
Math. Prog. Comp. (2017) 9:499–526
DOI 10.1007/s12532-017-0118-1

FULL LENGTH PAPER

Lift-and-project cuts for convex mixed integer
nonlinear programs
Linear programming based separation and extended formulations

Mustafa R. Kılınç1 · Jeff Linderoth2 ·
James Luedtke2

Received: 19 April 2016 / Accepted: 3 January 2017 / Published online: 25 January 2017
© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2017

Abstract We describe a computationally effective method for generating lift-and-
project cuts for convex mixed-integer nonlinear programs (MINLPs). The method
relies on solving a sequence of cut-generating linear programs and in the limit generates
an inequality as strong as the lift-and-project cut that can be obtained from solving a
cut-generating nonlinear program. Using this procedure, we are able to approximately
optimize over the rank one lift-and-project closure for a variety of convex MINLP
instances. The results indicate that lift-and-project cuts have the potential to close a
significant portion of the integrality gap for convex MINLPs. In addition, we find that
using this procedure within a branch-and-cut solver for convex MINLPs significantly
reduces the total solution time formany instances.We also demonstrate that combining
lift-and-project cuts with an extended formulation that exploits separability of convex
functions yields significant improvements in both relaxation bounds and the time to
calculate the relaxation. Overall, these results suggest that with an effective separation
routine, like the one proposed here, lift-and-project cuts may be as effective for solving
convex MINLPs as they have been for solving mixed-integer linear programs.

Electronic supplementary material The online version of this article (doi:10.1007/s12532-017-0118-1)
contains supplementary material, which is available to authorized users.

B Mustafa R. Kılınç
mkilinc@cmu.edu

Jeff Linderoth
linderoth@wisc.edu

James Luedtke
jim.luedtke@wisc.edu

1 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

2 Department of Industrial and Systems Engineering, Wisconsin Institutes of Discovery, University
of Wisconsin-Madison, Madison, WI, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-017-0118-1&domain=pdf
http://dx.doi.org/10.1007/s12532-017-0118-1

500 M. R. Kılınç et al.

Keywords Lift-and-project cuts · Extended formulations · Mixed-integer nonlinear
programming

Mathematics Subject Classification 90C11 · 90C30 · 90C57

1 Introduction

The focus of this work is on the effective generation of lift-and-project cuts for convex
mixed-integer nonlinear programs (MINLPs). A MINLP is the optimization problem

zminlp = minimize cT x

subject to g j (x) ≤ 0 ∀ j ∈ J, (MINLP)

x ∈ P, xI ∈ Z
|I |,

where J is the index set of nonlinear constraints, and I ⊆ N
def= {1, . . . , n} is the

index set of discrete variables. The set P = {x ∈ R
n | Ax ≤ b} is a bounded

polyhedral subset of Rn . We define g(x) : Rn → R
|J | as the vector-valued function

g(x) = (g1(x), g2(x), . . . , g|J |(x))T and ∇g(x)T ∈ R
|J |×n as the Jacobian of g.

We assume the functions g j are differentiable and convex, so that by relaxing the
constraints xI ∈ Z

|I |, a smooth convex program, the nonlinear programming (NLP)
relaxation, is formed, and there exists an M < ∞ such that ‖∇g j (x)‖2 ≤ M and
|g j (x)| ≤ M for all x ∈ P . In (MINLP) we also assume the objective is linear.
This is without loss of generality, as a (convex) nonlinear objective function f (x)
can be included with the addition of an auxiliary variable η, changing the objective
to minimize η and adding the constraint f (x) − η ≤ 0. This step is important. Our
aim is to add valid linear inequalities (cuts) that exclude the solution of a relaxation to
(MINLP) from the feasible region. Without a linear objective function, the minimizer
of the relaxation may lie in the strict interior of the feasible region, and thus may not
be cut off using linear inequalities.

If J = ∅, then (MINLP) is a mixed integer linear program (MILP). Over the past
decades, algorithms for solving MILPs have improved by orders of magnitude. A
crucial ingredient in the improvement of MILP software has been cuts. The reader is
referred to [22,23] for some recent surveys on cutting planes for MILP. Research on
the effective generation and use of cuts forMINLP is far less advanced, although some
authors have shown thatmany commonMILP cuts can be extended for use in nonlinear
settings. For example, Cezik and Iyengar [21] show how the classic Gomory cut [34]
can be extended to the case of mixed integer second-order cone programs (MISOCP),
which are (MINLP) where g j (x) = ‖Hx − f ‖2 − rT x − c ∀ j ∈ J . Atamtürk
and Narayan [2] extended mixed integer rounding cuts [47] to the case of MISOCP.
Modaresi et al. [45] study the generalization of intersection (and related) cuts to the
realm of MINLP.

We seek a computationally efficient procedure for generating the lift-and-project
cuts proposed in [20,53] for convexMINLP, which are based on extending the disjunc-
tive cuts of [3] to the realm of convex MINLP. As in [53], we generate disjunctive cuts
only for single variable disjunctions of the form (xi ≤ k∨ xi ≥ k+1) for some i ∈ I ,

123

Lift-and-project cuts for convex MINLPs 501

and following common practice, we consequently refer to the inequalities as lift-and-
project cuts. We present our approach for the more general case of split disjunction of
the form (πx ≤ π0 ∨ π ≥ π0 + 1), but we only experiment with lift-and-project cuts.
A limitation of the lift-and-project procedure in [53] for MINLP is that identifying
a cut requires solving an auxiliary cut generating nonlinear problem (NLP) that is
twice the size of the original relaxation, which is computationally expensive. Stubbs
and Mehrotra [53] report computational results only on four instances, the largest of
which has n = 30 variables. Further, they report numerical difficulties in generating
the lift-and-project cuts using the separation procedure that relies on solving a cut
generating (non-differentiable) NLP.

An implementation of lift-and-project cuts for the special case of MISOCP appears
in the Ph.D. thesis of Drewes [27]. For general convex MINLPs, Zhu and Kuno [58]
suggest to first solve the NLP relaxation of (MINLP), then build a polyhedral relax-
ation of the NLP relaxation by using linearization cuts derived using gradients of
the nonlinear functions taken at the relaxation solution. Lift-and-project cuts are then
derived based on this polyhedral relaxation. Using ideas from [13], Bonami [12] also
proposes solving an NLP as the first step in a procedure for generating lift-and-project
cuts. The optimal value of this NLP indicates whether or not a violated lift-and-project
cut exists, and if so, a polyhedral relaxation is derived using the solution from this NLP,
and a lift-and-project cut is generated based on this polyhedral relaxation. This method
is guaranteed to identify a lift-and-project cut when one exists. In addition, since the
construction of the polyhedral relaxation is done separately from the separation of the
lift-and-project cut, it is straightforward to use any existing enhancements for sep-
arating lift-and-project cuts based on the polyhedral relaxation, see, e.g., [7,13,31].
All of these approaches require solving an NLP to generate a cut. In addition, the
method in [58] is not guaranteed to identify a lift-and-project cut when one exists, and
the approach in [13] is not guaranteed to identify a most violated (with respect to the
normalization used) lift-and-project cut.

In this work, we introduce two new purely linear programming (LP) based proce-
dures for generating lift-and-project cuts for convex MINLPs. The first method is a
simple approach that can be interpreted as a computationally efficient adaptation of
the method in [58], in which the polyhedral relaxation used within the lift-and-project
separation procedure is constructed by solving a sequence of LPs, rather than by solv-
ing the NLP relaxation of (MINLP).We demonstrate that, as with the approach in [58],
this simple approach may fail to find a violated lift-and-project cut when one exists.
We therefore propose an iterativemethod that solves a sequence of cut-generating LPs,
in which the lift-and-project cut obtained is improved at each iteration by strategically
adding more linearization cuts to improve the polyhedral relaxation of the nonlinear
constraints of (MINLP). In contrast to the methods in [12,58], we demonstrate that
when separating a given solution, the cut generated from our procedure is as strong
as the lift-and-project cut of [53] in the limit. A key advantage of our approach is
that it produces a valid inequality at every iteration, so that we can terminate early in
the event of “tailing off” in the cut generation procedure. We thus have a procedure
that can effectively exploit the middle ground between our LP-based adaptation of the
method of [58], which is computationally cheap but may generate weak inequalities,

123

502 M. R. Kılınç et al.

and the approach of [53], which can generate a most violated lift-and-project cut, but
requires solving a large cut generating NLP.

An interesting feature of many of the convex MINLP test instances is that the
nonlinear functions appearing in them are separable. It has been observed that when
solving a MINLP using a linearization-based algorithm, it is beneficial to reformu-
late the problem into an extended formulation that exploits this separability before
applying the algorithm [38,54]. The computational experiments in the Ph.D. thesis of
the first author [43] show that using the extended formulation indeed yields signifi-
cant improvements in the performance of all convex MINLP solvers that implement
a linearization-based method, such as Outer Approximation [28] and LP/NLP-Based
Branch-and-Bound algorithm [49]. Another advantage of using extended formula-
tions is that the cuts generated in the extended space can be significantly stronger than
the ones generated in the original space [10,11,46]. As our procedure for generating
lift-and-project cuts is a linearization-based method, we also investigated the impact
of using an extended formulation for such separable instances while using lift-and-
project cuts. We find that using lift-and-project cuts in the extended formulation yields
significantly improved relaxation bounds as compared to using them in the original
formulation, and that these bounds can be computed significantly faster.

