
Math. Prog. Comp. (2016) 8:271–309
DOI 10.1007/s12532-016-0107-9

FULL LENGTH PAPER

A nonmonotone GRASP

M. De Santis1 · P. Festa2 · G. Liuzzi3 ·
S. Lucidi4 · F. Rinaldi5

Received: 27 February 2014 / Accepted: 22 April 2016 / Published online: 7 May 2016
© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2016

Abstract A greedy randomized adaptive search procedure (GRASP) is an itera-
tive multistart metaheuristic for difficult combinatorial optimization problems. Each
GRASP iteration consists of two phases: a construction phase, in which a feasible
solution is produced, and a local search phase, in which a local optimum in the
neighborhood of the constructed solution is sought. Repeated applications of the con-
struction procedure yields different starting solutions for the local search and the
best overall solution is kept as the result. The GRASP local search applies iterative
improvement until a locally optimal solution is found. During this phase, starting from
the current solution an improving neighbor solution is accepted and considered as the
new current solution. In this paper, we propose a variant of the GRASP framework that
uses a new “nonmonotone” strategy to explore the neighborhood of the current solu-
tion. We formally state the convergence of the nonmonotone local search to a locally
optimal solution and illustrate the effectiveness of the resultingNonmonotone GRASP
on three classical hard combinatorial optimization problems: the maximum cut prob-
lem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and
the quadratic assignment problem (QAP).

B P. Festa
paola.festa@unina.it

1 Fakultät für Mathematik, TU Dortmund, Dortmund, Germany

2 Department of Mathematics and Applications, University of Napoli FEDERICO II, Napoli, Italy

3 Istituto di Analisi dei Sistemi ed Informatica-CNR, Rome, Italy

4 Dipartimento di Ingegneria Informatica Automatica e Gestionale, “La Sapienza” University of
Rome, Rome, Italy

5 Dipartimento di Matematica, University of Padova, Padua, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-016-0107-9&domain=pdf

272 M. De Santis et al.

Keywords Combinatorial optimization · GRASP · Metaheuristics · Local search ·
Nonmonotone line search · MAX-CUT · MAX-SAT · QAP

Mathematics Subject Classification 90C27 Combinatorial optimization · 90C59
Approximation methods and heuristics

1 Introduction

Any combinatorial optimization problem involves a finite number of feasible solutions
and is completely defined by a ground set E = 1, . . . , n, an objective function f :
2E �→ R, and the set of feasible solutionX ⊆ 2E . In case of minimization (resp. maxi-
mization), one searches for an optimal solution x∗ ∈ X such that f (x∗) ≤ f (x) (resp.
f (x∗) ≥ f (x)), ∀ x ∈ X . To illustrate an example, let us consider the Traveling Sales-
man Problem, a classical combinatorial optimization problemdefined on an undirected
edge-weighted graph G = (V, E). In this case, the ground set E is the set of edges
connecting nodes in V to be visited, X is formed by all edge subsets that determine a
Hamiltonian cycle, and the objective function value f (x) is the sum of the costs of all
edges in solution x . As a further example of how to define a combinatorial optimiza-
tion problem through the ground set E , the objective function f , and the set of feasible
solutionX , let us consider theMaximumCut Problem, defined on an undirected edge-
weighted graph G = (V, E). Here, the ground set E is the set of all edges in E , X is
the set of all subsets of E made of edges with endpoints in two different node subsets
defining a partition of V , and f (x) is the sum of the weights of edges in solution x .

Combinatorial optimization problems arise in several and heterogenous domains
[87], among many others we recall routing, scheduling, production planning, decision
making process, and location problems. All these problems have both a theoretical
relevance and a practical impact, given their applicability to real-world scenarios [89].

Many combinatorial optimization problems are computationally intractable, in the
sense that until now, nopolynomial-time algorithm is known to exactly solve them [45].
In the last decades, several optimal seeking methods that do not explicitly examine all
feasible solutions have been developed, such as Branch & Bound, Cutting Planes, and
Dynamic Programming. Nevertheless, most real-world problems are either computa-
tionally intractable by their nature, or sufficiently large so as to preclude the use of
exact algorithms. In such cases, heuristic methods are usually employed to find good,
but not necessarily guaranteed optimal solutions.

Starting from one of the pioneering papers of Kirkpatrick on Simulated Annealing
[69] which appeared in 1984, the most promising heuristic methods concentrate their
effort in the attempt of avoiding entrapments in local optima and in exploiting the
basic structure and properties of the problem they solve. Such techniques include Tabu
Search [47–50], Genetic Algorithms [54], Variable Neighborhood Search [59,83], and
GRASP (Greedy Randomized Adaptive Search Procedure) [30,31,39–42].

A GRASP is a multi-start or iterative process introduced by Feo and Resende [30],
following in the spirit of the pioneering idea proposed in 1973 by Lin and Kernighan
for the Traveling Salesman Problem [77]. Each GRASP iteration is usually made up
of a construction phase, where a feasible solution is constructed, and a local search

123

A nonmonotone GRASP 273

phase which starts at the constructed solution and applies iterative improvement until a
locally optimal solution is found. Repeated applications of the construction procedure
yields diverse starting solutions for the local search and the best overall locally optimal
solution is kept as the result. Since its proposal, GRASP has been applied to solve
decision and optimization problems arising in several contexts. Recent areas of appli-
cation include routing [9,11,19], logic [36,93,94], covering and partition [6,30,92],
location [23,25], network optimization [7,85,97], assignment [82,99], timetabling
and scheduling [3–5,14,73,74,98], graph and map drawing [37,38,72,80,97], and
very recently computational biology [28,32–35,43,51,64].

The aim of this paper is to propose a new variant of the classical GRASP framework
that uses a nonmonotone strategy to explore the neighborhood of the current solution.
Inspired by an idea proposed in 1986 for Newton’s method [55], this strategy controls
uphill solutions without using a “tabu list” but simply maintaining a set W of a given
number of previously computed objective function values. A new solution is accepted
if its function value improves the worst value in W .

The remainder of this paper is organized as follows. In Sect. 2, the main ingredients
of a classical GRASP framework are described. In Sect. 3, we illustrate a GRASP for
three selected hard combinatorial optimization problems, i.e., the MAX-CUT, MAX-
SAT, and QAP problem. Section 4 is devoted to the description and analysis of a
nonmonotone variant of GRASP (NM-GRASP). In Sect. 5, we illustrate the effec-
tiveness of our Nonmonotone GRASP by comparing it with the classical GRASP
on standard test problems (from the literature) for the three combinatorial optimiza-
tion problems described in Sect. 3. The experiments empirically show that the new
described GRASP framework results in better quality solutions. Concluding remarks
are given in the last section.

2 The classical GRASP

Given a combinatorial optimization problem specified by the ground set E , the real-
valued objective function f , and the finite set of feasible solutionX , a classicalGRASP
metaheuristic is amulti-start or iterativemethod, inwhich each iteration consists of two
phases: construction of a solution and local search. The pseudo-code inFig. 1 illustrates
themain blocks of aGRASPprocedure forminimization, inwhichMaxIterations
iterations are performed and Seed is used as the initial seed for the pseudorandom
number generator.

The construction phase builds a solution x that can be eventually not feasible (line
3). In this case, the feasibility of the built solution is obtained by invoking a repair
procedure in line 5. Once a feasible solution x is obtained, its neighborhood is inves-
tigated by the local search until a local minimum is found (line 7). The best overall
local optimal solution is kept as the result (line 12).

The pseudo-code in Fig. 2 illustrates the main ingredients of a typical GRASP
construction phase, which proceeds applying a greedy, randomized, and adaptive cri-
terion. In the spirit the pioneering semi-greedy idea proposed by Hart and Shogan in
1987, the construction procedure starts from an empty solution (line 1) and iteratively,
one element at a time, builds a complete solution (loop in lines 3–9). At each iteration,
the choice of the next element to be added to the partial solution under construction is

123

274 M. De Santis et al.

algorithm GRASP(f(·), g(·), MaxIterations, Seed)
1 xbest:=∅; f(xbest):=+∞;
2 for k = 1, 2, . . . ,MaxIterations→
3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));
4 if (x not feasible) then
5 x:=repair(x);
6 endif
7 x:=LocalSearch(x, f(·));
8 if (f(x) < f(xbest)) then
9 xbest:=x;
10 endif
11 endfor;
12 return(xbest);
end GRASP

Fig. 1 Pseudo-code of a classical GRASP for a minimization problem

procedure ConstructGreedyRandomizedSolution(Seed, g(·))
1 x:=∅;
2 Sort the candidate elements i in a list C according to their incremental

costs g(i);
3 while (x is not a complete solution)→
4 RCL:=MakeRCL(C);
5 v:=SelectIndex(RCL, Seed);
6 x := x ∪ {v};
7 C := C \ {v};
8 Resort remaining candidate elements j ∈ C according to their

incremental costs g(j);
9 endwhile;
10 return(x);
end ConstructGreedyRandomizedSolution;

Fig. 2 Basic GRASP construction phase pseudo-code

determined by ordering all candidate elements (i.e., those that can be added to the solu-
tion) in a candidate listC with respect to a greedy function g : C → R that myopically
measures the benefit in terms of objective function value of selecting each candidate
element. The heuristic is adaptive because the benefits associated with every element
are updated at each iteration of the construction phase to reflect the changes brought
on by the selection of the previous element (line 8). The probabilistic component of
a GRASP construction procedure is characterized by randomly choosing one of the
best candidates in the list, but not necessarily the top candidate (line 5). The list of
best candidates is called the restricted candidate list (RCL). This choice technique
allows for different solutions to be obtained at each GRASP iteration, but does not
necessarily compromise the power of the adaptive greedy component of the method.

