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Abstract We present an effective heuristic for the Steiner Problem in Graphs. Its
main elements are a multistart algorithm coupled with aggressive combination of elite
solutions, both leveraging recently-proposed fast local searches. We also propose a
fast implementation of a well-known dual ascent algorithm that not only makes our
heuristics more robust (by dealing with easier cases quickly), but can also be used as
a building block of an exact branch-and-bound algorithm that is quite effective for
some inputs. On all graph classes we consider, our heuristic is competitive with (and
sometimes more effective than) any previous approach with similar running times. It
is also scalable: with long runs, we could improve or match the best published results
for most open instances in the literature.
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1 Introduction

Given an edge-weighted, undirected graph G = (V, E) and a set T ⊆ V of termi-
nals, the Steiner Problem in Graphs (SPG) is that of finding a minimum-cost tree
that contains all vertices in T . This has applications in many areas, including com-
putational biology, networking, and circuit design [9]. Unfortunately, it is NP-hard
not only to find an optimal solution [30], but also to approximate it within a fac-
tor of 96/95 [10]. The best known approximation ratio is 1.39 [8,24] (see [46] for a
1.55 approximation). Given its practical importance, there is a wealth of exact algo-
rithms [12,18,25,31,33,38,40,41,45,51] and heuristics [3,6,17,18,37,44,45,52] to
deal with real-world instances. State-of-the-art algorithms use a diverse toolkit that
includes linear relaxations, branch-and-bound, reduction tests (preprocessing), and
primal and dual heuristics.

Our goal in this paper is to develop an algorithm that is, above all, robust. For any
input instance, regardless of its characteristics, we want to quickly produce a good
solution. Moreover, the algorithm should scale well: when given more time to run, it
should produce better solutions.

Our basic algorithm follows the principles of a heuristic proposed by Ribeiro,
Uchoa, and Werneck [45]: it is a multistart algorithm with an evolutionary compo-
nent, using perturbation for randomization. Under the hood, however, we introduce
significant improvements that lead to much better results.

First, we leverage fast local search algorithms recently proposed by Uchoa and
Werneck [52], which are asymptotically faster (in theory and practice) than previous
approaches. Second, we propose a cascaded combination strategy, which immediately
combines each fresh (newly-created) solution with multiple entries from a pool of
elite solutions, leading to much quicker convergence. Third, we counterbalance this
intensification strategy with a series of diversification measures (including careful
perturbation and replacement policies in the pool) in order to explore the search space
more comprehensively.

As a result, long runs of our algorithm canmatch or even improve the best published
solutions (at the time of writing) for several open instances in the literature. For easier
inputs, our basic algorithm still finds very good results, but for some graph classes it
can be slower than alternative approaches that rely heavily on preprocessing and small
duality gaps [12,40].

Tomake our overall approachmore robust, we include some preprocessing routines.
Moreover, we propose a Guarded Multistart algorithm, which runs a branch-and-
bound routine at the same time as our basic (primal-only) algorithm. For easy instances,
these two threads can help each other, often leading to drastic reductions in total CPU
time. To compute lower bounds, we propose a novel and efficient implementation of a
well-known combinatorial dual ascent algorithm due to Wong [58]. For several hard
instances, our branch-and-bound routine finds provably optimal solutions faster than
any published algorithm.

Even with these optimizations, there are important graph classes (such as some
VLSI instances) in which our method is not as effective as other approaches, notably
those based on advanced reduction techniques and linear programming [12,40] or on
dynamic programming [25] (when the number of terminals is small). Even in such
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Robust and scalable Steiner in graphs 71

cases, however, the solutions found by our approach are not much worse, confirming
its robustness. Overall, our algorithm provides a reliable, general-purpose solution for
the Steiner Problem in Graphs.

This paper is organized as follows. Section 2 explains our multistart algorithm.
Section 3 discusses our lower-bounding techniques, including branch-and-bound. Sec-
tion 4 shows how preprocessing and lower-bounding make our basic algorithm more
robust. Section 5 has experiments, and we conclude in Sect. 6.

Notation The input to the Steiner Problem in Graphs is an undirected graph G =
(V, E) and a set T ⊆ V of terminals. Each edge e = (v,w) has an associated
nonnegative cost (length) denoted by cost(e) or cost(v,w). A solution S = (VS, ES)

is a tree with T ⊆ VS ⊆ V and ES ⊆ E ; its cost is the sum of the costs of its edges.
Our goal is to find a solution of minimum cost.

2 Basic algorithm

Our basic algorithm follows themultistart approach and runs inM iterations (whereM
is an input parameter). Each iteration generates a new solution from scratch using
a constructive algorithm (with randomization), followed by local search. We also
maintain a pool of elite solutions with good solutions found so far, including the very
best one. The main feature of our algorithm is a cascaded combination strategy, which
aggressively combines a new solution with several existing ones. This finds very good
solutions soon, but has a very strong intensification effect. To counterbalance it, we
look for diversification in other aspects of the algorithm. The outline of the entire
algorithm is as follows:

1. Create an empty pool P of elite solutions with capacity �√M/2�.
2. Repeat for M iterations:

(a) Generate a new solution S using a constructive algorithm, local search, and
randomization.

(b) Try to add S to the pool P .
(c) Generate a solution S′ by combining S with solutions in the pool P .
(d) Try to add S′ to the pool P .

3. Return the best solution in the pool P .

The remainder of this section describes details omitted from this outline. Section 2.1
explains the local search routines, Sect. 2.2 describes how fresh solutions are generated,
Sect. 2.3 deals with the cascaded combination algorithm, and Sect. 2.4 addresses the
insertion and eviction policies for the pool.

2.1 Local search

A local search algorithm tries to improve an existing solution S by examining a neigh-
borhood N (S) of S, a set of solutions obtainable from S by performing a restricted set
of operations.EvaluatingN (S) consists of either finding an improving solution S′ (i.e.,
one with cost (S′) < cost (S)) or proving that no such S′ exists inN (S). A local search
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heuristic repeatedly replaces the current solution by an improving neighbor until it
reaches a local optimum. Uchoa and Werneck [52] present algorithms to evaluate
in O(|E | log |V |) time four natural (and well-studied) neighborhoods: Steiner-vertex
insertion, Steiner-vertex elimination, key-path exchange, and key-vertex elimination.

The first two represent a solution S = (VS, ES) in terms of its set VS\T of
Steiner vertices. The minimum spanning tree (MST) of the subgraph of G induced
by VS (which we denote by MST(G[VS])) costs no more than S. In particular, if S is
optimal, so isMST(G[VS]). Uchoa andWerneck use dynamic graph techniques to effi-
ciently evaluate neighborhoods defined by the insertion or removal of a single Steiner
vertex [35,36,48,54]. These neighborhoods had been considered in metaheuristics
before [3,44,45], but evaluation required O(|V |2) time for insertions and O(|E ||V |)
time for removals.

The other two neighborhoods represent a solution S in terms of its key vertices KS ,
which areSteiner verticeswith degree at least three in S. If S is optimal, it costs the same
as theMSTof its distance network restricted to KS∪T (the complete graph on |KS∪T |
vertices whose edge lengths reflect shortest paths in G). Uchoa and Werneck show
that the neighborhood corresponding to the elimination of a single key vertex can be
evaluated inO(|E | log |V |) time.Theyprove the samebound for the key-path exchange
local search [14,17,53], which attempts to replace an existing key path (linking two
vertices of KS ∪ T in S) by a shorter path between the components it connects. Both
implementations improve on previous time bounds by a factor of O(|T |).

In this paper, we take the local searches mostly as black boxes, but use the fact
that these implementations work in passes. If there is an improving move in the
neighborhood, a pass is guaranteed to find one in O(|E | log |V |) time. To accelerate
convergence, the algorithms may perform multiple independent moves in the same
pass (within the same time bound). In practice, there are almost always fewer than 10
passes, with most of the improvements achieved early on [52].

We follow Uchoa and Werneck and use what they call the vq local search within
our algorithm. It alternates between a pass that evaluates Steiner-vertex insertion (v)
and a pass that evaluates (simultaneously) both key-vertex removal and key-path
exchange (q). Since in practice Steiner vertex removal (u) is rarely better than key-
vertex removal, our algorithm does not use it.1

2.2 Generating new solutions

New solutions are generated by a constructive algorithm followed by local search,
using randomization. Instead of making our algorithms (constructive heuristic and
local search) randomized, we follow Ribeiro et al. [45] and apply perturbations to the
edge costs instead, preserving the running time guarantees of all algorithms.

1 Uchoa and Werneck [52] state in passing that key-vertex removal dominates Steiner vertex removal, but
this is not strictly true. Some local optima for key-vertex removal can be improved by Steiner vertex removal
by transforming a degree-two vertex (on a key-path) into a key vertex. We found such cases to be extremely
rare in practice, however.
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Robust and scalable Steiner in graphs 73

Using the perturbation To build a constructive solution, we apply a random pertur-
bation to the edge costs (details will be given later), then run a near-linear time (in
practice) implementation [39] of the shortest-path heuristic (SPH) [49]. Starting from
a random root vertex, SPH greedily adds to the solution the entire shortest path to the
terminal that is closest (on the perturbed graph) to previously picked vertices.

Ribeiro et al. [45] suggest applying local search to the constructive solution, but
using the original (unperturbed) costs during local search. Since the constructive solu-
tion can be quite far from the local optimum, however, the effects of the perturbation
may disappear quite soon, hurting diversification.

We propose an alternative approach, which leverages the fact that our local searches
work in passes. We start the local search on the perturbed instance and, after each pass
it makes, we dampen the perturbation, bringing all costs closer to their original values.
For each edge e with original (unperturbed) cost cost(e), let costi (e) be its (perturbed)
cost at the end of pass i . For pass i + 1, we set costi+1(e) = αcosti (e) + (1 −
α)cost(e), where 0 < α < 1 is a decay factor (we use α = 0.5). This dampened
approachmakes better use of the guidanceprovidedby theperturbation, thus increasing
diversification. For efficiency, after three passes with perturbation, we restore the
original (unperturbed) costs and run the local search until a local optimum is reached.
Uchoa and Werneck [52] (Table 5) show that, on non-trivial graph classes, the local
search takes between three and four passes (on average) to reach a local minimum
(on the unperturbed graph). By making the local search operate on a (decreasingly)
perturbed graph for the first three iterations, we improve diversity with minimal effect
on the time to reach an (unperturbed) local optimum, as Sect. 5.1 will show.

Computing the perturbation We now return to the issue of how initial perturbations
are computed. Ribeiro et al. propose a simple edge-based approach, in which the cost
of each edge is multiplied by a random factor (between 1.0 and 1.2). This is reasonably
effective, but has a potential drawback: because edges are independent, the perturba-
tions applied to each edge incident to any particular vertex tend to cancel out one
another. We thus propose a vertex-based perturbation, which associates an indepen-
dent random factor to each vertex in the graph. The perturbed cost of an edge (u, v) is
then its original cost multiplied by the average factors of its two endpoints (u and v).

To enhance diversification, the choice of parameters that control the perturbation
itself is randomized. Each iteration chooses either edge-based or vertex-based pertur-
bation with equal probability. It then picks a maximum perturbation Q uniformly at
random in the range [1.25, 2.00]. Finally, it defines the actual perturbation factors: for
each element (vertex or edge), it sets the factor to 1 + ρQ, where ρ is generated (for
each element) uniformly at random in [0, 1].

For further diversification, we actually use a slightly non-uniform distribution
parameterized by a small threshold τ = (log2 n)/n. If the random number ρ is at
least τ (as is usually the case), we use the formula above. Otherwise, we use a pertur-
bation factor of ρ/τ . Note that this factor is between 0.00 and 1.00, while the standard
factor is always between 1.25 and 2.00. Thismeans that a small fraction of the elements
can become significantly cheaper than others, and are thus more likely to appear in
the solution. This allows us to test key-vertices that our standard local searches would
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not normally consider, since they do not include a fast implementation of key-vertex
insertion.

