subproblems and that aid the
exclusion of infeasible first-stage solutions. The Benders-like cuts are derived from
Lagrangian subproblem solutions and shared among subproblems. We demonstrate
that this procedure enables us to accelerate solutions and to find upper bounds for
problems without relatively complete recourse. We use an interior-point cutting-plane
method with new termination criteria for solving the Lagrangian master problem. We
prove that the dual decomposition algorithm terminates finitely even without solving
the master problem to optimality using the interior point method. We demonstrate
that this approach reduces oscillations of the dual variables and ultimately aids con-
vergence. We also introduce DSP, an open-source, object-oriented, parallel software
package that enables the implementation and benchmarking of different dual decom-
position strategies and of other standard techniques such as Benders decomposition.
DSP provides interfaces that can read models expressed in C code and the SMPS
format [5,18]. DSP can also read models expressed in JuMP [37], a Julia-based
algebraic modeling package, which can be used to represent large-scale stochastic
programs using a compact syntax. We benchmark DSP using SIPLIB instances and
large-scale unit commitment problems with up to 1,700,000 rows, 583,200 columns,
and 28,512 integer variables on a 310-node computing cluster at Argonne National
Laboratory. We demonstrate that our innovations yield important improvements in
robustness and solution time.

The contributions of this work can be summarized as follows.

– We develop a procedure to generate the Benders-like valid inequalities in the dual
decomposition framework.

123

Algorithmic innovations and software for the dual... 229

– We use an interior-point cutting-plane method with new termination criteria for
solving the Lagrangian master problem, which allows the finite termination of the
dual decomposition even without solving the master problem to optimality.

– We develop an open-source software packageDSP that implements several decom-
position methods capable of running on high-performance computing systems by
using the MPI library.

The paper is structured as follows. In Sect. 2 we present the standard dual decompo-
sition method and discuss different approaches for updating dual variables. In Sect. 3
we present our algorithmic innovations. Here, we first present valid inequalities for the
Lagrangian subproblems to eliminate infeasible first-stage solutions and to tighten the
subproblems (Sect. 3.1). We then present an interior-point cutting-plane method and
termination criteria for themaster problem (Sect. 3.2). In Sect. 4we describe the design
of DSP and the modeling interfaces. In Sect. 5 we present our benchmark results. In
Sect. 6 we summarize our innovations and provide directions for future work.

2 Dual decomposition

We describe a standard dual decomposition method for two-stage SMIPs of the form
(3). We apply a Lagrangian relaxation of these constraints to obtain the Lagrangian
dual function of (3):

D(λ) := min
x j ,y j

⎧⎨
⎩

r∑
j=1

L j (x j , y j , λ) : (x j , y j) ∈ G j , ∀ j = 1, . . . , r

⎫⎬
⎭ , (5)

where

L j (x j , y j , λ) := p j

(
cT x j + qTj y j

)
+ λT (Hj x j). (6)

Here, λ ∈ R
r ·n1 are the dual variables of the nonanticipativity constraints (3b). For

fixed λ, the Lagrangian dual function can be decomposed as

D(λ) =
r∑
j=1

Dj (λ), (7)

where

Dj (λ) := min
x j ,y j

{
L j (x j , y j , λ) : (x j , y j) ∈ G j

}
. (8)

We thus seek to obtain the best lower bound for (3) by solving the maximization
problem (the Lagrangian dual problem):

zLD := max
λ

r∑
j=1

Dj (λ). (9)

123

230 K. Kim, V. M. Zavala

Proposition 1 is a well known result of Lagrangian relaxation that shows the tightness
of the lower bound zLD [19].

Proposition 1 The optimal value zLD of the Lagrangian dual problem (9) equals the
optimal value of the linear program (LP):

min
x j ,y j

⎧⎨
⎩

r∑
j=1

p j

(
cT x j + qTj y j

)
: (x j , y j) ∈ conv(G j),

r∑
j=1

Hj x j = 0, ∀ j = 1, . . . , r

⎫⎬
⎭ , (10)

where conv(G j) denotes the convex hull of G j . Moreover, zLD ≥ zLP holds, where
zLP is the optimal value of the LP relaxation of SMIP (3).

We highlight that the solution of the maximization problem (9) provides only a
lower bound for SMIP (albeit this one is often tight). When the problem at hand has
no duality gap, the solution of (9) is feasible for SMIP and thus optimal. When this
is not the case, an upper bound zUB for SMIP may be obtained and refined by finding
feasible solutions during the dual decomposition procedure. Finding the best upper
bound and thus computing the actual duality (optimality) gap zUB−zLB can be done by
performing a branch-and-bound search, but this is often computationally prohibitive.

The dual decomposition method can be seen as a primal multistart heuristic proce-
dure [15,38].With different objective functions L j (x j , y j , λ), the dual decomposition
finds multiple primal solutions (x j , y j) ∈ conv(G j) at each iteration. Particularly for
stochastic programs with pure integer first-stage variables, the method can effectively
find an optimal solution (e.g., [2]). Note, however, that the original problem (3) may
be infeasible for all candidates x j if the problem does not have relatively complete
recourse. We provide a remedy for this in Sect. 3.

2.1 Dual-search methods

In a dual decomposition method, we iteratively search for dual values λ that maximize
the Lagrangian dual function (5). We now present a conventional subgradient method
and a cutting-plane method to perform such a search.

2.1.1 Subgradient method

Subgradient methods have been widely used in nonsmooth optimization. We describe
a conventional method with a step-size rule described in [11]. Let λk be the dual
variable at iteration k ≥ 0, and let xkj be an optimal solution of (8) for given λk . The
dual variable is updated as

λk+1 = λk − αk

r∑
j=1

Hj x
k
j , (11)

123

Algorithmic innovations and software for the dual... 231

where αk ∈ (0, 1] is the step size. This method updates the duals by using a
subgradient of D(λ) at λk , denoted by

∑r
j=1 Hj xkj . The step size αk is given by

αk := βk
zUB − D(λk)∥∥∥∑r

j=1 Hj xkj

∥∥∥
2

2

, (12)

where zUB is the objective value of the best-known feasible solution to (1) up to iteration
k and βk is a user-defined positive scalar. Algorithm 1 summarizes the procedure.

Algorithm 1 Dual Decomposition Based on Subgradient Method (DDSub)
1: Set k ← 0, zLB ← −∞, zUB ← ∞ and γ ← 0.
2: repeat
3: SOLVE (8) to obtain Dj (λ

k) and (xkj , y
k
j) for given λk and for all j = 1, . . . , r

4: if D(λk) > zLB then
5: zLB ← D(λk)

6: else
7: γ ← γ + 1
8: if γ = γmax then
9: βk ← 0.5βk and γ ← 0
10: end if
11: end if
12: UPDATE zUB by solving (3) for given xkj
13: k ← k + 1
14: until (zUB − zLB)/|10−10 + zUB| < 10−5, βk < 10−6, or time limit is reached.

Algorithm1 is initializedwith user-definedparametersλ0, γmax, andβ0 and reduces
βk by a half when the best lower bound zLB is not improved for the last γmax iterations
(lines 8–10). The best upper bound zUB can be obtained by solving (3) for fixed xkj
(line 12).An important limitationof subgradientmethods is that enforcing convergence
using line-search schemes can be computationally impractical, since each trial step
requires the solution of the Lagrangian subproblems [11]. Therefore, heuristic step-
size rules are typically used.

2.1.2 Cutting-plane method

The cutting-planemethod is an outer approximation scheme that solves the Lagrangian
dual problem by iteratively adding linear inequalities. The outer approximation of (9)
at iteration k is given by the Lagrangian master problem:

mk := max
θ j ,λ

r∑
j=1

θ j (13a)

s.t. θ j ≤ Dj (λ
l) +

(
Hj x

l
j

)T
(λ − λl), j = 1, . . . , r, l = 0, 1, . . . , k.

(13b)

123

232 K. Kim, V. M. Zavala

The dual variable λk+1 is obtained by solving the approximation (13) at iteration k.
We define the primal-dual solution of the Lagrangian master problem as the triplet
(θ, λ, π). Here, θ := (θ1, ..., θr) and π := (π0

1 , ..., πk
1 , ..., π0

r , ..., πk
r), where π l

j are
the dual variables of (13b). The procedure is summarized in Algorithm 2.

Algorithm 2 Dual Decomposition Based on Cutting-Plane Method (DDCP)

1: k ← 0 and λ0 ← 0
2: loop
3: SOLVE (8) to obtain Dj (λ

k) and (xkj , y
k
j) for given λk and for all j = 1, . . . , r .

4: SET zLB ← max{zLB, D(λk)}.
5: ADD (13b) for given D(λk) and xkj
6: SOLVE (13) to obtain mk and (θk+1, λk+1)

7: STOP if mk ≤ D(λk)

8: SET k ← k + 1
9: end loop

The function Dj (λ) is piecewise linear concave inλ supported by the linear inequal-
ities (13b). Assuming that the master problem (13) and the subproblem (8) can be
solved to optimality, Algorithm 2 terminates with an optimal solution of (9) after a
finite number of steps because the number of linear inequalities required to approxi-
mate D(λ) is finite. This gives the cutting-plane method a natural termination criterion
(i.e., mk−1 ≤ D(λk)). In other words, this criterion indicates that mk−1 matches the
Lagrangian dual function D(λk) and thus the maximum of the Lagrangian master
problem matches the maximum of the Lagrangian dual problem.

Remark 1 Instead of adding the linear inequalities (13b) for each s ∈ S, one can add
a single aggregated cut

r∑
j=1

θ j ≤
r∑
j=1

Dj (λ
l) +

⎛
⎝

r∑
j=1

Hj x
l
j

⎞
⎠

T

(λ − λl) (14)

per iteration l = 0, 1, . . . , k. While the convergence will slow using aggregated cuts,
the master problem can maintain a smaller number of constraints.

Remark 2 The column generation method [38,40] is a variant of the cutting-plane
method that solves the dual of the Lagrangian master problem (13). Lubin et al. [38]
demonstrated that the dual of the Lagrangian master has a dual angular structure that
can be exploited by using decomposition methods.

3 Algorithmic innovations for dual decomposition

We now develop innovations for the dual decomposition method based on cutting
planes. In Sect. 3.1 we present a procedure to construct Benders-like valid inequal-
ities that aid the elimination of infeasible first-stage solutions and that tighten the

123

Algorithmic innovations and software for the dual... 233

Lagrangian subproblems. As a byproduct, the procedure enables us to obtain upper
bounds for SMIP (3). In Sect. 3.2 we present an interior-point method and termination
criteria to stabilize the solutions of the Lagrangian master problem (13).

3.1 Tightening inequalities for subproblems

We consider two cases in which a set of valid inequalities can be generated to exclude
a subset of (suboptimal) solutions for the subproblems. In the first case we consider a
feasible Lagrangian subproblem solution that is infeasible for SMIP.

Proposition 2 Let (x̂, ŷ) ∈ G j for some j , and assume that for some scenario j ′
there does not exist y ∈ R

n2 such (x̂, y) ∈ G j ′ for fixed x̂. Let μ j ′ be an optimal
solution of the LP

max
μ

{
μT (

h j ′ − Tj ′ x̂
) : μT W j ′ = 0, 0 ≤ μ ≤ 1

}
. (15)

The inequality

μT
j ′

(
h j ′ − Tj ′x

) ≤ 0 (16)

excludes x̂ from the set {x : (x, y) ∈ G j ′ } and is also valid for SMIP (3).

Proof From Farkas’ lemma, there exists a μ j ′ ∈ R
m2 such that μT

j ′Wj ′ = 0 and

μT
j ′(h j ′ − Tj ′ x̂) > 0, and thus the hyperplane μT

j ′
(
h j ′ − Tj ′x

) ≤ 0 separates x̂ from
{x : (x, y) ∈ G j ′ }. Moreover, this is valid for Gs and thus for SMIP (3).
�

In the second case we consider a feasible subproblem solution that is also feasible
with respect to SMIP. For this case, we present a set of valid inequalities that can
tighten the subproblems by using an upper bound zUB of SMIP.