Once a feasible solution x is obtained, its neighborhood is investigated by the local
search until a local minimum is found. Figure 3 illustrates the pseudo-code of a generic
local search procedure for a minimization problem.

As any local search algorithm, a typical GRASP local search procedure requires
the definition of a proper neighborhood structure N for the specific problem to be
solved. The neighborhood structure N relates a solution x of the problem to a subset
of solutions N (x) “close” to x , which is said to be locally optimal with respect to
N (x) if within N (x) there is no better solution in terms of objective function value.

123

A nonmonotone GRASP 275

Fig. 3 Pseudo-code of a generic
local search procedure

procedure LocalSearch(x, f(·))
1 Let N(x) be the neighborhood of x;
2 H :={y ∈ N(x) | f(y) < f(x)};
3 while (|H | > 0)→
4 x:=Select(H);
5 H :={y ∈ N(x) | f(y) < f(x)};
6 endwhile
7 return(x);
end LocalSearch

Once a suitable neighborhood N (x) of the current solution x has been defined and
computed (line 1), a GRASP local search works in an iterative fashion by successively
replacing the current solution x by a better solution in the neighborhood N (x). It
terminates when no better solution is found in the neighborhood, i.e. when a local
minimum is found and returned to the main algorithm.

It can be easily seen that the key to success for a local search algorithmconsists of the
suitable choice of a neighborhood structure, efficient neighborhood search techniques,
and the starting solution.

3 A GRASP for the MAX-CUT, the MAX-SAT, and the QAP

We briefly illustrate in this section the main features of state-of-the-art classical
GRASP proposed for three classical hard combinatorial optimization problems: the
MAX-CUT, the MAX-SAT, and the QAP problem.

3.1 MAX-CUT

Given an undirected graph G = (V, E), where V = {1, . . . , n} is the set of vertices
and E is the set of edges, and weights wi j associated with the edges (i, j) ∈ E , the
MAX-CUTconsists in finding a partition (S, S̄) of V such that the weight of the cut
induced by (S, S̄) defined as

w(S, S̄) =
∑

i∈S, j∈S̄
wi j

is maximized.
The problem can be formulated as the following integer quadratic program:

max
1

2

∑

1≤i< j≤n

wi j (1 − yi y j)

s.t.
yi ∈ {−1, 1}, ∀ i ∈ V .

123

276 M. De Santis et al.

Each set S = {i ∈ V : yi = 1} induces a cut (S, S̄) with weight

w(S, S̄) = 1

2

∑

1≤i< j≤n

wi j (1 − yi y j).

In spite of the very easy statement of this well known combinatorial optimization
problem, its decision version has been proved to be NP-complete by Karp already in
1972 [68]. In 1991, it has been showed thatMAX-CUTisAPX-complete [86],meaning
that unless P=NP, it does not allow a polynomial time approximation scheme [108].
Polynomially solvable cases include planar graphs [58], weakly bipartite graphs with
nonnegative weights [57], and graphs without K5 minors [10].

Given the inner intractability of the problem, many researchers have devoted their
effort to both more deeply studying the inner computational nature of the problem and
in designing good approximate and heuristic solution techniques (see e.g., [13,22]).
Along this research line, the idea that the MAX-CUT can be naturally relaxed to a
semidefinite programming problem was first observed by Lovász [79] and Shor [103].
Goemans and Williamson [53] proposed a randomized algorithm that uses semidefi-
nite programming to achieve a performance guarantee of 0.87856 if the weights are
nonnegative. Since then, many approximation algorithms for NP-hard problems have
been devised using SDP relaxations [56,66,91].

In the following, we describe a classical GRASP proposed by Festa et al. in 2002
[38]. As any GRASP, it proceeds in iterations. At each iteration, a greedy randomized
adaptive solution is built and used as starting point in a local search procedure. The
best overall locally optimal solution is returned as an approximation of the global
optimal.

The construction procedure uses an adaptive greedy function, a construction mech-
anism for the restricted candidate list, and a probabilistic selection criterion. In the
case of the MAX-CUT, it is intuitive to relate the greedy function to the sum of the
weights of the edges in each cut. More formally, let (S, S̄) be a cut. Then, for each
vertex v /∈ S ∪ S̄, the following two quantities are computed:

σS(v) =
∑

u∈S
wvu and σS̄(v) =

∑

u∈S̄
wvu .

The greedy function, g(v) = max{σS(v), σS̄(v)}, measures how much additional
weight will result from the assignment of vertex v to S or S̄. The greedy choice consists
in selecting the vertex v with the highest greedy function value. If σS(v) > σS̄(v),
then v is placed in S̄; otherwise it is placed in S. To define the construction mechanism
for the restricted candidate list (RCL), let

wmin = min

{
min
v∈V ′ σS(v), min

v∈V ′ σS̄(v)

}

and

wmax = max

{
max
v∈V ′ σS(v), max

v∈V ′ σS̄(v)

}

123

A nonmonotone GRASP 277

= max
v∈V ′{g(v)},

where V ′ = V \{S∪ S̄} is the set of vertices which are still candidate elements, i.e., not
yet assigned to either subset S or subset S̄. Denoting byμ = wmin+α ·(wmax −wmin)

the cut-off value, where α ∈ [0, 1], the RCL is made up by all vertices whose value of
the greedy function is greater than or equal to μ. A vertex is randomly selected from
the RCL.

Once a greedy, randomized, and adaptive solution x is built, the local search pro-
cedure is invoked. Given the current solution x , it implements an elementary move,
that consists in moving each vertex from one subset of the cut to the other. More
formally, let (S, S̄) be the current solution. To each vertex v ∈ V we associate either
the neighbor (S\{v}, S̄ ∪ {v}) if v ∈ S, or the neighbor (S ∪ {v}, S̄\{v}) otherwise.
The value

δ(v) =
{

σS(v) − σS̄(v), if v ∈ S;
σS̄(v) − σS(v), if v ∈ S̄

represents the change in the objective function associated with moving vertex v from
one subset of the cut to the other.

In [38], all possible moves are investigated and the acceptance criterion follows a
monotone strategy, i.e., the current solution is replaced by its best improving neighbor
and the search stops after all possible moves have been evaluated and no improving
neighbor is found.

3.2 MAX-SAT

A propositional formula Φ on a set of n Boolean variables V = {x1, . . . , xn} in con-
junctive normal form (CNF) is a conjunction on a set ofm clausesC = {C1, . . . ,Cm}.
Each clauseCi is a disjunction of |Ci | literals, where each literal li j is either a variable
x j or its negation ¬x j . Φ can formally be written as

Φ =
m∧

i=1

Ci =
m∧

i=1

⎛

⎝
|Ci |∨

j=1

li j

⎞

⎠ .

A clause is satisfied if at least one of its literals evaluates to 1 (true), which means that
either one of the unnegated Boolean variables has the value of 1 or a negated variable
has the value of 0. Φ is said to be satisfied if all of its clauses are satisfied. In the
satisfiability problem (SAT), one must decide whether there exists an assignment of
values to the variables such that a given propositional formula is satisfied. SATwas the
first problem tobe shown tobeNP-complete [24]. TheMAX-SAT is a generalizationof
SAT, where given a propositional formula, one is interested in finding an assignment of
values to the variables which maximizes the number of satisfied clauses. Generalizing
even further, if we introduce a positive weightwi for each clauseCi , then the weighted
MAX-SAT consists of finding an assignment of values to the variables such that

123

278 M. De Santis et al.

the sum of the weights of the satisfied clauses is maximized. The MAX-SAT has
many applications both theoretical and practical, in areas such as complexity theory,
combinatorial optimization, and artificial intelligence [12]. It is an intractable problem
in the sense that no polynomial time algorithm exists for solving it unless P = NP,
which is evident since it generalizes the satisfiability problem [45].

The first approximation algorithms for the MAX-SAT were introduced in [65],
where Johnson presented two algorithms with performance rations (k − 1)/k and
(2k − 1)/2k , where k is the least number of literals in any clause. For the general case
k = 1 they both translate to a 1/2-approximation algorithm, while it has been shown
in [20] that the second algorithm is in fact a 2/3-approximation algorithm. A 3/4-
approximation algorithm, based on network flow theory, was presented by Yannakakis
in [110] and also in [52] by Goemans andWilliamson. Currently, one among the best
deterministic polynomial time approximation algorithm for the MAX-SAT achieves a
performance ratio of 0.758 and is based on semidefinite programming [53],while there
is also a randomized algorithm with performance ratio 0.77 [8]. Better approximation
bounds for special cases of the problem inwhich, for instance,we restrict the number of
literals per clause or impose the condition that the clauses are satisfiable have also been
found [29,67,107]. With respect to inapproximability results, it is known [60] that
unless P = NP there is no approximation algorithmwith performance ratio greater than
7/8 for the MAX-SAT in which every clause contains exactly three literals, thereby
limiting the general case as well. In 1997, to heuristically solve the problem a GRASP
has been proposed [95]. In [96] a complete Fortran implementation of the algorithm
is given along with extensive computational runs. In the following, we provide a brief
description of the main ingredients of the classical GRASP for the MAX-SAT.