We stress that the algorithm already works reasonably well with the standard
edge-based perturbation proposed by Ribeiro et al. [45]; although we observed some
improvement with the vertex-based perturbation (and the non-uniform distribution),
the effects were relatively minor. Given that these these alternatives are quite simple
to implement, they are still worth using.

2.3 Cascaded combination

The cascaded combination algorithm takes as input an initial solution S0, the pool of
elite solutions, and themaximumnumber of allowed failures, denoted byφ (we useφ =
3). The procedure combines S0 with elements in the pool, generating a (potentially
better) solution S∗.

The basic building block of this procedure is the randomized merge operation [45],
which takes as input two solutions (Sa and Sb) and produces a third (potentially
cheaper) one. It does so by first generating a perturbed graph from G by perturbing
each edge cost depending on which of the original solutions (Sa and/or Sb) it appears
in. If an edge appears in both solutions, it keeps its original cost. If it appears in none
of the solutions, its cost is multiplied by 1000. If it appears in exactly one solution (Sa
or Sb), its cost ismultiplied by a randomnumber between 100 and 500.We run the SPH
heuristic on the resulting instance. Note that, regardless of graph size, the combined
solution preserves all edges that appear in both Sa and Sb (since they are relatively
much cheaper); the remaining edges are likely to come from either Sa or Sb (since
such edges are still significantly cheaper than those that appear in neither solution).
We then remove all perturbations and apply local search to the combined solution,
producing Sc, the result of the perturbed combination.

The cascaded combination procedure maintains an incumbent solution S∗, orig-
inally set to S0. In each step, it performs a randomized merge of S∗ and a
solution S′ picked uniformly at random from the pool. Let S′′ be the resulting solu-
tion. If cost(S′′) < cost(S∗), we make S′′ the new incumbent (i.e., we set S∗ ← S′′).
Otherwise, we say that the randomized merge failed and keep S∗ as the incumbent.
When the number of failures reaches φ, the cascaded combination algorithm stops and
returns S∗.

Note that the resulting solution S∗ may have elements from several other solutions
in the pool. This makes it a powerful intensification agent, helping achieve good
solutions quite quickly. That said, the first few solutions added to the pool will have a
disproportionate influence on all others, potentially confining the multistart algorithm
to a very restricted region of the search space. This is why we prioritize diversification
elsewhere in the algorithm.

On average, each multistart iteration touches a constant number of solutions in
the pool. We set the capacity of the elite pool to Θ(

√
M) to ensure that most pairs

of elite solutions are (indirectly) combined with one another at some point during
the algorithm. We set the precise capacity to �√M/2�, but the algorithm is not too
sensitive to this constant; results were not much different with �√M� or �√M/4�.
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2.4 Pool management

Wenow address the insertion and eviction policies for the pool of elite solutions.When
our algorithm attempts to add a solution S to the pool, we must consider three simple
cases and a nontrivial one. First, if S is identical to a solution already in the pool, it
is not added. Second, if the pool is not full and S is not identical to any solution, S
is simply added. Third, if the pool is full and S is not better than any solution in the
pool, S is not added.

The nontrivial case happens when the pool is full, S is different from all solutions
in the pool, and S is better than the worst current solution. In this case, S replaces a
solution that is at least as bad as S, with (randomized) preference for solutions that
are similar to S. More precisely, we define the relative symmetric difference between
S and S′ as Δ(S, S′) = |E(S) ∩ E(S′)|/|E(S) ∪ E(S′)|; this is 0 if the solutions are
identical, and 1 if they have no edge in common. When inserting S into the pool, we
pick a solution to replace among all solutions S′ that cost at least as much as S, with
probability proportional to a score given by 1/((1 − Δ(S, S′))2). Note that solutions
that are similar to S are much more likely to be picked; for example, if S and S′ are
nearly identical, the score is close to 1; if they share only half their edges, the score
is close to 0.25. This technique (biased towards replacing similar solutions) has been
shown to increase diversification for other problems [43].

2.5 Discussion

Although our algorithm borrows some elements from the multistart approach of
Ribeiro et al. [45], Sect. 5.1.3 will show that our algorithm significantly outperforms
theirs. This section outlines the most relevant similarities and differences between the
two approaches.

Ribeiro et al. run a pure multistart routine, in which solutions generated by the end
of each iteration are mostly independent from previous ones; these solutions are used
to populate an elite pool. At the very end, all pairs of elite solutions in the pool are
combined with one another. The resulting solutions populate a second pool (genera-
tion). This procedure is repeated until it reaches a generation whose average solution
value does not improve upon the previous one. The algorithm makes extensive use of
randomization: each iteration chooses between three types of constructive algorithm,
three types of perturbation (used to randomize the construction), and two local search
schemes. The post-optimization phase chooses between two types of combination
(randomized merges or path relinking by complementary moves).

Although there are many differences between the algorithms, the main reason for
our good performance is that we leverage asymptotically faster implementations of
the local searches. Like us, Ribeiro et al. use local searches based on adding and
removing Steiner vertices and a local search based on key-path exchanges (we also
add a local search based on key-vertex removals).While theymust explicitly build each
neighboring solution in linear or quasi-linear time, we can evaluate them implicitly
in logarithmic amortized time by applying the recent algorithms from Uchoa and
Werneck [52]. This allows us to reach local optima much faster in practice. Our
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local optima tend to be slightly worse, however, since explicitly building neighboring
solutions allows Ribeiro et al. to look for “opportunistic” moves (such as removing
non-terminal leaves) during the evaluation. As Sect. 5.1.3 will show, this is a worthy
trade-off within the overall multistart algorithm, allowing us to find better results
within the same time limit.

Faster local searches allow us not only to run more iterations within the same
time limit, but we can also do more in each iteration using cascaded combinations,
another contribution of this paper. Both cascaded combinations and the algorithm of
Ribeiro et al. use randomized merges as building blocks. While Ribeiro et al. perform
randomized merges only at the very end, cascaded combinations (as proposed in this
paper) use randomizedmerges muchmore aggressively, with combinations happening
during the multistart phase itself. The result of one iteration is thus heavily dependent
on others. As our experiments will show (see Fig. 2), this allows very good solutions
to be generated much earlier in the execution.

Despite being less relevant to explain the performance gap, there are several other
differences between the algorithms. We use a single constructive algorithm (Ribeiro
et al. choose between three in each iteration) and a single local search scheme (Ribeiro
et al. alternate between two). We use a difference-based replacement scheme when
updating the pool (Ribeiro et al. do not). We alternate between vertex-based and edge-
based perturbations, while Ribeiro et al. use only the latter. We stress that these are
minor differences, however. The parameters we reported are the ones we ended up
using in the final version of our code, but Sect. 5.1 will show that our algorithm is not
very sensitive to these parameters.

3 Lower bounds

We now turn our attention to finding lower bounds. We propose an efficient imple-
mentation of a known greedy combinatorial algorithm (due to Wong [58]) associated
with a powerful linear programming formulation. We first describe the formulation
and an abstract version of the algorithm, then discuss our implementation.

3.1 Formulation and dual ascent

We use the dual of the well-known directed cut formulation for the Steiner problem in
graphs [58]. It takes a terminal r ∈ T as the root. A set W ⊂ V is a Steiner cut if W
contains at least one terminal but not the root. Let δ−(W ) be the set consisting of all
arcs (u, v) such that u /∈ W and v ∈ W .

The dual formulation associates a nonnegative variableπW with each Steiner cutW .
The setW of all Steiner cuts has exponential size. Given a dual solution π , the reduced
cost c̄(a) of an arc a is defined as cost(a)−∑

W∈W :a∈δ−(W ) πW . The dual formulation
maximizes the sum of all πW variables, subject to all reduced costs being nonnegative.
An arc whose reduced cost is zero is said to be saturated.

The technique we use for finding lower bounds is a dual ascent routine proposed
by Wong [58], which finds a greedy feasible solution to the dual formulation. The
algorithm maintains a set of C of active terminals, initially consisting of T \{r}. For a
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terminal t ∈ T , let cut(t) be the set of vertices that can reach t through saturated arcs
only. We say that t induces a root component if t is the only active terminal in cut(t).

The algorithm (implicitly) initializes with 0 the variables associated with all Steiner
cuts. In each iteration, it picks a vertex v ∈ C and checks if cut(v) is a root component.
If it is not, it makes v inactive and removes it from C ; if it is a root component, the
algorithm increases πδ−(cut(v)) until one of its arcs is saturated (and keeps v in C). We
stop when C becomes empty, at which point every terminal can be reached from the
root using only saturated arcs.

Each iteration takes O(|E |) time to process a candidate root component. There
are O(|T |) unsuccessful iterations, since each reduces the number of active vertices.
A successful iteration saturates at least one arc and increases the size (number of
vertices) of at least one root component. There can thus be at most min{|V ||T |, |E |}
such iterations, bounding the total running time by O(|E |min{|V ||T |, |E |}) [15].

3.2 Our implementation

We now describe details of our implementation of Wong’s algorithm that are crucial
to its good performance in practice.

Processing a root component Once a vertex v is picked at the beginning of an iteration,
we process its (potential) root component in three passes.

The first pass performs a graph search (we useBFS) from v following only saturated
incoming arcs. If the searchhits another active vertex, the iteration stops immediately:v
does not define a root component. Otherwise, the search finishes with two data struc-
tures: a set S consisting of all vertices in cut(v), and a list L which includes all
unsaturated arcs (a, b) such that a /∈ cut(v) and b ∈ cut(v). To ensure both structures
can be built during the BFS, we allow L to also contain some unsaturated arcs (a, b)
such that both a and b belong to cut(v). These may appear because, when the BFS
scans b, it may not know yet whether its neighbor a is part of cut(v); to be safe, we
add (a, b) to L anyway.

The second pass traverses L with two aims: (1) remove from L all arcs (a, b) that
are invalid (with a ∈ cut(v)); and (2) pick, among the remaining arcs, the one with
the minimum residual capacity Δ.

The third pass performs an augmentation by reducing the residual capacity of each
arc in L by Δ. It also builds a set X with the tails of all arcs that become saturated,
which will be part of the new root component of v (after augmentation).

Note that only the first pass of the algorithm performs a graph search; the other two
passes are much cheaper, as they merely traverse arrays.

Selection rules and lazy evaluation The bound given by the algorithm depends on
which active vertex (root component) it selects in each iteration. Without loss of
generality, we assume each iteration picks the active vertex that minimizes some score
function. Poggi de Aragão, Uchoa, and Werneck [38] (see also [56]) found that using
the number of incident arcs as the score works well in practice. Polzin and Vahdati
Daneshmand [12,40] show that a related (but coarser) measure, the number of vertices

123



78 T. Pajor et al.

in the component, also works well. For either score function (and others), the main
challenge is tomaintain scores efficiently for all root components during the algorithm,
since augmenting on one root component may affect several others.

For efficiency, we focus on nondecreasing score functions: as the root component
grows, its score can either increase or stay the same. This allows us to use lazy evalua-
tion. We maintain each active vertex v in a priority queue, with a priority σ(v) that is a
lower bound on the score of its root component. Each round of the algorithm removes
the minimum element t from the queue. It then verifies (using the procedure above) if t
defines a root component; if it does not, we just discard t . Otherwise, we perform the
corresponding augmentation as long as the actual score is not higher than the priority
of the second element in the queue. Finally, we reinsert t into the priority queue.

Whenwe do augment, computing the new exact score of t can be expensive. Instead,
we update the score assuming the vertices in the root component are the union of X
(the tails of all arcs saturated during the augmentation) and the original vertices (at
the beginning of the iteration). Although we may miss some vertices, this is relatively
cheap to compute and provides a valid lower bound on the actual score.