Another contribution of our work is to use the proposed iterative procedure for gen-
erating lift-and-project cuts to investigate the strength of the rank one lift-and-project
closure for convex MINLP problems. This study adds to the growing literature inves-
tigating the strength of closures for various classes of cuts in mixed-integer linear
programming [8,13,14,24,30]. In particular, the papers [13,14] demonstrated that the
rank one lift-and-project closure can provide very tight relaxations for many MILP
instances. Rank one lift-and-project cuts are cuts that can be obtained by a single appli-
cation of the lift-and-project procedure, using only constraints (linear and nonlinear)
in the original problem description. In contrast, higher rank cuts are derived by using
previously-generated lift-and-project cuts. A key insight from the closure studies for
MILP problems is that rank one cuts can lead to strong relaxations, and, importantly,
help to avoid numerical inaccuracies that can often occur when employing higher
rank inequalities. Using our proposed procedure for separating lift-and-project cuts,
we find that the rank one lift-and-project closure reduces the relaxation gap by 76.5%
on a set of 167 instances which do not exhibit separability. On our set of 55 instances
that exhibit separability, we find that the lift-and-project closure reduces the relaxation
gap by 23.3% when using the original formulation, and by 81.0% when we use the
extended formulation that exploits the separability.

Encouraged by these closure results, we incorporate our lift-and-project cut sepa-
ration procedure into FilMINT, a linearization-based solver for convex MINLPs [1].
FilMINT is based on solving LP relaxations constructed from using linearization cuts
that outer approximate the convex continuous relaxation. In this preliminary imple-
mentation, relatively simple strategies were used to limit the computational effort
expended in generating the cuts. We find that the lift-and-project cut separation pro-
cedure enabled the solution of several instances that previously could not be solved in
a 2h time limit by FilMINT and significantly reduced the solution time on many other
instances. As further evidence of the impact of our proposed procedure we mention
that, based on an early version of this manuscript [42] and the first author’s PhD thesis

123

Lift-and-project cuts for convex MINLPs 503

[43], a hybrid between our procedure and that of Bonami [12] is now implemented
in the commercial software CPLEX for solving convex MINLPs and is reported to
enable solving instances in their test set five times faster than without lift-and-project
cuts [15].

The remainder of the paper is organized as follows. In Sects. 2.1 and 2.2, we review
basic results on lift-and-project cuts for MILP and convex MINLP, respectively. In
Sect. 3 we present the first, simple, technique for generating lift-and-project cuts and
demonstrate that the approach may fail to find a violated lift-and-project cut when
one exists. We describe our iterative method for generating lift-and-project cuts and
prove its equivalence to the approach of [53] in Sect. 4. We review techniques for
obtaining extended formulations that exploit separability in Sect. 5. In Sect. 6, we
present results using our approach to obtain the lift-and-project closure and solve
instances to optimality on a broad suite of convex MINLPs instances. Conclusions are
offered in Sect. 7.

Notation For a set X , conv(X) is the convex hull of X , and for a polyhedral set
P ⊆ R

n+p, projx (P) = {x ∈ R
n | ∃(x, y) ∈ P} is a projection of P . For a

differentiable convex function g : R
n → R and x ∈ R

n , ∇g(x) is the gradient
of g at x . We denote by e an appropriate length vector of all ones, and by e j a unit
vector having a one in component j and zeros elsewhere.

2 Background

2.1 Lift-and-project cuts for MILP

Consider the mixed-integer set

X = {x ∈ P | xI ∈ Z
|I |},

where P = {x ∈ R
n | Ax ≤ b}. If π ∈ Z

n satisfies πi = 0 for all i /∈ I , and π0 ∈ Z,
then

X ⊆ P(π,π0) def= conv
({x ∈ P | πx ≤ π0} ∪ {x ∈ P | πx ≥ π0 + 1}),

and hence any inequality valid for P(π,π0) is valid for X . Inequalities valid for P(π,π0)

are referred to as split cuts in general, and as lift-and-project cuts when they are derived
from simple disjunctions of the form π = e j for some j ∈ I . In our computational
study we focus only on lift-and-project cuts to avoid the complexity of choosing π ,
but we present the theory for general π . Using disjunctive programming theory of [3],
given a point x̄ ∈ P , the separation problem for x̄ over the set P(π,π0) can be solved
with the following primal cut generating problem:

PC(P, π, x̄) : minimize ‖x − x̄‖
subject to Ay − λb ≤ 0, Az − μb ≤ 0,

πy − λπ0 ≤ 0, −π z + μ(π0 + 1) ≤ 0,

123

504 M. R. Kılınç et al.

y + z = x, λ + μ = 1,

λ ≥ 0, μ ≥ 0,

where ‖ · ‖ is a norm, often taken to be either ‖ · ‖1 or ‖ · ‖∞, in which case the
problem can be formulated as a linear program. We suppress the dependence on π0 in
the notation PC(P, π, x̄) because for a given π and x̄ the value of π0 is �πT x̄�. The
dual of PC(P, π, x̄) is the problem:

DC(P, π, x̄) : maximize αT x̄ − β

subject to uT A + u0π − α = 0, vT A − v0π − α = 0,

uT b + u0π0 − β ≤ 0, vT b − v0(π0 + 1) − β ≤ 0,

u ≥ 0, u0 ≥ 0, v ≥ 0, v0 ≥ 0,

‖α‖∗ ≤ 1,

where ‖ · ‖∗ is the dual norm of ‖ · ‖. Problem PC(P, π, x̄) finds a point x ∈ P(π,π0)

that minimizes the distance to x̄ , where distance is measured using the norm ‖ · ‖,
whereas DC(P, π, x̄) finds an inequality valid for P(π,π0) of the form αx ≤ β that
maximizes violation of x̄ , subject to the normalization condition that ‖α‖∗ ≤ 1.

In theMILP literature it has also been observed that the following alternative primal
separation problem can be solved to determine if x̄ ∈ P(π,π0):

PC′(P, π, x̄) : minimize η

subject to Ay − λb − ηe ≤ 0, Az − μb − ηe ≤ 0,

πy − λπ0 − η ≤ 0, −π z + μ(π0 + 1) − η ≤ 0,

y + z = x̄, λ + μ = 1,

λ ≥ 0, μ ≥ 0,

The dual of this problem, denotedDC′(P, π, x̄), is identical toDC(P, π, x̄)with the
exception that the normalization ‖α‖∗ ≤ 1 is replaced by the standard normalization
condition (SNC) [4]:

uT e + vT e + u0 + v0 = 1.

Computational experiments have demonstrated that using the SNC yields better cuts
than using other normalizations. See [31] for an interesting study providing possible
explanations for this phenomenon.

After obtaining a split cut using one of the above problems, it can be strengthened
using the integrality of variables, a technique introduced by [6] and known asmonoidal
strengthening. This can be done for any row of the constraints Ax ≤ b such that the
slack (b − Ax)i must be integral for any x ∈ X . We describe the details for a row in
Ax ≤ b corresponding to non-negativity of an integer decision variable, i.e., −xk ≤ 0
for some k ∈ I . Let (α, β, u, v, uo, v0) be a solution to DC(P, π, x̄) and let uxk and

123

Lift-and-project cuts for convex MINLPs 505

vxk be the value of dual variables corresponding to the constraint −xk ≤ 0. Then, the
coefficient of xk in the inequality αx ≤ β can be replaced by

α̃k = αk + max{uxk + �m�u0, vxk − �m�v0}

where m = (vxk − uxk)/(u0 + v0). Following [7,13], when monoidal strengthening
is applied to a lift-and-project cut, the resulting cut is referred to as a strengthened
lift-and-project cut.

2.2 Lift-and-project cuts for MINLPs

We now review the basic theory on lift-and-project cuts for convex MINLPs, based on
[53]. In this section, we further assume that variables are bounded below and above
with finite bounds of the form l ≤ x ≤ u and these constraints are part of Ax ≤ b
defining P . We denote the feasible region of the continuous relaxation of (MINLP) as

R = {x ∈ P | g(x) ≤ 0}.

Given π ∈ Z
n and π0 ∈ Z in which πi = 0 for all i /∈ I , the set

R(π,π0) def= conv
({x ∈ R | πx ≤ π0} ∪ {x ∈ R | πx ≥ π0 + 1})

is a relaxation of the feasible region to (MINLP), and hence valid inequalities for
R(π,π0) are also valid for (MINLP).

A key result in [53] is that there is an extended formulation of R(π,π0) in terms
of convex, nonlinear, inequalities using a variable transformation and a new function
related to a given convex function h(x) : C ⊂ R

n → R as follows:

h̃(x, λ) =
{

λh(x/λ) if x/λ ∈ C, λ > 0,
0 if x = 0, λ = 0.

.

h̃(x, λ) corresponds to the perspective function of h in the case λ > 0 and x/λ ∈
C [39]. Note that h̃(x, λ) may be a non-differentiable function, even if h itself is
differentiable.

It has been shown in [53] that the convex set

M(π,π0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x, y, z, λ, μ)

∣∣
∣∣∣∣∣∣
∣∣∣

y + z = x, λ + μ = 1,

g̃(y, λ) ≤ 0, g̃(z, μ) ≤ 0

Ay ≤ λb, Az ≤ μb,

πy ≤ λπ0, −π z ≤ −μ(π0 + 1),
λ ≥ 0, μ ≥ 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1)

provides an extended formulation for R(π,π0). In other words, projx (M(π,π0)) =
R(π,π0). Therefore, given a point x̄ /∈ R(π,π0), a linear inequality separating x̄ from

123

506 M. R. Kılınç et al.

R(π,π0) can be found by minimizing the distance d(x) = ‖x − x̄‖ between the point
and the set, in any norm ‖ · ‖. Specifically, consider the minimization problem

dM(π,π0) (x̄) = min
(x,ỹ,z̃,λ,μ)∈M(π,π0)

d(x). (2)

The following theorem states that a lift-and-project cut may be obtained using a sub-
gradient of d(·) at an optimal solution to (2).