Given a set of clauses C and a set of Boolean variables V , let x ∈ {0, 1}n be a truth
assignment (i.e., the vector of truth values assigned to the variables) and let c(x) be the
sum of the weights of the satisfied clauses as implied by x. Without loss of generality,
all the weights wi of the clauses are assumed to be positive integers. Given any two
truth assignments x, y ∈ {0, 1}n let Δ(x, y) denote their difference set, i.e.,

Δ(x, y) := {i : xi �= yi , i = 1, . . . , n} (1)

and their distance

d(x, y) := |Δ(x, y)| =
n∑

i=1

|xi − yi |, (2)

which is the Hamming distance, and will be used as a measure of proximity between
two solutions. As detailed in [95], in the construction phase of the algorithm a solution
is built one element at a time in a greedy randomized fashion, by maintaining a RCL
throughout the procedure, which contains elements that correspond to assignments
of yet-unassigned variables to either 1 (true) or 0 (false). Choosing an element
to be added to a partial solution from the RCL corresponds to setting the respective
truth value to the given variable. Given any partial solution, which corresponds to a
set of satisfied clauses, the next element to be added to the solution is chosen taking
into account the total weight of the unsatisfied clauses that become satisfied after the

123

A nonmonotone GRASP 279

assignment to the just chosen element. More formally, let N = {1, 2, . . . , n} and
M = {1, 2, . . . ,m} be sets of indices for the set of variables and clauses, respectively.
Moreover, for i ∈ N , let Γ +

i be the set of unassigned clauses that would become
satisfied if variable xi were to be set to true, and Γ −

i be the set of unassigned clauses
that would become satisfied if variable xi were to be set to false. Let γ

+
j and γ −

j be
the gain in the objective function value if we set the unassigned variable x j to 1 and
0, respectively. Formally, they are defined as follows:

γ +
i =

∑

j∈Γ +
i

w j and γ −
i =

∑

j∈Γ −
i

w j .

If X ⊆ V is the set of already assigned variables, the best gain γ ∗ is computed as

γ ∗ := max{γ +
j , γ −

j : j such that x j ∈ V \X}

and RCL keeps only those assignments with γ +
j and γ −

j that are greater or equal to
α ·γ ∗ where 0 ≤ α ≤ 1 is a parameter. A random choice from the RCL corresponds to
a new assignment xs = 1 (xs = 0), which is added to our partial solution X = X∪{xs}.
After each such addition to the partial solution,Γ +

i ,Γ −
i , γ +

j , and γ −
j are consequently

updated, in an adaptive fashion. The process is repeated until |X | = n.
Having completed a truth assignment x, a local search is applied in order to guar-

antee local optimality. The 1-flip neighborhood is used in the local search, which is
defined as

N1(x) := {y ∈ {0, 1}n : d(x, y) ≤ 1}. (3)

If w(x) is the total weight of the satisfied clauses for the truth assignment x, then x is
a local maximum if and only if w(x) ≥ w(y) for all y ∈ N1(x).

3.3 QAP

Given a set N = {1, 2, . . . , n}, the set ΠN of all permutations of the elements in N
and two n × n matrices F and D, such that, for i, j ∈ {1, 2, . . . , n}, fi j , di j ∈ R

+,
the QAP aims at finding a permutation π∗ ∈ ΠN such that

π∗ = arg min
p∈ΠN

n∑

i=1

n∑

j=1

fi j · dπ(i)π(j).

The QAP was first proposed already in 1957 by Koopmans and Beckman [70]
while studying the plant location problem. In the location theory context, one is given
a set F = {{1, . . . , {n} of n facilities and a set N of n locations. Matrices F and D
represent the flow matrix and the distance matrix, respectively, and the objective is to
determine to which location each facility must be assigned so as to minimize the total
cost of the assignment. Since its first formulation, the QAP has appeared in several

123

280 M. De Santis et al.

practical applications, including economy [61,62], scheduling [46], and numerical
analysis [15]. Recent surveys on the QAP are given in [78] and in [26], besides two
nice and comprehensive books ([90], [17]).

The QAPis one of the most difficult combinatorial optimization problems. In 1976,
Sahni and Gonzales [101] had shown that it is NP-hard and that, unless P = NP, it is
not possible to find an ε-approximation algorithm, for any constant ε and this result
stands even under the hypotheses that F and D are symmetric coefficientmatrices. Due
to its high computation complexity, to find in reasonable running times good quality
solutions for the QAPLi et al. [76] proposed a GRASP, whose Fortran implementation
has been described in [88].

In the GRASP for QAP, the construction phase performs two stages. In the first
stage, only twoassignments are produced.Once sorted inter-site distances in increasing
order and inter-facility flows in decreasing order, the idea in this first stage is to
assign facilities with high interaction (i.e., having high fi j values) to nearby sites (i.e.,
sites with low dkl values). Coherently, among the pairs of assignments having the
smallest dkl · fi j products and inserted in the RCL a pair is selected at random and the
corresponding assignment established. The remaining n − 2 facility-site assignments
are then made sequentially in the second stage. The idea now is to favor assignments
that have small interaction cost with the set of previously-made assignments. To do
this, at each iteration, the procedure keeps all costs of unassigned facility-site pairs
sorted in increasing order. More specifically, let Γ = {(i1, k1), . . . , (iq , kq)} be the
set of q assignments at a certain iteration of the construction phase. Then, the cost
c jl of assigning facility j to site l, with respect to the already-made q assignments is
computed as follows:

c jl =
∑

(i,k)∈Γ

dkl · fi j .

The pairs having the least α · |Γ |, α ∈ (0, 1] costs are inserted in the RCL and one
of them is selected at random and added to Γ . The procedure is repeated until n − 1
assignments are made. The remaining facility is then assigned to the remaining site.
In the local search phase, a simple 2-exchange neighborhood structure is defined and
the local improvement procedure considers all possible 2-swaps of facility-locations.
If a swap improves the cost of the assignment, it is accepted. The procedure continues
until no swap improves the solution value.

4 A nonmonotone GRASP

For finding approximate solutions of hard combinatorial problems, we propose a Non-
Monotone GRASP (NM-GRASP). The main difference between NM-GRASP and a
classical GRASP is in the use of a nonmonotone local search strategy, based on the
ideas described in [55].

The pseudo-code in Fig. 4 illustrates how the nonmonotone local search works for
a minimization problem. As in the classical GRASP local search, the first step of the
nonmonotone local search is the computation of a suitable neighborhood N (x) of the
current solution x (line 1). The search is then carried out by successively replacing the

123

A nonmonotone GRASP 281

procedure NonmonotoneLocalSearch(x, f(·))
1 Let M ≥ 1 and let N(x) be the neighborhood of x;
2 W :={f(x)}; f̄ :=f(x); xmin:=x;
3 H :={y ∈ N(x) | f(y) < f̄};
4 while (|H | > 0)→
5 x:=Select(H);
6 if f(x) < f(xmin) then xmin:=x;
7 if |W | = M + 1 then pop(W);
8 push(f(x),W); f̄ :=max{f ∈ W};
9 H :={y ∈ N(x) | f(y) < f̄};
10 endwhile
11 if x = xmin then x:=xmin; goto 2;
12 return(xmin);
end NonmonotoneLocalSearch

Fig. 4 Pseudo-code of the nonmonotone local search procedure

current solution x by a solution y ∈ N (x) that improves a given reference objective
function value f̄ instead of the best value obtained so far. Hence, we have f (y) < f̄
which clearly allows for uphill steps thus giving raise to a nonmonotone local search.
In order to avoid cycling of the local search routine, the reference value must be
updated according to a rigorous criterion. To perform such an update, the routine
employs a queueW ofmaximumsizeM containing the least recently accepted function
values. The queue is managed according to a first-in-first-out policy by means of the
following two operations: push(f,W), which inserts intoW a new function value f ,
and pop(W), which drops from W the least recently inserted function value.

Inspired by an idea proposed in 1986 for Newton’s method [55] and unlike the Tabu
Search [47,48,50], the nonmonotone local search controls uphill solutions without
using a “tabu list” of already generated solutions, but simply maintaining a setW of a
given number of previously computed objective function values and a new solution is
accepted if its function value improves the worst value in W . Furthermore, the local
search of a Tabu Search approach always moves towards a not prohibited solution
that strictly improves the current solution in terms of objective function value. The
nonmonotone local search, instead, accepts and moves towards a solution that not
necessarily improves the best objective function value obtained so far. In this aspect,
the nonmonotone local search resembles a classical Simulated Annealing [69]. The
difference between the nonmonotone local search and a Simulated Annealing lies in
the strategy they use to implement the idea of performing uphill steps. A Simulated
Annealing uses a probabilistic acceptance criterion, while in our nonmonotone local
search a solution is accepted if it improves a given reference objective function value
f̄ instead of the best value obtained so far.
Looking at the pseudo-code in Fig. 4, procedure NonmonotoneLocalSearch
successively updates the current solution x by a new one belonging to the set H
of improving solutions with respect to the given reference value f̄ and (possibly)
updates the reference value f̄ itself. The search terminates when there is no solution
in the neighborhood that improves f̄ . More precisely, the nonmonotone local search
terminates at x if

123

282 M. De Santis et al.

f (y) ≥ f̄ ≥ f (x), ∀ y ∈ N (x). (4)

Note that, condition (4) implies that x is locally optimal with respect to N (x).
In order to show that NonmonotoneLocalSearch cannot indefinitely cycle

between lines 4 and 10 of the while-cycle, we need to explicitly define the sequences
of points and function values generated by the procedure. To this aim, let us denote
by x0 the starting solution of the local search, and by xk and f̄ k the solution and
the reference value at the beginning of each iteration of the while-cycle, respectively.
Moreover, let be

Hk = {y ∈ N (xk) : f (y) < f̄ k}.
Consequently, line 5 of the while-cycle can be written as

xk+1:= Select(Hk);
We remark that the updating of the reference value performed by the procedure is such
that f̄ k can formally be written as

f̄ k = max
0≤i≤min{k, M} f (x

k−i), (5)

where M ∈ N
+ is fixed.