Since the number of arcs incident to a root component may decrease, we cannot use
it as score function. Instead, we use a refined version of the number of vertices in the
root component. Given a component c, let vc(c) be its number of vertices and let deg(c)
be the sum of their in-degrees. We use deg(c) − (vc(c) − 1) as the score. This is an
upper bound on the number of incoming arcs on the component (the vc(c) − 1 term
discards arcs in a spanning tree of the component, which must exist). This function
is nondecreasing, as cheap to compute as the number of vertices, and gives a better
estimate on the number of incoming arcs.

Eager evaluation Even with lazy evaluation, wemay process a root component multi-
ple times before actually performing an augmentation (or discarding the component).
To make the algorithm more efficient, we also use eager evaluation: after removing a
component from the priority queue, we sometimes perform an augmentation even its
real score does not match the priority in the queue.More precisely, as long as the actual
score is no more than 25% higher than the priority, the augmentation is performed.
This has almost no effect on solution quality but makes the algorithm significantly
faster. Note that any constant factor (including 25%) implies a logarithmic bound on
the number of times any component can be reevaluated during the algorithm. The
maximum time spent reevaluating components (without subsequent augmentations)
is thus O(|E ||T | log |V |).

Last component Typically, the initial cuts found by the dual ascent algorithm have
much fewer vertices than later ones. In particular, when there is only one active ver-
tex v left, we may have to perform several expensive augmentations until it becomes
reachable from the root.We can obtain the same bounds faster by dealingwith this case
differently: we run (forward) Dijkstra’s algorithm from the root to v, using reduced
costs as arc lengths. We then use a linear pass to update the reduced costs of the
remaining arcs appropriately [56].
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3.3 Branch-and-bound

We use our dual ascent algorithm within a simple branch-and-bound procedure. We
follow the basic principles of most previous work [12,38,40,56,58], using dual ascent
for lower bounds and branching on vertices. The remainder of this section describes
other features of our implementation.

The dual ascent root is picked uniformly at random (among the terminals) and
independently for each node of the branch-and-bound tree.

To find primal (upper) bounds, we run the SPH heuristic on the (directed) subgraph
consisting only of arcs saturated by the dual ascent procedure, using the same root.
We then run a single pass of the Steiner vertex insertion and elimination local search
procedures (using all edges, not just saturated ones).

We branch on the vertex that has maximum degree in the primal solution found
in the current branch-and-bound node. In case of ties, we look beyond the current
primal solution and prefer vertices that maximize the sum of incoming saturated arcs,
outgoing saturated arcs, and total degree. Remaining ties are broken at random. If v

is the chosen vertex, we remove it from the graph on the “zero” side and make it
a terminal on the “one” side. We traverse the branch-and-bound tree in DFS order,
visiting the “one” side first. This tends to find good primal solutions quicker than other
approaches we tried.

We can eliminate an arc (u, v) if its reduced cost is at least as high as the difference
between the best known primal solution and the current dual solution. We actually
take the extended reduced cost [41], which also considers the distance (using reduced
costs) from the root to u. Since the root can change between nodes in the branch-
and-bound tree, we only eliminate an (undirected) edge when both corresponding
arcs (directions) could be fixed by reduced cost. If we eliminate at least |E |/5 edges
in a branch-and-bound node, we create a single child node rather than branching.

4 Improving robustness

While the algorithm from Sect. 2 works well on many graph classes, there are still
opportunities to make it more robust (compared to other approaches) for very easy
or very hard instances. Section 4.1 shows how the lower bounds described in Sect. 3
allow our heuristic to stop sooner. Section 4.2 describes some basic preprocessing
techniques to reduce the size of the graph on certain classes of instances. Finally,
Sect. 4.3 describes a two-level version of the multistart algorithm that achieves greater
diversification on longer runs.

4.1 Guarded multistart

Being a pure heuristic, the multistart algorithm described in Sect. 2 can be wasteful.
Because it cannot prove that the best solution it found is optimal (even if it actually is),
it cannot stop until it completes its scheduled number of iterations. Ideally, we would
like to stop sooner on easy instances.
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To that end, we propose aGuardedMultistart (GMS) algorithm. It runs two threads
in parallel: the first runs our standard multistart algorithm, while the second runs the
branch-and-bound routine from Sect. 3.3. The algorithm terminates as soon as either
the multistart thread completes its iterations, or the branch-and-bound thread proves
that the incumbent solution is optimal. Communication between threads is limited: the
threads inform one another about termination and share the best incumbent solution.

The benefits of this approach are twofold. First, as already mentioned, on easy
instances the branch-and-bound algorithm can often prove optimality well before the
scheduled number of multistart iterations is reached, making the algorithm faster.
Moreover, sometimes the branch-and-bound algorithm quickly finds better primal
solutions by itself, leading to better quality as well.

Of course, these advantages are not free: the cycles spent on the branch-and-bound
computation could have been used for the multistart itself. On harder instances, we
can only afford to perform roughly half as many iterations within the same CPU
time. We could make this problem less pronounced using a simple heuristic to detect
cases in which the branch-and-bound computation is obviously unhelpful: if its depth
reaches (say) 100, we could stop it and proceed only with the multistart computation,
saving CPU time. Another potential drawback is nondeterminism: due to scheduling,
multiple runs of GMS (even with the same random seed) may find different results.
Although one could make the algorithm deterministic by carefully controlling when
communication occurs, it is not clear this is worth the extra effort and complexity.

Similarly, it is possible that greater integration between the algorithms (for instance,
by tentatively adding branch-and-bound solutions to the multistart pool) would help.
In practice, however, we found that the greatest advantage of GMS is saving time on
easy instances by allowing the algorithm to stop sooner. Since the primal solutions
found by dual ascent tend to be of lower quality for harder instances (with larger
duality gaps), it is unlikely that greater integration would justify the extra effort.

4.2 Reduction techniques

To be competitive with state-of-the-art algorithms on standard benchmark instances,
wemust deal with “easy” inputs effectively.We thus use some basic reduction (prepro-
cessing) techniques that transform the input into a potentially much smaller instance
with the same solution.

In particular, we delete non-terminal vertices of degree one (alongside their incident
edges). Also, if there is a non-terminal vertex v with exactly two neighbors, u and w,
we replace edges (u, v) and (v,w) with a single edge (u, w) with cost cost(u, w) =
cost(u, v) + cost(v,w).

Finally, we implemented a limited version of the Bottleneck Steiner Distance [16]
test, which states that an edge (u, v) can be removed from the graph if there is a (bot-
tleneck) path Puv between u and v such that (1) Puv excludes edge (u, v) and (2)
every subpath of Puv without an internal terminal has length at most cost(u, v).
Identifying all removable edges can be expensive, so we consider only a couple of
common (and cheap) special cases, which can be seen as restricted versions of existing
algorithms [12,40].
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The first case is simple. If the combined degree of u and v is small (up to 20),we scan
both vertices looking for a common neighbor x such that cost(u, x) + cost(x, v) ≤
cost(u, v); we also check if a parallel (u, v) edge exists. This heuristic helps with
some grid-like graphs, such as VLSI instances.

The second case may find more elaborate paths. We first use a modified version of
Dijkstra’s algorithm [13] to build the Voronoi diagram associated with the terminals
of G [34,39,52]. For each vertex v, this structure defines vb(v) (the closest terminal
to v), vd(v) (the distance from that terminal), and vp(v) (the parent edge on the path
from vb(v)). By looking at boundary edges of this Voronoi diagram, we compute the
MST of the distance network of G [34,39,52]. Let Et be the set of edges of this MST,
each corresponding to a path in the original graph. Let E f ⊆ E be the set of free
edges, i.e., original edges that neither are parents in the Voronoi diagram nor belong
to a path in Et .

We try to eliminate edges in E f , using Et and the Voronoi diagram to find bot-
tleneck paths. To do so efficiently, we first sort the union of Et and E f in increasing
order of cost, breaking ties in favor of entries in Et . We also initialize a union-
find data structure [50] with |V | disjoint sets. We then traverse this list in order.
Consider edge ei = (u, v). If ei ∈ Et , we join groups u and v in the union-
find data structure. Otherwise (if ei ∈ E f ) we delete ei if all of the following
three conditions hold: (1) u and v belong to the same component in the union-
find data structure; (2) dist(vb(u), u) ≤ cost(ei ); and (3) dist(vb(v), v) ≤ cost(ei ).
This Voronoi-based test is particularly effective on random and dense Euclidean
graphs.

4.3 Two-phase multistart

Even with all the measures we take to increase diversification, our multistart algo-
rithm can still be strongly influenced by the first few solutions it finds, since they
will be heavily used during cascaded combination. If the algorithm is unlucky in
the choice of the first few solutions, it may be unable to escape a low-quality local
optimum.

When the number M of iterations is large (in the thousands), we obtain more con-
sistent results with a two-phase version of our algorithm. The first phase independently
runs the standard algorithm four times, with M/8 iterations each. The second phase
runs the standard algorithm with M/2 iterations, but starting from a pool of elite
solutions obtained from the union of the four pools created in the first phase. Note
that the combined size of all pools in the first phase is 4

√
M/16 = √

M , while the
second-phase pool can hold only

√
M/4 = √

M/2 solutions. We thus take the elite
solutions from the first phase in random order and try to add them to the (initially
empty) final pool, using the criteria outlined in Sect. 2.4 to decide which solutions are
kept.

We call this two-phase version of ourmultistart algorithmMS2. Since it hasmultiple
independent starts, it is less likely than the single-phase version of our algorithm (which
we call MS) to be adversely influenced by a particularly bad set of initial solutions.
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4.4 Time-bounded algorithm

The standard version of our multistart algorithm (as described in Sect. 2) is parame-
terized by the number of iterations. In some real-world applications, one would like to
have instead a time-bounded algorithm, whose goal is to find the best possible solu-
tion within a time budget τ . (This was in fact how the software competition from the
11th DIMACS Implementation Challenge [28] was set up.) Recall, however, that our
multistart algorithm sets the size of the elite pool to be proportional to the square root
of the number of iterations, which is unknown in the time-bounded setup. A solution
would be to fix the size of the elite pool to some constant, and just stop the algorithm
when it runs out of time.

We get better results by computing an initial estimate on the number of iterations in
the obvious way: we run a single iteration of themultistart algorithm (i.e., constructive
algorithm (SPH) followed by local search). Here we use actual edge weights, without
perturbation. Let its running time by τ1.

We then run the standardmultistart algorithm described in Sect. 2, using an (initially
empty) elite pool of size

√
M ′. Here M ′ = τ/(2.5τ1) is an estimate on the number of

iterations the algorithm can runwithin the time budget τ , meaning that we estimate that
a standard iteration of the algorithm will take about 2.5 times the first one, which does
not use combinations. This constant (2.5) was found empirically, and the algorithm
is not too sensitive to it. Note that the algorithm actually stops when the time limit is
reached, so its number of iterations may be lower or higher than M ′.

The same approach can be used to make the two-phase MS2 algorithm time-
bounded: we run a single iteration to get an estimate M ′ on the total number of
iterations, then run MS2 parameterized by M ′. In fact, we can even have an adaptive
algorithm that picks eitherMS orMS2 for themain runs depending on the value of M ′.
As Sect. 5 will show, a good strategy is to use MS for M ′ ≤ 2048 and MS2 otherwise.

5 Experiments

We implemented all algorithms in C++ and compiled them using Visual Studio
2013 (optimizing for speed). We ran our main experiments on a machine with two
3.33GHz Intel Xeon X5680 processors running Windows 2008R2 Server with 96GB
of DDR3-1333 RAM. This machine scores 388.914 according to the benchmark code
made available for the 11th DIMACS Implementation Challenge (http://dimacs11.zib.
de/downloads.html). All runs we report are sequential, except those of the Guarded
Multistart algorithm, which use two cores. In every case, we report total CPU times,
i.e., the sum of the times spent by each CPU involved in the computation.