Theorem 1 ([53]) Let x̄ /∈ R(π,π0), x∗ be an optimal solution of (2). Then there exists
a subgradient ξ of d at x∗ such that ξ T (x̄−x∗) < 0 and ξ T (x−x∗) ≥ 0 ∀x ∈ R(π,π0).

There are two disadvantages of using (2) directly to generate cuts. First, one must
solve a nonlinear program that is twice the size of the original problem in order
to generate a valid inequality. Second, the description of the set M(π,π0) contains
non-differentiable functions, leading to possible numerical difficulties when using
nonlinear programming software designed for differentiable functions.

3 A simple LP-based lift-and-project cut generation strategy for MINLP

A simple strategy for generating lift-and-project cuts for a MINLP problem is to solve
a CGLP, exactly as would be done for a MILP, based on a given polyhedral outer
approximation of the relaxed feasible region. Specifically, given a finite set of points

K def= {x̄1, . . . , x̄ K } ⊆ P , the linearization cuts:

g(x̄) + ∇g(x̄)T (x − x̄) ≤ 0, x̄ ∈ K (3)

define a polyhedral relaxation of R. For the finite set of pointsK, define the polyhedral
set

Q(K)
def= {x ∈ R

n | Ax ≤ b, ∇g(x̄ k)T x ≤ ∇g(x̄ k)T x̄k − g(x̄ k), k = 1, . . . , K }.

Clearly, Q(K) ⊇ R, and hence the cut generating problems PC(Q(K), π, x̄) or
PC′(Q(K), π, x̄) can be used to generate valid lift-and-project cuts for R(π,π0).

The key question to be answered in using this strategy is which points K to use
to define the polyhedral relaxation. Zhu and Kuno [58] proposed to use the lineariza-
tion cuts from a single point: the optimal solution of the NLP relaxation, where the
NLP relaxation includes any previous cuts that have been generated. This approach is
computationally expensive, however, as it requires solving an NLP before generating
each cut. A simple alternative to approximate this strategy is to alternate between
adding violated linearization cuts of the form (3) and solving a CGLP to generate
lift-and-project cuts, where the outer approximation used in the CGLP is defined by
all linearization cuts added up to that point. This strategy is depicted in Fig. 1, where

QC (K)
def= {x ∈ Q(K) | αcx ≤ βc, c = 1, . . . , |C |} (4)

123

Lift-and-project cuts for convex MINLPs 507

Fig. 1 LP-based cut generation
strategy for MINLP

QC(K) CGLP

Q(K)Linearizations

Cuts

is the polyhedral relaxation defined by including both the linearization cuts and the
set of accumulated lift-and-project cuts, C .

We next show an example that demonstrates that this simple approach may fail to
separate a rank one lift-and-project cut, even if one exists. In other words, the cuts
generated may not be as strong as the lift-and-project cuts that can be obtained by
solving (2). Note that if one is willing to use higher rank lift-and-project cuts, i.e.,
by including the previously generated cuts within the lift-and-project CGLP, then it
is always possible to generate a violated inequality that cuts off the current relaxation
solution. This was observed in [58] for the case of convex MINLP. However, it has
been observed within the MILP literature that it is preferable to restrict attention to
low-rank lift-and-project cuts as these avoid potential numerical instabilities, and have
been shown to provide strong relaxation bounds [8,30,31].

Example 1 Consider the MINLP instance:

maximize x1 + x2 (5a)

subject to: 7x1 + 8x2 ≤ 9 (5b)

8x1 + 7x2 ≤ 9 (5c)

x21 + x22 ≤ (9/10)2 (5d)

x1, x2 ∈ {0, 1}. (5e)

The only feasible solution to this instance is (0, 0); the feasible region of the con-
tinuous relaxation is depicted in Fig. 2. The optimal NLP relaxation solution is
x̄R = (3/5, 3/5). As this solution is strictly feasible to the nonlinear constraint (5d),
there are no violated linearization cuts that can be added, and hence the problems
PC(P, e j , x̄R), j = 1, 2 for generating lift-and-project cuts would be based on the
outer approximation defined by (5b), (5c) and the bounds on the variables. Using
‖ · ‖∞ as the norm in the objective of PC(P, e j , x̄R), and generating a single lift-and-
project cut for each j = 1, 2 yields the following cuts:

6x1 + 7x2 ≤ 7, 7x1 + 6x2 ≤ 7.

The right picture in Fig. 2 shows the updated continuous relaxation with these cuts
added (the dashed lines). The optimal solution to this relaxation is x̄D = (7/13, 7/13).
This solution again satisfies (5d) strictly, so that no linearization cuts from (5d) can be
added to cut it off. Let P = {(x1, x2) ∈ [0, 1] × [0, 1] | (5b), (5c)} be the polyhedral
outer-approximation, and let P0

i = P∩{xi = 0}, and P1
i = P∩{xi = 1}, for i = 1, 2.

123

508 M. R. Kılınç et al.

x1

x2

1

1

x̂R

x1

x2

1

1

x̂D

Fig. 2 Continuous relaxation of the instance in example 1 (left) and with lift-and-project cuts (right)

This solution satisfies: x̄D ∈ conv(P0
i ∪ P1

i) for i = 1, 2, and hence cannot be cut off
by a lift-and-project cut using this procedure.

On the other hand, the only solution to the continuous relaxation of (5) in which
x1 = 1 has x2 = 0, and hence x2 ≤ 0 is a valid rank one lift-and-project cut. Sim-
ilarly, x1 ≤ 0 is a valid rank one lift-and-project cut. Thus, in this example the rank
one lift-and-project cuts are sufficient to define the convex hull of the feasible region.
Note that if the linearization cuts x1 ≤ 9/10 and x2 ≤ 9/10 derived from (5d) were
included in the outer approximation, then the cuts x1 ≤ 0 and x2 ≤ 0 could have been
derived from the CGLP.

This example illustrates the key limitation of this simple approach: the ability to
generate lift-and-project cuts based on a polyhedral outer approximation is limited by
the linearization cuts that are used. In particular, using the linearization cuts available
from the solution of theNLP relaxation solution is not sufficient to guarantee that a rank
one lift-and-project cut will be found if one exists. The procedure of [12] overcomes
this limitation by first solving a nonlinear program to find the right points to obtain the
linearization cuts from. In the next section, we present a purely LP-based procedure
that overcomes this limitation by dynamically updating the set of linearization cuts.

4 An LP-based strategy that converges to the best possible
lift-and-project cut

We propose to approximately solve the nonlinear program (2) by solving a sequence
of cut-generating linear programs in which the set of linearization cuts used to approx-
imate R is strategically updated. This algorithm is essentially a variant of the classical
cutting plane algorithm of Kelley [41], with a simple but important modification to
deal with the non-differentiable functions used in the definition of M(π,π0).

The algorithm uses different sets of linearization cuts to approximate the two sets
in the disjunction, R1 = {x ∈ R | πT x ≤ π0} and R2 = {x ∈ R | πT x ≥ π0 + 1}.
Thus, the algorithm solves a cut-generating linear program of the form:

123

Lift-and-project cuts for convex MINLPs 509

Fig. 3 Iterative lift-and-project
cut generation strategy

QC(K) CGLP

Q(K)
Linearizations

Cuts

Linearizations

PC(P1, P2,π, x̄) :
minimize ‖x − x̄‖
subject to A1y − λb1 ≤ 0, A2z − μb2 ≤ 0,

πy − λπ0 ≤ 0, −π z + μ(π0 + 1) ≤ 0,

y + z = x, λ + μ = 1,

λ ≥ 0, μ ≥ 0

where Pk = {x ∈ R
n | Akx ≤ bk}, k = 1, 2 are polyhedra with the given explicit

inequality descriptions. The other CGLP variant discussed in Sect. 2.1, PC′(P, π, x̄),
is extended similarly.

Our LP-based algorithm for generating a lift-and-project cut is given in Algorithm 1
and illustrated in Fig. 3. In the algorithm, K1 and K2 represent the set of points at
which linearization cuts are taken to approximate the sets R1 and R2, respectively. In
this simple version of the algorithm, these sets are initialized to be empty, but in a more
sophisticated implementation, they would be initialized with points used previously
in the branch-and-cut algorithm. The key feature of the algorithm is how these sets are
updated after obtaining a solution (xt , yt , zt , λt , μt) to PC(P1, P2, π, x̄). An intuitive
strategy might be to add linearization cuts based on the point xt , which is the closest
point to x̄ using the current outer-approximation. However, to ensure convergence
of the algorithm, it is necessary to use the “unscaled” points of yt and zt solutions.
Specifically, we add linearization cuts based on the points yt/λt and zt/μt (when
λt , μt �= 0, respectively). These points have been used previously for a different
purpose (selecting alternative disjunctions) in [25], where they are referred to as the
“friends” of xt .

The quality of the cut generated by Algorithm 1 may be measured by the objective
value of the cut-generating linear program, which is the distance between x̄ and the
current outer approximation of the set. Using this measure, the following theorem
states that, in the limit, the cut generated by Algorithm 1 is as strong as the lift-and-
project cut that would be obtained using the method in [53].