We can now formally introduce the sequences {xk}, { f (xk)}, and { f̄ k} generated
by NonmonotoneLocalSearch. Note that, even when

f (xk+1) < f̄ k, for every index k,

it results that the sequence { f (xk)} can be nonmonotone.

Proposition 1 Let {xk} be the sequence of solutions generated by the nonmonotone
local search, and { f̄ k} be the sequence of reference values defined as in (5).
Then, NonmonotoneLocalSearch cannot cycle and produces a local minimum
point.

Proof First, we observe that the sequence { f̄ k} is bounded from below, since the
number of solutions in the feasible set X is finite.

Moreover, at each iteration k, we have that

f (xk+1) < f̄ k . (6)

From (5) and (6), we can write:

f̄ k+1 ≤ f̄ k . (7)

Then, remembering that |X | < ∞, we can define

0 < δ = min
x,y∈X

{
| f (x) − f (y)| : f (x) �= f (y)

}
,

123

A nonmonotone GRASP 283

so that we have

f̄ k+M < f̄ k − δ. (8)

By contradiction, let us assume now that the procedure does not terminate and that
a solution x̃ (which is not a local minimum) is generated an infinite number of times.
By (7) and (8), there exists an iteration k̃ such that

f̄ k̃ ≤ f (x̃).

Furthermore, as x̃ is generated an infinite number of times, there exists an iteration
k̂ ≥ k̃ such that

f (x̃) < f̄ k̂ .

Hence, we have

f (x̃) < f̄ k̂ ≤ f̄ k̃ ≤ f (x̃),

which shows that the local search procedure cannot cycle. Then, the point produced
is such that |H | = 0, therefore we have

f (x) ≤ f̄ ≤ f (y), for all y ∈ N (x),

which implies that x is a local minimum. ��
For the three combinatorial optimization problem considered in Sect. 3, namely the
MAX-CUT, theMAX-SAT, and the QAP, we have designed a Nonmonotone GRASP
(NM-GRASP), that applies the procedure

NonmonotoneLocalSearch(x, f (·)).

NonmonotoneLocalSearch is based on the same neighborhood structure as in
the classical GRASPs. In the case of maximization problems (and this is the case for
the MAX-CUT and the MAX-SAT), we have the sign > in line 3 and 9. Furthermore,
f̄ is updated as the minimum among the objective function values in W, and on line
8 we have f̄ :=min{ f ∈ W }.

NonmonotoneLocalSearch accepts a move if it guarantees an improvement
greater than f̄ . The current solution is then successively replaced and the search stops
after all possible moves have been evaluated and no neighbor that improves f̄ was
found.

5 Computational results

In this section, we present our computational experience on theMAX-CUT, theMAX-
SAT, and the QAP. In order to compare the performance of the classical GRASP and

123

284 M. De Santis et al.

the NM-GRASP we tested the two heuristics on benchmark test problems from the
literature. The instances used for the tests on the MAX-CUT and the MAX-SAT prob-
lems are downloadable from Mauricio G.C. Resende’s webpage at http://mauricio.
resende.info/data/index.html. The instances used for the tests on the QAP problem
are downloadable from http://anjos.mgi.polymtl.ca/qaplib/inst.html#BO.

As for the MAX-CUT, the following problem instances were used:
g problems These test problems were used by Fujisawa et al. in [44]. They consist

of sparse graphs whose size in terms of number of nodes varies from 10 to 1250.
sg3dl problems Proposed by Burer, Monteiro, and Zhang [16], these instances

correspond to cubic lattice graphs modeling Ising spin glasses. The graphs vary in
sparsity and sizes, in such a way that the larger is the size in terms of number of nodes
(from 1000 to about 3000) the lower is the density (from 0.60 to 0.22%).

torus problemsThis is also a set of instances from the Isingmodel of spin glasses.
The complete problem library is available from the 7th DIMACS Implementation
Challenge and is downloadable as a tar file and compressed with gzip from http://
dimacs.rutgers.edu/Challenges/Seventh/Instances/.

B problems The graphs in this set of instances are sparse and vary in size from 5000
to 8000 nodes.

G problems These test problems were created by Helmberg and Rendl [63]. They
consist of toroidal, planar, and randomly generated graphs of varying sparsity and
sizes. These graphs vary in size from 800 to 3000 nodes and in density from 0.17 to
6.12%.

As for the MAX-SAT, the instances have been generated from the jnh SAT prob-
lems class of the 2nd DIMACS Implementation Challenge by randomly generating
clause weights uniformly between 1 and 1000. In these instances, the number of vari-
ables is 100, while the number of clauses ranges from 800 to 900.

For the QAP, benchmark problem instances have been proposed by Burkard et
al. [18] and are known as QAPLIB - A Quadratic Assignment Problem
Library:1

chr problems These test problems were used by Christofides and Benavent in [21].
They are characterized by a n × n adjacency matrix of a weighted tree and a n × n
adjacency matrix of a complete graph, with n varying from 12 to 25.

els19 problem In this instance, the data describe the distances of n = 19 different
facilities of a hospital and the flow of patients between those locations. It has been
used by Mautor in [81].

esc problems These test problems were used by Eschermann and Wunderlich in
[27] in a computer science application where to minimize the amount of additional
hardware needed for the testing of self-testable sequential circuits. In these instances,
n varies from 16 to 128.

kra problems These are real–world instances used to plan the Klinikum Regens-
burg in Germany and described by Krarup and Pruzan in [71]. Here, n = 30.

1 The QAPLIB - A Quadratic Assignment Problem Library has an online version at
http://anjos.mgi.polymtl.ca/qaplib/.

123

http://mauricio.resende.info/data/index.html
http://mauricio.resende.info/data/index.html
http://anjos.mgi.polymtl.ca/qaplib/inst.html#BO
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/
http://anjos.mgi.polymtl.ca/qaplib/

A nonmonotone GRASP 285

lipa problems These test problems were randomly generated by Li and Pardalos
[75]. They are asymmetric instances with known optimal solutions and n ranging from
20 to 90.

nug problems These test problems were used by Negent et al. in [84]. They are
characterized by a distancematrix containingManhattan distances of rectangular grids.
The size n ranges from 14 to 30.

rou problems These instances were used by Roucairol in [100]. The entries of the
matrices are randomly generated between 1 and 100 and n = {12, 15, 20}.

scr, tho, and wil problems. In all these instances, the entries of the matrices are
rectangular. It only changes the size. In the scr problems n = {12, 15, 20} and they
were used by Scriabin and Vergin in [102]. In the tho problems, n = {30, 40, 150}
and theywere used by Thonemann andA. Bölte in [106]. Finally, in thewil problems,
n = {50, 100} and they were used by Wilhelm and Ward in [109].

sko problems In these instances, the entries of the distance matricx are rectangular,
the entries in the flow matrix are pseudorandom numbers, and n ranges from 42 to
100. They were used by Skorin-Kapov in [104].

ste problems They refer to the backboard wiring problem and have size n = 36.
Totally, they constitute a set of three instances characterized by data representing
Manhattan, squared Euclidean, and Euclidean distances. They were used by Steinberg
in [105].

We performed ten random runs for each instance considered. For each run, with the
time limit of one hour, we stored the solution found with the best objective function
value, the CPU time, and the iteration in which such solution was found.

The experiments were performed on an Intel Xeon E5-2670 processor, running at
2.60GHz with 64GB of RAM. All runs were done using a single processor. All codes
were written in Fortran 77 and compiled with gfortran compiler.

About the fine tuning of the parameter M used in the nonmonotone local search,
the best value resulting in our experiments has been 10 for the MAX-CUT and the
QAP instances and 5 for the MAX-SAT instances.