Our main experiments evaluate all 1437 instances available by August 1, 2014 from
the 11th DIMACS Implementation Challenge [28] (accessible from http://dimacs11.
zib.de/downloads.html) and report error rates relative to the best solutions published
by then (http://dimacs11.zib.de/instances/bounds20140801.txt). Section 5.3 discusses
recent developments.

For ease of exposition, we group the original series into classes, as shown in
Table 1 (augmented from [52]). More detailed information about the dimensions of
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Table 1 Classes of instances tested in our main experiments

class series description

euclidean x p4e p6e Euclidean costs [11,31]

fst es*fst tspfst cph14 Reduced geometric, L1 costs [27,28,55]

hard bip cc hc sp Synthetic hard instances [32,47]

incidence i080 i160 i320 i640 Random graphs, incidence costs [15]

r 1r 2r 2D and 3D cross-grid graphs [21]

random b c d e mc p4z p6z Graphs with random costs [4,11,31]

vienna gori gadv isim iadv Road networks [33]

vlsi alue alut dmxa diw gap lin msm taq Planar grid graphs with holes [31,32]

wrp wrp3 wrp4 Group Steiner grid instances [59]

the instances in each series can be found in Table 12, in the Appendix. Most instances
are available from the SteinLib [32], with two exceptions: cph14 (graphs obtained
from rectilinear problems [27]) and vienna (road networks from telecommunication
applications [33]).

For experiments on the entire set of benchmark instances, we use a single (identical)
random seed for each of the 1437 instances, since they are already quite numerous.
Experiments restricted to a subset of the benchmark use multiple random seeds for
each instance. These cases will be noted explicitly.

5.1 Multistart

In our first experiment, we ran the default version of our multistart algorithm on all
instances from theDIMACSChallenge [28]. Recall that this version is not guarded (no
branch-and-bound) and uses the lightweight preprocessing routine. We vary the num-
ber of multistart iterations from 1 to 256 (by factors of 4). Table 2 shows average
running times (in seconds) and percent errors relative to the best known solutions
(http://dimacs11.zib.de/instances/bounds20140801.txt). Error rates are also shown in
Fig. 1. Results aggregated by series can be found in Tables 13 and 14, in the Appendix.
To improve readability, errors smaller than 0.001% are shown multiplied by 1000 and
in brackets. Such small errors are particularly common for wrp instances as a side
effect of a reduction from the Group Steiner Tree problem, but occasionally appear
for other classes (including euclidean and vienna).

Our algorithm is quite effective.With as little as 16multistart iterations, the average
error rate is below 0.5% on all classes except hard, which consists of adversarial
synthetic instances. With 256 iterations, the average error falls below 0.5% for hard,
and below 0.06% for all other classes. Average running times are still quite reasonable:
the only outlier is vienna, which has much bigger graphs on average (see Table 12,
in the Appendix). These instances are relatively easy: a single iteration is enough to
find solutions that are on average within 0.1% of the best previously known bounds.
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Fig. 1 Multistart algorithm: average error rates as the total number of iterations varies
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Fig. 2 Solution quality of the multistart algorithm (on 30 representative instances) as a function of the
maximum number φ of failures within cascaded combination. Mean solution values are shown relative to
a single iteration with no cascaded combination

One reason for the success of our approach is its use of cascaded combination.
To confirm it is important, we tested six variants of our algorithm on 30 nontrivial
representative instances chosen for the DIMACS Challenge competition. (The set
is available at http://dimacs11.zib.de/contest/instances/SPG.tgz.) The variants differ
only on the maximum number φ of failures allowed during cascaded combination.
Figure 2 summarizes the results. There is one curve for each value of φ (0 to 5, with
0 meaning “no combination”), with different numbers of iterations (1, 2, 4, . . . , 256).
Each point is the mean of 5 runs with different random seeds. The x-axis shows the
(geometric) mean running time, whereas the y-axis represents the (geometric) mean
solution value for all 30 instances, normalized so that one iteration with φ = 0 has
value 1.00 (the actual mean solution for φ = 0 was 36,871.1873).

The figure shows that, even though cascaded combination significantly increases
the time per iteration, it leads to much better solutions within the same allotted time.
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We use φ = 3 by default, but any small positive φ also works well—there is very little
difference between the curves with φ > 0.

In contrast to cascaded combination, other parameters we considered have only
minor effect on solution quality. For instance, recall that each iteration picks either
vertex-based or edge-based perturbation with equal probability. With 256 iterations,
our default algorithm found a mean solution value (on the same set of 30 instances,
with nine runs per instance) of 35,822.2.Usingonly edge-basedperturbations increases
this to 35,827.0; vertex-based perturbations increase it to 35,832.9. Running times are
essentially the same in all three cases, and the difference in quality is negligible.

Similarly, using dampened perturbations (i.e., running up to three local search
passes on the perturbedgraph,with somedecay) does improvequality, but only slightly.
On the same set of instances (and nine seeds per instance), the mean solution value
without dampened perturbations is 35,830.2, which is marginally higher than the
baseline of 35,822.2. Running times typically increase by less than 10%.

5.1.1 Guarded multistart

We now consider theGuarded Multistart (GMS) algorithm from Sect. 4.1, which runs
the standard multistart in parallel with a branch-and-bound algorithm.We tested GMS
with 2, 8, 32, and 128 multistart iterations. Table 3 reports the error rates and average
running times (see also Tables 15 and 16, in the Appendix). For consistency, we report
total CPU times; since GMS uses two cores, the actual wall-clock time is lower.

The CPU time spent by GMS with i iterations cannot be (by design) much worse
that the unguarded algorithm (MS) with 2i iterations. A comparison of Tables 2 and 3
shows that running times are indeed similar for several classes, such as hard, vlsi,
and wrp. But GMS can stop much sooner on “easy” instances, when its branch-and-
bound portion can prove the optimality of the incumbent. For random, incidence,

Table 3 Guarded multistart: average CPU time in seconds and average percent error relative to the best
known solutions, with the number of iterations (it.) set to 2, 8, 32, or 128

class time [s] error [%]

2 it. 8 it. 32 it. 128 it. 2 it. 8 it. 32 it. 128 it.

euclidean 0.009 0.010 0.011 0.010 [0.429] opt opt opt

fst 0.063 0.398 1.757 7.235 0.282 0.095 0.040 0.018

hard 0.304 1.704 7.313 30.016 3.094 1.709 1.070 0.648

incidence 0.403 1.012 2.617 4.400 0.360 0.065 0.030 0.019

r 0.036 0.117 0.399 1.456 0.876 0.346 0.118 0.056

random 0.021 0.050 0.127 0.481 0.119 0.044 0.014 0.004

vienna 3.663 19.604 87.347 358.916 0.058 0.024 0.011 0.003

vlsi 0.279 1.144 4.497 18.427 0.364 0.067 0.035 0.012

wrp 0.068 0.331 1.424 5.700 [0.175] [0.033] [0.008] [0.002]

Errors in brackets (for euclidean and wrp series) are multiplied by 103; for example, the first such entry
in the table ([0.429]) represents an error of 0.000429%
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and especially euclidean, GMS becomes significantly faster than MS as the number
of allowed iterations increases.

The relative solution quality of the two variants also depends on the type of
instance. For classes such as hard and wrp, the guarded variant finds slightly worse
results (within the same CPU time), since most of the useful computation is done
by the multistart portion of the algorithm, which has fewer iterations to work with.
For a few classes (such as incidence), the guarded version actually finds much better
solutions, thanks to the branch-and-bound portion of the algorithm. In most cases, the
difference is quite small. On balance, the guarded version is more robust and should be
used unless there is reason to believe the branch-and-bound portion will be ineffective.

5.1.2 Comparison with Polzin and Vahdati Daneshmand

Table 4 compares Guarded Multistart (GMS) against the three state-of-the-art heuris-
tics by Polzin and Vahdati Daneshmand [12,40]: prune, ascend&prune, and
slack- prune. As the authors report [12,40], these heuristics dominate the multi-
start approach by Ribeiro et al. [45].

Since the three algorithms have very different time/quality tradeoffs, we report
results for GMS with 1, 8, 32, and 128 iterations. For consistency with how the results
are reported in [12,40], Table 4 shows the lin series separately from the remaining vlsi
instances. Running times for their algorithms are scaled (divided by 6.12) to roughly
match our machine.2

The table shows that the algorithms have different profiles. Both prune and
ascend&prune are quite fast, with running times comparable to GMS1, which runs
a single multistart iteration. They provide much better solutions on series d and e,
whereas GMS1 is significantly better on 1r, i080, i160, i320, and x. Error rates are
usually within a factor of two of one another otherwise.

The slack- prune algorithm usually finds better solutions, but takes much longer;
it should then be compared with GMSwith a few dozen iterations. The slack- prune
approach is superior when advanced reduction techniques (exploiting small duality
gaps) work very well: 2r, e, and vlsi are good examples. When these techniques are
less effective, our algorithm dominates: see es10000fst, i080, i160, i320, mc, and
wrp, for example. Performance is comparable for several cases in between, such as
es1000fst, lin, or tspfst.

Unfortunately, Polzin andVahdatiDaneshmand [12,40] only report results for series
in which all optimal solutions are known, which consist mostly of small inputs or
instances for which reduction techniques work well. It is encouraging that GMS is
competitive even in the absence of very hard instances. This confirms that, although
reduction and dual-based techniques are powerful, primal heuristics based on local
search (the core of our approach) are essential for a truly robust algorithm.

2 We know from http://www.cpubenchmark.net/singleThread.html that our machine is 3.111 times faster
than an 1.53GHz AMD Athlon XP 1800+, which is 1.967 times faster (based on Tables 5.3 and A.6
from [40]) than the 900 MHz SPARC III+ Sunfire 15,000 used in their main experiments.
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5.1.3 Comparison with Ribeiro et al.

For completeness, we also compare our algorithm to the hybrid multistart heuristic
of Ribeiro et al. [45], on which our approach builds. Both codes were compiled with
g++ and full optimization and run on an Intel Core i7-6700K CPU with 24GB of
DDR4-2133 RAM; this machine scores 486.387 according to the benchmark routine
from the 11th DIMACS Implementation Challenge. For this analysis, we consider the
reference set of 30 representative instances from the DIMACS Challenge.3 For a fair
comparison, neither algorithm uses preprocessing.

We first compare (in Table 5) their performance with a single multistart iteration
(i.e., a single constructive heuristic followed by local search until a local optimum
is reached). It shows that the local search used by Ribeiro et al. [45] tends to find
better results than the one we use (from Uchoa andWerneck [52]), since it can exploit
opportunistic moves. Average solution values are 1.1% lower for Ribeiro et al.’s local
search, and its advantage is clearer on instances with small solution values, which tend
to havemore ties.Due to itsworse asymptotics, however, their approach is prohibitively
slow for a robust general-purpose solver. We are hundreds of times faster on the
larger instances tested (with a few tens of thousands of vertices), and never slower
by much more than a factor of two. These results confirm the findings by Uchoa and
Werneck [52].

Table 6 compares the same two algorithms, but now using 128 multistart iterations
and a pool of 10 initial solutions, the setup recommended by Ribeiro et al. [45].
Once again, we used nine random seeds for almost all runs. For the six slowest
instances (G106ac1, I064ac1, alue7080, es10000fst01, fnl4461fst, s5), we ran
Ribeiro et al.’s code only once, since each run took from 4h to more than a week (in
fact, s5 failed to finish within 10 days). Although there are some cases in which
Ribeiro et al. have marginally better results (notably some of the cc instances),
our approach finds solutions that are 0.2% better on average, overcoming most of
the limitations of its more strict local search. Its greatest advantage, however, is
speed. On larger instances, it is orders of magnitude faster and still finds better
solutions.