Theorem 2 Assume R1 ∪ R2 �= ∅, P is bounded, and there exists an M < ∞ such
that ‖∇g j (x)‖2 ≤ M and |g j (x)| ≤ M for all x ∈ P. Then, if Algorithm 1 stops at
iteration t, then

‖xt − x̄‖ = dM(π,π0) (x̄).

123

510 M. R. Kılınç et al.

K1 ← ∅, K2 ← ∅, t ← 1
for t = 1, 2, . . . do
Solve PC(Q(K1), Q(K2), π, x̄) and let (xt , yt , zt , λt , μt) be an optimal solution.
if (λt = 0 or g(yt/λt) ≤ 0) and (μt = 0 or g(zt/μt) ≤ 0)) then
STOP (xt ∈ R(π,π0)).

end if
if λt �= 0 then
K1 ← {yt/λt } ∪ K1

end if
if μt �= 0 then
K2 ← {zt/μt } ∪ K2

end if
end for

Algorithm 1: Iterative solution of (2).

Otherwise,

lim
t→∞ ‖xt − x̄‖ = dM(π,π0) (x̄).

Proof For each t ≥ 1, let dt (x̄) = ‖xt − x̄‖, which is the optimal objective
value of PC(Q(K1), Q(K2), π, x̄) in iteration t . Because R ⊆ Q(Kk), k = 1, 2
in each iteration, it follows that M(π,π0) is a subset of the feasible region of
PC(Q(K1), Q(K2), π, x̄), and hence dt (x̄) ≤ dM(π,π0) (x̄) for all t .

Now, if the algorithm terminates at iteration t , then if both λt > 0 and μt > 0, then
xt = λt (yt/λt) + μt (zt/μt), which shows xt ∈ R(π,π0) because g(yt/λt) ≤ 0 and
g(zt/μt) ≤ 0 by the termination condition. Similarly, xt ∈ R(π,π0) if either λt = 0 or
μt = 0. Since xt ∈ R(π,π0) it follows that dt (x̄) ≥ dM(π,π0) (x̄), implying the result.

Now assume the algorithm never terminates. By construction, {dt (x̄)} forms a
monotonically increasing sequence, d1(x̄) ≤ d2(x̄) ≤ . . . , bounded above by
dM(π,π0) (x̄). Therefore, the sequence converges. The proof continues by showing there
exists a subsequence of {xt , t ≥ 1} that converges to a point in R(π,π0), from which it
follows that {dt (x̄)} converges to dM(π,π0) (x̄).

Let Tλ = {t ≥ 1 : λt > 0} and Tμ = {t ≥ 1 : μt > 0}. For t ∈ Tλ, define
ȳt = yt/λt , and for t ∈ Tμ, define z̄t = zt/μt . If Tλ is infinite, then arguments of
Kelley [41] demonstrate that there is a subsequence of {ȳt : t ∈ Tλ} which converges
to a point ȳ ∈ R1. By an identical argument it also follows that if Tμ is infinite, then
there is a subsequence of {z̄t : t ∈ Tμ} which converges to a point z̄ ∈ R2.

Now, let T+ = Tλ ∩ Tμ. We consider two cases, depending on whether or not T+
is infinite.

Case 1 T+ is infinite Using the arguments above, there exists a subsequence of
T ′ ⊆ T+ such that {(xt , ȳt , z̄t , λt , μt) : t ∈ T ′} converges to a point (x̄, ȳ, z̄, λ̄, μ̄)

in which ȳ ∈ R1 and z̄ ∈ R2. Because xt = λt ȳt + μt z̄t and λt + μt = 1 for all
t ∈ T ′, it also follows that x̄ = λ̄ȳ + μ̄z̄ and λ̄ + μ̄ = 1. Thus, x̄ ∈ M(π,π0), and
so {dt (x̄) : t ∈ T ′} converges to dM(π,π0) (x̄). It follows that the entire convergent
sequence {dt (x̄) : t ≥ 1} converges to the same.

Case 2 T+ is finite This case consists of two symmetric subcases: either Tλ contains
an infinite subsequence T 1

λ in which λt = 1 for all t ∈ T 1
λ , or Tμ contains an

123

Lift-and-project cuts for convex MINLPs 511

infinite subsequence T 1
μ in which μt = 1 for all t ∈ T 1

μ . We analyze only the first of
these symmetric cases. So suppose the infinite subsequence T 1

λ exists. Again using
the arguments above, there exists a subsequence T ′ of T 1

λ such that {ȳt : t ∈ T ′}
converges to a point ȳ ∈ R1. But now, because λt = 1 for all t ∈ T ′ it immediately
follows that {xt : t ∈ T ′} also converges to ȳ ∈ R1 ⊆ M(π,π0). The remaining
argument is identical to case 1. ��

A consequence of Theorem 2 is that if x̄ /∈ R(π,π0), then the algorithm will find a
valid inequality for R(π,π0) that cuts off x̄ in finitely many iterations. Furthermore, in
the limit, the valid inequality will be supported by a point in R(π,π0).

We now revisit Example 1 from Sect. 3, and demonstrate that Algorithm 1 success-
fully obtains the best rank one lift-and-project cuts.

Example 2 (Example 1, continued.) Once again, we begin with the initial relaxation
solution x̄R = (3/5, 3/5). Using the disjunction x2 ≤ 0 ∨ x2 ≥ 1, we solve problem
PC(P1, P2, π, x̄) using ‖ · ‖∞ as the norm in the objective. The optimal optimal
solution is y = (6/13, 0), λ = 6/13, z = (1/13, 7/13), μ = 7/13, and the valid
inequality (obtained from the dual) is 7x1 + 6x2 ≤ 7. Following Algorithm 1, we
compute y/λ = (1, 0) and z/μ = (1/7, 1) and add these points to the setsK1 andK2,
respectively. This corresponds to adding the inequality 2x1 ≤ 1.81 to the description
of Q(K1) and the inequality (2/7)x1 + 2x2 ≤ (1/7)2 + 1 + (9/10)2 ≈ 1.830408
to the description of Q(K2). The updated problem PC(P1, P2, π, x̄) is then solved
again, and in this case the solution is y = (0, 0), λ = 1, z = (0, 0), μ = 0, and the
resulting inequality is x2 ≤ 0. It is easy to check that this inequality is valid for the
disjunction with these linearization cuts added, since for the case x2 ≥ 1, it holds
that (2/7)x1 + 2x2 ≥ 2, and so that term of the disjunction is empty after adding the
inequality (2/7)x1+2x2 ≤ 1.830408. Therefore, the inequality x2 ≤ 0 is valid for the
disjunctive term x2 ≥ 1, and of course, is also valid for the term with x2 ≤ 0. Thus,
in this example, updating the polyhedral approximation with a single linearization
inequality is sufficient to yield the best possible lift-and-project cut. A symmetric
result occurs when a cut is generated using the disjunction x1 ≤ 0 ∨ x1 ≥ 1.

Algorithm 1 can be modified to use the PC′(P, π, x̄) variant of of the CGLP (i.e., to
use the standard normalization condition) in place of the problem PC(Q(K1), Q(K2),

π, x̄). However, in the case where the functions g j (x), j ∈ J are known only to be
convex over P , since PC′(P, π, x̄) may relax constraints of P , care must be taken to
avoid generating linearization cuts at points outside the domain where the nonlinear
functions are known to be convex. In particular, a subset of the constraints defining P ,
say Dx ≤ d must be chosen such that the functions g j (x), j ∈ J are convex over the
region {x ∈ R

n | Dx ≤ d}. For example, if P ⊆ R
n+, and the functions g j : j ∈ J are

convex over R+, then we may take D = −I and d = 0. We then define the following
CGLP:

PC′(P1, P2, π, x̄) : minimize η

subject to A1y − λb1 − ηe ≤ 0, A2z − μb2 − ηe ≤ 0,

Dy − λd ≤ 0, Dz − μd ≤ 0,

123

512 M. R. Kılınç et al.

πy − λπ0 − η ≤ 0, −π z + μ(π0 + 1) − η ≤ 0,

y + z = x̄, λ + μ = 1,

λ ≥ 0, μ ≥ 0,

where again Pk = {x ∈ R
n | Akx ≤ bk}, k = 1, 2. In PC′(P1, P2, π, x̄), the

constraints A1y ≤ λb1 and A2z ≤ μb2 are relaxed using the objective variable η,
whereas the constraints Dy ≤ λd and Dz ≤ μd are not relaxed. This ensures that in
Algorithm 1, linearization cuts are only derived at points in the region for which the
functions g j , j ∈ J are convex. To ensure PC′(P1, P2, π, x̄) is feasible, D, d should
be chosen such that x̄ can be written as a convex combination of points that satisfy
Dx ≤ d and either πx ≤ π0 or πx ≥ π0 + 1.

5 Extended formulations via separability

It has been observed that using an extended formulation derived from exploiting sepa-
rability of an instance can significantly improve the performance of linearization-based
methods for convexMINLP ([38,43,54,57]). Since we are using a linearization-based
approach for generating lift-and-project cuts, we also explore the use of such extended
formulations when using our approach for generating lift-and-project cuts. We there-
fore describe here approaches for deriving such extended formulations for convex
MINLP problems where the constraint functions are convex-separable.

A convex function h : Rn → R is called convex-separable if it can be written as

h(x) =
p∑

i=1

hi (x).

where each of the p functions hi : Rn → R are convex. While the functions hi may
in general be functions of n variables, we are usually interested in cases where the hi
functions are univariate or depend on a small number of variables.