Proposition 3 Assume that for fixed x̂, for all j = 1, . . . , r there exists y ∈ R
n2 such

that (x̂, y) ∈ G j . Let π j be the optimal solution of the following recourse problem for
each j = 1, . . . , r:

max
π

{
πT (

h j − Tj x̂
) : πT W j = q j , π ≥ 0

}
. (17)

The inequality

cT x +
r∑
j=1

πT
j

(
h j − Tj x

) ≤ zUB (18)

is valid for SMIP (3).

Proof Consider a Benders-like decomposition of SMIP with relaxation of second-
stage integrality,

123

234 K. Kim, V. M. Zavala

min
x

cT x +
r∑
j=1

p jq
T
j ŷ j (x)

s.t. Ax ≥ b, x ∈ X,

where ŷ j (x) := argmin{qTj y : Wj y ≥ h j − Tj x}. This is equivalent to

min
x

cT x +
r∑
j=1

p j π̂ j (x)
T (h j − Tj x)

s.t. Ax ≥ b, x ∈ X,

where π̂ j (x) := argmax{πT (h j −Tj x) : πT W j = q j , π ≥ 0}. By assumption, there
exists a solution πs for (17) for each j = 1, . . . , r . Because

cT x +
r∑
j=1

p jπ
T
j

(
h j − Tj x

) ≤ cT x +
r∑
j=1

pTj π̂ j (x)
T (h j − Tj x)

≤ zUB

holds for any feasible x , the inequality (18) is valid for SMIP (3).
�
The inequalities (16) and (18) are feasibility cuts and optimality cuts, respec-

tively, obtained from Benders decomposition of the scenario subproblems for each
j = 1, . . . , r . These Benders-like cuts are generated by using a relaxation of second-
stage integrality. Consequently the cutsmay be loose and are not guaranteed to exclude
x̂ or tighten the objective value. Computational experiments provided in Sect. 5, how-
ever, provide evidence that the inequalities generated by Proposition 2 are effective in
practice.

Procedure 1 summarizes the proposed cutting-plane procedure for solving the
Lagrangian subproblems (8) by adding the valid inequalities (16) and (18). This pro-
cedure replaces line 3 of the standard dual decomposition method of Algorithm 2. In
other words, Procedure 1 is called in each iteration in order to generate feasibility and
optimality cuts (16) and (18).

We explain the proposed cutting-plane procedure as follows. The situation stated
in Proposition 2 can occur when SMIP does not have relatively complete recourse.
Because the inequality (16) is analogous to the feasibility cut of the L-shaped method
[6], we call it a feasibility cut. This cut eliminates a candidate first-stage solution x̂
that does not have a feasible recourse for the subproblem. We highlight, however, that
the inequality (16) can be added only when the LP relaxation of the subproblem (8)
is infeasible. We emphasize that the inequalities (16) and (18) generated in lines 6
and 14, respectively, are added to all the Lagrangian subproblems (lines 8 and 15).
In other words, the inequalities generated for one scenario are shared with all the
other scenarios. This approach seeks to prevent a given subproblem from visiting a
first-stage solution that is infeasible for another subproblem.

The inequality (18) of Proposition 3 is a supporting hyperplane that lower approx-
imates the objective function of SMIP (3). Moreover, the inequality is parameterized

123

Algorithmic innovations and software for the dual... 235

Procedure 1 Cutting-Plane Procedure for Lagrangian Subproblems

Require: λk

1: for all j = 1, . . . , r do
2: repeat
3: SOLVE subproblem (8) to obtain Dj (λ

k) and (xkj , y
k
j) for λk

4: isFeasible ← true
5: for all j ′ �= j do
6: SOLVE feasibility cut generator (15) to obtain μ j ′ for xkj
7: if μT

j ′ (h j ′ − Tj ′ xkj) > 0 then
8: ADD feasibility cut (16) to all the subproblems (8)
9: isFeasible ← false
10: end if
11: end for
12: until isFeasible = true
13: UPDATE zUB by solving (3) for fixed xkj
14: GENERATE optimality cut (18) by solving (17) for xkj and for all j = 1, . . . , r
15: ADD optimality cut (18) to all the subproblems (8)
16: end for

by the best-known upper bound zUB and thus can be tightened as better upper bounds
are obtained. In other words, the optimality cut seeks to eliminate first-stage solutions
that go above a known upper bound. We call the inequality (18) an optimality cut,
because it is analogous to the optimality cut of the L-shaped method [6]. We also note
that the same optimality cut is used for all the subproblems.

One can easily prove that Procedure 1 terminates in a finite number of steps by
showing that only a finite number of feasibility cuts (16) are generated. This holds
because a finite number of bases exist in each one of the cut generation problems (15).
Note also that (15) is an LP, where the objective function is parameterized by x̂ , and
the corresponding bases do not change in x̂ . Consequently, only a finite number of
cuts can be generated in the loop of lines 2–12 before finding a feasible solution (i.e.,
isFeasible = true in line 12).

3.2 Interior-point cutting-plane method for the Lagrangian master problem

The simplex method is an efficient algorithm for solving the Lagrangian master prob-
lems (13). This efficiency is due to its warm-starting capabilities [7]. The solutions of
the Lagrangian master problem, however, oscillate significantly when the epigraph of
the Lagrangian dual function is not well approximated (because many near-optimal
solutions of the master problem are present) [21,43]. The oscillations can in turn slow
convergence (we illustrate this behavior in Fig. 6 of Sect. 5). To avoid this situation,
we solve the Lagrangian master problems suboptimally using an interior-point method
(IPM).As noted in [43], early termination on an IPMcan enable us to find stronger cuts
and to avoid degeneracy. The use of an IPMwith early termination has been applied in
the context of cutting-plane and column-generation methods [21,23,25,43]. Our IPM
implementation follows the lines of the work of [43], which uses Mehrotra’s primal-
dual predictor corrector method to deliver suboptimal but strictly feasible solutions of
the master problem. Our implementation specializes the relative duality gap criterion

123

236 K. Kim, V. M. Zavala

of [23] to a dual decomposition setting. In addition to satisfying this criterion, the basic
requirement for any IPM used is that it returns a feasible point for the master problem.
From a practical standpoint, we also require that the IPM delivers well-centered iter-
ates (i.e., which havewell-balanced complementarity products) [22]. This requirement
guarantees that the computed solution is an approximate analytic center that is not too
close to the boundary of the primal-dual feasible set and ensures that the oscillations
of the dual solutions will be relatively small [23]. We also propose a new termination
criterion specific to a dual decomposition setting that uses upper-bound information
to determine whether the IPM should be terminated.

The IPM checks the termination criteria in the following order:

r∑
j=1

θkj ≥ zUB, (19a)

gk(θ
k, πk) < εkIPM. (19b)

Here, we define the relative duality gap of the primal-dual feasible solution (θ, λ, π)

of the master (13) at iteration k as

gk(θ, π) :=
∑r

j=1
∑k

l=1 π l
j

(
Dj (λ

l) − (Hj xlj)
T λl

)
− ∑r

j=1 θ j

1 +
∣∣∣∑r

j=1 θ j

∣∣∣
. (20)

This quantity is the difference between the dual and primal objectives of the master
problem scaled by the primal objective. We denote (θ̃k, λ̃k, π̃k) as a primal-dual feasi-
ble solution of the master (13) obtained at iteration k such that gk(θ̃k, π̃k) < εkIPM for
some duality gap tolerance εkIPM > 0 or

∑r
j=1 θ̃kj ≥ zUB for the current upper bound

zUB < ∞.
We adjust the tolerance εkIPM at each iteration of the dual decomposition procedure.

The tolerance εkIPM can be made loose when the duality gap of the dual decomposition
method is large, and it is updated as follows:

εkIPM := min

{
εmax
IPM ,

gk−1(θ̃
k−1, π̃k−1)

δ
+ m̃k−1 − ∑r

j=1 Dj (λ̃
k−1)

1 + |m̃k−1|

}
, (21)

where m̃k−1 := ∑r
j=1 θ̃k−1

j , εmax
IPM is the maximum tolerance, and parameter δ > 1

is the degree of optimality (defined as in [23]). Parameter δ controls the tolerance
εkIPM relative to the duality gap gk(θ, π). This tolerance control (21) mechanism is
different from that defined in [23]. In particular, the tolerance update in [23] depends
on parameter κ specifically defined for a particular problem instance, whereas (21)
does not require such a parameter.

At first sight it seems possible that Algorithm 2 may not generate any cut for the
Lagrangian master problem because the solution of the master is terminated early.
The following propositions show, however, that Algorithm 2 does not stall and even-
tually generates cutting planes for the Lagrangian master problem or terminates with
optimality.

123

Algorithmic innovations and software for the dual... 237

Proposition 4 Let (θ̃k, λ̃k, π̃k) be a feasible suboptimal solution of the master (13)
satisfying gk(θ̃k, π̃k) < εkIPM at iteration k with εkIPM defined in (21). If θ̃kj ≤ Dj (λ̃

k)

for all j = 1, . . . , r , then εk+1
IPM ≤ gk(θ̃k, π̃k) < εkIPM.

Proof Suppose that

εk+1
IPM = gk(θ̃k, π̃k)

δ
+ m̃k − ∑r

j=1 Dj (λ̃
k)

1 + |m̃k | < εmax
IPM .

Because θ̃kj ≤ Dj (λ̃
k) holds for all j = 1, . . . , r , we have m̃k

j − ∑r
j=1 Dj (λ̃

k) =
∑r

j=1

(
θ̃kj − Dj (λ̃

k)
)

≤ 0 and εk+1
IPM ≤ gk(θ̃k, π̃k)/δ < gk(θ̃k, π̃k) < εkIPM.
�

Note that (θ̃k, λ̃k, π̃k) in Proposition 4 are feasible solutions of the Lagrangian
master problem at any iteration k. Proposition 4 also states that the relative tolerance
is decreased at each iteration. This implies that a feasible solution at iteration k will
not be the same as that at iteration k + 1 obtained with the new tolerance εk+1

IPM (even if
no cut was generated at iteration k). In fact, the next iteration finds a feasible solution
that, if not optimal, is closer to optimality. We also highlight that the proposition
requires feasibility of the subptimal solution of the master problem. This requirement
is fulfilled in practice by using an IPM that delivers a feasible solution at each iterate.

We are interested only in feasible solutions satisfying
∑r

j=1 θ̃ j < zU B for a given

zU B < ∞. Consequently, the IPM can be terminated with a feasible solution (θ̃ , λ̃, π̃)

whenever
∑r

j=1 θ̃ j ≥ zU B .

Proposition 5 Let (θ̃k, λ̃k, π̃k) be a feasible solution of the master (13) satisfying∑r
j=1 θ̃kj ≥ zUB at iteration k for a given zUB < ∞. If θ̃kj ≤ Dj (λ̃

k) for all j =
1, . . . , r , then

∑r
j=1 Dj (λ̃

k) = zUB.

Proof Because θ̃kj ≤ Dj (λ̃
k) holds for all j = 1, . . . , r , we have

zUB ≤
r∑
j=1

θ̃kj ≤
r∑
j=1

Dj (λ̃
k) ≤ zLD.

Because zLD ≤ zUB, we have zLD = ∑r
j=1 Dj (λ̃

k) = zUB.
�
Proposition 5 states that a feasible master solution (θ̃k, λ̃k, π̃k) satisfying∑r
j=1 θ̃kj ≥ zUB at iteration k is an optimal solution of the Lagrangian dual prob-

lem if no cut is generated at such a point. The following corollary also suggests that
at least one cut is generated for the feasible solution if

∑r
j=1 θ̃kj > zUB; that is, in the

case that strict inequality holds.