5.1.4 Long runs

To test the scalability of our algorithm, we consider the 41 SteinLib instances that had
no published proof of optimality by August 1, 2014. We consider three versions of
our algorithm. The baseline is MS, the multistart algorithm described in Sect. 2. MS2
is the two-phase version of MS, as described in Sect. 4.3. Finally, MSK augments
plain MS by also using the key-vertex insertion local search implemented as calls to
the SPH algorithm (as proposed in [37]); it is very expensive, but can potentially find

3 The code from Ribeiro et al. [45] cannot handle instancesG106ac and I064ac because they have a small
number (454 and 6, respectively) of zero-length edges; we reset these edge lengths to 1 for this experiment,
creating instances G106ac1 and I064ac1. This may increase the solution value by a negligible amount
(no more than 0.001%).
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Table 5 Comparison between a singlemultistart iteration (constructive algorithm followed by local search)
by the heuristic of Ribeiro et al. [45] (RUW02) and our algorithm (MS) on a set of 30 representative instances

instance average time [ms] average solution

RUW02 MS RUW02/MS RUW02 MS RUW02/MS

2r211c 10 15 0.68 94,000 95,556 0.9837

G106ac1 779,477 2681 290.72 37,191,295 37,054,226 1.0037

I064ac1 119,901 1112 107.87 186,952,803 186,910,488 1.0002

alue7080 20,551 594 34.61 62,809 62,997 0.9970

alut2625 8723 557 15.65 35,740 35,865 0.9965

bipa2p 224 107 2.09 38,136 38,048 1.0023

bipa2u 388 80 4.85 363 375 0.9693

cc12-2n 1106 137 8.09 634 674 0.9409

cc12-2p 1597 298 5.37 128,870 128,309 1.0044

cc12-2u 1808 195 9.27 1208 1276 0.9468

cc3-12n 54 85 0.64 112 113 0.9876

cc3-12p 73 171 0.43 19,623 19,527 1.0049

cc3-12u 49 107 0.46 191 197 0.9675

d18 121 79 1.54 228 233 0.9819

e18 1161 342 3.39 575 596 0.9639

es10000fst01 758,450 1454 521.77 720,306,547 722,273,483 0.9973

fnl4461fst 145,609 740 196.80 183,808 184,617 0.9956

hc12p 954 288 3.32 245,033 245,241 0.9992

hc12u 1668 269 6.21 2352 2384 0.9867

i640-211 10 20 0.47 12,607 12,675 0.9946

i640-314 28 32 0.87 36,736 36,743 0.9998

i640-341 490 219 2.23 32,524 32,442 1.0025

lin36 1207 436 2.77 56,445 56,687 0.9957

lin37 2199 592 3.72 100,348 100,996 0.9936

rc09 1102 109 10.15 113,836 114,466 0.9945

rt05 2762 303 9.12 52,333 52,839 0.9904

s5 145,583 2053 70.90 25,210 25,210 1.0000

w23c23 145 32 4.59 701 726 0.9658

world666 837 1067 0.78 122,553 122,620 0.9995

wrp3-83 60 82 0.74 8,300,942 8,300,964 1.0000

Running times (in milliseconds) and solution values are averages over nine runs
The best result in each category is marked in bold

better results. None of these variants is guarded, since branch-and-bound is ineffective
on hard instances. To find near-optimal solutions, we test up to 262,144 (218) itera-
tions (1024 for MSK). Since these experiments were very time-consuming, we could
only afford to test each set of parameters with a single random seed; we used the same
seed for all runs.
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Table 6 Comparison between the heuristic of Ribeiro et al. [45] (RUW02) and our algorithm (MS) on a
set of 30 representative instances

instance average time [s] average solution

RUW02 MS RUW02/MS RUW02 MS RUW02/MS

2r211c 2.6 3.6 0.72 89,111 89,000 1.0012

G106ac1 820,877.6 1173.0 699.83 36,966,155 36,948,036 1.0005

I064ac1 104,692.5 468.7 223.34 186,872,140 186,860,399 1.0001

alue7080 14,385.6 221.4 64.98 62,591 62,564 1.0004

alut2625 5357.3 177.6 30.16 35,534 35,502 1.0009

bipa2p 68.0 47.9 1.42 36,656 35,873 1.0218

bipa2u 84.7 31.9 2.66 354 346 1.0231

cc12-2n 246.1 42.7 5.77 622 619 1.0053

cc12-2p 800.9 116.5 6.87 123,103 123,461 0.9971

cc12-2u 452.2 68.9 6.56 1188 1192 0.9971

cc3-12n 13.9 19.9 0.70 111 111 1.0000

cc3-12p 25.1 56.6 0.44 19,129 18,956 1.0091

cc3-12u 20.6 30.6 0.67 186 187 0.9957

d18 25.8 18.8 1.37 224 224 0.9991

e18 245.3 93.9 2.61 566 567 0.9984

es10000fst01 407,950.5 583.1 699.66 717,587,060 717,359,577 1.0003

fnl4461fst 67,366.1 280.0 240.62 182,800 182,728 1.0004

hc12p 1144.4 180.9 6.32 239,955 239,146 1.0034

hc12u 754.2 154.2 4.89 2334 2316 1.0076

i640-211 2.4 6.8 0.35 12,155 12,114 1.0034

i640-314 9.1 11.2 0.81 35,681 35,679 1.0001

i640-341 81.9 87.5 0.94 32,130 32,077 1.0017

lin36 740.3 125.5 5.90 55,665 55,631 1.0006

lin37 1754.3 187.9 9.34 99,841 99,651 1.0019

rc09 386.6 42.8 9.03 111,374 111,409 0.9997

rt05 1141.9 108.1 10.57 51,506 51,555 0.9990

s5 − 361.7 − 25,210 25,210 1.0000

w23c23 33.7 11.9 2.83 696 697 0.9986

world666 180.2 170.7 1.06 122,467 122,467 1.0000

wrp3-83 38.8 21.2 1.83 8,300,908 8,300,906 1.0000

Both algorithms are run with 128 iterations and 10 elite solutions. Running times (in seconds) and solution
values are averages over up to nine runs. A dash (“–”) indicates a run that did not finish within 10 days.
The best times and solutions for each instance are marked in bold

For each variant (and number of iterations), Table 7 shows the (geometric) mean
time in seconds and average error with respect to the best published solutions. Figure 3
represents the same data visually.

With 1024 iterations, MSK finds better results than other variants, but is much
slower: increasing the number of iterations of either MS or MS2 to 16,384 is cheaper
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Table 7 Results for three MS
variants on 41 open SteinLib
instances: (geometric) mean
time in seconds and average
percent error relative to the best
known solution

method iter. time [s] err. [%]

MS 1024 128.0 0.407

4096 520.7 0.334

16,384 2094.8 0.213

65,536 8474.3 0.096

262,144 35,056.4 0.107

MS2 1024 126.8 0.357

4096 507.6 0.150

16,384 2022.3 0.050

65,536 8221.0 −0.020

262,144 32,609.4 −0.094

MSK 64 271.6 0.623

256 1096.3 0.360

1024 4359.1 0.218

and leads to better solutions. Unsurprisingly, MS and MS2 have comparable running
times for the same number of iterations. As argued in Sect. 4.3, increasing the number
of iterations ismore effective forMS2 than forMS. In fact, the average solution quality
for MS does not even improve when we increase the number of iterations from 65,536
to 262,144. By starting from four independent sets of solutions, MS2 is less likely to
be confined to a particularly bad region of the search space.

Considering all 13 runs from Table 7 (five runs each for MS and MS2, and three
for MSK), there were only eight cases (out of 41) for which we could not at least
match the best bound published by August 1, 2014. (See Table 17, in the Appendix.)
In 19 cases, we found a strictly better solution. Most of these were found by MS2 (see
Table 18, in the Appendix); MSK was better only for cc11-2u and cc12-2u.
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0.
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time [min]

er
ro
r
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MSK
MS
MS2

Fig. 3 Performance of threemultistart variants on 41 open SteinLib instances. Errors relative to best known
solutions by August 1, 2014. Times are geometric means of all runs

123



Robust and scalable Steiner in graphs 93

2 10 30 120 600 1800 72000.
98

5
0.
99

0
0.
99

5
1.
00

0

time [s]

no
rm

al
iz
ed

m
ea
n
so
lu
ti
on

single phase
two-phase
adaptive

Fig. 4 Relative performance (on a set of 30 representative instances) of time-bounded versions of our
multistart algorithm: single-phasemultistart (MS), two-phasemultistart (MS2), and adaptive (with threshold
2048). Mean solution quality is relative to the single-phase version with a 2-s time bound

5.1.5 Time-bounded algorithms

We now consider the time-bounded versions of our multistart algorithms, as described
in Sect. 4.4. We ran three variants: single-phase always runs MS; two-phase always
runs MS2; and adaptive runs MS if the expected number of iterations is at most 2048
(and MS2 otherwise). In this experiment, we consider the 30 representative instances
tested in Fig. 4, each with seven time bounds, from 2s to 2h.

Figure 4 shows how the (geometric) mean solution improves with time for all three
variants. For clarity, solution values are given relative to the single-phase algorithm
with a 2-s time bound (for which the actual mean solution value was 36,195.018). As
expected, all three algorithms scale well with time. Moreover, the adaptive algorithm
is effective in picking a good strategy for all regimes (single-phase for short runs
and two-phase for longer ones). Within 5h, the adaptive algorithm achieves a mean
solution value of 35,715.321, an improvement of more than 1.3% over the baseline.

5.2 Branch-and-bound

We now consider the effectiveness of our branch-and-bound procedure as a standalone
exact algorithm. Unlike our heuristics, it is not robust. There are some graphs (such as
large vlsi or fst instances) for which it will not produce a good solution in reasonable
time, let alone prove its optimality. On large instances with small duality gaps, exact
algorithms based on dual ascent are generally not competitive with those using linear
programming.

We thus focus on small instanceswith large duality gaps. Series i080, i160, and i320
have been solved to optimality [31,38], as have 95 of 100 instances from i640 [12,40]
(all but i640-311, i640-312, i640-313, i640-314, and i640-315). We also consider
all solved instances from the bip and cc series. Our method could solve every such
instance in less than 2h; most took fractions of a second.
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Table 8 Performance of our branch-and-bound algorithm on select hard instances, in comparison with the
exact algorithm by Polzin and Vahdati Daneshmand [12,40]

series count average time mean time

ours [12,40] ratio ours [12,40] ratio

i160 100 0.042 0.384 9.2 0.009 0.066 7.4

i320 100 13.195 211.834 16.1 0.069 0.428 6.2

i640 95 176.852 1363.153 7.7 0.468 2.492 5.3

cc 8 214.706 5384.671 25.1 1.102 32.404 29.4

bip 2 225.316 572.083 2.5 224.113 571.383 2.5

For perspective, Table 8 compares our exact algorithm against a state-of-the-art
approach (as of August 1, 2014) for such instances, due to Polzin and Vahdati Danesh-
mand [12,40]. The table has all instances they solved from series i160, i320, i640,
cc, and bip. For each series, we show the number of instances tested, our average time
in seconds, the average time of their method (divided by 6.12 to match our machine),
and the ratio between them. The remaining columns use geometric means instead of
averages.

Our method is quite competitive for these instances. Running times are comparable
for bip instances and we are faster for other graph classes. The relative difference is
higher when we consider averages rather than mean times, indicating that our advan-
tage is greater on harder instances (which have a more pronounced effect on the
average). This confirms that the engineering effort outlined in Sect. 3 does pay off.

We stress, however, that Table 8 contains only a very small (and not particularly
representative) subset of all instances tested. Because Polzin andVahdati Daneshmand
use linear programming and advanced reduction techniques, there are several classes
of instances (such as vlsi) that they can easily solve but we cannot. This is true for
other algorithms as well [25].