Consider a convex MINLP problem of the form:

zminlp =min cT x

s.t.

p j∑

p=1

g jp(x) ≤ 0 ∀ j ∈ J, (MINLP)

x ∈ X, xI ∈ Z
|I |,

where g j (x) := ∑p j
p=1 g jp(x) is convex-separable ∀ j ∈ J .

The convex-separability property of the problem (MINLP) can be exploited by
introducing variables y jp to represent g jp(x), for j ∈ J, p = 1, . . . , p j , leading to
the extended formulation:

zminlp =min cT x

s.t. g jp(x) ≤ y jp ∀ j ∈ J ∀p ∈ {1, . . . , p j }, (Ext-MINLP)

123

Lift-and-project cuts for convex MINLPs 513

p j∑

p=1

y jp ≤ 0 ∀ j ∈ J,

x ∈ X, xI ∈ Z
|I |.

(Ext-MINLP) is a convexMINLP problem since the functions g jp are convex. Tawar-
malani and Sahinidis [54] have shown that the outer approximation for (Ext-MINLP)
is a tighter relaxation than the outer approximation for (MINLP) derived using lin-
earization cuts at the same set of linearization points.

In some cases, a function h may not be convex-separable, but separability can
be induced using an affine change of variables. For example, consider the convex
quadratic function h : Rn → R

h(x) = xT Qx

where Q is n×n symmetric positive-definite matrix. By applying a Cholesky decom-
position, Q can be decomposed as Q = LLT where L is lower triangular matrix.
Using this decomposition h can be written as h(x) = xT LLT x . Thus, if new vari-
ables y are introduced with the constraints y = LT x , then g(y) = yT y = h(x), and
thus we can use the separable function g(y) in place of h(x) in the formulation.

6 Computational experiments

In this section, we investigate the computational impact of the lift-and-project cuts
described in Sects. 3 and 4 (and their strengthened counterpart described in Sect. 2.1)
and the effectiveness of combining the cuts with the extended formulations reviewed
in Sect. 5.

6.1 Test sets

The strength of (strengthened) lift-and-project cuts are tested on a suite of 222 convex
MINLPs intances covering a wide range of applications such as multi-product batch
plant design problems (Batch) [50,56], layout design problems (CLay, FLay,
SLay, fo-m-o) [19,51], synthesis design problems(Syn) [28,55], retrofit plan-
ning (Rsyn) [51], stochastic service system design problems(sssd) [29], cutting
stock problems (trimloss, tls) [37], quadratic uncapacitated facility location
problems(uflquad) [35], network design problems (nd) [9,16,17] and portfolio
optimization (MV) [33]. The test is set collected from the MacMINLP collection
[44], GAMS MINLP World [18], the collection on the website of the IBM-CMU
research group [52] and instances we created ourselves. The instances we created are
the instance families sssd, uflquad, nd and MV and they are generated as they
described in [36].

In order to test extended formulations, we examined instances to determine if
they contain convex-separable functions. The instance families that contain convex-
separable functions were Batch,MV,SLay,trimloss and uflquad, and they are
reformulated as described in Sect. 5. All convex-separable functions in these instances

123

514 M. R. Kılınç et al.

Table 1 Characteristics of separable instances

Instance family NL Ob? # of ins Average Average

Var Bin LC NLC Var LC NLC

Batch
√

10 334.6 123 1089.1 1 363.8 1090.1 29.3

MV
√

10 400 200 402 0 800 602 200

SLay
√

14 336 92 437 0 350 437 14

trimloss 6 279.2 227.5 133.3 6 324.8 139.3 45.7

uflquad
√

15 1227.7 22.7 1260.3 0 2432.7 1260.3 1205

Table 2 Characteristics of non-separable instances

Instance family NL Ob? # of ins Average

Var Bin LC NLC

CLay 12 116.7 35.3 138.3 40

FLay 10 158 28 183 4

fo-m-o 9 112.2 41.6 194.3 13.6

nd 5 574 37.6 283.8 37.6

RSyn 48 922.3 251 1716.3 34.2

safetyLay 3 120.7 38 111 34.7

sssd 14 162.4 135.5 50 20.1

Syn 48 366.3 95 660 34.2

tls 6 279.2 227.5 133.3 6

others
√

12 205.4 86.4 206 3.3

were the sum of separable functions except for the MV instances, which contained con-
vex quadratic functions of the form h(x) = xT Qx and were reformulated using the
change of variables described in Sect. 5.

InTable 1,wegive characteristics of the separable instances. Thefirst seven columns
in Table 1 list the instance family, whether or not the instance has a nonlinear objective
function, the number of instances in the family, the average number of variables, the
average number of binary variables, the average number of linear constraints excluding
bounds on variables, and the average number of nonlinear constraints for the instances
in the family. In the next three columns, we give the average number of variables, the
average number of linear constraints, and the average number of nonlinear constraints
of the extended formulations of these same instances. In Table 2, we provide the same
set of statistics for the remaining families of instances, that are not separable. Instances
that had a nonlinear objective function were transformed by moving the objective into
the constraints using an auxiliary variable as described in Sect. 1.

6.2 Implementation

We implemented our iterative cut generation method as a part of the convex MINLP
solver FilMINT which is based on the LP/NLP-Based Branch-and-Bound algorithm

123

Lift-and-project cuts for convex MINLPs 515

of [49]. FilMINT is developed on top of the MILP solver MINTO [48] and uses
FilterSQP [32] as the NLP solver and CPLEX [40] version 12.4 as the LP solver. We
also use CPLEX to solve CGLP problems.

(Strengthened) lift-and-project cuts are added in rounds following thework of [5]. In
each round, we solve the current LP relaxation (QC (K)) of theMINLP problem. Then,
we create linearization cuts in order to strengthen QC (K) and solve the LP relaxation
again. This step is repeated up to 100 times in order to bring the LP relaxation solution
close to the feasible region of nonlinear constraints. Then, for each fractional integer
variable, we call Algorithm 1 to generate a lift-and-project cut. We use a tolerance
of 1e−4 to determine whether or not the value of an integer variable is fractional.
We conducted experiments both with and without the application of the monoidal
strengthening procedure. Note that (strengthened) lift-and-project cuts generated by
the algorithm are never included in the formulation of a CGLP, so the cuts we generate
are always rank one.

We use the dual formulation of the CGLPs, where the cut coefficients can be readily
obtained from the solution of the CGLP. In the iterative method, linearization cuts are
added as columns to the dual CGLP similar to a column generation method. We tried
both SNC and normalization constraints of the form ‖α‖ ≤ 1 in our computational
experiments. When using SNC, we do not relax the lower and upper bounds on the
decision variables in the CGLP (i.e., Dx ≤ d from Sect. 4 is defined by the variable
bounds). We tested both ‖ · ‖∞ and ‖ · ‖1 in the normalization ‖α‖ ≤ 1, but we give
results only for normalization constraint of ‖ · ‖1 since it performed better than ‖ · ‖∞
in our initial computational experiments.

In order to eliminate computational difficulties that might arise during generation
of a cut, we use a tolerance of 1e−2 to check whether λt �= 0 and μt �= 0 in Algo-
rithm 1. We also add linearization cuts only for violated nonlinear constraints and use
a tolerance of 1e−6(1 + vt (x̄)) for determining whether the nonlinear constraint is
violated or not, where vt (x̄) is the amount by which x̄ violates the current cut in the
CGLP (which could be 0). Since the violation of the nonlinear constraint is the reduced
cost of its corresponding linearization cut in the dual CGLP, this strategy attempts to
limit the size of the CGLP by only adding linearization cuts that have a sufficiently
large reduced cost relative to the current violation of the lift-and-project cut. Finally,
we limit the number of iterations in Algorithm 1 to 10, since our initial computational
experiments showed that the improvement of a cut’s violation deteriorates after 10
iterations.

We measure the improvement in terms of the integrality gap closed. Specifically,
let zR = minx∈R{cT x} be objective value of the continuous relaxation and zC =
minx∈C{cT x} be objective value of the linear relaxation after (strengthened) lift-and-
project cuts are added. Then, the percentage gap closed by the (strengthened) lift-and-
project cuts is

100

(
zC − zR

zminlp − zR

)
.

When reporting this improvement for instances for which the optimal solution value
zminlp is not known, we use instead the best known upper bound.

123

516 M. R. Kılınç et al.

We use shifted geometric means to report solution times. The shifted geometric

mean of the set {t1, t2 . . . , tN } with shift s ≥ 0 is defined as N
√∏N

i=1(ti + s) − s.
Shifted geometric mean avoids themean being dominated by outliers with large values
and over-representation of differences among small values. If an instance is not solved
within the time limit, then the time limit is used for that instance when calculating the
shifted geometric mean.

We use performance profiles [26] to display the relative performance of different
methods. A performance profile is a graph of the relative performance of a set of
solvers on a fixed set of instances. In a performance profile graph, the x-axis is used
for the performance metric. The y-axis gives the fraction of instances for which the
performance of that solver is within a factor of x of the best solver for that instance.
In our experiments, we use the CPU solution time as the performance metric.

The computational experiments were run on a cluster of machines equipped with
Intel Xeon E7-4850 microprocessors clocked at 2.00GHz and 256GB of RAM, using
only one thread for each run.

6.3 Computation of the rank one lift-and-project closure

In this section, we investigate the strength of the lift-and-project cuts obtained using
the strategies from Sects. 3–5. We are interested in understanding how much gap can
possibly be closed by these methods, so we continue adding lift-and-project cuts in
rounds as long as new cuts are being generated that cut off the current LP relaxation
solution, up to an 8h time limit. When the iterative procedure of Sect. 4 is used,
this experiment approximates the strength of the rank one lift-and-project closure
of R:

C def= ∩i∈I,π0∈Z conv(R(ei ,π0)).