Corollary 1 Let (θ̃k, λ̃k, π̃k) be a feasible solution of the master (13) satisfying∑r
j=1 θ̃kj > zUB at iteration k for given εkIPM and zUB. There exists some j such

that θ̃kj > Dj (λ̃
k).
�

123

238 K. Kim, V. M. Zavala

λ

D
s(λ

)

zUB

εIPM
k

(a)
λ

D
s(λ

) zUB

εIPM
k

(b)
λ

D
s(λ

) zUB

εIPM
k

(c)

Fig. 1 Conceptual illustration of different termination cases of the IPM with the proposed criteria. a
Terminated by criterion (19a). b Terminated by criterion (19b), but no cut generation. c Terminated by
criterion (19b) with decreased εkIPM

Figure 1 provides a conceptual illustration of the different termination cases for the
IPM under the proposed criteria (19). Figure 1a shows the IPM terminated by criterion
(19a) prior to satisfying condition (19b). In Fig. 1b, the IPM terminated by criterion
(19b), but no cut was generated at the solution. Hence, by decreasing the duality gap
tolerance εkIPM fromProposition 4, the interior-point solutionmoves toward an extreme
point (see Fig. 1b, c). In Fig. 1c the IPM terminated with the decreased tolerance at
the next iteration.

We modify the dual decomposition method of Algorithm 2 in order to use the
interior-point cutting-plane method with the proposed termination criteria (19) for
the master problems (13). Moreover, we solve the Lagrangian subproblems (8) by
using Procedure 1. We denote the duality gap tolerance for optimality of the IPM
by εOpt; that is, (θk, πk) is an optimal solution for the master (13) at iteration k if
gk(θk, πk) < εOpt.

Theorem 1 Algorithm 3 terminates after a finite number of iterations with an optimal
solution of the Lagrangian dual problem (9).

Proof We consider the following two cases:

– Assume that a feasible solution of the master problem is found that satisfies∑r
j=1 θ̃k+1

j ≥ zUB for given zUB < ∞. We have two subcases:

– If θ̃kj ≤ Dj (λ̃
k) holds for all j = 1, . . . , r , we have from Proposition 5 that

the algorithm terminates with optimality (line 8).
– Otherwise, from Corollary 1, we must have that the algorithm excludes the
current solution by adding cutting-planes (13b) (line 10).

– Assume that a feasible solution of the master problem is found that satisfies
gk(θ̃k, λ̃k) < εkIPM. We have two subcases:
– If θ̃kj ≤ Dj (λ̃

k) holds for all j = 1, . . . , r , we have from Proposition 4 that the

algorithm reduces εkIPM by a factor of δ (line 15). An optimal master solution
can thus be obtained after a finite number of reductions in εkIPM. (line 17)

– Otherwise, the algorithm excludes the current solution by adding (13b) (line
20).

Each case shows either a finite termination or the addition of cuts (13b). Because
a finite number of inequalities are available for (13b) and because Procedure 1 also

123

Algorithmic innovations and software for the dual... 239

Algorithm 3 Dual Decomposition Based on Interior-Point Cutting-Plane Method
(DSP)
1: k ← 0, λ0 ← 0 and zUB ← ∞
2: loop
3: CALL Procedure 1 to obtain Dj (λ

k+1) and (xk+1
j , yk+1

j) for given λk+1

4: if zLB = ∞ then
5: ADD cutting-planes (13b) to the master (13) for given D(λk) and xkj
6: else if (θk+1, λk+1) is obtained from (19a) then
7: if θk+1

j ≤ Dj (λ
k+1) for all j = 1, . . . , r then

8: STOP
9: else
10: ADD cutting-planes (13b) to the master (13) for given D(λk+1) and xk+1

j
11: end if
12: else if (θk+1, λk+1) is obtained from (19b) then
13: if θk+1

j ≤ Dj (λ
k+1) for all j = 1, . . . , r then

14: if εkIPM > εOpt then

15: UPDATE εk+1
IPM from (21)

16: else
17: STOP
18: end if
19: else
20: ADD cutting-planes (13b) to the master (13) for given D(λk+1) and xk+1

j
21: end if
22: end if
23: zLB ← max{zLB, D(λk)}.
24: SOLVE the master (13) by the IPM to obtain (θk , λk)

25: k ← k + 1
26: end loop

terminates in a finite number of steps, the algorithm terminates after a finite number
of steps.
�

4 DSP: an open-source package for SMIP

We now introduce DSP, an open-source software package that provides serial and
parallel implementations of different decomposition methods for solving SMIPs. DSP
implements the dual decomposition method of Algorithm 3 as well as standard dual
decomposition methods (Algorithms 1 and 2) and a standard Benders decomposition
method.We note that DSP does not implement a branch-and-bound method to exploit
Lagrangian lower bounds (as in [8,17,47]) . Consequently, our current implementation
cannot be guaranteed to obtain an optimal solution for SMIP.

4.1 Software design

We first provide software implementation details and different avenues for the user
to call the solver. The software design is object-oriented and implemented in C++. It
consists ofModel classes and Solver classes for handling optimizationmodels and sce-
nario data.In Fig. 2 we illustrate the core classes in DSP using an UML class diagram.

123

240 K. Kim, V. M. Zavala

Fig. 2 UML (unified modeling language) class diagram for DSP

4.1.1 Model classes

An abstractModel class is designed to define a generic optimization model data struc-
ture. The StoModel class defines the data structure for generic stochastic programs,
including two-stage stochastic programs and multistage stochastic programs. The
underlying data structure of StoModel partially follows the SMPS format. The class
also defines core functions for problem decomposition. The TssModel class derived
defines the member variables and functions specific to two-stage stochastic programs
and decompositions. Following the design of the model classes, users can derive new
classes for their own purposes and efficiently manage model structure provided from
several interfaces (e.g., JuMP and SMPS; see Sect. 4.2).

4.1.2 Solver classes

An abstract Solver class is designed to provide different algorithms for solving stochas-
tic programming problems defined in theModel class. DSP implements the TssSolver
class to define solvers specific to two-stage stochastic programs. From the TssSolver
class, three classes are derived for each method: TssDe, TssBd, and TssDd.

The TssDe class implements a wrapper of external solvers to solve the extensive
formof two-stage stochastic programs. The extensive form is constructed and provided
by the TssModel class.

TheTssBd class implements aBenders decompositionmethod for solving two-stage
stochastic programs with continuous recourse. A proper decomposition of the model
is performed and provided by the TssModel class, while the second-stage integrality
restriction is automatically relaxed. Depending on the parameters provided, TssModel
can make a different form of the problem decomposition for TssBd. For example, the
user can specify the number of cuts added per iteration, which determines the number
of auxiliary variables in the master problem of Benders decomposition. Moreover, the
Benders master can be augmented for a subset J̃ ⊆ J := {1, . . . , r} of scenarios to
accelerate convergence.

123

Algorithmic innovations and software for the dual... 241

The TssDd class implements the proposed dual decomposition method for solv-
ing two-stage stochastic programs with mixed-integer recourse. For this method, an
abstract TssDdMaster class is designed to implement methods for updating the dual
variables. The subgradient method in Algorithm 1 and the cutting-plane method in
Algorithm 2 are implemented in such derived classes. Moreover, a subclass derived
from the TssBd is reused for implementing the cutting-plane procedure from Pro-
cedure 1. Users can customize this cutting-plane procedure by incorporating more
advanced Benders decomposition techniques such as convexification of the recourse
function [16,51,52,59]. An l∞-norm trust region is also added to the master problems
of Algorithm 2 in order to stabilize the cutting-plane method. The rule of updating the
trust region follows that proposed in [35]. Users can also implement their own method
for updating the dual variables.

4.1.3 External solver interface classes

DSP uses external MIP solvers to solve subproblems under different decomposition
methods. The SolverInterface class is an abstract class to create interfaces to the
decomposition methods implemented. Several classes are derived from the abstract
class in order to support specific external solvers. The current implementation supports
three LP solvers (Clp [14], SoPlex [58], and OOQP [20]) and a mixed-integer solver
(SCIP [1]). Users familiar with the COIN-OR Open Solver Interface [49] should
easily be able to use the SolverInterfaceOsi class to derive classes for other solvers
(e.g., CPLEX [29], Gurobi [27]).

4.1.4 Parallelization

The proposed dual decomposition method can be run on distributed-memory and
shared-memory computing systems with multiple cores. The implementation proto-
col is MPI. In a distributed-memory environment, the scenario data are distributed to
multiple processorsin a round-robin fashion. For the distributed scenario data, each
processor solves the Lagrangian subproblems, generates Benders-type cuts, and solves
upper-bounding problems (i.e., evaluating feasible solutions) in sequence at each iter-
ation. For example, if a processor received the scenario data for scenarios 1 and 3, it
solves the Lagrangian subproblems, cut-generation problems, and the upper-bounding
problems corresponding to scenarios 1 and 3. The resulting partial information for
lower bounds, cuts, and upper bounds will then be combined at the master processor
(this prevents each processor from loading all the scenario data). Therefore, each iter-
ation solves many MIP problems (i.e., Lagrangian subproblems and upper-bounding
problems) and LP problems (i.e., cut-generation problems) in parallel. The root pro-
cessor also solves the master problem to update the dual variables. By distributing
scenario data, we can store and solve large-scale SMIP problem. As long as a single-
scenario problem fits in a computing node, the number of scenarios can be increased
to as many computing nodes as are available. However, each computing node requires
enough memory to store at least one scenario problem in extensive form.

In a parallel dual decomposition setting, significant amounts of data need to be
shared among processors. Shared data include subproblem solutions, dual variables,

123

242 K. Kim, V. M. Zavala

valid inequalities, best upper bound, and best lower bound. Data are communicated
among the processors based on amaster-worker framework. That is, the root processor
collects and distributes data to all processors in a synchronous manner.

4.2 Interfaces for C, JuMP, and SMPS

The source code of DSP is compiled to a shared object library with C API func-
tions defined in StoCInterface.h. Users can load the shared object library with the
implementation of the model to call the API functions. We also provide interfaces to
JuMP [4,37] and SMPS files [5] via a Julia package Dsp.jl.

The Dsp.jl package exploits the algebraic modeling capabilities of JuMP, which
is a Julia-based modeling language. The use of Julia facilitates data handling and
the use of supporting tools (e.g., statistical analysis and plotting). To illustrate these
capabilities, we consider the two-stage stochastic integer program presented in [8]:

min

{
−1.5 x1 − 4 x2 +

3∑
s=1

p j Q(x1, x2, ξ1,s, ξ2,s) : x1, x2 ∈ {0, . . . , 5}
}

,

where

Q(x1, x2, ξ1,s, ξ2,s) = min
y1,y2,y3,y4

− 16y1 + 19y2 + 23y3 + 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ξ1,s − x1
6y1 + y2 + 3y3 + 2y4 ≤ ξ2,s − x2
y1, y2, y3, y4 ∈ {0, 1}

and (ξ1,s, ξ2,s) ∈ {(7, 7), (11, 11), (13, 13)} with probability 1/3. The corresponding
JuMP model is given by:

1 using JuMP, Dsp, MPI; # Load packages
2 MPI.Init() # Initialize MPI
3 m = Model(3) # Create a model object with three scenarios
4 xi = [[7,7] [11,11] [13,13]] # Define random parameter
5 @variable(m, 0 <= x[i=1:2] <= 5, Int)
6 @objective(m, Min, -1.5*x[1]-4*x[2])
7 for s = 1:3
8 q = Model(m, s, 1/3)
9 @variable(q, y[j=1:4], Bin)

10 @objective(q, Min, -16*y[1]+19*y[2]+23*y[3]+28*y[4])
11 @constraint(q, 2*y[1]+3*y[2]+4*y[3]+5*y[4]<=xi[1,j]-

x[1])
12 @constraint(q, 6*y[1]+1*y[2]+3*y[3]+2*y[4]<=xi[2,s]-

x[2])
13 end
14 solve(m, solve_type = :Dual, param = "myparam.txt")
15 MPI.Finalize(); # Finalize MPI

123

Algorithmic innovations and software for the dual... 243

In the first line of this script we call the required Julia packages: JuMP, Dsp,
and MPI. The JuMPmodel is defined in lines 3 to 14. The Dsp.jl package redefines
the functions JuMP.Model and JuMP.solve in order to interface with the DSP
solver. The first stage is defined in lines 5 and 6 and the second stage in lines 8 to 12 for
each scenario. DSP reads and solves the model in line 14 with optional specifications
for the solution method (dual decomposition, :Dual) and the algorithmic parameter
file myparam.txt. More details are available in the software repositories. Note that
only one line of code is required to invoke the parallel decomposition method. In other
words, the user does not need to write any MPI code.