Figures 5, 6, and 7 plot the performance of the NM-GRASP and the classical
GRASP in terms of objective function value for the MAX-CUT, the MAX-SAT,

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MAX−CUT

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 in

st
an

ce
s

improvement in the objective

NM−GRASP
GRASP

Fig. 5 Performance comparison between NM-GRASP (dashed line) and the original GRASP (dash-dot
line) on the MAX-CUT problems (worst-left; average-center; best-right)

123

286 M. De Santis et al.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
%

 in
st

an
ce

s

improvement in the objective
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
MAX−SAT

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 in

st
an

ce
s

improvement in the objective

NM−GRASP
GRASP

Fig. 6 Performance comparison between NM-GRASP (dashed line) and the original GRASP (dash-dot
line) on Max-sat problems (worst-left; average-center; best-right)

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
QAP

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 in

st
an

ce
s

improvement in the objective

NM−GRASP
GRASP

Fig. 7 Performance comparison between NM-GRASP (dashed line) and the original GRASP (dash-dot
line) on quadratic assignment problems (worst-left; average-center; best-right)

and the QAP, respectively. The dashed line gives on the y-axis the percentage of
instances in which the absolute improvement in terms of objective function value of
NM-GRASP with respect to GRASP is greater than or equal to the value given in the
x-axis. Furthermore, the dash-dot line gives on the y-axis the percentage of instances
in which the absolute improvement of GRASP with respect to NM-GRASP is greater
or equal than the value given in the x-axis. More specifically, let f NM

i and f OR
i be the

objective function values found by NM-GRASP and the classical GRASP on instance
i , respectively. Let N be the total number of instances considered for each problem.
The dashed line for the MAX-CUT and the MAX-SAT is the plot of

y(x) = |V (x)|
N

, (9)

where V (x) = {i : f NM
i − f OR

i ≥ x}. The dash-dot line for the MAX-CUT and the
MAX-SAT is the plot of

123

A nonmonotone GRASP 287

y(x) = |W (x)|
N

, (10)

where W (x) = {i : f OR
i − f NM

i ≥ x}. For what concerns the QAP, since it is
a minimization problem, we have that the dashed line is the plot of (10) while the
dash-dot line is the plot of (9).

In every figure, we report: (1) on the left, the plot related to the worst objective
function value obtained among the ten runs; (2) on the center, the one related to the
average of the objective function value obtained on the ten runs, and (3) on the right,
the plot related to the best objective function value obtained among the ten runs by
the two heuristics.

On the basis of the figures, we notice that NM-GRASP is generally able to guaran-
tee better performances than GRASP in all three scenarios (worst, average, and best
scenario).

To deeper investigate and confirm the better performance of NM-GRASP, Tables 1,
2, and 3 summarize the details of the results obtained by comparing the two algorithms
on the benchmark instances of the three selected combinatorial optimization problems.
The first column of the three tables reports the name of the instance. The remaining
columns report for each of the two approaches the average CPU time (Time), the
average number of iterations (Iter), the average objective function value (Obj) with
the standard deviation in brackets, and the best objective function value obtained over
the ten runs (Best Obj) with the number of times the best value is obtained in brackets.

As for the 117 benchmark instances of the MAX-CUT, the 44 instances of the
MAX-SAT, and the 82 instances of the QAP, we notice that the NM-GRASP found
solutionswhose objective function value is better than or equal to the objective function
value of the solution found by the classical GRASP (often strictly better) for the great
majority of problems. Moreover, the number of times NM-GRASP found the best
objective function value over only ten runs is higher for all instances for the QAP, and
for almost all instances except for a very small percentage of cases that is below 5%
for the MAX-CUT and below 11% for the MAX-SAT.
In order to see if there exist significant differences in the results, in terms of solution
quality, between NM-GRASP and the original GRASP, we apply the Friedman non-
parametric statistical test followed by the post-hoc test on the results from the tables.
The post-hoc analysis shows that NM-GRASP statistically outperforms the original
GRASP on both MAX-CUT and the QAP instances with p-values of 1.05973563e-10
and 3.84942067e-09, respectively. The performance between the two algorithms is
statistically less significant for the MAX-SAT, with a p-value of 6.47928279e-02.
As additional comparison between GRASP and NM-GRASP, we consider their per-
formance with respect to the average CPU time.We recall that, for each run, we stored
the CPU time needed to find the solution with the best objective function value in
that run. In Fig. 8, we report the box plots related to the distribution of the average
CPU time over the ten runs for each problem (MAX-CUT on the left, MAX-SAT in
the center and QAP on the right). On each box, the central mark is the median, the
edges of the box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are plotted individually. From
each plots, we see that the median of the NM-GRASP is lower than the median of

123

288 M. De Santis et al.

Ta
bl
e
1

C
om

pa
ri
so
n
be
tw
ee
n
N
M
-G

R
A
SP

an
d
th
e
cl
as
si
ca
lG

R
A
SP

on
M
A
X
-C
U
T
in
st
an
ce
s
(a
ve
ra
ge

re
su
lts

ov
er

te
n
ru
ns
)

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

g1
0.
n

<
10

−3
1

17
(0
)

17
(1
0)

10
−3

1
17

(0
)

17
(1
0)

g2
0.
n

<
10

−3
1.
3

37
(0
)

37
(1
0)

10
−3

1
37

(0
)

37
(1
0)

g2
5.
n

<
10

−3
1

42
(0
)

42
(1
0)

10
−3

1
42

(0
)

42
(1
0)

g3
0.
n

<
10

−3
1.
5

61
(0
)

61
(1
0)

10
−3

1
61

(0
)

61
(1
0)

g5
0.
n

<
10

−3
1.
2

10
5(
0)

10
5(
10

)
10

−3
1

10
5(
0)

10
5(
10

)

g1
00

.n
<
10

−3
4.
4

21
4(
0)

21
4(
10

)
0.
03

1
21

4(
0)

21
4(
10

)

g1
50

.n
0.
06

7.
5

29
4(
0)

29
4(
10

)
0.
05

1
29

4(
0)

29
4(
10

)

g2
00

.n
1.
46

98
.3

40
5(
0)

40
5(
10

)
0.
28

5
40

5(
0)

40
5(
10

)

g2
50

.n
6.
19

28
6.
2

30
5(
0)

30
5(
10

)
3.
39

33
30

5(
0)

30
5(
10

)

g5
00

.n
92

2.
66

13
64

3.
1

57
3.
5(
0.
53

)
57

4(
5)

32
0.
58

81
8

57
3(
0)

57
3(
10

)

g1
00

0.
n

82
8.
69

30
56

17
04

.3
(1
.1
6)

17
06

(1
)

10
2.
88

63
17

08
(0
)

17
08

(1
0)

g1
25

0.
n

18
48

.6
7

17
40

.5
25

46
.1
(3
.3
8)

25
51

(1
)

28
65

.9
8

50
7

25
55

(0
)

25
55

(1
0)

sg
3d

l0
51

00
0.
m
c

0.
02

4.
6

11
0(
0)

11
0(
10

)
0.
03

3
11

0(
0)

11
0(
10

)

sg
3d

l0
52

00
0.
m
c

0.
03

7
11

2(
0)

11
2(
10

)
0.
25

16
11

2(
0)

11
2(
10

)

sg
3d

l0
53

00
0.
m
c

0.
01

3.
3

10
6(
0)

10
6(
10

)
0.
02

1
10

6(
0)

10
6(
10

)

sg
3d

l0
54

00
0.
m
c

<
10

−3
2.
8

11
4(
0)

11
4(
10

)
0.
05

4
11

4(
0)

11
4(
10

)

sg
3d

l0
55

00
0.
m
c

<
10

−3
3.
4

11
2(
0)

11
2(
10

)
0.
09

6
11

2(
0)

11
2(
10

)

sg
3d

l0
56

00
0.
m
c

0.
01

4.
4

11
0(
0)

11
0(
10

)
10

−3
1

11
0(
0)

11
0(
10

)

sg
3d

l0
57

00
0.
m
c

0.
03

8.
3

11
2(
0)

11
2(
10

)
0.
05

4
11

2(
0)

11
2(
10

)

sg
3d

l0
58

00
0.
m
c

<
10

−3
2.
5

10
8(
0)

10
8(
10

)
0.
01

1
10

8(
0)

10
8(
10

)

sg
3d

l0
59

00
0.
m
c

<
10

−3
2.
9

11
0(
0)

11
0(
10

)
0.
01

1
11

0(
0)

11
0(
10

)

123

A nonmonotone GRASP 289

Ta
bl
e
1

co
nt
in
ue
d

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

sg
3d

l1
01

00
0.
m
c

96
.0
1

43
68

.9
89

0.
4(
3.
10

)
89

4(
3)

13
68

.7
4

17
72

.3
89

1(
1.
05

)
89

2(
5)

sg
3d

l1
02

00
0.
m
c

11
8.
33

30
92

.1
89

8.
6(
1.
35

)
90

0(
4)

11
12

.4
6

14
51

.2
89

4(
0)

89
4(
10

)

sg
3d

l1
03

00
0.
m
c

68
6.
75

50
64

.4
88

5(
2.
87

)
89

0(
2)

12
88

.6
5

10
28

.4
88

6(
0)

88
6(
10

)

sg
3d

l1
04

00
0.
m
c

14
5.
84

30
43

.4
89

6(
1.
33

)
89

8(
2)

95
.6
7

28
3.
8

89
8(
0)

89
8(
10

)

sg
3d

l1
05

00
0.
m
c

64
8.
32

33
63

.4
88

1(
1.
70

)
88

2(
7)

18
0.
24

26
1.
2

88
2.
2(
0.
63

)
88

4(
1)

sg
3d

l1
06

00
0.
m
c

14
2.
68

43
54

.6
88

4.
6(
2.
84

)
88

8(
3)