For completeness, we also compare our algorithm with the branch-and-ascent
implementation proposed by Poggi de Aragão et al. [38] (described in further detail
in [56]). This method (which we call B&A) can be seen as a precursor of our approach.
We limit our tests to i320, a series thatwas first solved to optimality byB&A itself [38].
This series has 100 random graphs with 320 vertices and adversarial (incidence) costs.
The instances are divided in 20 groups of 5; instances in each group are generated
with the same number of terminals and edges, but different random seeds.

For conciseness, Table 9 only reports results for the first instance in each group
(see Table 21 in the Appendix for full results). To solve all 100 instances, B&A needs
767.8 s on average; the (geometric) mean time is 770ms. Our new algorithm takes
an average time 11.7 s and a mean time of 55ms. (Both codes were evaluated using
the same compiler and machine as in Tables 5 and 6.) The numbers of branch-and-
bound nodes visited is comparable: B&A visits 27,913 nodes on average, while we
visit 19,976 (the geometric means are 24.4 and 51.3, respectively). This indicates that
most of our advantage comes from processing each node much faster; the bounds
themselves are not stronger. For easy instances, in particular, we actually tend to visit
more nodes, partly because of different accounting: B&Amay run dual ascentmultiple
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times on the same node, as long as each run reduces the number of edges by at least
1% (in such cases, we create a new child node). For harder instances, we often visit
fewer nodes.

Finally, we note that our branch-and-bound algorithm could prove that 35,535 is
the optimal solution for i640-313, a formerly open incidence instance. On a machine
about 28% faster than the one we used for our main experiments, it took 15.16 days
and visited 7.31 billion branch-and-bound nodes. For this particular run, we gave the
algorithm 35,536 (one unit above the optimum) as the initial upper bound and used
strong branching.

5.3 Recent developments

So far, we have considered only instances and results available before August 1, 2014;
these roughly correspond to the state-of-the-art before the final phase of the 11th
DIMACS Implementation Challenge.4 This section considers subsequent develop-
ments, which were motivated by the challenge itself.

Algorithms First, Polzin and Vahdati Daneshmand reran their exact algorithm on a
newer machine with different sets of parameters and an up-to-date version of CPLEX
andmade the results available on the challenge web page [42]. Although the results are
mostly consistent with their previous publications [12,40], the additional tuning has
made the algorithm more competitive for some “hard” graph classes—notably those
in Table 8. For series i160, i320, i640, and bip, their (scaled) average running times
in seconds are now 0.08, 65.2, 169.3, and 389.4. These improvements (of at least a
factor of three) bring their algorithm closer to ours. For cc, however, scaled average
times are only slightly better (4890 instead of 5385), which makes our method still
more than 20 times faster. In addition, their algorithm can solve all vienna instances
to optimality within an hour or so.

Another contribution to the challenge was the SCIP-Jack algorithm by Gamrath,
Koch, Maher, Rehfeldt, and Shinano [22] (see also [23]), which can be seen as an
updated version of the MIP-based work by Koch and Martin [31] made massively
parallel using the SCIP [1] framework. On instances with small duality gaps, it is
essentially dominated by thework of Polzin andVahdati Daneshmand,which usemore
modern reduction techniques. For small, hard instances, however, running on hundreds
of cores allowed them to improve the best known bounds for several instances. Other
notable contributions were the algorithms of Althaus and Blumenstock [2] and Biazzo,
Braunstein, and Zecchnia [7]. The latter works particularly well on small adversarial
instances, notably the hard class. For VLSI (and other) instances with a small num-
ber of terminals, Hougardy, Silvanus, and Vygen [25] (see also [26]) presented an
exact algorithm based on dynamic programming that can significantly outperform any
other approach. None of these algorithms, however, is particularly robust. Although
they slightly outperform our method on their core classes, they are much worse on

4 Detailed competition results can be found at http://dimacs11.zib.de/contest/results/results.html.
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others (often being more than 10% off or failing to produce a solution in reasonable
time).

The most robust contribution to the challenge (besides ours) was the algorithm
of Fischetti, Leitner, Ljubic, Luipersbeck, Monaci, Resch, Salvagnin, and Sinnl [19]
(see also [20]), which combines several techniques. Besides including the local search
implementations proposed by Uchoa and Werneck [52], their algorithm relies heavily
on mathematical programming techniques, such as using local branching to search
large neighborhoods or to fix almost-feasible solutions produced by a set covering
heuristic. Depending on some characteristics of the input instance, their algorithm
decides which techniques and strategies to use. In particular, on instances with
uniform or near-uniform costs, a new lightweight integer programming formula-
tion based on node separators can replace the usual directed cut formulation [58].
This works extremely well on some hard instances, especially those from series
hc and bip. On more general instances, however, they do not outperform Polzin
and Vahdati Daneshmand [12,40]. One advantage of their approach relative to ours
is that it can also handle other variants of the Steiner problem (such as prize-
collecting).

With these new developments, some bounds have been improved by other submis-
sions to the 11th DIMACS Challenge [28]. Together, Gamrath et al. [22] and Fischetti
et al. [19] managed to improve the best known bounds by August 1, 2014 for 25 of the
41 open SteinLib instances. Compared against these improved bounds, our algorithm
is still strictly better on 9 and matches a further 14.

The challenge included a contest comparing long (2-h) runs of the algorithms
above on the set of 30 representative instances we considered in Figs. 2 and 4. The
best performers were the algorithm of Fischetti et al. and our algorithm (our entry
was the time-bounded single-phase multistart approach); Biazzo et al. [7] had the best
performance for some hard instances, but was less consistent overall. Despite being
very different in nature, the top two contenders had very similar performance. If one
simply considers the mean solution quality, Fischetti et al. had a slight advantage;
in a points-based system (in the style of Formula 1, with algorithms assigned points
for each instance based on their relative rank), the slight advantage was ours. The
algorithms were also evaluated on how fast they found good solutions (rather than just
what the final solution was), using the primal integral method [5]. Once again, our
algorithm was worse in terms of the mean value but better in the points-based system.
Since the points-based system requires consistency, this confirms the robustness of our
approach. Moreover, we note that the time limit (2h) was rather large. Figure 4 shows
that the algorithm can produce a reasonable solution in a couple of seconds even for
large instances, as it does not have to solve a large linear program. Finally, although
the adaptive version of our time-bounded algorithm outperforms our (single-phase)
entry in the contest (see Fig. 4), it was only developed later, using the results of contest
as motivation. We expect other algorithms to have improved since the challenge as
well.

New instances We now discuss instances made available after August 1, 2014.
To highlight the strengths of their algorithm, Fischetti et al. [19] introduced the ccn

series, created from the existing cc series [57] by setting all edge costs to one. Five of
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Table 10 Results on open instances from the ccn series forMS (single-phasemultistart) with 256 iterations
and for MS2 (two-phase multistart) with 65,536 iterations

instance MS (256) MS2 (65,536)

name |V | |E | |T | prev sol error time sol error time

cc10-2n 1024 5120 135 180 180 0.00 7.9 179 −0.56 2127.9

cc11-2n 2048 11,263 244 326 326 0.00 21.7 324 −0.61 5607.5

cc12-2n 4096 24,574 473 620 616 −0.65 60.2 613 −1.13 15,348.7

cc3-10n 1000 13,500 50 75 75 0.00 10.4 75 0.00 2962.7

cc3-11n 1331 19,965 61 92 92 0.00 16.8 92 0.00 4765.4

cc3-12n 1728 28,512 74 111 111 0.00 27.1 111 0.00 7172.2

cc7-3n 2187 15,308 222 289 290 0.35 25.7 288 −0.35 6849.7

cc9-2n 512 2304 64 99 101 2.02 3.0 98 −1.01 780.4

For each algorithm,we show the solution found (sol), average percent error (error) relative to the solutions
found by Fischetti et al. [19] (prev), and the running time in seconds (time)

Table 11 Multistart algorithm on EFST series: average running time in seconds and average percent error
relative to the best known solutions, with the number of iterations varying from 1 to 256

series time [s] error [%]

1 4 16 64 256 1 4 16 64 256

tspefst 0.91 4.69 21.65 92.83 383.03 0.57 0.46 0.35 0.27 0.18

r25kefst 0.94 6.47 29.90 131.22 552.69 0.23 0.19 0.15 0.12 0.10

r50kefst 2.42 17.71 92.54 410.18 1742.29 0.24 0.20 0.16 0.13 0.11

r100kefst 7.10 64.63 315.93 1395.32 5909.05 0.23 0.19 0.16 0.14 0.12

its instances can be solved to optimality by both Fischetti et al. and our branch-and-
bound (althoughwe are two orders ofmagnitude slower for cc6-3n, the hardest among
those). For the remaining (open) instances, Table 10 shows the performance of two
versions of our heuristic (MS with 256 iterations and MS2 with 65,536 iterations).
Even the faster version is quite competitive: it finds a better bound on the largest
instance and is never worse by more than two edges. With longer runs, our two-
phase algorithm improves the best solutions found by Fischetti et al. [19] in five
cases.

Table 11 reports the performance of our multistart algorithm on the efst class [29],
which consists of graph instances generated by the GeoSteiner package [29,55] from
Euclidean inputs (each graph is the union of a small set of full Steiner trees). The
class is divided into four series, depending on whether the terminals originate from
TSPLib instances (tspefst) or from random points on the plane (r25kefst, r50kefst,
r100kefst). For each series and number of iterations, the table shows the average
running time (in seconds) as well as the percent error relative to the best known
solution obtained by Juhl et al. [29], available at http://dimacs11.zib.de/instances/
bounds-efst-20150324.txt.
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Although we cannot match the quality of their specialized algorithm (which is
not based on a graph problem), a single iteration of our algorithm is enough to get
within half a percent of the best known solution on average. With more iterations,
the error rate decreases to below 0.2%. These graphs are quite sparse, with aver-
age degrees ranging from 2.4 (for random instances) to about 4.3 (for very regular
tsp instances). In contrast, the ratio of nonterminals to terminals, which is roughly
0.58 for random instances (such as rk*efst), reaches more than 240 for some tspefst
instances (such as fl1400efst and p654efst). These high-ratio instances are the hard-
est for our method. That said, even the highest error we observed with 256 iterations
(1.37% on instance u1432efst, with 98 nonterminals for each terminal) was still fairly
small.

Finally, we consider a class of synthetic instances created to illustrate duality gaps
for certain graph classes. Series gap-csd, gap-g, and gap-smc consist of very small
instances, every one of which we can solve to optimality in less than 10ms (by
either preprocessing or branch-and-bound). For series gap-s, a single iteration of
our multistart algorithm can find the optimal solutions (as proven by [19]) of all five
instances.

6 Conclusion

We presented a new heuristic approach for the Steiner problem in graphs, based on fast
local searches,multistartwith an evolutionary component, and fast combinatorial algo-
rithms for finding lower bounds. Although the algorithm could be further improved,
notably by incorporating more elaborate preprocessing techniques, it is already quite
robust. For short runs, it is competitive with any previous approach on a wide variety
of instance classes. Moreover, it is scalable: when given more time, it improved the
best published solutions for several hard instances from the literature. Overall, our
results show that primal heuristics can be an important component of robust solvers
for the Steiner problem in graphs.
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A Appendix

A.1 Additional results

This section presents detailed results and data omitted from the main text due to space
constraints.

Table 12 presents more detailed information about each of the series tested in this
work. Tables 13 and 14 have results for our basic MS algorithms aggregated by series.
Tables 15 and 16 are similar, but refer to the GMS algorithm.
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Table 17 reports the best solution found considering all 13 runs (5 for MS, 5 for
MS2, and 3 for MSK) used to build Table 7. It includes the sizes of all instances tested
in this experiment. Tables 18 and 19 report results for individual MS2 runs separately,
for a more detailed view. Table 20 shows detailed results for our pure branch-and-
bound algorithm on some hard instances. These runs do not use reduction-based
preprocessing, which is generally ineffective for these instances (Table 21).