In the script provided we solve the problem using the dual decomposition method
described in Sect. 3 (line 14).Arguments can be passed to the function solve to
specify the desired solution method. For instance, if the user wishes to solve SMIP
with continuous second-stage variables using Benders decomposition, then line 14 is
replaced with

1 solve(m, solve_type = :Benders, param = "myparam.txt")

Note that this finds an optimal solutionwhen the second stage has continuous variables
only (otherwise it provides a lower bound). If the user desires to find anoptimal solution
for the extensive form of SMIP, then line 15 is replaced with

1 solve(m, solve_type = :Extensive, param = "myparam.txt")

DSP can also read amodel provided as SMPSfiles. In this format, amodel is defined
by three files – core, time, and stochastic – with file extensions of .cor, .tim, and
.sto, respectively. The core file defines the deterministic version of the model with
a single reference scenario, the time file indicates a row and a column that split the
deterministic data and stochastic data in the constraint matrix, and the stochastic file
defines random data. The user can load SMPS files and call DSP using the Julia
interface as follows.

1 # Read SMPS files: example.cor, example.tim and example.sto
2 readSmps("example")
3 optimize(solve_type = :Dual, param = "myparam.txt") #

Solve

Remark 3 The DSP software package and the Julia packages (JuMP and Dsp.jl)
are under active development. The up-to-date syntax and features are available in the
project repositories.

5 Computational experiments

We present computational experiments to demonstrate the capabilities of DSP. We
solve publicly available test problem instances (Sect. 5.1) and a stochastic unit commit-
ment problem (Sect. 5.2). All experiments were run on Blues, a 310-node computing
cluster at ArgonneNational Laboratory. Blues has aQLogic QDR InfiniBand network,
and each node has two octo-core 2.6 GHz Xeon processors and 64 GB of RAM.

123

244 K. Kim, V. M. Zavala

5.1 Test problem instances

We use dcap and sslp problem instances from the SIPLIB test library avail-
able at http://www2.isye.gatech.edu/~sahmed/siplib/. Characteristics of the problem
instances are described in Table 1. The first column of the table lists the names of the
problem instances, in which r is substituted by the number of scenarios in the second
column. The other columns present the number of rows, columns, and integer variables
for each stage, respectively. Note that the dcap instances have a mixed-integer first
stage and a pure-integer second stage, whereas the sslp instances have a pure-integer
first stage and a mixed-integer second stage.

5.1.1 Benchmarking dual-search strategies

We experiment with different methods for updating the dual variables: DDSub of
Algorithm 1, DDCP of Algorithm 2, and DSP of Algorithm 3. In this experiment,
DDSub initializes parameters β0 = 2 and γmax = 3 for the step-size rule and
terminates if one of the following conditions is satisfied: (i) the optimality gap,
(zUB − zLB)/|10−10 + zUB|, is less than 10−5; (ii) βk ≤ 10−6; (iii) the solution
time exceeds 6 hours;and (iv) the number of iterations reaches 104. DDCP solves the
master problem by using the simplex method implemented in Soplex-2.0.1 [58];
taking advantage ofwarm-start information from the previous iteration.DSP solves the
master problem by using Mehrotra’s predictor–corrector algorithm [42] implemented
in OOQP-0.99.25 [20].In each iteration, the three methods evaluate no more than
100 primal solutions for upper bounds zUB. Each Lagrangian subproblem is solved
by SCIP-3.1.1 with Soplex-2.0.1. All methods use the initial dual values
λ0 = 0. This experiment was run on a single node with 16 cores.Appendix A provides
the computational results obtained with FiberSCIP [54] for the extensive form of
the test instances.

Figure 3 presents the optimality gap obtained by different dual decomposition
methods for each SIPLIB instance. DDCP and DSP found optimal lower bounds

Table 1 Characteristics of the SIPLIB instances

First stage Second stage

Name Scen (r) Rows Cols Ints Rows Cols Ints

dcap233_r 200, 300, 500 6 12 6 15 27 27

dcap243_r 200, 300, 500 6 12 6 18 36 36

dcap332_r 200, 300, 500 6 12 6 12 24 24

dcap342_r 200, 300, 500 6 12 6 14 32 32

sslp_5_25_r 50, 100 1 5 5 30 130 125

sslp_10_50_r 50, 100, 500,
1000, 2000

1 10 10 60 510 500

sslp_15_45_r 5, 10, 15 1 15 15 60 690 675

123

http://www2.isye.gatech.edu/~sahmed/siplib/

Algorithmic innovations and software for the dual... 245

0

1

2

3

4

5

6

7

8

9

10
O

pt
im

al
ity

 G
ap

 (%
)

dc
ap

23
3_

20
0

dc
ap

23
3_

30
0

dc
ap

23
3_

50
0

dc
ap

24
3_

20
0

dc
ap

24
3_

30
0

dc
ap

24
3_

50
0

dc
ap

33
2_

20
0

dc
ap

33
2_

30
0

dc
ap

33
2_

50
0

dc
ap

34
2_

20
0

dc
ap

34
2_

30
0

dc
ap

34
2_

50
0

ss
lp

_5
_2

5_
50

ss
lp

_5
_2

5_
10

0

ss
lp

_1
0_

50
_5

0

ss
lp

_1
0_

50
_1

00

ss
lp

_1
0_

50
_5

00

ss
lp

_1
0_

50
_1

00
0

ss
lp

_1
0_

50
_2

00
0

ss
lp

_1
5_

45
_5

ss
lp

_1
5_

45
_1

0

ss
lp

_1
5_

45
_1

5

DDSub
DDCP
DSP

Fig. 3 Optimality gap obtained with different dual decomposition methods

zLD for all the test problems, whereas DDSub found only suboptimal values.DSP
also found tighter upper bounds for instances dcap233_500, dcap332_200,
dcap332_500, and dcap342_200 than did DDCP. Moreover, DDCP returned
larger optimality gaps than did DSP for the sslp_10_50_1000 and
sslp_10_50_2000 instances, since it did not terminate after 6 hours of solution
time (see Table 2).

Figure 4 presents the solution time and the number of iterations relative to those
from DSP for each SIPLIB instance. DSP reduced the solution time and the number
of iterations (relative to DDSub) by factors of up to 199 and 78, respectively. DSP
reduced the solution time and number of iterations (relative to DDCP) by factors of
up to 7 and 5 achieved, respectively. DDSub terminated earlier than DSP for instances
dcap_332_x and dcap_342_x because of the termination criterion βk < 10−6.
For these instances poor-quality lower bounds are provided. DDSub did not terminate
within the time limit of 6 hours for instance sslp_15_45_15. Detailed numerical
results are given in Table 2.

Figure 5 shows the Lagrangian dual values obtained in each iteration for
sslp_15_45_15 by using DDSub, DDCP, and DSP. The lower bound is −275.7
at iteration k = 0. Fewer oscillations in the lower bounds and a faster solution were
obtained with DSP compared with the standard cutting-plane method DDCP. Figure 6
presents the Euclidean distance of the dual variable values between consecutive iter-
ations (‖λk+1 − λk‖2). The figure is truncated at iteration 100. As can be seen, DSP
dual updates oscillate less comparedwithDDCP updates. DDSub updates seem stable,
but this is because of slow progress in the dual variables. These results highlight the
benefits gained by the use of the IPM and early termination.

123

246 K. Kim, V. M. Zavala

Table 2 Computational results for SIPLIB instances using different dual decomposition methods

Instance Scen (r) Method Iter UB LB Gap (%) Time (s)

dcap233 200 DDSub 10,000 1835.34 1799.08 1.97 3853

DDCP 85 1835.34 1833.38 0.11 935

DSP 36 1835.34 1833.36 0.11 584

300 DDSub 1503 1645.22 1633.88 0.68 5564

DDCP 93 1645.22 1642.73 0.15 1705

DSP 43 1645.22 1642.74 0.15 1145

500 DDSub 2628 1737.94 1729.49 0.48 16,791

DDCP 117 1738.47 1736.66 0.10 9451

DSP 44 1737.94 1736.66 0.10 2155

dcap243 200 DDSub 1995 2322.50 2311.37 0.47 3157

DDCP 52 2322.50 2321.18 0.05 843

DSP 37 2322.50 2321.18 0.05 694

300 DDSub 10,000 2559.48 2546.91 0.49 8869

DDCP 53 2559.92 2556.66 0.12 1313

DSP 36 2559.92 2556.67 0.12 1167

500 DDSub 126 2167.97 2110.37 2.65 1992

DDCP 64 2168.38 2165.47 0.13 2648

DSP 39 2168.38 2165.46 0.13 2290

dcap332 200 DDSub 126 1068.24 983.23 7.95 443

DDCP 85 1065.87 1059.08 0.64 708

DSP 43 1063.52 1059.08 0.41 512

300 DDSub 126 1260.42 1165.89 7.52 733

DDCP 80 1257.01 1250.90 0.49 1298

DSP 48 1257.01 1250.91 0.49 986

500 DDSub 126 1596.49 1541.24 3.46 1333

DDCP 76 1593.00 1587.06 0.37 2000

DSP 43 1592.02 1587.06 0.31 1496

dcap342 200 DDSub 126 1620.19 1582.10 2.35 505

DDCP 76 1620.76 1618.07 0.16 734

DSP 37 1620.18 1618.07 0.13 577

300 DDSub 126 2069.00 2020.11 2.36 881

DDCP 73 2067.76 2065.43 0.11 1271

DSP 37 2067.96 2065.42 0.12 930

500 DDSub 126 1906.18 1861.25 2.36 1716

DDCP 87 1905.38 1902.98 0.12 2400

DSP 44 1905.36 1902.97 0.12 1788

sslp_5_25 50 DDSub 645 − 121.60 − 123.76 1.77 244

DDCP 26 − 121.60 −121.60 0.00 14

DSP 5 − 121.60 −121.60 0.00 6

123

Algorithmic innovations and software for the dual... 247

Table 2 continued

Instance Scen (r) Method Iter UB LB Gap (%) Time (s)

100 DDSub 995 − 127.37 −128.94 1.23 643

DDCP 28 − 127.37 −127.37 0.00 32

DSP 5 − 127.37 −127.37 0.00 19

sslp_10_50 50 DDSub 774 − 364.64 −369.21 1.25 3105

DDCP 62 − 364.64 −364.64 0.00 402

DSP 11 − 364.64 −364.64 0.00 174

100 DDSub 1224 − 354.19 −364.64 2.95 9591

DDCP 72 − 354.19 −354.19 0.00 1545

DSP 12 − 354.19 −354.19 0.00 777

500 DDSub 344 − 349.13 −356.35 2.06 > 21,600

DDCP 107 − 349.13 −349.13 0.00 10,771

DSP 17 − 349.13 −349.13 0.00 1614

1000 DDSub 177 − 351.71 −358.88 2.03 > 21,600

DDCP 66 − 351.71 −351.99 0.07 > 21,600

DSP 11 − 351.71 −351.71 0.00 3251

2000 DDSub 115 − 347.26 −354.03 1.94 > 21,600

DDCP 54 − 347.26 −349.60 0.67 > 21,600

DSP 10 − 347.26 −347.26 0.00 4762

sslp_15_45 5 DDSub 914 − 262.40 −262.42 0.01 2490

DDCP 21 − 262.40 −262.40 0.00 164

DSP 5 − 262.40 −262.40 0.00 32

10 DDSub 427 − 260.50 −268.15 2.94 8867

DDCP 88 − 260.50 −260.50 0.00 1988

DSP 17 − 260.50 −260.50 0.00 515

15 DDSub 541 − 253.60 −265.30 4.61 > 21,600

DDCP 89 − 253.60 −253.60 0.00 14917

DSP 17 − 253.60 −253.60 0.00 3092

5.1.2 Impact of second-stage integrality

We now use DSP to analyze the impact of relaxing recourse integrality in Benders
decomposition (this approach is often used as a heuristic). Figure 7 shows that the
optimality gap improved (i.e., the DSP optimality gap—the Benders optimality gap).
Upper bounds for Benders decomposition were calculated by evaluating the first-stage
solutions obtained from relaxation of the recourse function. For the dcap instances,
Benders decomposition approximates lower bounds poorly by relaxing the second-
stage integrality. The largest gap was 86% obtained for dcap332_500with Benders
decomposition, compared with 0.32 % obtained with dual decomposition. Benders
solutions for sslp_15_45_x and sslp_10_50_x have duality gaps > 0.2%,
whereas the dual decomposition solutions are optimal for all problem instances.