44
8.
53

41
3.
8

88
0.
2(
0.
63

)
88

2(
1)

sg
3d

l1
07

00
0.
m
c

37
.8
3

25
38

.7
89

5.
8(
2.
20

)
90

0(
1)

53
7.
59

58
4.
2

89
2.
2(
0.
63

)
89

4(
1)

sg
3d

l1
08

00
0.
m
c

16
4.
99

23
34

87
9.
6(
1.
58

)
88

2(
2)

4.
66

45
6.
4

88
0.
2(
0.
63

)
88

2(
1)

sg
3d

l1
09

00
0.
m
c

36
9.
95

40
04

.9
89

6.
2(
1.
48

)
90

0(
1)

26
7.
67

57
9

89
8(
0)

89
8(
10

)

sg
3d

l1
41

00
0.
m
c

75
7.
58

70
5.
1

23
95

.4
(4
.1
2)

24
02

(1
)

55
0.
67

19
6.
1

24
14

.4
(1
.5
8)

24
16

(4
)

sg
3d

l1
42

00
0.
m
c

10
14

.7
2

70
4.
3

24
03

.4
(3
.8
9)

24
10

(1
)

22
0.
4

22
24

26
(0
)

24
26

(1
0)

sg
3d

l1
43

00
0.
m
c

12
22

.5
7

52
0.
6

23
94

.4
(4
.7
0)

24
00

(1
)

93
8.
15

23
1.
6

24
13

.8
(2
.3
9)

24
18

(1
)

sg
3d

l1
44

00
0.
m
c

11
39

.5
5

74
4.
9

23
98

.8
(2
.7
0)

24
04

(1
)

13
.3
2

97
.1

24
19

.4
(1
.3
5)

24
22

(1
)

sg
3d

l1
45

00
0.
m
c

12
45

.0
2

57
3.
9

23
92

(4
.9
0)

24
00

(2
)

65
9.
22

83
.5

24
10

.2
(0
.6
3)

24
12

(1
)

sg
3d

l1
46

00
0.
m
c

85
6.
59

57
7.
6

24
02

.6
(3
.7
8)

24
10

(1
)

10
64

.9
8

12
5.
8

24
17

(3
.1
6)

24
26

(1
)

sg
3d

l1
47

00
0.
m
c

82
4.
15

73
3.
6

23
87

.6
(3
.9
8)

23
98

(1
)

27
2.
13

17
6.
6

24
14

(2
.4
9)

24
18

(2
)

sg
3d

l1
48

00
0.
m
c

16
99

.9
1

61
1

23
96

.4
(5
.2
3)

24
04

(2
)

13
73

.2
0

12
1

24
26

.8
(1
.0
3)

24
28

(4
)

sg
3d

l1
49

00
0.
m
c

44
0.
21

74
9.
7

23
74

.6
(4
.7
2)

23
84

(1
)

15
36

.9
9

16
1

23
98

.8
(1
.0
3)

24
00

(4
)

sg
3d

l0
51

00
00

.m
c

0.
02

5.
1

11
2(
0)

11
2(
10

)
0.
02

4
11

2(
0)

11
2(
10

)

sg
3d

l1
01

00
00

.m
c

16
6.
29

48
75

.4
89

0.
2(
1.
99

)
89

2(
5)

19
3.
73

25
5.
5

89
0(
0)

89
0(
10

)

sg
3d

l1
41

00
00

.m
c

60
7.
91

72
6.
3

24
08

.6
(7
.1
8)

24
20

(1
)

94
3.
40

13
4.
6

24
26

.4
(0
.8
4)

24
28

(2
)

to
ru
sg
3-
8.
da
t

0.
01

1
35

,3
22

,3
78

.4
(>

10
0)

36
,5
89

,0
03

(1
)

0.
23

1
40

,2
00

,6
26

(0
)

40
,2
00

,6
26

(1
0)

to
ru
sg
3-
15

.d
at

0.
8

1
24

4,
42

7,
17

6.
8(

>
10

0)
25

4,
96

3,
28

5(
1)

11
.8
7

1
27

6,
41

3,
14

4(
0)

27
6,
41

3,
14

4(
10

)

123

290 M. De Santis et al.

Ta
bl
e
1

co
nt
in
ue
d

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

to
ru
sp
m
3-
8-
50

.d
at

29
6.
99

69
69

.9
45

7.
2(
1.
03

)
45

8(
6)

83
.1
0

20
58

.9
45

6.
4(
0.
84

)
45

8(
2)

to
ru
sp
m
3-
15

-5
0.
da
t

79
9.
81

29
9.
6

29
50

.2
(5
.1
2)

29
60

(1
)

57
0.
56

34
29

74
(0
)

29
74

(1
0)

B
1

11
.9
6

2
10

,0
00

(0
)

10
,0
00

(1
0)

37
.0
5

1
10

,0
00

(0
)

10
,0
00

(1
0)

B
2

16
.0
8

1.
6

12
,0
00

(0
)

12
,0
00

(1
0)

54
.5
8

1
12

,0
00

(0
)

12
,0
00

(1
0)

B
3

23
.4
6

1.
8

14
,0
00

(0
)

14
,0
00

(1
0)

53
.5
4

2
13

,8
60

(0
)

13
,8
60

(1
0)

B
4

33
.4
8

1.
9

16
,0
00

(0
)

16
,0
00

(1
0)

11
1.
12

1
16

,0
00

(0
)

16
,0
00

(1
0)

G
1

20
27

.4
6

30
02

.4
11

,6
10

.2
(5
.5
9)

11
,6
19

(1
)

22
12

.2
7

63
7

11
,6
24

(0
)

11
,6
24

(1
0)

G
2

12
91

.0
9

21
55

.4
11

,6
02

.8
(7
.9
6)

11
,6
20

(1
)

15
68

.5
3

41
0

11
,6
20

(0
)

11
,6
20

(1
0)

G
3

24
91

.3
8

40
04

.8
11

,6
05

.9
(5
.6
7)

11
,6
13

(1
)

10
5.
00

29
11

,6
22

(0
)

11
,6
22

(1
0)

G
4

17
69

.5
7

26
38

.2
11

,6
36

.5
(5
.4
6)

11
,6
46

(1
)

22
8.
21

67
11

,6
46

(0
)

11
,6
46

(1
0)

G
5

23
38

.3
9

35
17

11
,6
17

(5
.7
5)

11
,6
27

(1
)

29
30

.2
4

91
6

11
,6
31

(0
)

11
,6
31

(1
0)

G
6

15
99

.9
8

25
56

.7
21

61
.1
(5
.6
3)

21
74

(1
)

49
.6
5

15
21

78
(0
)

21
78

(1
0)

G
7

17
69

.3
2

26
02

.7
19

94
.5
(5
.0
2)

20
01

(1
)

42
6.
72

11
4

20
00

(0
)

20
00

(1
0)

G
8

18
07

.9
9

26
72

.7
19

91
.4
(4
.5
8)

19
96

(2
)

21
2.
22

68
20

05
(0
)

20
05

(1
0)

G
9

18
50

.6
8

27
07

.9
20

37
.3
(8
.1
7)

20
48

(1
)

14
5.
90

43
20

54
(0
)

20
54

(1
0)

G
10

14
60

.4
4

22
36

.4
19

90
.7
(5
.2
7)

19
99

(1
)

26
2.
57

80
20

00
(0
)

20
00

(1
0)

G
11

0.
28

49
5.
4

56
4(
0)

56
4(
10

)
0.
80

62
56

4(
0)

56
4(
10

)

G
12

1.
98

26
52

.1
55

4.
8(
1.
03

)
55

6(
4)

2.
05

56
9.
5

55
6(
0)

55
6(
10

)

G
13

2.
91

29
50

.5
58

0.
6(
1.
35

)
58

2(
4)

86
.6
3

50
4.
9

58
1.
6(
0.
84

)
58

2(
8)

G
14

58
7.
78

60
33

.4
30

52
.1
(3
.6
0)

30
59

(1
)

82
3.
84

46
2

30
58

(0
)

30
58

(1
0)

G
15

15
5.
31

48
84

.1
30

40
(4
)

30
45

(1
)

51
6.
06

28
2

30
39

(0
)

30
39

(1
0)

G
16

78
4.
78

47
03

.3
30

39
(3
.7
1)

30
48

(1
)

14
73

.2
7

95
4

30
50

.2
(0
.4
2)

30
51

(2
)

G
17

54
2.
66

51
71

.1
30

34
.8
(2
.8
2)

30
39

(2
)

19
4.
13

76
4.
3

30
38

(0
)

30
38

(1
0)

123

A nonmonotone GRASP 291

Ta
bl
e
1

co
nt
in
ue
d

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

G
18

21
0.
25

46
14

98
7.
2(
2.
39

)
99

1(
1)

16
23

.3
7

78
0

98
8(
0)

98
8(
10

)

G
19

67
2.
3

44
17

.1
89

8.
7(
3.
06

)
90

5(
1)

13
62

.6
9

96
0

90
3.
3(
0.
48

)
90

4(
3)

G
20

35
9.
49

31
25

.5
94

0(
1.
89

)
94

1(
7)

30
98

.7
5

14
40

92
7(
0)

92
7(
10

)

G
21

91
.0
2

34
51

.8
92

5.
3(
5.
14

)
93

1(
3)