Table 12 Instance sizes

class series vertices edges terminals

min avg max min avg max min avg max

euclidean p4e 100 136 200 4950 10,386 19,900 5 26 100

p6e 100 127 200 180 231 370 5 28 100

x 52 259 666 1326 74,808 221,445 16 72 174

fst cph14 16 2471 15,473 23 5969 38,928 10 143 1000

es0010 12 17 24 11 19 32 10 10 10

es0020 27 39 57 26 47 83 20 20 20

es0030 43 69 118 44 92 188 30 30 30

es0040 55 90 121 55 121 180 40 40 40

es0050 83 116 143 96 160 211 50 50 50

es0060 109 140 188 133 192 280 60 60 60

es0070 142 167 209 181 232 314 70 70 70

es0080 147 189 236 180 259 343 80 80 80

es0090 175 217 284 221 303 430 90 90 90

es0100 188 241 339 233 336 522 100 100 100

es0250 542 624 713 719 880 1053 250 250 250

es0500 1172 1303 1477 1627 1871 2204 500 500 500

es1000 2532 2747 2984 3615 4023 4484 1000 1000 1000

es10000 27,019 27,019 27,019 39,407 39,407 39,407 10,000 10,000 10,000

tsp 89 1756 17,127 104 2247 27,352 48 1130 11,849

hard bip 550 1690 3300 3982 9013 18,073 50 190 300

cc 64 1165 4096 192 9797 28,512 8 112 473

hc 64 1161 4096 192 6418 24,576 32 581 2048

sp 6 738 3997 9 1974 10,278 3 408 2284

incidence i080 80 80 80 120 884 3160 6 12 20

i160 160 160 160 240 3327 12,720 7 21 40

i320 320 320 320 480 12,843 51,040 8 35 80

i640 640 640 640 960 50,350 204,480 9 61 160

r 1r 1250 1250 1250 2319 2341 2352 6 32 60

2r 2000 2000 2000 5725 5766 5800 9 51 98

random b 50 75 100 63 122 200 9 23 50

c 500 500 500 625 4156 12,500 5 95 250

d 1000 1000 1000 1250 8312 25,000 5 186 500
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Table 12 continued

class series vertices edges terminals

min avg max min avg max min avg max

e 2500 2500 2500 3125 20,781 62,500 5 461 1250

mc 97 261 400 760 4208 11,175 45 126 213

p4z 100 100 100 4950 4950 4950 5 18 50

p6z 100 127 200 180 231 370 5 28 100

vienna gadv 7565 27,157 71,184 11,521 42,634 113,616 86 1918 6107

gori 42,481 109,841 235,686 52,552 157,257 366,093 88 1979 6313

iadv 160 12,796 43,690 237 19,045 66,461 23 1157 4138

isim 1991 30,129 89,596 3176 49,017 148,583 38 1393 4991

vlsi alue 940 8061 34,479 1474 12,901 55,494 16 241 2344

alut 387 10,707 36,711 626 19,741 68,117 34 161 879

diw 212 3423 11,821 381 6434 22,516 10 20 50

dmxa 169 1110 3983 280 1959 7108 10 15 23

gap 179 1496 10,393 293 2579 18,043 10 22 104

lin 53 8587 38,418 80 15,956 71,657 4 31 172

msm 90 1548 5181 135 2682 8893 10 17 89

taq 122 2150 6836 194 3648 11,715 10 39 136

wrp wrp3 84 939 3168 149 1833 6220 11 51 99

wrp4 110 571 1898 188 1131 3616 11 44 76

Minimum, rounded average, and maximum numbers of vertices, edges, and terminals for each series

Table 13 Multistart algorithm: average percent error relative to best known solution

class series 1 4 16 64 256

euclidean p4e 0.354079 opt opt opt opt

p6e 0.017396 0.016565 opt opt opt

x 0.111395 0.002994 0.001633 opt opt

fst cph14 1.448691 0.742808 0.403645 0.173233 0.079506

es0010 0.004975 opt opt opt opt

es0020 0.258192 0.001403 0.001403 opt opt

es0030 0.538273 0.095129 opt 0.007655 opt

es0040 0.376601 0.064947 0.012512 opt opt

es0050 0.564110 0.173306 0.008416 opt opt

es0060 0.593695 0.117862 0.003685 opt opt

es0070 0.522834 0.061763 0.011418 opt opt

es0080 0.544692 0.149718 0.021355 opt opt
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Table 13 continued

class series 1 4 16 64 256

es0090 0.557080 0.131118 0.014802 0.003146 0.003146

es0100 0.541163 0.135542 0.015631 0.004006 opt

es0250 0.535736 0.248894 0.081227 0.012991 0.002332

es0500 0.636633 0.273873 0.119918 0.037057 0.016075

es1000 0.658757 0.326103 0.160499 0.078633 0.028934

es10000 0.716213 0.440336 0.281747 0.179433 0.134925

tsp 0.423169 0.201457 0.061733 0.026143 0.012092

hard bip 7.327444 4.536031 2.825376 1.861770 1.131055

cc 5.141251 2.964033 1.766326 0.897492 0.497459

hc 3.101166 2.045988 1.101811 0.704332 0.248315

sp 1.319787 0.882730 0.449628 0.182346 0.103500

incidence i080 2.526005 0.554687 0.186856 0.008158 opt

i160 2.853316 1.070750 0.388198 0.119041 0.016433

i320 2.532908 1.093114 0.405381 0.205291 0.065077

i640 2.520669 1.149782 0.514386 0.232517 0.088959

r 1r 3.479879 0.824871 0.082394 0.100265 opt

2r 5.104557 2.430135 0.807973 0.164885 0.112902

random b 0.387073 opt opt opt opt

c 1.581749 0.156989 opt opt opt

d 1.156902 0.402404 0.077101 0.038551 0.038551

e 1.920698 0.180831 0.065410 0.038196 0.012771

mc 3.273730 1.474736 0.415901 opt opt

p4z opt opt opt opt opt

p6z 0.032752 opt opt opt opt

vienna gadv 0.296004 0.144022 0.067019 0.026995 −0.006757

gori 0.315021 0.147975 0.078782 0.040818 0.004134

iadv 0.010265 0.004938 0.002139 0.000946 0.000236

isim 0.011645 0.005279 0.002684 0.001108 0.000320

vlsi alue 0.661669 0.280747 0.150350 0.068250 0.027503

alut 1.306957 0.617830 0.153181 0.056028 0.039895

diw 0.554114 0.109545 0.037860 0.003217 opt

dmxa 0.662836 0.157417 0.026072 0.014047 0.014047

gap 0.534932 0.071154 opt opt opt

lin 1.031740 0.382177 0.091563 0.042338 0.014215

msm 0.858975 0.311446 0.110709 0.019593 opt

taq 0.730216 0.201021 0.069302 0.019074 0.012070

wrp wrp3 0.000340 0.000114 0.000024 0.000007 0.000002

wrp4 0.000654 0.000145 0.000029 opt opt
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Table 14 Multistart algorithm: average running times in seconds

class series 1 4 16 64 256

euclidean p4e 0.006 0.014 0.047 0.169 0.633

p6e 0.001 0.003 0.010 0.038 0.141

x 0.016 0.041 0.127 0.496 1.999

fst cph14 0.042 0.260 1.250 5.302 21.960

es0010 0.000 0.001 0.002 0.005 0.020

es0020 0.000 0.001 0.004 0.016 0.065

es0030 0.001 0.003 0.010 0.040 0.169

es0040 0.001 0.003 0.014 0.053 0.220

es0050 0.002 0.005 0.019 0.081 0.323

es0060 0.002 0.005 0.023 0.099 0.392

es0070 0.002 0.007 0.029 0.123 0.493

es0080 0.002 0.008 0.033 0.138 0.560

es0090 0.003 0.010 0.041 0.177 0.710

es0100 0.003 0.011 0.046 0.193 0.780

es0250 0.008 0.037 0.166 0.692 2.773

es0500 0.017 0.099 0.460 1.964 7.646

es1000 0.039 0.264 1.266 5.313 21.422

es10000 0.654 5.823 27.689 121.841 503.952

tsp 0.019 0.106 0.544 2.354 9.425

hard bip 0.047 0.274 1.543 6.268 24.913

cc 0.059 0.429 2.082 8.449 33.158

hc 0.046 0.356 2.448 10.316 41.847

sp 0.012 0.103 0.471 1.941 8.095

incidence i080 0.004 0.012 0.047 0.191 0.781

i160 0.016 0.049 0.198 0.805 3.314

i320 0.084 0.264 1.006 4.175 16.854

i640 0.481 1.454 5.775 23.842 97.034

r 1r 0.008 0.026 0.105 0.427 1.601

2r 0.016 0.057 0.228 0.949 3.794

random b 0.001 0.002 0.004 0.016 0.059

c 0.006 0.014 0.049 0.193 0.760

d 0.011 0.030 0.113 0.456 1.782

e 0.030 0.092 0.370 1.522 6.115

mc 0.005 0.014 0.058 0.243 0.961

p4z 0.002 0.003 0.009 0.036 0.123

p6z 0.001 0.004 0.014 0.049 0.180

vienna gadv 0.679 6.095 29.585 126.941 535.205

gori 1.604 11.786 63.403 272.846 1135.290

iadv 0.245 1.810 9.290 40.353 168.097

isim 0.489 3.212 15.921 68.797 285.147
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Table 14 continued

class series 1 4 16 64 256

vlsi alue 0.070 0.430 2.046 8.696 35.130

alut 0.096 0.600 2.748 12.462 49.884

diw 0.026 0.095 0.389 1.658 6.484

dmxa 0.008 0.026 0.096 0.394 1.565

gap 0.011 0.047 0.205 0.826 3.198

lin 0.097 0.508 2.425 10.265 42.312

msm 0.010 0.037 0.148 0.645 2.543

taq 0.017 0.074 0.319 1.372 5.332

wrp wrp3 0.018 0.097 0.436 1.826 7.397

wrp4 0.012 0.062 0.268 1.128 4.443

Table 15 Guarded Multistart
algorithm: average percent error
relative to best known solution

class series 8 32 128

euclidean p4e opt opt opt

p6e opt opt opt

x opt opt opt

fst cph14 0.477741 0.256166 0.134948

es0010 opt opt opt

es0020 opt opt opt

es0030 opt opt opt

es0040 0.000223 opt opt

es0050 0.015014 opt opt

es0060 0.024934 opt opt

es0070 0.015242 opt opt

es0080 0.021082 0.002182 opt

es0090 0.034372 0.011561 0.003146

es0100 0.023469 0.003237 opt

es0250 0.118876 0.033715 0.007312

es0500 0.194932 0.069319 0.020367

es1000 0.228739 0.118464 0.045216

es10000 0.374229 0.218046 0.151464

tsp 0.096273 0.032074 0.016116

hard bip 2.268220 1.850187 1.409930

cc 1.993846 1.113872 0.644426

hc 1.436478 0.864165 0.373133

sp 0.557966 0.310501 0.188937

incidence i080 opt opt opt

i160 0.030159 0.003275 opt

i320 0.075458 0.040413 0.027477

i640 0.155963 0.076967 0.048300
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Table 15 continued class series 8 32 128

r 1r 0.079756 opt opt

2r 0.611559 0.235590 0.112902

random b opt opt opt

c opt opt opt

d 0.077101 opt opt

e 0.107210 0.076466 0.024327

mc 0.181159 opt opt

p4z opt opt opt

p6z opt opt opt

vienna gadv 0.095218 0.036673 0.005620

gori 0.102350 0.052840 0.020755

iadv 0.003422 0.001217 0.000501

isim 0.003866 0.001696 0.000707

vlsi alue 0.169160 0.135619 0.029104

alut 0.133225 0.081263 0.052188

diw 0.011798 opt opt

dmxa 0.014047 opt opt

gap opt opt opt

lin 0.113884 0.051941 0.021476

msm 0.034357 0.015696 opt

taq 0.063997 0.019074 0.007004

wrp wrp3 0.000039 0.000012 0.000003

wrp4 0.000027 0.000003 opt

Table 16 Guarded Multistart
algorithm: average CPU times in
seconds (wall times are lower)