123

248 K. Kim, V. M. Zavala

10−1

100

101

102

103

dc
ap

23
3_

20
0

dc
ap

23
3_

30
0

dc
ap

23
3_

50
0

dc
ap

24
3_

20
0

dc
ap

24
3_

30
0

dc
ap

24
3_

50
0

dc
ap

33
2_

20
0

dc
ap

33
2_

30
0

dc
ap

33
2_

50
0

dc
ap

34
2_

20
0

dc
ap

34
2_

30
0

dc
ap

34
2_

50
0

ss
lp

_5
_2

5_
50

ss
lp

_5
_2

5_
10

0

ss
lp

_1
0_

50
_5

0

ss
lp

_1
0_

50
_1

00

ss
lp

_1
0_

50
_5

00

ss
lp

_1
0_

50
_1

00
0

ss
lp

_1
0_

50
_2

00
0

ss
lp

_1
5_

45
_5

ss
lp

_1
5_

45
_1

0

ss
lp

_1
5_

45
_1

5

DDSub (Solution Time)
DDSub (# of Iterations)
DDCP (Solution Time)
DDCP (# of Iterations)

Fig. 4 Solution time and number of iterations ratios (relative to those obtained with DSP)

20 40 60 80
−300

−295

−290

−285

−280

−275

−270

−265

−260

−255

Number of Iterations

O
bj

ec
tiv

e
Va

lu
e

100 200 300 400 500

Number of Iterations

DDSub (Lower Bound)
DDSub (Best Lower Bound)
DDCP (Lower Bound)
DDCP (Best Lower Bound)
DSP (Lower Bound)
DSP (Best Lower Bound)

Fig. 5 Dual objective values and best lower bounds for SIPLIB instancesslp_15_45_15 under different
dual search methods

5.1.3 Scaling experiments

Wepresent parallel scalability results forDSP runningwith up to 200 computing cores.
We use the sslp_10_50_r instances where r presents the number of scenarios used
(50, 100, 500, 1000, and 2000). We also present scaling profiles for solution times
spent on different algorithmic steps and tasks for the sslp_10_50_2000 instance.
Figure 8 shows strong scaling performance results of DSP. We define the speedup as

123

Algorithmic innovations and software for the dual... 249

10 20 30 40 50 60 70 80 90 100
0

5

10

15

Number of Iterations

|| λ
k+

1 −
 λ

k || 2

DDSub
DDCP
DSP

Fig. 6 Evolution of dual variables under different methods applied to sslp_15_45_15

0

100

200

300

400

500

600

O
pt

im
al

ity
 G

ap
 Im

pr
ov

ed
 (%

)

dc
ap

23
3_

20
0

dc
ap

23
3_

30
0

dc
ap

23
3_

50
0

dc
ap

24
3_

20
0

dc
ap

24
3_

30
0

dc
ap

24
3_

50
0

dc
ap

33
2_

20
0

dc
ap

33
2_

30
0

dc
ap

33
2_

50
0

dc
ap

34
2_

20
0

dc
ap

34
2_

30
0

dc
ap

34
2_

50
0

ss
lp

_5
_2

5_
50

ss
lp

_5
_2

5_
10

0

ss
lp

_1
5_

45
_5

ss
lp

_1
5_

45
_1

0

ss
lp

_1
5_

45
_1

5

ss
lp

_1
0_

50
_5

0

ss
lp

_1
0_

50
_1

00

ss
lp

_1
0_

50
_5

00

ss
lp

_1
0_

50
_1

00
0

ss
lp

_1
0_

50
_2

00
0

Fig. 7 Improvement in optimality gaps obtained with DSP over Benders decomposition

the ratio of the solution time with N cores to the solution time with five cores. We
observe that DSP scales up as the number of cores increases for all the instances. As
expected, scaling efficiency is lower for instances with fewer numbers of scenarios
because subproblem solutions become less dominant. Figure 9 itemizes time spent on
each of the algorithmic steps in addition to the MPI communication tasks. We see that
time spent for solving lower and upper bounding problems dominates.We note that the

123

250 K. Kim, V. M. Zavala

5 10 25 50 100 250
10−1

100

101

102

Cores

Sp
ee

du
p

Linear Speedup
sslp_10_50_2000
sslp_10_50_1000
sslp_10_50_500
sslp_10_50_100
sslp_10_50_50

Fig. 8 Strong scaling results of DSP for the sslp_10_50_r instances with 5, 10, 25, 50, 100, and 200
cores, where r ∈ {50, 100, 500, 1000, 2000}

5 10 25 50 100 250
0

20

40

60

80

100

Cores

Ti
m

e
Sp

en
t (

%
)

Communication
Master Solution
Lower Bounding
Upper Bounding
Cut Generation

Fig. 9 Parallel scaling profile of DSP for sslp_10_50_2000 instance with 5, 10, 25, 50, 100, and 250
cores

cut generation times are only a small fraction.We also observe that the master solution
time and communication time increases with the number of cores, as expected.

5.2 Large-scale stochastic unit commitment

We test performance of different methods using a large-scale day-ahead stochastic unit
commitment model. In this model, thermal power generators are scheduled over a day.
The schedules are subjected to uncertainty in wind power. We use a modified IEEE
188-bus system with 54 generators, 118 buses, and 186 transmission lines provided in
[34]. We assume that 17 of the 54 generators are allowed to start on demand (second
stage) whereas the other generators should be scheduled in advance (first stage). We

123

Algorithmic innovations and software for the dual... 251

Fig. 10 Wind generation scenarios used in stochastic unit commitment model

Table 3 Sizes for stochastic
unit commitment instances

Scen (r) # Rows # Columns # Integers

4 120,015 38,880 2592

8 229,303 75,168 4320

16 447,879 147,744 7776

32 885,031 292,896 14,688

64 1,759,335 583,200 28,512

also consider 3 identical wind farms each consisting of 120wind turbines. The demand
load is 3,095 MW on average, with a peak of 3,733 MW. The wind power generation
level is 494 MW on average, with a peak of 916 MW for the 64 scenarios generated.
Figure 10 shows the 64 scenarios (grey lines) of wind power generation and the mean
levels (red lines). We used real wind speed data predicted from the observations of 31
weather stations in Illinois.

The mathematical formulation and the JuMP modeling script of the two-stage
stochastic unit commitment model is provided in Appendices B, C, and D.

Table 3 presents the size of the stochastic unit commitment instances with 4, 8,
16, 32, and 64 scenarios. The first stage has 10,727 constraints and 2,592 variables
including 864 integer variables; and the second stage has 27,322 constraints and 9,072
variables including 432 integer variables. Table 4 summarizes the numerical results.
Each instance uses the same number of computing cores as scenarios. We add only

123

252 K. Kim, V. M. Zavala

Table 4 Numerical results for stochastic unit commitment problem under DSP

Scen (r) Iter LB UB Gap (%) Time (s)

4 1 906,979.1 907,046.1 < 0.01 590

8 1 903,953.5 904,006.6 < 0.01 785

16 1 900,650.7 900,706.3 < 0.01 1293

32 19 903,149.9 903,227.7 < 0.01 19,547

64 6 894,756.5 895,118.0 0.04 21,600

one aggregated cut to the master problem at each iteration (see Remark 1). DSP
found upper and lower bounds with < 0.01% optimality gap for the 4-, 8-, 16-,
and 32-scenario instances. Most notably, DSP terminated after the first iteration for
the 4-, 8- and 16-scenario instances because of the addition of valid inequalities in
Procedure 1 to the Lagrangian subproblems. This fast convergence behavior becomes
evident in Sect. 5.2.1, where we compare the LB and Initial LB columns for the
instances terminating in one iteration. We observe, however, that the solution time
per iteration increases as the number of scenarios increases. The reason is that the
method generates more valid inequalities in Procedure 1 and evaluates more solutions
to update upper bounds, causing imbalanced computing load among scenarios. In
particular, each node needs to evaluate the recourse function for its local first-stage
variables and for all scenarios in order to determine the best possible upper bound.
This step is currently done sequentially, and its time can be reduced by considering
additional computing nodes.Themaster problem solution timewas less than 2 seconds
per iteration and thus does not represent a bottleneck.

5.2.1 Impact of procedure 1

For the stochastic unit commitment with 8 scenarios, we use DDSub, DSP without
Procedure 1 (DSP-P1), andDSPwith Procedure 1 (DSP+P1). Figure 11 shows the best
upper bound and the best lower boundof the 8-scenario stochastic unit commitment
problem at each iteration. As can be seen, DSP+P1 obtained upper and lower bounds
with < 0.01% duality gap at the first iteration and terminated, whereas DSP-P1 and
DDSub were not able to find upper bounds for the first 53 iterations and the first
47 iterations, respectively, because the problem does not have relatively complete
recourse. Moreover, DSP+P1 found tighter lower bounds than did DDSub and DSP-
P1, because of the ability to tighten the subproblems by Procedure 1. The figure also
shows that DSP-P1 still found better lower and upper bounds than did DDSub.

Table 5 reports the lower and upper bounds obtained at the first iteration by DSP-
P1 and DSP+P1. Procedure 1 improves lower bound by up to 0.7% by adding valid
inequalities. More importantly, it allowed us to find upper bounds at the first iteration,
which then can be used as a termination criterion (19a) of the interior-point cutting-
plane method.

Table 6 presents detailed computational results for four methods: DDCP-P1 (Algo-
rithm2without Procedure 1),DDCP+P1 (Algorithm2with Procedure 1),DSP-P1, and

123

Algorithmic innovations and software for the dual... 253

0 10 20 30 40 50 60 70 80
9.02

9.025

9.03

9.035

9.04

9.045

9.05

9.055

9.06
x 105

O
bj

ec
tiv

e
Va

lu
e

Number of Iterations

DDSub (Upper Bounds)
DDSub (Lower Bounds)
DSP−P1 (Upper Bounds)
DSP−P1 (Lower Bounds)
DSP+P1 (Upper Bounds)
DSP+P1 (Lower Bounds)

Fig. 11 Upper bounds and lower boundsof the stochastic unit commitment problem with 8 scenarios,
obtained with DSP with and without Procedure 1 and with the subgradient method

Table 5 Upper bounds and lower bounds of the stochastic unit commitment problem resulting from DSP
with and without Procedure 1 at the first iteration

DSP-P1 DSP+P1

Scen (r) LB UB LB UB LB Improved (%)

4 905,613.8 ∞ 906,979.1 907,046.1 0.15

8 902,319.4 ∞ 903,953.5 904,004.6 0.18

16 899,000.3 ∞ 900,650.7 900,708.4 0.18

32 897,114.5 903227.7 902,902.3 903,227.7 0.65

64 888,418.6 ∞ 894,643.6 895,118.0 0.70

DSP+P1 (as defined previously). These results seek to highlight the positive impact
of using the interior-point cutting-plane method and Procedure 1. For the 4-, 8, and
16-scenario instances, both DDCP+P1 and DSP+P1 found upper and lower bounds
with < 0.01% optimality gaps. However, without Procedure 1, DDCP-P1 did not ter-
minate within the 6-hour time limit for all the instances, of which no upper bound was
found for the 4- and 8-scenario instances. The reasons is that the problem does not
have relative complete recourse. DSP-P1 did not terminate within the time limit for
all the instances except the 4-scenario instance. Note that DDCP+1 and DSP+P1 are
exactly the samemethod when they terminate at the first iteration for the 4-, 8-, and 16-
scenario instances. For the 32-scenario instance, DSP+P1 terminated with < 0.01%
optimality gap, whereas DDCP+P1 took more iterations and reached the time limit
with a larger gap. For the 64-scenario instance, DSP+P1 found a better lower bound
than did DDCP+P1. However, both DDCP+P1 and DSP+P1 did not terminate after 6