We also experimented with strengthened lift-and-project cuts obtained by applying
monoidal strengthening. We found the gaps closed and computation times to be very
similar, although slightly more gap is closed. These results are reported in Table 6 in
the appendix. In order to isolate the effect of lift-and-project cuts, we disable prepro-
cessing, cuts, and heuristics of FilMINT in these experiments.

Table 3 compares three versions of our lift-and-project implementation. The first
version, denoted as SNC Simple, implements the simple lift-and-project cut gener-
ation method described in Sect. 3 and uses the standard normalization condition. The
second version (SNC Iterative) implements the iterative technique for generating
lift-and-project cuts explained as in Sect. 4 and also uses the standard normal-
ization condition. The third version (Alpha Iterative) is the same as SNC
Iterative except that it uses the normalization constraint ‖α‖1 ≤ 1. For each
version, we present the average results for each instance family in three columns. The
first column denotes the average percentage gap closed by lift-and-project cuts at the
root node, the second column denotes the average CPU time, and the last column
indicates how many instances hit the 8h time limit for the instances of that family.
The table is also divided horizontally into two where the top half gives the results for

123

Lift-and-project cuts for convex MINLPs 517

Ta
bl
e
3

L
if
t-
an
d-
pr
oj
ec
tc
lo
su
re

re
su
lts

In
st
an
ce

fa
m
ily

SN
C
si
m
pl
e

SN
C
ite

ra
tiv

e
A
lp
ha

ite
ra
tiv

e

G
ap

C
ls
d

C
PU

tim
e

H
it
lim

it
G
ap

C
ls
d

C
PU

tim
e

H
it
lim

it
G
ap

C
ls
d

C
PU

tim
e

H
it
lim

it

B
at
ch

48
.2

16
57

0
56

.9
90
13

4
52

.8
13

,7
40

9

B
at
ch
-e
xt

54
.6

86
6

0
76

.0
28
04

0
75

.5
79
74

3

M
V

0.
0

14
,
47
9

10
0.
0

14
,5
13

10
0.
0

14
,5
84

10

M
V
-e
xt

82
.7

12
,
93
5

6
97

.5
49
61

0
94

.3
10

,4
99

1

Sl
ay

41
.2

19
44

1
45

.9
42
66

3
57

.4
35
44

2

Sl
ay
-e
xt

69
.4

51
0

86
.1

83
0

86
.1

30
7

0

tr
im

lo
ss

3.
8

20
06

0
5.
8

71
82

2
6.
1

75
18

2

T
ri
m
lo
ss
-e
xt

4.
8

16
6

0
9.
5

24
89

0
9.
5

32
41

1

ufl
qu
ad

0.
1

87
38

8
2.
2

12
,5
23

12
8.
4

14
,0
87

14

U
flq

ua
d-
ex
t

25
.5

24
0

0
97

.0
62
2

0
79

.3
55
51

4

A
vg

Se
pO

rg
19

.7
60
31

19
23

.3
95
62

31
27

.2
10

,7
14

37

A
vg
Se
pE

xt
50

.1
26
06

6
81

.0
18
74

0
75

.5
53
04

9

C
la
y

40
.8

15
6

0
40

.8
82

0
40

.8
41

0

Fl
ay

16
.7

18
0

50
.7

17
93

1
50

.7
14
90

1

F-
m
-o

2.
0

3
0

2.
2

7
0

1.
7

24
0

nd
67

.4
22
3

0
85

.0
25
11

0
85

.0
52
30

1

R
sy
n

83
.7

87
0

88
.7

17
1

0
88

.7
57
6

0

sa
fe
ty
L
ay

10
0.
0

10
0

0
10
0.
0

19
2

0
10
0.
0

19
0

ss
sd

74
.3

3
0

99
.7

8
0

99
.7

14
1

0

Sy
n

97
.7

4
0

99
.8

11
0

99
.8

33
0

tls
4.
4

24
44

1
6.
3

78
28

2
6.
6

74
32

2

ot
he
rs

29
.6

36
42

3
46

.3
38
98

3
46

.7
39
67

2

A
vg

O
th
er
s

68
.5

39
7

4
76

.5
80
7

6
76

.5
98
9

6

123

518 M. R. Kılınç et al.

separable instances and the bottom half gives the results for non-separable instances.
For separable instances, we include the results for extended formulations in the row
after each instance family, with the name of the instance family appended with ‘-ext’.
Table 1 in the Electronic Supplementary Material provides the results obtained on
each individual instance.

For the separable instances, we find that all three versions obtain significantly
improved average gap closed with significantly less time when using the extended
formulation in place of the original formulation. For example, SNC Iterative
closed 81.0% of the integrality gap on average over the separable instances when
using the extended formulation whereas it closed only 23.3% with the original for-
mulation. The reason for this improvement is twofold. First, the linearization cuts
are much more effective with extended formulations [38,54]. In the iterative method,
we observed that many fewer iterations were required to converge to the best possi-
ble cuts when using the extended formulations. Thus, the CPU time to calculate the
lift-and-project closure and the number of problems that hit the time limit decreased
considerably. The second reason is that the cuts generated in the extended space can
be significantly stronger than the ones generated in the original space [11,46]. In
many instances, SNC Iterative closes significantly more gap on the extended
formulation than on the original formulation, even when it was not terminated due
to the time limit for either formulation (e.g., 97.7% compared to 46.9% for instance
SLay04M).

We next observe that SNC Iterative can close significantly more gap than
SNC Simple. This is due to the reasoning given in Example 1, which demonstrates
that the iterative method can cut off points which can not be cut off with simple
method. There is a tradeoff, however, as SNC Iterative uses more CPU time for
most instances. On the other hand, we see that SNC Iterative is faster than SNC
Simple for the extended formulation of separable instances. The main reason for this
is that the number of iterations required to converge is much smaller with the extended
formulation.

The comparison between SNC Iterative and Alpha Iterative demon-
strates that the methods perform similarly in terms of integrality gap closed (as would
be expected in the absence of a time limit, since both approximate the lift-and-project
closure). But, SNC Iterative is faster than Alpha Iterative and hits the
time limit in fewer instances. This is compatible with the computational experiments
from the MILP literature where SNC is favored against other normalizations [31].

In summary, rank one lift-and-project cuts on average close 81.0% of the gap when
using the extended formulation of the separable instances and 76.5% of the gap for
the non-separable instances. For specific instance families the results are even more
striking. For example, lift-and-project cuts close nearly the entire gap for instances in
the MV-ext, uflquad-ext, safetyLay, sssd, and Syn families.

6.4 Branch-and-cut results

We next report our experience using our lift-and-project cut separation procedure
within the branch-and-bound method of FilMINT to solve the test instances to opti-

123

Lift-and-project cuts for convex MINLPs 519

mality. Since monoidal strengthening yields slight improvements in gap closed in
comparable time (Table 6 in the appendix) we use strengthend lift-and-project cuts
in the implementation. In our experiments, we adopted a cut-and-branch approach
where lift-and-project cuts are only added at the root node of the branch-and-bound
tree. After FilMINT preprocesses the instance, lift-and-project cuts are concur-
rently generated with FilMINT’s default cuts. Finally, we only use the extended
formulation of the separable instances in the computational experiments of this sec-
tion.

When using strengthened lift-and-project cuts,we disabled the addition of lineariza-
tion cuts coming from the extended cutting plane (ECP)-based method or the Fixfrac
method in FilMINT (see [1]). These linearization cuts are used to capture the nonlinear
structure of the problemwithin the LP/NLP-Based Branch-and-Bound algorithm. Our
computational experience indicated that the strengthened lift-and-project cuts provide
sufficient information about the nonlinear structure, and that generating these extra
linearization cuts was typically not helpful in conjunction with strengthened lift-and-
project cuts.

Since our computational experiments from the previous section showed that SNC
is superior to the α normalization, we compare default FilMINT with simple and
iterative versions of our algorithm that use only SNC. The default version of FilMINT
does not create any strengthened lift-and-project cuts and is denoted as DEFAULT
in the results. In order to reduce the tailing-off effect when adding cuts in rounds at
the root node, we stop generating cuts if the objective function value was improved
by less than ε% in the last round of cut generation. By decreasing ε, we generate
strengthened lift-and-projects more aggressively. In the normal setting, we set ε = 1
for the simple and iterative version of our algorithm and they are denoted as SIMPLE
and ITERATIVE, respectively. In the aggressive setting, we set ε = 1e−5, and the
corresponding methods are denoted as SIMPLE++ and ITERATIVE++.

In Fig. 4, we present the performance profile comparing the relative improvement
obtained by using strengthened lift-and-project cuts on all 222 instances. From the
full set of 222 instances we collected, we excluded 14 that could not be solved by
any of the settings within the time limit of 2h. In Table 4, we summarize the results
for the remaining 208 instances. The first row denotes how many instances are solved
to optimality with each method and the second row denotes the number of instances
the method did not solve within the time limit. Additionally, we list the number of
instances that can be solved with each method in 1, 10, 100 and 1000s, respectively.
Finally, in the last row, we present the shifted geometric mean of solution time with
a shift of 10 s. Table 2 in the Electronic Supplementary Material provides the results
for each individual instance.