63
.3
1

36
92

1(
0)

92
1(
10

)

G
22

16
43

.6
3

39
6.
9

13
,2
42

.8
(1
1.
04

)
13

,2
59

(1
)

64
7.
59

33
13

,2
89

(0
)

13
,2
89

(1
0)

G
23

17
95

.5
9

38
4.
7

13
,2
47

.5
(1
1.
22

)
13

,2
67

(1
)

17
31

.6
0

94
13

,3
17

(0
)

13
,3
17

(1
0)

G
24

13
25

.4
1

34
1.
6

13
,2
50

.8
(1
1.
23

)
13

,2
71

(1
)

13
80

.0
6

73
13

,3
03

(0
)

13
,3
03

(1
0)

G
25

14
90

.1
5

28
2.
4

13
,2
48

.4
(1
2.
48

)
13

,2
70

(1
)

50
2.
05

30
13

,3
22

(0
)

13
,3
22

(1
0)

G
26

21
87

.8
7

41
5.
7

13
,2
29

.6
(9
.3
6)

13
,2
49

(1
)

44
.9
1

50
.8

13
,2
93

(0
)

13
,2
93

(1
0)

G
27

11
84

.2
8

26
7.
6

32
39

.3
(8
.9
0)

32
51

(1
)

19
02

.8
3

10
4

33
06

(0
)

33
06

(1
0)

G
28

14
12

.6
2

26
7.
3

31
99

.9
(8
.4
4)

32
14

(1
)

13
16

.6
4

67
32

82
(0
)

32
82

(1
0)

G
29

15
33

.3
6

28
3

32
97

.2
(7
.7
1)

33
06

(2
)

11
30

.3
5

66
34

04
(0
)

34
04

(1
0)

G
30

17
47

.6
2

32
4

33
14

.4
(6
.1
7)

33
24

(1
)

27
64

.0
4

14
7

33
88

(0
)

33
88

(1
0)

G
31

20
06

.5
2

38
7.
6

32
06

.6
(7
.3
1)

32
18

(1
)

82
.5
6

7
32

77
(0
)

32
77

(1
0)

G
32

2.
59

11
82

.6
13

96
.4
(2
.4
6)

14
02

(1
)

3.
56

29
6.
5

14
01

.2
(1
.4
0)

14
04

(1
)

G
33

2.
94

15
88

.2
13

70
(3
.5
3)

13
76

(1
)

6.
44

23
3.
9

13
71

.8
(1
.9
9)

13
76

(1
)

G
34

4.
04

84
9

13
71

(2
.7
1)

13
76

(1
)

54
.3
6

50
9.
7

13
77

.4
(1
.6
5)

13
80

(1
)

G
35

15
79

.0
3

61
7.
4

76
08

.5
(5
.1
0)

76
17

(1
)

12
69

.6
6

92
76

39
(0
)

76
39

(1
0)

G
36

20
63

.3
8

63
9.
3

75
97

.5
(4
.1
4)

76
06

(1
)

16
8.
15

15
76

37
(0
)

76
37

(1
0)

G
37

70
8.
69

69
9.
4

76
10

.6
(6
.2
4)

76
20

(1
)

13
13

.8
5

93
76

24
(0
)

76
24

(1
0)

G
38

18
35

.1
9

67
4.
5

76
12

.2
(4
.6
6)

76
19

(1
)

24
22

.9
5

19
4

76
44

(0
)

76
44

(1
0)

G
39

14
36

.4
1

75
6.
9

23
26

.1
(1
3.
14

)
23

58
(1
)

17
50

.3
3

99
23

56
(0
)

23
56

(1
0)

G
40

10
28

.0
3

74
2.
5

23
19

.2
(8
.9
2)

23
30

(1
)

28
17

.6
1

17
6

23
66

(0
)

23
66

(1
0)

123

292 M. De Santis et al.

Ta
bl
e
1

co
nt
in
ue
d

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

G
41

11
49

.9
8

63
7.
8

23
18

.7
(6
.5
7)

23
28

(2
)

15
54

.2
3

85
23

52
(0
)

23
52

(1
0)

G
42

10
39

.4
9

75
2.
1

24
00

.2
(8
.5
9)

24
13

(1
)

18
25

.5
4

98
24

46
(0
)

24
46

(1
0)

G
43

16
07

.2
6

18
31

.3
66

43
.1
(4
.6
1)

66
51

(1
)

10
68

.1
6

25
2

66
56

(0
)

66
56

(1
0)

G
44

25
57

.7
2

27
71

.7
66

30
(2
.4
9)

66
34

(1
)

26
47

.9
5

63
8

66
49

(0
)

66
49

(1
0)

G
45

14
91

.3
9

16
16

.1
66

34
.4
(5
.2
7)

66
46

(1
)

94
.5
9

24
66

47
(0
)

66
47

(1
0)

G
46

19
98

.3
2

26
00

.7
66

33
.9
(6
.1
5)

66
49

(1
)

81
.8
2

19
66

47
(0
)

66
47

(1
0)

G
47

18
20

.7
2

21
67

66
39

.6
(8
.0
3)

66
53

(1
)

61
.0
8

17
66

55
(0
)

66
55

(1
0)

G
48

3.
09

1.
4

60
00

(0
)

60
00

(1
0)

12
.9
6

1
60

00
(0
)

60
00

(1
0)

G
49

5.
4

3.
7

60
00

(0
)

60
00

(1
0)

8.
35

2
59

40
(0
)

59
40

(1
0)

G
50

2.
46

17
.8

58
80

(0
)

58
80

(1
0)

45
.3
1

2
58

80
(0
)

58
80

(1
0)

G
51

77
0.
93

43
50

38
28

.1
(4
.7
5)

38
35

(1
)

15
06

.6
0

55
1

38
34

(0
)

38
34

(1
0)

G
52

39
9.
11

41
60

.1
38

32
.8
(3
.3
6)

38
39

(1
)

10
32

.6
0

35
9

38
35

(0
)

38
35

(1
0)

G
53

50
0.
85

38
59

.9
38

31
.5
(5
.7
8)

38
47

(1
)

27
69

.3
7

93
7

38
36

(0
)

38
36

(1
0)

G
54

74
6.
42

41
37

.7
38

26
.3
(2
.3
1)

38
30

(2
)

38
8.
44

13
6.
4

38
36

(0
)

38
36

(1
0)

G
55

14
12

.8
1

51
.3

10
,0
91

.8
(1
2.
05

)
10

,1
13

(1
)

28
65

.1
3

20
10

,1
68

(0
)

10
,1
68

(1
0)

G
56

17
78

.3
9

48
37

92
.8
(1
1.
01

)
38

16
(1
)

35
7.
66

1
39

30
(0
)

39
30

(1
0)

G
57

35
.0
5

26
8.
7

34
19

.8
(4
.6
6)

34
32

(1
)

10
5.
50

62
.8

34
39

.4
(2
.5
0)

34
44

(1
)

G
58

16
88

.0
3

69
.2

19
,0
24

.8
(9
.9
8)

19
,0
41

(1
)

11
07

.6
3

11
19

,1
22

(0
)

19
,1
22

(1
0)

G
59

16
90

.6
4

78
57

88
(2
5.
69

)
58

26
(2
)

21
23

.2
5

20
59

59
(0
)

59
59

(1
0)

G
60

19
01

.5
1

26
.8

13
,8
75

.5
(9
.4
1)

13
,8
92

(1
)

94
8.
27

5
14

,0
51

(0
)

14
,0
51

(1
0)

G
61

16
19

.6
6

21
.9

54
53

.9
(1
1.
38

)
54

76
(1
)

37
4.
96

3
56

27
(0
)

56
27

(1
0)

G
62

24
.2
2

12
7.
4

47
57

(4
.7
4)

47
64

(1
)

21
1.
17

26
.6

47
88

.6
(1
.9
0)

47
92

(1
)

G
63

75
6.
44

31
.8

26
,6
43

(1
6.
06

)
26

,6
73

(1
)

97
6.
63

4
26

,7
86

(0
)

26
,7
86

(1
0)

123

A nonmonotone GRASP 293

Ta
bl
e
1

co
nt
in
ue
d

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

G
64

12
01

.1
7

28
.6

82
48

.7
(2
4.
78

)
82

84
(1
)

14
11

.9
1

4
84

82
(0
)

84
82

(1
0)

G
65

30
.3

10
0.
3

54
27

.2
(9
.9
9)

54
46

(1
)

61
.6
5

17
54

70
.4
(3
.6
3)

54
76

(2
)

G
66

30
.4
4

70
.5

61
93

.2
(5
.9
0)

62
02

(1
)

13
3.
21

29
.6

62
52

(0
.9
4)

62
54

(1
)

G
67

44
.4
3

38
.2

67
68

.2
(6
.5
6)

67
78

(1
)

32
2.
77

16
68

23
(3
.5
6)

68
26

(4
)

123

294 M. De Santis et al.

Ta
bl
e
2

C
om

pa
ri
so
n
be
tw
ee
n
N
M
-G

R
A
SP

an
d
th
e
cl
as
si
ca
lG

R
A
SP

on
M
A
X
-S
A
T
in
st
an
ce
s
(a
ve
ra
ge

re
su
lts

ov
er

te
n
ru
ns
)