123

254 K. Kim, V. M. Zavala

Table 6 Computational results from DDCP (Algorithm 2) and DSP (Algorithm 3) with and without Pro-
cedure 1

Scen (r) Iter Method LB UB Gap (%) Time (s)

4 153 DDCP-P1 905,708.5 ∞ ∞ > 21,600

1 DDCP+P1 906,979.1 907,046.1 < 0.01 566

35 DSP-P1 906,974.7 907,036.0 < 0.01 6161

1 DSP+P1 906,979.1 907,046.1 < 0.01 590

8 55 DDCP-P1 902,385.2 ∞ ∞ > 21,600

1 DDCP+P1 903,953.5 904,004.6 < 0.01 810

73 DSP-P1 902,974.0 904,054.9 0.12 > 21,600

1 DSP+P1 903,953.5 904,004.6 < 0.01 785

16 49 DDCP-P1 899,046.9 900,767.2 0.19 > 21,600

1 DDCP+P1 900,650.7 900,708.4 < 0.01 1298

41 DSP-P1 899,578.1 900,732.1 0.13 > 21,600

1 DSP+P1 900,650.7 900,706.3 < 0.01 1293

32 34 DDCP-P1 897,083.7 904,440.9 0.81 > 21,600

19 DDCP+P1 902,902.3 903,227.7 0.04 > 21,600

22 DSP-P1 898,404.1 903,227.7 0.53 > 21,600

19 DSP+P1 903,149.9 903,227.7 < 0.01 19,547

64 18 DDCP-P1 888,571.5 895,682.2 0.79 > 21,600

5 DDCP+P1 894,655.3 895,118.0 0.05 > 21,600

10 DSP-P1 891,820.9 895,256.5 0.38 > 21,600

6 DSP+P1 894,756.6 895,118.0 0.04 > 21,600

hours.We attribute this behavior to the fact that the interior-point cutting-planemethod
computed lower bounds more effectively and ameliorated dual oscillations.

5.2.2 Extensive form solutions

Weconclude this section by reporting the computational results from solving the exten-
sive form of the stochastic unit commitment problems. The results are summarized in
Table 7. The extensive form of each instance is solved by SCIP on a single node with
a single core. For all the instances (except the 4-scenario instance) with a 6-hour time
limit, upper and lower bounds obtained from the extensive forms were not better than
those obtained with DSP.We also tested ParaSCIP [53] for solving the extensive
forms, but the solver ran out of memory in all instances.

6 Summary and directions of future work

We have provided algorithmic innovations for the dual decomposition method. Our
first innovation is a procedure to generate valid inequalities that exclude infeasible
first-stage solutions in the absence of relatively complete recourse and that tighten

123

Algorithmic innovations and software for the dual... 255

Table 7 Numerical results for the extensive form of the stochastic unit commitment problems

Number of
Scen (r) B&C Nodes UB LB Gap (%) Time (s)

4 88,831 907,035.3 906,089.9 0.01 6632

8 58,235 904,068.1 903,567.8 0.05 > 21,600

16 3505 900,806.1 900,200.3 0.07 > 21,600

32 9 907,536.0 901,759.8 0.64 > 21,600

64 1 ∞ 33,605.4 ∞ > 21,600

subproblem solutions. Hence, we incorporate the Benders-type cut generation within
the dual decomposition method. Our second innovation is an interior-point cutting-
plane method with early termination criteria to solve the Lagrangian master problem.
We proved that the dual decomposition method incorporating our innovations con-
verge in a finite number of iterations to an optimal solution of the Lagrangian dual
problem.We have introduced DSP, a software package that provides implementations
of the dual decomposition method proposed as well as other standard methods such
as Benders decomposition and a subgradient-based dual decomposition method. DSP
also allows users to specify large-scale models in C, Julia, and SMPS formats. The
object-oriented design of the implementation enables users to customize decomposi-
tion techniques. We use DSP to benchmark different methods on standard problem
instances and stochastic unit commitment problems. The numerical results show sig-
nificant improvements in terms of the quality of upper bounds, number of iterations,
and time for all instances. We also verified that the solver can achieve strong scaling.

We will seek to scale our method to solve problems with a larger number of sce-
narios. In particular, we have observed load imbalances because each Lagrangian
subproblem is a large mixed-integer program with unpredictable solution times. Such
imbalances can be alleviated by asynchronous parallel implementation that enable
early subproblem termination. Moreover, solving the master problem can become
a bottleneck as cuts are accumulated. A warm-start technique for the primal-dual
interior-point method [22,24] and a parallelization of the master problem as proposed
in [38] can ameliorate such effects. We will address these issues in future work.

A Computational results for SIPLIB test instances using FiberSCIP

We present the computational results from FiberSCIP (compiled with ug-0.7.5)
[54] for solving SIPLIB test instances using 16 computing cores in extensive form.
FiberSCIP terminates after 6 hours of solution. Results are reported in Table 8.

For all the dcap instances, FiberSCIP found upper and lower bounds with small
duality gap after 6 hours of solution. An optimal solution is found for dcap243_200
instance. Optimal solutions were also found for the sslp_5_25 and sslp_15_45
instances within the 6-hour time limit. However, most sslp_10_50 instances were
not able to be solved by FiberSCIP, because of insufficient memory. Note that

123

256 K. Kim, V. M. Zavala

Table 8 Computational results for SIPLIB instances using FiberSCIP for solving the extensive forms

Instance Scen UB LB Gap (%) Time (s)

dcap233 200 1834.56 1834.38 0.01 21,600

300 1644.55 1642.92 0.10 21,600

500 1737.52 1737.31 0.01 21,600

dcap243 200 2322.49 2322.49 0.00 1444

300 2559.23 2558.58 0.02 21,600

500 2167.37 2166.93 0.02 21,600

dcap332 200 1060.74 1060.13 0.06 21,600

300 1252.93 1252.26 0.05 21,600

500 1588.84 1588.12 0.05 21,600

dcap342 200 1619.54 1619.41 0.01 21,600

300 2068.93 2066.07 0.14 21,600

500 1908.55 1903.46 0.27 21,600

sslp_5_25 50 −121.60 −121.60 0.00 338

100 −127.37 −127.37 0.00 1662

sslp_10_50 50 −364.30 −365.36 0.29 21,600

100 N/A N/A N/A N/A

500 N/A N/A N/A N/A

1000 N/A N/A N/A N/A

2000 N/A N/A N/A N/A

sslp_15_45 5 −262.40 −262.40 0.00 180

10 −260.50 −260.50 0.00 555

15 −253.60 −265.60 0.00 2525

memory was not sufficient for solving the stochastic unit commitment problems by
using ParaSCIP.

B Notations: two-stage stochastic unit commitment

We present notations for the two-stage stochastic unit commitment considered in
Sect. 5.2.

C Formulation: two-stage stochastic unit commitment

We present a two-stage stochastic unit commitment model formulation, where the
commitment decisions for slow generators are made in the first stage and the com-
mitment decisions for fast generators and the power dispatch decision are made in
the second stage. Notations are given in Table 9. In the model, we consider ramping
constraints, reserve constraints and transmission line capacity constraints. We assume
that the power generation cost is piecewise linear convex.

123

Algorithmic innovations and software for the dual... 257

Table 9 Notations for the stochastic unit commitment model

Sets

G Set of all generators

Gs Set of slow generators

G f Set of fast generators

K Set of linear segments of the piece-wise linear power generation cost

L Set of transmission lines

N Set of buses

S Set of scenarios

T Set of time periods

W Set of wind power generators

Parameters

C
up
g Start-up cost of generator g

Cdn
g Shut-down cost of generator g

C fx
g Fixed cost of operating the generator g

Cmar
gk kth marginal cost of production of generator g

X init
g Initial on/off status of generator g

UT init
g Initial minimum uptime of generator g

UTg Minimum uptime of generator g

DT init
g Initial minimum downtime of generator g

DTg Minimum downtime of generator g

RUg Ramp-up limit of generator g

RDg Ramp-down limit of generator g

RCg Ramping capacity of generator g

P init
g Initial power output of generator g

Pmin
g Minimum power output of generator g

Pmax
g Maximum power output of generator g

Qmax
gk Maximum power output of generator g with the kth marginal cost

SRt Spinning reserve required at time t

Fmax
l Maximum power flow of transmission line l

LSFln Load-shift factor of transmission line l with respect to bus n

πs Probability of scenario s

D jnt Demand load at bus n at time t in scenario j

W jwt Wind power generation from generator w at time t in scenario j

Decision variables

x jgt On/off indicator of generator g at time t in scenario j

u jgt Start-up indicator of generator g at time t in scenario j

v jgt Shut-down indicator of generator g at time t in scenario j

p jgt Power output of generator g at time t in scenario j

q jgkt Power output of generator g at time t with the kth marginal cost in scenario j

123

258 K. Kim, V. M. Zavala

min
∑
j∈S

∑
t∈T

∑
g∈G

π j

(
C fx
g x jgt + Cup

g u jgt + Cdn
g v jgt +

∑
k∈K

Cmar
gk q jgkt

)
(22a)

s.t. 1 − x jg(t−1) ≥ u jgt , ∀ j ∈ S, g ∈ G, t ∈ T , (22b)

x jg(t−1) ≥ v jgt , ∀ j ∈ S, g ∈ G, t ∈ T , (22c)

x jgt − x jg(t−1) = u jgt − v jgt , ∀ j ∈ S, g ∈ G, t ∈ T , (22d)

x jgt ≥
t∑

τ=max{1,t−UTg+1}
u jgτ , ∀ j ∈ S, g ∈ G, t ∈ T , (22e)

1 − x jgt ≥
t∑

τ=max{1,t−DTg+1}
u jgτ ,

∀ j ∈ S, g ∈ G, t ∈ T , (22f)

− RDg ≤ p jgt − p jg(t−1) ≤ RUg − s jgt ,

∀ j ∈ S, g ∈ G, t ∈ T , (22g)

s jgt ≤ RCgx jgt , ∀ j ∈ S, g ∈ G, t ∈ T , (22h)∑
g∈G

s jgt ≥ SRt , ∀ j ∈ S, t ∈ T , (22i)

p jgt = Pmin
g x jgt +

∑
k∈K

q jgkt , ∀ j ∈ S, g ∈ G, t ∈ T , (22j)

p jgt + s jgt ≤ Pmax
g x jgt , ∀ j ∈ S, g ∈ G, t ∈ T , (22k)

q jgkt ≤ Qmax
gk x jgt , ∀ j ∈ S, g ∈ G, k ∈ K, t ∈ T , (22l)

∑
g∈G

p jgt =
∑
n∈N

Djnt −
∑

w∈W
Wjwt , ∀ j ∈ S, t ∈ T , (22m)

− Fmax
l ≤

∑
g∈G

LSFlg p jgt −
∑
n∈N

LSFlnD jnt

+
∑

w∈W
LSFlwWjwt ≤ Fmax

l , ∀ j ∈ S, l ∈ L, t ∈ T , (22n)

xigt = x jgt , uigt = u jgt , vigt = v jgt ,

∀i, j ∈ S, g ∈ Gs, t ∈ T (22o)

x jg0 = X init
g , ∀ j ∈ S, g ∈ G, (22p)

x jgt = 1, ∀ j ∈ S, g ∈ G, t ∈ {1, . . . ,UT init
g }, (22q)

x jgt = 0, ∀ j ∈ S, g ∈ G, t ∈ {1, . . . , DT init
g }, (22r)

p jg0 = P init
g , ∀ j ∈ S, g ∈ G, (22s)

x jgt ∈ {0, 1}, 0 ≤ u jgt , v jgt ≤ 1, ∀ j ∈ S, g ∈ G, t ∈ T (22t)

p jgt , q jgkt , s jgt ≥ 0, ∀ j ∈ S, g ∈ G, t ∈ T (22u)

123

Algorithmic innovations and software for the dual... 259

The objective (22a) is to minimize the expected value of the sum of operating,
start-up, shut-down, and production cost. Equations (22b)–(22d) ensure the logical
relation of the commitment, start-up and shut-down decisions. Equations (22e) and
(22f) respectively represent the minimum downtime and uptime of generators in each
time period. Equations (22g) and (22h) are ramping constraints, and equation (22i) is
a spinning reserve constraint. Equations (22j) and (22k) are the constraints for mini-
mum power generation and maximum power generation, respectively. Equation (22l)
represents the piecewise linearized power generation cost. Equations (22m) and (22n)
are the flow balance constraint and the transmission line flow constraint, respectively.
Equation (22o) ensures that the decisions for slow generators does not change for
scenarios. This is also called a nonanticipativity constraint. Equations (22p)–(22s)
represent the initial conditions of generators and production level.