The results fromTable 4 and the performance profile inFig. 4 show that strengthened
lift-and-project cuts help FilMINT to solvemore instances.SIMPLE and ITERATIVE
are able to solve 15 and 17 more instances to optimality than DEFAULT, respec-
tively. The average solution time is improved significantly for both SIMPLE and
ITERATIVE where ITERATIVE is performing slightly better than SIMPLE. When
looking at the number of problems that can be solved with increasing time limits,
we see that both SIMPLE and ITERATIVE consistently solve more instances than

123

520 M. R. Kılınç et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lv
ed

not more than x-times worst than best solver

DEFAULT
SIMPLE

SIMPLE++
ITERATIVE

ITERATIVE++

Fig. 4 Performance profile comparing different strengthened lift-and-project cut settings within FilMINT
on all 222 convex test instances

Table 4 Branch-and-cut results comparing different strengthened lift-and-project cut settings within
FilMINT

DEFAULT SIMPLE ITERATIVE SIMPLE++ ITERATIVE++

Solved 179 194 196 197 207

Timeout 29 14 12 11 1

<1 52 56 54 50 44

<10 99 109 106 93 91

<100 137 152 156 140 128

<1000 162 181 185 182 182

Time 74.0 43.4 40.6 53.3 62.0

DEFAULT. ITERATIVE is slower than SIMPLE for easier instances, but is able to
solve more instances than SIMPLE.

With aggressive cut generation, SIMPLE++ solves three more instances to opti-
mality than its less aggressive counterpart, whereas ITERATIVE++ solves 11 more
instances. On the other hand, when aggressively generating strengthened lift-and-
project cuts, the extra time spent for cut generation leads to increased average solution
times for easier instances.

In order to investigate the effect of strengthened lift-and-project cuts on harder
instances, we next exclude the problems that could be solved within 1000s by all

123

Lift-and-project cuts for convex MINLPs 521

Table 5 Branch-and-cut results on 52 hard instances (those for which at least one setting takes more than
1000s)

DEFAULT SIMPLE ITERATIVE SIMPLE++ ITERATIVE++

Solved 23 38 40 41 51

<100 2 9 8 7 5

<1000 6 25 29 26 26

Time 3223.5 885.5 788.2 921.7 843.4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lv
ed

not more than x-times worst than best solver

DEFAULT
SIMPLE

SIMPLE++
ITERATIVE

ITERATIVE++

Fig. 5 Performance profile comparing different strengthened lift-and-project cut settings within FilMINT
on 52 hard instances (those for which at least one setting takes more than 1000s)

settings. Table 5 is formed with the remaining 52 instances, and is designed similarly
as Table 4. We find that the hard instances can be solved four times faster on average
when using strengthened lift-and-project cuts. In addition, these results underestimate
the impact of strengthened lift-and-project cuts, since the solution time for instances
that are not solved in the time limit by amethod is taken to be the time limit of 2h when
computing the averages. The extra gap closed with the iterative method also pays off
on the hard instances, and we see significant reductions in solution time comparing
ITERATIVE and ITERATIVE++with SIMPLE and SIMPLE++, respectively. Inter-
estingly, ITERATIVE++ can solve all ten MV-ext instances to optimality whereas
none of other methods can solve any of them. The relative improvement obtained by
using strengthened lift-and-project cuts on the hard instances can also be dramatically
seen in the performance profile of Fig. 5.

123

522 M. R. Kılınç et al.

7 Conclusion

We have introduced a computationally effective mechanism for generating lift-and-
project cuts for convex MINLPs. The methodology relies only on solving a sequence
of linear programs, giving it a significant computational advantage over separation
approaches that rely on solving a nonlinear program. We have proved that in the limit
our methodology can find a cut as strong as what would be obtained using the non-
linear program proposed in [20,53]. Using the proposed procedure allows us for the
first time to report a significant computational study aimed at measuring the strength
of lift-and-project cuts for convex MINLPs. For many families of convex MINLPs,
the lift-and-project cuts close a significant fraction of the gap between the nonlinear
relaxation and the optimal value. We also provide an empirical demonstration that
using our proposed lift-and-project cut generation procedure on extended formula-
tions derived from exploiting separable convex functions reduces significantly more
integrality gap, and requires less time, in comparison to applying the procedure on
the original formulation. Finally, the cuts have been successfully incorporated into
the software FilMINT, resulting in often dramatic performance improvements. Fur-
ther improvements to our implementation are possible. For example, by using the
membership LP of [13], the size of CGLP used to generate a cut from a current
polyhedral outer-approximation could be cut in half. Such a hybrid approach is now
used in the commercial software CPLEX [15], and reported reductions in solution
time on their convex MINLP test instances are consistent with the findings in this
paper.

Acknowledgements This work was supported in part by the U.S. National Science Foundation (CCF-
0830153) andby theU.S.Department ofEnergy,OfficeofScience,OfficeofAdvancedScientificComputing
Research, Applied Mathematics program under contract numbers DE-AC02-06CH11357 and DE-FG02-
08ER25861. The authors would like to thank Andrew Miller for his insightful comments on this work.

Appendix

Table 6 presents the gaps closed when using monoidal strenghthening to obtain
strengthened lift-and-project cuts in the closure experiment presented in Sect. 6.3.
The structure of this table is identical to that of Table 3. Table 3 in the Electronic
Supplementary Material provides the results for each individual instance.

123

Lift-and-project cuts for convex MINLPs 523

Ta
bl
e
6

St
re
ng
th
en
ed

lif
t-
an
d-
pr
oj
ec
tc
lo
su
re

re
su
lts

su
m
m
ar
iz
ed

by
in
st
an
ce

fa
m
ily

In
st
an
ce

fa
m
ily

SN
C
si
m
pl
e

SN
C
ite

ra
tiv

e
A
lp
ha

ite
ra
tiv

e

G
ap

C
ls
d

C
PU

tim
e

H
it
lim

it
G
ap

C
ls
d

C
PU

tim
e

H
it
lim

it
G
ap

C
ls
d

C
PU

tim
e

H
it
lim

it

B
at
ch

48
.6

87
3

0
58

.3
93

76
3

51
.8

13
,9
11

9

B
at
ch
-e
xt

56
10

45
0

76
.8

19
21

0
75

.3
10

,0
44

5

M
V

0
14

,
50

1
10

0
14

,5
22

10
0

14
,
52

5
10

M
V
-e
xt

81
.9

12
,
35

0
5

97
.7

49
26

0
94

.5
10

,9
04

2

Sl
ay

41
.3

14
70

1
45

.9
43

38
3

57
.3

44
54

3

Sl
ay
-e
xt

69
.7

43
0

86
.1

74
0

86
.1

45
3

0

tr
im

lo
ss

5.
2

93
2

0
12

.8
69

43
2

15
65

71
2

tr
im

lo
ss
-e
xt

10
.4

20
1

0
23

.7
14

34
0

22
.9

32
88

1

ufl
qu

ad
0.
1

87
06

8
2.
2

12
,4
14

12
8.
1

14
,2
45

14

ufl
qu

ad
-e
xt

25
.5

21
8

0
96

.9
63

7
0

76
.9

67
13

4

A
vg

Se
pO

rg
19

.9
56

45
19

24
.3

95
92

30
27

.8
10

,9
06

38

A
vg

Se
pE

xt
50

.9
25

28
5

82
.6

15
94

0
76

.3
61

13
12

C
la
y

40
.8

14
1

0
40

.8
81

0
40

.8
65

0

Fl
ay

17
.2

17
0

50
.7

18
56

1
50

.7
15

62
1

f-
m
-o

2
4

0
2.
2

7
0

1.
7

37
0

nd
67

22
4

0
85

21
64

0
85

61
13

1

R
sy
n

84
.5

78
0

89
.2

14
9

0
88

.8
84

0
0

sa
fe
ty
L
ay

10
0

12
1

0
10

0
12

1
0

10
0

91
0

ss
sd

76
.8

2
0

99
.7

6
0

99
.7

22
9

0

Sy
n

98
4

0
99

.7
10

0
99

.8
59

0

tls
6.
2

14
41

0
12

.8
73

18
2

15
.2

84
68

3

ot
he
rs

36
36

44
3

46
.9

38
45

3
47

.3
47

29
3

A
vg

O
th
er
s

69
.6

35
8

3
76

.9
77

0
6

76
.9

12
06

8

123

524 M. R. Kılınç et al.

References

1. Abhishek, K., Leyffer, S., Linderoth, J.T.: FilMINT: an outer-approximation-based solver for nonlinear
mixed integer programs. INFORMS J. Comput. 22, 555–567 (2010)

2. Atamtürk, A., Narayanan, V.: Conic mixed integer rounding cuts. Math. Program. 122, 1–20 (2010)
3. Balas, E.: Disjunctive programming. Ann. Discret. Math. 5, 3–51 (1979)
4. Balas, E.: A modified lift-and-project procedure. Math. Program. 79, 19–31 (1997)
5. Balas, E., Ceria, S., Cornuejols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut

framework. Manag. Sci. 42, 1229–1246 (1996)
6. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4, 224–234

(1980)
7. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts, simple disjunctive

cuts. Math. Program. Ser. B 94, 221–245 (2003)
8. Balas, E., Saxena, A.: Optimizing over the split closure. Math. Program. 113, 219–240 (2008)
9. Bertsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice-Hall Inc, Upper Saddle River (1992)

10. Bodur, M., Dash, S., Günlük, O.: Cutting planes from extended LP formulations. Math. Program.
(2016). doi:10.1007/s10107-016-1005-7

11. Bodur, M., Dash, S., Günlük, O., Luedtke, J.: Strengthened Benders Cuts for Stochastic Integer
Programswith Continuous Recourse. http://www.optimization-online.org/DB_HTML/2014/03/4263.
html (2014)