class series 8 32 128

euclidean p4e 0.009 0.009 0.009

p6e 0.004 0.005 0.004

x 0.045 0.045 0.045

fst cph14 1.139 5.056 20.791

es0010 0.001 0.001 0.002

es0020 0.002 0.002 0.002

es0030 0.006 0.005 0.004

es0040 0.007 0.013 0.012

es0050 0.016 0.036 0.051

es0060 0.019 0.043 0.066

es0070 0.025 0.056 0.059

es0080 0.031 0.089 0.212

es0090 0.037 0.138 0.339
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Table 16 continued class series 8 32 128

es0100 0.045 0.142 0.413

es0250 0.162 0.694 2.838

es0500 0.416 1.871 7.550

es1000 1.165 4.980 20.540

es10000 28.187 123.472 519.184

tsp 0.469 2.158 8.984

hard bip 1.372 5.914 24.463

cc 1.959 8.080 32.929

hc 2.223 10.007 41.234

sp 0.384 1.859 7.855

incidence i080 0.011 0.011 0.011

i160 0.058 0.085 0.088

i320 0.362 0.658 1.566

i640 3.618 9.715 15.934

r 1r 0.056 0.147 0.407

2r 0.177 0.651 2.505

random b 0.002 0.002 0.002

c 0.014 0.014 0.015

d 0.050 0.073 0.092

e 0.192 0.577 2.483

mc 0.031 0.072 0.085

p4z 0.003 0.003 0.003

p6z 0.004 0.004 0.003

vienna gadv 29.845 130.705 531.566

gori 64.433 284.922 1167.976

iadv 8.910 39.788 166.381

isim 15.395 69.712 285.812

vlsi alue 2.045 8.263 35.097

alut 3.357 12.570 49.949

diw 0.362 1.457 5.302

dmxa 0.074 0.180 0.524

gap 0.159 0.566 2.104

lin 2.590 10.327 43.031

msm 0.126 0.409 1.347

taq 0.275 1.150 4.626

wrp wrp3 0.403 1.758 7.074

wrp4 0.259 1.085 4.303
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Table 17 Best results found by long runs

name |V | |E | |T | time [h] known ours error

bip42p 1200 3982 200 12.74 24,657 24,764 0.434

bip42u 1200 3982 200 9.48 236 236 0.000

bip52p 2200 7997 200 28.05 24,535 24,628 0.379

bip52u 2200 7997 200 19.80 234 235 0.427

bip62p 1200 10,002 200 25.14 22,870 22,843 −0.118

bip62u 1200 10,002 200 22.11 220 220 0.000

bipa2p 3300 18,073 300 67.19 35,379 35,413 0.096

bipa2u 3300 18,073 300 54.78 341 340 −0.293

cc10-2p 1024 5120 135 18.31 35,379 35,297 −0.232

cc10-2u 1024 5120 135 14.03 342 342 0.000

cc11-2p 2048 11,263 244 53.67 63,826 63,491 −0.525

cc11-2u 2048 11,263 244 38.16 614 612 −0.326

cc12-2p 4096 24,574 473 172.24 121,106 121,710 0.499

cc12-2u 4096 24,574 473 122.83 1179 1172 −0.594

cc3-10p 1000 13,500 50 35.86 12,860 12,772 −0.684

cc3-10u 1000 13,500 50 22.69 125 125 0.000

cc3-11p 1331 19,965 61 58.18 15,609 15,582 −0.173

cc3-11u 1331 19,965 61 36.15 153 153 0.000

cc3-12p 1728 28,512 74 86.89 18,838 18,826 −0.064

cc3-12u 1728 28,512 74 57.04 186 185 −0.538

cc6-3p 729 4368 76 12.61 20,456 20,330 −0.616

cc6-3u 729 4368 76 8.82 197 197 0.000

cc7-3p 2187 15,308 222 69.14 57,088 56,799 −0.506

cc7-3u 2187 15,308 222 48.47 552 549 −0.543

cc9-2p 512 2304 64 6.57 17,296 17,232 −0.370

cc9-2u 512 2304 64 4.68 167 167 0.000

hc10p 1024 5120 512 20.53 60,494 59,797 −1.152

hc10u 1024 5120 512 16.59 581 575 −1.033

hc11p 2048 11,264 1024 58.74 119,779 119,492 −0.240

hc11u 2048 11,264 1024 51.44 1154 1156 0.173

hc12p 4096 24,576 2048 169.89 236,949 237,033 0.035

hc12u 4096 24,576 2048 164.49 2275 2264 −0.484

hc9p 512 2304 256 7.61 30,258 30,243 −0.050

hc9u 512 2304 256 5.79 292 292 0.000

i640-311 640 4135 160 13.63 35,766 35,766 0.000

i640-312 640 4135 160 13.53 35,771 35,794 0.064

i640-313 640 4135 160 13.70 35,535 35,535 0.000

i640-314 640 4135 160 13.69 35,538 35,538 0.000

i640-315 640 4135 160 13.86 35,741 35,741 0.000
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Table 17 continued

name |V | |E | |T | time [h] known ours error

wrp3-55 1645 3186 55 14.04 5,500,888 5,500,888 0.000

wrp3-83 3168 6220 83 35.60 8,300,906 8,300,906 0.000

The time (in hours) is the sum of the 13 executions of variants of our algorithm from Table 7. We also report
the best previously known solution (as of August 1, 2014) and the percent error. Negative errors favor our
method
The best solution for each instance is marked in bold

Table 18 Solutions found byMS2 (two-phase unguardedmultistart algorithm) for open SteinLib instances,
when varying the total number of iterations

name known 1024 4096 16,384 65,536 262,144

bip42p 24,657 24,888 24,818 24,811 24,811 24,811

bip42u 236 237 237 236 237 237

bip52p 24,535 24,775 24,729 24,771 24,701 24,628

bip52u 234 237 235 235 235 235

bip62p 22,870 22,924 22,870 22,843 22,843 22,843

bip62u 220 221 221 220 220 220

bipa2p 35,379 35,616 35,555 35,516 35,523 35,413

bipa2u 341 342 340 340 340 340

cc10-2p 35,379 35,436 35,353 35,353 35,353 35,297

cc10-2u 342 343 343 343 342 343

cc11-2p 63,826 64,056 63,760 63,508 63,491 63,578

cc11-2u 614 618 616 614 615 614

cc12-2p 121,106 122,873 122,340 121,960 121,901 121,710

cc12-2u 1179 1183 1180 1177 1178 1177

cc3-10p 12,860 12,865 12,789 12,775 12,778 12,772

cc3-10u 125 125 125 125 125 125

cc3-11p 15,609 15,657 15,584 15,584 15,584 15,582

cc3-11u 153 153 153 153 153 153

cc3-12p 18,838 18,842 18,906 18,839 18,828 18,826

cc3-12u 186 185 185 186 185 185

cc6-3p 20,456 20,500 20,454 20,460 20,330 20,330

cc6-3u 197 198 198 198 197 197

cc7-3p 57,088 57,303 57,334 57,242 57,074 56,799

cc7-3u 552 555 550 552 551 549

cc9-2p 17,296 17,293 17,300 17,293 17,293 17,293

cc9-2u 167 168 168 168 167 167

hc10p 60,494 60,294 59,973 59,797 60,186 59,836

hc10u 581 582 578 576 576 575

hc11p 119,779 120,038 119,776 119,743 119,691 119,653
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Table 18 continued

name known 1024 4096 16,384 65,536 262,144

hc11u 1154 1161 1159 1157 1157 1156

hc12p 236,949 238,188 237,965 237,575 237,441 237,156

hc12u 2275 2305 2297 2284 2274 2264

hc9p 30,258 30,275 30,261 30,261 30,243 30,243

hc9u 292 292 292 292 292 292

i640-311 35,766 35,854 35,813 35,766 35,766 35,798

i640-312 35,771 35,908 35,863 35,830 35,819 35,819

i640-313 35,535 35,616 35,579 35,535 35,543 35,535

i640-314 35,538 35,656 35,588 35,551 35,550 35,550

i640-315 35,741 35,841 35,832 35,792 35,741 35,741

wrp3-55 5,500,888 5,500,888 5,500,888 5,500,888 5,500,888 5,500,888

wrp3-83 8,300,906 8,300,906 8,300,906 8,300,906 8,300,906 8,300,906

The best solution for each instance is marked in bold

Table 19 Running times in seconds of MS2 (two-phase unguarded multistart algorithm) on open SteinLib
instances, when varying the total number of iterations

name 1024 4096 16,384 65,536 262,144

bip42p 61 242 933 3790 15,539

bip42u 40 163 652 2696 11,558

bip52p 133 521 1951 7879 30,967

bip52u 80 325 1348 5551 22,679

bip62p 132 512 1943 8011 31,593

bip62u 96 384 1615 6692 27,724

bipa2p 329 1305 4850 18,904 73,150

bipa2u 222 901 3708 15,554 63,098

cc10-2p 91 353 1417 5653 22,274

cc10-2u 61 245 980 4135 16,906

cc11-2p 258 1032 3938 16,094 60,872

cc11-2u 165 667 2633 10,644 43,882

cc12-2p 804 3114 12,174 48,835 181,427

cc12-2u 491 1905 7940 33,221 128,552

cc3-10p 171 684 2792 11,216 46,535

cc3-10u 101 415 1679 6920 28,483

cc3-11p 284 1167 4659 17,260 74,962

cc3-11u 170 655 2623 11,150 42,409

cc3-12p 441 1787 7403 27,695 109,187

cc3-12u 243 1074 4431 18,191 70,120

cc6-3p 61 233 976 4111 16,172

cc6-3u 39 162 658 2728 10,771
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Table 19 continued

name 1024 4096 16,384 65,536 262,144

cc7-3p 331 1374 5230 21,256 80,143

cc7-3u 211 779 3317 13,814 54,852

cc9-2p 31 122 501 2057 8387

cc9-2u 22 86 347 1411 5819

hc10p 106 438 1589 7188 25,400

hc10u 86 336 1370 5425 20,835

hc11p 329 1239 4687 19,055 72,619

hc11u 258 1039 3972 16,590 64,509

hc12p 992 3743 13,878 54,043 199,814

hc12u 774 2888 12,249 49,925 184,367

hc9p 37 161 622 2459 10,008

hc9u 27 112 449 1851 7432

i640-311 68 275 1106 4522 17,426

i640-312 69 275 1105 4252 17,295

i640-313 64 266 1100 4398 17,922

i640-314 66 269 1118 4421 17,738

i640-315 69 281 1071 4400 18,006

wrp3-55 62 253 1005 4102 16,685

wrp3-83 149 618 2429 9668 39,522

Table 20 Branch-and-bound results on select hard instances: dimensions, solution, branch-and-bound
nodes, and running time in seconds

instance |V | |E | |T | opt bb time [s]

bipe2p 550 5013 50 5616 158,071 202.060

bipe2u 550 5013 50 54 473,584 248.572

cc3-4p 64 288 8 2338 339 0.040

cc3-4u 64 288 8 23 273 0.018

cc3-5p 125 750 13 3661 20,660 4.399

cc3-5u 125 750 13 36 39,892 3.669

cc5-3p 243 1215 27 7299 2,102,429 1196.743

cc5-3u 243 1215 27 71 1,904,887 512.745

cc6-2p 64 192 12 3271 213 0.025

cc6-2u 64 192 12 32 167 0.012

hc6p 64 192 32 4003 3036 0.250

hc6u 64 192 32 39 3215 0.194

hc7p 128 448 64 7905 1,979,435 366.055

hc7u 128 448 64 77 6,471,809 768.549
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