D Juliamodel script: two-stage stochastic unit commitment

We provide the Julia model script for the stochastic unit commitment problem.

1 using JuMP, Dsp, MPI
2
3 # Initialize MPI
4 MPI.Init()
5
6 # Data is processed in a separate file.
7 include("suc_data.jl");
8
9 # JuMP object

10 m = Model(nScenarios);
11
12 # First-stage Variables
13 @variable(m, Use[i=SLOWGENS, t=PERIODS], Bin) # Generator

on/off indicator
14 @variable(m, 0 <= Up[i=SLOWGENS, t=PERIODS] <= 1) # Start

up indicator
15 @variable(m, 0 <= Down[i=SLOWGENS, t=PERIODS] <= 1) #

Shut down indicator
16
17 # First-stage Objective function
18 @objective(m, Min,
19 sum{cost_start[i] * Up[i,t], i=SLOWGENS, t=

PERIODS}
20 + sum{fixed_cost_gen[i] * Use[i,t], i=SLOWGENS, t

=PERIODS})
21
22 # Linking Use / Up / Down variables
23 @constraint(m, LINKING_SHUT_DOWN0[i=SLOWGENS],
24 Down[i,1] <= use_0[i])
25 @constraint(m, LINKING_SHUT_DOWN[i=SLOWGENS, t=2:

nPeriods],
26 Use[i,t-1] >= Down[i,t])
27 @constraint(m, LINKING_START_UP0[i=SLOWGENS],

123

260 K. Kim, V. M. Zavala

28 Up[i,1] <= 1 - use_0[i])
29 @constraint(m, LINKING_START_UP[i=SLOWGENS, t=2:nPeriods

],
30 1 - Use[i,t-1] >= Up[i,t])
31 @constraint(m, LINKING_BOTH0[i=SLOWGENS],
32 Use[i,1] - use_0[i] == Up[i,1] - Down[i,1])
33 @constraint(m, LINKING_BOTH[i=SLOWGENS, t=2:nPeriods],
34 Use[i,t] - Use[i,t-1] == Up[i,t] - Down[i,t])
35
36 # Min down time
37 @constraint(m, MIN_DOWN_INIT[i=SLOWGENS, t=1:min(

downtime_init[i],nPeriods)],
38 Use[i,t] == 0)
39 @constraint(m, MIN_DOWN_S1[i=SLOWGENS, t=PERIODS, s=max

(1,t-downtime[i]+1):t],
40 1 - Use[i,t] >= Down[i,s])
41 @constraint(m, MIN_DOWN_S2[i=SLOWGENS, t=PERIODS],
42 1 - Use[i,t] >= sum{Down[i,s], s=max(1,t-downtime

[i]+1):t})
43
44 # Min up time
45 @constraint(m, MIN_UP_INIT[i=SLOWGENS, t=1:min(

uptime_init[i],nPeriods)],
46 Use[i,t] == 1)
47 @constraint(m, MIN_UP_S1[i=SLOWGENS, t=PERIODS, s=max(1,

t-uptime[i]+1):t],
48 Use[i,t] >= Up[i,s])
49 @constraint(m, MIN_UP_S2[i=SLOWGENS, t=PERIODS],
50 Use[i,t] >= sum{Up[i,s], s=max(1,t-uptime[i]+1):t

})
51
52 # For each scenario s
53 for s in blockids()
54
55 # Second-stage momdel
56 sb = Model(m, s, prob[s])
57
58 @variable(sb, UseF[i=FASTGENS, t=PERIODS], Bin) #

Generator on/off indicator
59 @variable(sb, 0 <= UpF[i=FASTGENS, t=PERIODS] <=

1) # Start up
indicator

60 @variable(sb, 0 <= DownF[i=FASTGENS, t=PERIODS]
<= 1) # Shut down
indicator

61 @variable(sb, 0 <= Gen[i=GENERATORS, t=PERIODS]
<= max_gen[i]) # Power
generation

62 @variable(sb, 0 <= Gen_Sgmt[i=GENERATORS, k=
SEGMENTS, t=PERIODS] <= max_gen_sgmt[i,k])

63 @variable(sb, 0 <= Spin_Resv[i=GENERATORS, t=
PERIODS] <= spin_notice / 60. * ramp_rate[i])

123

Algorithmic innovations and software for the dual... 261

Spinning
reserve

64
65 # Second-stage Objective function
66 @objective(sb, Min,
67 sum{cost_start[i] * UpF[i,t], i=FASTGENS,

t=PERIODS}
68 + sum{fixed_cost_gen[i] * UseF[i,t], i=

FASTGENS, t=PERIODS}
69 + sum{cost_gen[i,k] * Gen_Sgmt[i,k,t], i=

GENERATORS, k=SEGMENTS, t=PERIODS})
70
71 # Linking Use / Up / Down variables
72 @constraint(sb, FAST_LINKING_SHUT_DOWN0[i=

FASTGENS],
73 DownF[i,1] <= use_0[i])
74 @constraint(sb, FAST_LINKING_SHUT_DOWN[i=FASTGENS

, t=2:nPeriods],
75 UseF[i,t-1] >= DownF[i,t])
76 @constraint(sb, FAST_LINKING_START_UP0[i=FASTGENS

],
77 UpF[i,1] <= 1 - use_0[i])
78 @constraint(sb, FAST_LINKING_START_UP[i=FASTGENS,

t=2:nPeriods],
79 1 - UseF[i,t-1] >= UpF[i,t])
80 @constraint(sb, FAST_LINKING_BOTH0[i=FASTGENS],
81 UseF[i,1] - use_0[i] == UpF[i,1] - DownF[i

,1])
82 @constraint(sb, FAST_LINKING_BOTH[i=FASTGENS, t

=2:nPeriods],
83 UseF[i,t] - UseF[i,t-1] == UpF[i,t] -

DownF[i,t])
84
85 # Min down time
86 @constraint(sb, FAST_MIN_DOWN_INIT[i=FASTGENS, t

=1:min(downtime_init[i],nPeriods)],
87 UseF[i,t] == 0)
88 @constraint(sb, FAST_MIN_DOWN_S1[i=FASTGENS, t=

PERIODS, tt=max(1,t-downtime[i]+1):t],
89 1 - UseF[i,t] >= DownF[i,tt])
90 @constraint(sb, FAST_MIN_DOWN_S2[i=FASTGENS, t=

PERIODS],
91 1 - UseF[i,t] >= sum{DownF[i,tt], tt=max

(1,t-downtime[i]+1):t})
92
93 # Min up time
94 @constraint(sb, FAST_MIN_UP_INIT[i=FASTGENS, t=1:

min(uptime_init[i],nPeriods)],
95 UseF[i,t] == 1)
96 @constraint(sb, FAST_MIN_UP_S1[i=FASTGENS, t=

PERIODS, tt=max(1,t-uptime[i]+1):t],
97 UseF[i,t] >= UpF[i,tt])

123

262 K. Kim, V. M. Zavala

98 @constraint(sb, FAST_MIN_UP_S2[i=FASTGENS, t=
PERIODS],

99 UseF[i,t] >= sum{UpF[i,tt], tt=max(1,t-
uptime[i]+1):t})

1 # Ramping rate in normal operating status
2 @constraint(sb, RAMP_DOWN0[i=GENERATORS],
3 gen_0[i] - Gen[i,1] <= ramp_rate[i])
4 @constraint(sb, RAMP_DOWN[i=GENERATORS, t=2:

nPeriods],
5 Gen[i,t-1] - Gen[i,t] <= ramp_rate[i])
6 @constraint(sb, RAMP_UP0[i=GENERATORS],
7 Gen[i,1] - gen_0[i] + Spin_Resv[i,1] <=

ramp_rate[i])
8 @constraint(sb, RAMP_UP[i=GENERATORS, t=2:

nPeriods],
9 Gen[i,t] - Gen[i,t-1] + Spin_Resv[i,t] <=

ramp_rate[i])
10
11 # Spinning reserve requirement for system
12 @constraint(sb, SPIN_RESV_REQ[t=PERIODS],
13 sum{Spin_Resv[i,t], i=GENERATORS}
14 >= spin_resv_rate * (total_demand[t] -

total_wind_scen[t,s]))
15
16 # Spinning reserve requirement for system
17 @constraint(sb, SPIN_RESV_REQ[t=PERIODS],
18 sum{Spin_Resv[i,t], i=GENERATORS}
19 >= spin_resv_rate * (total_demand[t] -

total_wind_scen[t,s]))
20
21 # Spinning reserve capacity for individual unit
22 @constraint(sb, SPIN_RESV_MAX_SLOW[i=SLOWGENS, t=

PERIODS],
23 Spin_Resv[i,t] <= spin_notice / 60. *

ramp_rate[i] * Use[i,t])
24 @constraint(sb, SPIN_RESV_MAX_FAST[i=FASTGENS, t=

PERIODS],
25 Spin_Resv[i,t] <= spin_notice / 60. *

ramp_rate[i] * UseF[i,t])
26
27 # Power output capacity constraints
28 @constraint(sb, POWER_OUTPUT_SLOW[i=SLOWGENS, t=

PERIODS],
29 Gen[i,t] == min_gen[i] * Use[i,t] + sum{

Gen_Sgmt[i,k,t], k=SEGMENTS})
30 @constraint(sb, POWER_SEGMENT_SLOW[i=SLOWGENS, k=

SEGMENTS, t=PERIODS],
31 Gen_Sgmt[i,k,t] <= max_gen_sgmt[i,k] * Use

[i,t])
32 @constraint(sb, POWER_MAX_SLOW[i=SLOWGENS, t=

PERIODS],

123

Algorithmic innovations and software for the dual... 263

33 Gen[i,t] + Spin_Resv[i,t] <= max_gen[i] *
Use[i,t])

34 @constraint(sb, POWER_OUTPUT_FAST[i=FASTGENS, t=
PERIODS],

35 Gen[i,t] == min_gen[i] * UseF[i,t] + sum{
Gen_Sgmt[i,k,t], k=SEGMENTS})

36 @constraint(sb, POWER_SEGMENT_FAST[i=FASTGENS, k=
SEGMENTS, t=PERIODS],

37 Gen_Sgmt[i,k,t] <= max_gen_sgmt[i,k] *
UseF[i,t])

38 @constraint(sb, POWER_MAX_FAST[i=FASTGENS, t=
PERIODS],

39 Gen[i,t] + Spin_Resv[i,t] <= max_gen[i] *
UseF[i,t])

40
41 # Power balance constraints for system
42 @constraint(sb, POWER_BALANCE[t=PERIODS],
43 sum{Gen[i,t], i=GENERATORS} ==

total_demand[t] - total_wind_scen[t,s
])

44
45 # Transmission constraints with load shift factor (These can be lazy

constraints.)
46 @constraint(sb, FLOW_BRANCH_LSF_LB[l=BRANCHES, t=

PERIODS],
47 sum{load_shift_factor[n,l] * Gen[i,t], n=

BUSES, i=GENERATORS; gen_bus_id[i] ==
n}

48 >= sum{load_shift_factor[n,l] * demand[n,t
], n=BUSES}

49 - sum{load_shift_factor[n,l] * wind_scen[
wn,t,s], n=BUSES, wn=WINDS;
wind_bus_id[wn] == n}

50 - flow_max[l])
51 @constraint(sb, FLOW_BRANCH_LSF_UB[l=BRANCHES, t=

PERIODS],
52 sum{load_shift_factor[n,l] * Gen[i,t], n=

BUSES, i=GENERATORS; gen_bus_id[i] ==
n}

53 <= sum{load_shift_factor[n,l] * demand[n,t
], n=BUSES}

54 - sum{load_shift_factor[n,l] * wind_scen[
wn,t,s], n=BUSES, wn=WINDS;
wind_bus_id[wn] == n}

55 + flow_max[l])
56 end
57
58 status = solve(m, solver_type = :Dual); # solve model
59
60 # print out some results
61 println("Solution status: ", status);
62 println("Primal Bound : ", getprimobjval());

123

264 K. Kim, V. M. Zavala

63 println("Dual Bound : ", getdualobjval());
64
65 MPI.Finalize();

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)
2. Ahmed, S.: A scenario decomposition algorithm for 0–1 stochastic programs. Oper. Res. Lett. 41(6),

565–569 (2013)
3. Ahmed, S., Tawarmalani, M., Sahinidis, N.V.: A finite branch-and-bound algorithm for two-stage

stochastic integer programs. Math. Program. 100(2), 355–377 (2004)
4. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic language for technical

computing. arXiv preprint arXiv:1209.5145 (2012)
5. Birge, J.R., Dempster, M.A., Gassmann, H.I., Gunn, E.A., King, A.J., Wallace, S.W.: A standard input

format for multiperiod stochastic linear programs. IIASA Laxenburg Austria (1987)
6. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Berlin (2011)
7. Bixby, R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50(1),

3–15 (2002)
8. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett.