12. Bonami, P.: Lift-and-project cuts for mixed integer convex programs. In: Günlük, O., Woeginger, G.
(eds.) Integer Programming and Combinatoral Optimization, Lecture Notes in Computer Science, vol.
6655, pp. 52–64. Springer, Berlin (2011). doi:10.1007/978-3-642-20807-2_5

13. Bonami, P.: On optimizing over lift-and-project closures. Math. Program. Comput. 4, 151–179 (2012)
14. Bonami, P., Minoux, M.: Using rank-1 lift-and-project closures to generate cuts for 0–1 MIPs, a

computational investigation. Discret. Optim. 2, 288–307 (2005)
15. Bonami, P., Tramontani, A.: Advances in CPLEX for mixed integer nonlinear optimization. Interna-

tional Symposium on Mathematical Programming. Pittsburgh. PA, USA (2015)
16. Boorstyn, R., Frank, H.: Large-scale network topological optimization. IEEE Trans. Commun. 25,

29–47 (1977)
17. Borchers, B., Mitchell, J.E.: An improved branch and bound algorithm for mixed integer nonlinear

programs. Comput. Oper. Res. 21, 359–368 (1994)
18. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for mixed-integer

nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)
19. Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout design problems

with unequal areas: a comparison of MILP and MINLP optimization methods. Comput. Chem. Eng.
30, 54–69 (2005)

20. Ceria, S., Soares, J.: Convex programming for disjunctive optimization. Math. Program. 86, 595–614
(1999)

21. Cezik,M.T., Iyengar, G.: Cuts formixed 0–1 conic programming.Math. Program. 104, 179–202 (2005)
22. Conforti, M., Cornuéjols, G., Zambelli, G.: Polyhedral approaches to mixed integer linear program-

ming. In: Jünger, M., Liebling, T., Naddef, D., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L.
(eds.) 50 Years of Integer Programming 1958–2008, pp. 343–385. Springer, New York (2009)

23. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Math. Program. Ser. B 112, 3–44
(2008)

24. Dash, S., Günlük, O., Lodi, A.: MIR closures of polyhedral sets. Math. Program. 121, 33–60 (2010)
25. Dash, S., Günlük, O., Vielma, J.: Computational experiments with cross and crooked cross cuts.

INFORMS J. Comput. 26, 780–797 (2014)
26. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program.

91, 201–213 (2002)
27. Drewes, S.: Mixed Integer Second Order Cone Programming. Ph.D. thesis, Technische Universität

Darmstadt (2009)
28. Duran, M.A., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear

programs. Math. Program. 36, 307–339 (1986)
29. Elhedhli, S.: Service system design with immobile servers, stochastic demand, and congestion. Manuf.

Serv. Oper. Manag. 8, 92–97 (2006)

123

http://dx.doi.org/10.1007/s10107-016-1005-7
http://www.optimization-online.org/DB_HTML/2014/03/4263.html
http://www.optimization-online.org/DB_HTML/2014/03/4263.html
http://dx.doi.org/10.1007/978-3-642-20807-2_5

Lift-and-project cuts for convex MINLPs 525

30. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Math. Program. Ser. B 110, 3–20
(2007)

31. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Program. 128,
205–230 (2011)

32. Fletcher, R., Leyffer, S.: User Manual for FilterSQP. University of Dundee Numerical Analysis Report
NA-181 (1998)

33. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math.
Program. 106, 225–236 (2006)

34. Gomory, R.E.: An Algorithm for the Mixed Integer Problem. Technical Report RM-2597, The RAND
Corporation (1960)

35. Günlük, O., Lee, J., Weismantel, R.: MINLP strengthening for separable convex quadratic
transportation-cost UFL. Technical Report RC24213 (W0703-042), IBM Research Division (2007)

36. Günlük, O., Linderoth, J.: Perspective relaxation of mixed integer nonlinear programs with indicator
variables. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO, Lecture Notes in Computer Science,
vol. 5035, pp. 1–16. Springer, New York (2008)

37. Harjunkoski, I., Westerlund, T., Porn, R., Skrifvars, H.: Different transformations for solving non-
convex trim loss problems by MINLP. Eur. J. Oper. Res. 105, 594–603 (1998)

38. Hijazi,H., Bonami, P.,Ouorou,A.:Anouter-inner approximation for separablemixed-integer nonlinear
programs. INFORMS J. Comput. 26, 31–44 (2014)

39. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms I: Fundamentals
(Grundlehren Der Mathematischen Wissenschaften). Springer, New York (1993)

40. IBM: Using the CPLEX Callable Library, Version 12 (2009)
41. Kelley, J.: The cutting-plane method for solving convex programs. J. SIAM 8, 703–712 (1960)
42. Kılınç, M., Linderoth, J., Luedtke, J.: Effective Separation of Disjunctive Cuts for Convex Mixed

Integer Nonlinear Programs. Technical Report 1681, Computer Sciences Department, University of
Wisconsin-Madison (2010)

43. Kılınç, M.R.: Disjunctive Cutting Planes and Algorithms for Convex Mixed Integer Nonlinear Pro-
gramming. Ph.D. thesis, University of Wisconsin-Madison (2011)

44. Leyffer, S.: MacMINLP: Test Problems for Mixed Integer Nonlinear Programming. http://www-unix.
mcs.anl.gov/~leyffer/macminlp (2003)

45. Modaresi, S., Kılınç, M., Vielma, J.P.: Intersection cuts for nonlinear integer programming: convexi-
fication techniques for structured sets. Math. Program. 155, 575–611 (2016)

46. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic
quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015)

47. Nemhauser, G., Wolsey, L.: A recursive procedure for generating all cuts for 0–1 mixed integer pro-
grams. Math. Program. 46, 379–390 (1990)

48. Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.C.: MINTO, a mixed INTeger optimizer. Oper.
Res. Lett. 15, 47–58 (1994)

49. Quesada, I., Grossmann, I.E.: An LP/NLP based branch-and-bound algorithm for convex MINLP
optimization problems. Comput. Chem. Eng. 16, 937–947 (1992)

50. Ravemark, D.E., Rippin, D.W.T.: Optimal design of a multi-product batch plant. Comput. Chem. Eng.
22(1–2), 177–183 (1998)

51. Sawaya, N.: Reformulations, Relaxations and Cutting Planes for Generalized Disjunctive Program-
ming. Ph.D. thesis, Chemical Engineering Department, Carnegie Mellon University (2006)

52. Sawaya, N., Laird, C.D., Biegler, L.T., Bonami, P., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Lee,
J., Lodi, A., Margot, F., Wächter, A.: CMU-IBM Open Source MINLP Project Test Set. http://egon.
cheme.cmu.edu/ibm/page.htm. Accessed 19 April 2016

53. Stubbs, R., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Pro-
gram. 86, 515–532 (1999)

54. Tawarmalani, M., Sahinidis, N.: A polyhedral branch-and-cut approach to global optimization. Math.
Program. 103(2), 225–249 (2005)

55. Türkay, M., Grossmann, I.E.: Logic-based MINLP algorithms for the optimal synthesis of process
networks. Comput. Chem. Eng. 20(8), 959–978 (1996)

56. Vecchietti, A., Grossmann, I.E.: LOGMIP: a disjunctive 0–1 non-linear optimizer for
process system models. Comput. Chem. Eng. 23(4–5), 555–565 (1999). doi:10.1016/
S0098-1354(98)00293-2. http://www.sciencedirect.com/science/article/B6TFT-3XY28Y0-B/2/
2709e69a55450cf2263efcc5368850db

123

http://www-unix.mcs.anl.gov/~leyffer/macminlp
http://www-unix.mcs.anl.gov/~leyffer/macminlp
http://egon.cheme.cmu.edu/ibm/page.htm
http://egon.cheme.cmu.edu/ibm/page.htm
http://dx.doi.org/10.1016/S0098-1354(98)00293-2
http://dx.doi.org/10.1016/S0098-1354(98)00293-2
http://www.sciencedirect.com/science/article/B6TFT-3XY28Y0-B/2/2709e69a55450cf2263efcc5368850db
http://www.sciencedirect.com/science/article/B6TFT-3XY28Y0-B/2/2709e69a55450cf2263efcc5368850db

526 M. R. Kılınç et al.

57. Vielma, J., Dunning, I., Huchette, J., Lubin, M.: Extended Formulations in Mixed Integer Conic
Quadratic Programming. Technical Report. http://arxiv.org/abs/1505.07857 (2015)

58. Zhu, Y., Kuno, T.: A disjunctive cutting-plane-based branch-and-cut algorithm for 0–1 mixed-integer
convex nonlinear programs. Ind. Eng. Chem. Res. 45(1), 187–196 (2006). doi:10.1021/ie0402719

123

http://arxiv.org/abs/1505.07857
http://dx.doi.org/10.1021/ie0402719

	Lift-and-project cuts for convex mixed integer nonlinear programs
	Linear programming based separation and extended formulations
	Abstract
	1 Introduction
	2 Background
	2.1 Lift-and-project cuts for MILP
	2.2 Lift-and-project cuts for MINLPs

	3 A simple LP-based lift-and-project cut generation strategy for MINLP
	4 An LP-based strategy that converges to the best possible lift-and-project cut
	5 Extended formulations via separability
	6 Computational experiments
	6.1 Test sets
	6.2 Implementation
	6.3 Computation of the rank one lift-and-project closure
	6.4 Branch-and-cut results

	7 Conclusion
	Acknowledgements
	Appendix
	References