24(1–2), 37–45 (1999)
9. Crainic, T.G., Fu, X., Gendreau, M., Rei, W.,Wallace, S.W.: Progressive hedging-based metaheuristics

for stochastic network design. Networks 58(2), 114–124 (2011)
10. Dawande,M.,Hooker, J.N.: Inference-based sensitivity analysis formixed integer/linear programming.

Oper. Res. 48(4), 623–634 (2000)
11. Fisher, M.L.: An applications oriented guide to lagrangian relaxation. Interfaces 15(2), 10–21 (1985)
12. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming problems. Manag.

Sci. 50(12–supplement), 1861–1871 (2004)
13. Forrest, J.: Cbc. https://projects.coin-or.org/Cbc
14. Forrest, J.: Clp. https://projects.coin-or.org/Clp
15. Frangioni, A.: About lagrangian methods in integer optimization. Ann. Oper. Res. 139(1), 163–193

(2005)
16. Gade, D., Küçükyavuz, S., Sen, S.: Decomposition algorithms with parametric gomory cuts for two-

stage stochastic integer programs. Math. Program. 144(1–2), 39–64 (2014)
17. Gamrath, G., Lübbecke, M.E.: Experiments with a generic Dantzig–Wolfe decomposition for integer

programs. In: International Symposium on Experimental Algorithms, pp. 239–252. Springer (2010)
18. Gassmann, H.I., Schweitzer, E.: A comprehensive input format for stochastic linear programs. Ann.

Oper. Res. 104(1–4), 89–125 (2001)
19. Geoffrion, A.M.: Lagrangean Relaxation for Integer Programming. Springer, Berlin (1974)
20. Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM Trans. Math.

Softw. (TOMS) 29(1), 58–81 (2003)
21. Goffin, J.L., Vial, J.P.: Cutting planes and column generation techniques with the projective algorithm.

J. Optim. Theory Appl. 65(3), 409–429 (1990)
22. Gondzio, J.:Warm start of the primal-dualmethod applied in the cutting-plane scheme.Math. Program.

83(1–3), 125–143 (1998)
23. Gondzio, J., Gonzalez-Brevis, P., Munari, P.: New developments in the primal-dual column generation

technique. Eur. J. Oper. Res. 224(1), 41–51 (2013)
24. Gondzio, J., Grothey, A.: A new unblocking technique to warmstart interior point methods based on

sensitivity analysis. SIAM J. Optim. 19(3), 1184–1210 (2008)
25. Gondzio, J., Sarkissian, R.: Column generation with a primal-dual method. Relatorio tecnico, Univer-

sity of Geneva 102 (1996)
26. Guo, G., Hackebeil, G., Ryan, S.M., Watson, J.P., Woodruff, D.L.: Integration of progressive hedging

and dual decomposition in stochastic integer programs. Oper. Res. Lett. 43(3), 311–316 (2015)
27. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2015). http://www.gurobi.com
28. Helmberg, C.: ConicBundle. https://www-user.tu-chemnitz.de/~helmberg/ (2004)

123

http://arxiv.org/abs/1209.5145
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Clp
http://www.gurobi.com
https://www-user.tu-chemnitz.de/~helmberg/

Algorithmic innovations and software for the dual... 265

29. IBMCorp.: IBM ILOGCPLEXOptimization Studio 12.6.1 (2014). http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/index.html

30. Kim, K., Mehrotra, S.: A two-stage stochastic integer programming approach to integrated staffing
and scheduling with application to nurse management. Oper. Res. 63(6), 1431–1451 (2015). https://
doi.org/10.1287/opre.2015.1421

31. King, A.: Stochastic Modeling Interface (2007). https://projects.coin-or.org/Smi
32. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for

stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002)
33. Laporte, G., Louveaux, F.V.: The integer L-shaped method for stochastic integer programs with com-

plete recourse. Oper. Res. Lett. 13(3), 133–142 (1993)
34. Lee, C., Liu, C., Mehrotra, S., Shahidehpour, M.: Modeling transmission line constraints in two-stage

robust unit commitment problem. IEEE Trans. Power Syst. 29(3), 1221–1231 (2014)
35. Linderoth, J., Wright, S.: Decomposition algorithms for stochastic programming on a computational

grid. Comput. Optim. Appl. 24(2–3), 207–250 (2003)
36. Løkketangen, A., Woodruff, D.L.: Progressive hedging and tabu search applied to mixed integer (0, 1)

multistage stochastic programming. J. Heuristics 2(2), 111–128 (1996)
37. Lubin, M., Dunning, I.: Computing in operations research using Julia. arXiv preprint arXiv:1312.1431

(2013)
38. Lubin, M., Martin, K., Petra, C.G., Sandıkçı, B.: On parallelizing dual decomposition in stochastic

integer programming. Oper. Res. Lett. 41(3), 252–258 (2013)
39. Lubin, M., Petra, C.G., Anitescu, M., Zavala, V.: Scalable stochastic optimization of complex energy

systems. In: 2011 International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1–10. IEEE (2011)

40. Lulli, G., Sen, S.: A branch-and-price algorithm for multistage stochastic integer programming with
application to stochastic batch-sizing problems. Manag. Sci. 50(6), 786–796 (2004)

41. Märkert, A., Gollmer, R.: Users Guide to ddsip–a C package for the dual decomposition of two-stage
stochastic programs with mixed-integer recourse (2014)

42. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4),
575–601 (1992)

43. Mitchell, J.E.: Computational experiencewith an interior point cutting plane algorithm. SIAMJ.Optim.
10(4), 1212–1227 (2000)

44. OptiRisk Systems: FortSP: a stochastic programming solver, version 1.2 (2014). http://www.optirisk-
systems.com/manuals/FortspManual.pdf

45. Papavasiliou, A., Oren, S.S.: Multiarea stochastic unit commitment for high wind penetration in a
transmission constrained network. Oper. Res. 61(3), 578–592 (2013)

46. Papavasiliou, A., Oren, S.S., O’Neill, R.P.: Reserve requirements for wind power integration: a
scenario-based stochastic programming framework. IEEETrans. Power Syst. 26(4), 2197–2206 (2011)

47. Ralphs, T.K., Galati, M.V.: Decomposition in integer linear programming. Integer Program. Theory
Pract. 3, 57–110 (2005)

48. Ralphs, T.K., Hassanzadeh, A.: A generalization of Benders algorithm for two-stage stochastic opti-
mization problems with mixed integer recourse. Technical Report 14T-005, Department of Industrial
and Systems Engineering, Lehigh University (2014)

49. Saltzman, M., Ladányi, L., Ralphs, T.: The COIN-OR open solver interface: technology overview. In:
CORS/INFORMS Conference. Banff (2004)

50. Santoso, T., Ahmed, S., Goetschalckx,M., Shapiro, A.: A stochastic programming approach for supply
chain network design under uncertainty. Eur. J. Oper. Res. 167(1), 96–115 (2005)

51. Sen, S., Higle, J.L.: The C3 theorem and a D2 algorithm for large scale stochastic mixed-integer
programming: set convexification. Math. Program. 104(1), 1–20 (2005)

52. Sherali, H.D., Fraticelli, B.M.: A modification of Benders’ decomposition algorithm for discrete
subproblems: an approach for stochastic programs with integer recourse. J. Global Optim. 22(1–4),
319–342 (2002)

53. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP: a parallel extension of SCIP.
In: Competence in High Performance Computing 2010, pp. 135–148. Springer (2011)

54. Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: Fiberscip-a shared memory parallelization of scip,
pp. 13–55. Zuse Institute Berlin, Technical Report ZR (2013)

55. Tarhan, B., Grossmann, I.E.: Improving dual bound for stochastic MILP models using sensitivity
analysis. Working paper (2015)

123

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
https://doi.org/10.1287/opre.2015.1421
https://doi.org/10.1287/opre.2015.1421
https://projects.coin-or.org/Smi
http://arxiv.org/abs/1312.1431
http://www.optirisk-systems.com/manuals/FortspManual.pdf
http://www.optirisk-systems.com/manuals/FortspManual.pdf

266 K. Kim, V. M. Zavala

56. Watson, J.P., Woodruff, D.L.: Progressive hedging innovations for a class of stochastic mixed-integer
resource allocation problems. CMS 8(4), 355–370 (2011)

57. Watson, J.P., Woodruff, D.L., Hart, W.E.: PySP: modeling and solving stochastic programs in Python.
Math. Program. Comput. 4(2), 109–149 (2012)

58. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. Thesis, TechnischeUni-
versität Berlin (1996). http://www.zib.de/Publications/abstracts/TR-96-09/

59. Zhang, M., Kucukyavuz, S.: Finitely convergent decomposition algorithms for two-stage stochastic
pure integer programs. SIAM J. Optim. 24(4), 1933–1951 (2014)

60. Zverovich, V., Fábián, C.I., Ellison, E.F., Mitra, G.: A computational study of a solver system for
processing two-stage stochastic LPs with enhanced Benders’ decomposition. Math. Program. Comput.
4(3), 211–238 (2012)

123

http://www.zib.de/Publications/abstracts/TR-96-09/

	Algorithmic innovations and software for the dual decomposition method applied to stochastic mixed-integer programs
	Abstract
	1 Problem statement
	2 Dual decomposition
	2.1 Dual-search methods
	2.1.1 Subgradient method
	2.1.2 Cutting-plane method

	3 Algorithmic innovations for dual decomposition
	3.1 Tightening inequalities for subproblems
	3.2 Interior-point cutting-plane method for the Lagrangian master problem

	4 DSP: an open-source package for SMIP
	4.1 Software design
	4.1.1 Model classes
	4.1.2 Solver classes
	4.1.3 External solver interface classes
	4.1.4 Parallelization

	4.2 Interfaces for C, JuMP, and SMPS

	5 Computational experiments
	5.1 Test problem instances
	5.1.1 Benchmarking dual-search strategies
	5.1.2 Impact of second-stage integrality
	5.1.3 Scaling experiments

	5.2 Large-scale stochastic unit commitment
	5.2.1 Impact of procedure 1
	5.2.2 Extensive form solutions

	6 Summary and directions of future work
	A Computational results for SIPLIB test instances using FiberSCIP
	B Notations: two-stage stochastic unit commitment
	C Formulation: two-stage stochastic unit commitment
	D Julia model script: two-stage stochastic unit commitment
	References