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

jn
h1

.s
at

13
28

.3
14

2,
44

1
42

0,
87

7.
7(
25

.6
8)

42
0,
90

9(
2)

13
26

.9
2

10
8,
93

1.
6

42
0,
88

2(
22

.2
6)

42
0,
90

9(
1)

jn
h4

.s
at

13
53

.8
5

13
6,
30

1.
3

42
0,
77

8.
5(
5.
82

)
42

0,
78

9(
1)

18
10

.5
7

14
4,
41

6.
1

42
0,
78

5.
4(
4.
65

)
42

0,
78

9(
6)

jn
h5

.s
at

71
9.
09

66
,
54

9.
1

42
0,
66

3.
8(
52

.4
3)

42
0,
74

2(
2)

10
08

.6
4

73
,
24

2.
4

42
0,
74

2(
0)

42
0,
74

2(
10

)

jn
h6

.s
at

37
9.
3

36
,
29

0.
1

42
0,
82

6(
0)

42
0,
82

6(
10

)
26

0.
3

19
,
56

2.
3

42
0,
82

6(
0)

42
0,
82

6(
10

)

jn
h7
.s
at

70
.2
8

68
87

.3
42

0,
92

5(
0)

42
0,
92

5(
10

)
60

.1
1

46
69

.6
42

0,
92

5(
0)

42
0,
92

5(
10

)

jn
h8

.s
at

15
32

.7
6

13
9,
21

8.
2

42
0,
34

5.
9(
88

.7
2)

42
0,
46

3(
3)

20
06

.0
8

14
3,
43

2.
5

42
0,
37

8(
76

.9
5)

42
0,
46

3(
4)

jn
h9

.s
at

21
77

.8
5

22
3,
39

4.
3

42
0,
39

5.
1(
65

.7
5)

42
0,
50

5(
1)

18
70

.4
8

14
8,
04

2.
7

42
0,
44

6(
62

.3
2)

42
0,
52

2(
2)

jn
h1

0.
sa
t

11
14

.7
6

10
0,

63
3.
3

42
0,
69

9.
2(
71

.3
1)

42
0,
75

8(
5)

17
37

.9
5

12
3,
01

3.
5

42
0,
76

7.
7(
60

.0
4)

42
0,
84

0(
3)

jn
h1

1.
sa
t

15
84

.3
4

15
8 ,
77

0.
2

42
0,
66

4.
2(
33

.0
1)

42
0,
72

8(
1)

16
37

.4
6

12
8,
42

0.
3

42
0,
69

5.
6(
42

.3
6)

42
0,
74

0(
3)

jn
h1

2.
sa
t

72
0.
94

70
,
90

2.
8

42
0,
88

6.
2(
24

.5
1)

42
0,
92

5(
1)

68
6.
21

52
,
09

2.
2

42
0,
88

6.
2(
24

.5
1)

42
0,
92

5(
1)

jn
h1

3.
sa
t

12
22

.7
7

11
3,
48

8.
8

42
0,
80

5.
2(
9.
30

)
42

0,
81

6(
4)

13
49

.2
7

98
,
40

3.
2

42
0,
81

0.
6(
8.
69

)
42

0,
81

6(
7)

jn
h1

4.
sa
t

17
30

.1
3

16
9,
10

1.
2

42
0,
74

0.
4(
42

.4
5)

42
0,
82

4(
1)

16
82

.6
13

0,
17

6.
1

42
0,
74

4.
9(
40

.3
7)

42
0,
82

4(
1)

jn
h1

5.
sa
t

15
49

.5
7

14
4,
39

9.
3

42
0,
65

4.
7(
41

.1
1)

42
0,
71

9(
2)

12
52

.2
7

91
,
90

6
42

0,
68

3.
3(
39

.5
0)

42
0,
71

9(
5)

jn
h1

6.
sa
t

98
3.
73

97
,
35

7.
6

42
0,
90

0.
7(
13

.5
0)

42
0,
91

4(
4)

17
81

.3
2

13
6,
14

0.
1

42
0,
90

5.
1(
11

.3
8)

42
0,
91

4(
4)

jn
h1

7.
sa
t

16
22

.7
5

16
4,
58

3.
5

42
0,
91

8.
1(
11

.1
1)

42
0,
92

5(
7)

12
87

.6
6

10
2,

74
4.
7

42
0,
92

5(
0)

42
0,
92

5(
10

)

jn
h1

8.
sa
t

18
98

.9
1

17
4,
73

2.
2

42
0,
71

6.
8(
67

.2
4)

42
0,
79

5(
3)

86
4.
33

62
,
59

9.
7

42
0,
77

9(
37

.9
7)

42
0,
79

5(
8)

jn
h1

9.
sa
t

13
04

. 2
9

13
0,

93
3.
3

42
0,
59

1(
72

.6
7)

42
0,
75

9(
1)

11
90

.2
6

94
,
28

3.
7

42
0,
60

9.
2(
74

.3
7)

42
0,
75

9(
1)

jn
h2

01
.s
at

11
6.
17

14
,
15

5.
6

39
4,
23

8(
0)

39
42

38
(1
0)

80
.5
5

74
28

.8
39

4,
23

8(
0)

39
4,
23

8(
10

)

jn
h2

02
.s
at

11
53

12
7,
76

4.
7

39
4,
02

3.
8(
34

.9
2)

39
4,
09

9(
1)

11
88

.4
7

10
3,
05

6.
7

39
4,
02

4.
7(
44

.0
1)

39
4,
10

0(
1)

jn
h2

03
.s
at

18
39

.1
4

18
4,
29

3.
7

39
4,
10

3.
3(
34

.0
8)

39
4,
13

5(
2)

20
31

.7
4

16
0,

28
1.
2

39
4,
12

2.
7(
11

.9
3)

39
4,
13

5(
4)

jn
h2

05
.s
at

19
79

.5
6

21
0,

25
8.
2

39
4,
23

3.
4(
6.
96

)
39

4,
23

8(
5)

21
54

.0
6

18
1,
15

0.
8

39
4,
23

6.
4(
4.
38

)
39

4,
23

8(
7)

jn
h2

07
.s
at

15
76

.3
5

17
7,
93

5.
5

39
4,
21

0.
7(
24

.7
9)

39
4,
23

8(
1)

15
10

.6
5

13
3,
83

4.
2

39
4,
21

3.
9(
24

.7
8)

39
4,
23

8(
1)

123

A nonmonotone GRASP 295

Ta
bl
e
2

co
nt
in
ue
d

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

jn
h2

08
.s
at

17
02

.7
4

17
6,
68

4.
2

39
4,
10

4.
1(
19

.2
9)

39
4,
15

9(
1)

18
11

.6
7

14
7,
57

1.
9

39
4,
10

4.
1(
19

.2
9)

39
4,
15

9(
1)

jn
h2

09
.s
at

18
32

.0
4

20
2,

28
3.
3

39
4,
21

6.
7(
18

.0
2)

39
4,
23

8(
3)

13
61

.6
9

11
7,
26

3.
8

39
4,
21

2.
8(
17

.1
0)

39
4,
23

8(
2)

jn
h2

10
.s
at

53
.4
6

61
81

.5
39

4,
23

8(
0)

39
4,
23

8(
10

)
61

.6
6

55
39

.4
39

4,
23

8(
0)

39
4,
23

8(
10

)

jn
h2

11
.s
at

20
37

.7
3

20
1,
06

9.
7

39
3,
88

4.
9(
48

.8
8)

39
3,
95

4(
3)

18
04

.8
6

14
1,
94

7.
5

39
3,
89

7.
8(
52

.4
7)

39
3,
97

9(
1)

jn
h2

12
.s
at

13
18

.6
4

14
5,
91

8.
8

39
4,
20

9.
6(
26

.9
3)

39
42

,2
7(
6)

15
61

.9
9

13
4,
29

1.
2

39
4,
20

9.
3(
27

.1
3)

39
4,
22

7(
6)

jn
h2

14
.s
at

17
34

.6
7

18
3,
98

6.
4

39
4,
13

7.
3(
19

.9
2)

39
4,
16

3(
2)

13
64

.3
2

11
3,
67

2.
1

39
4,
15

4.
9(
14

.5
9)

39
4,
16

3(
7)

jn
h2

15
.s
at

17
42

.7
3

18
5,
87

2.
8

39
4,
03

0(
44

.3
7)

39
4,
09

1(
2)

18
26

.1
6

15
4,
19

3.
6

39
4,
03

7.
4(
40

.9
7)

39
4,
09

1(
2)

jn
h2

16
.s
at

31
6.
95

31
,
51

4.
3

39
4,
15

6.
5(
27

.9
1)

39
4,
22

6(
1)

11
45

.1
8

90
,
45

1.
2

39
4,
18

5(
43

.2
2)

39
4,
22

6(
5)

jn
h2

17
.s
at

81
9 .
28

93
,
64

0.
7

39
4,
23

8(
0)

39
4,
23

8(
10

)
55

8.
24

49
,
25

3.
8

39
4,
23

8(
0)

39
4,
23

8(
10

)

jn
h2

18
.s
at

93
5.
46

10
2,

15
6.
5

39
4,
23

7.
4(
1.
90

)
39

4,
23

8(
9)

96
2.
95

81
,
95

0.
3

39
4,
23

8(
0)

39
4,
23

8(
10

)

jn
h2

19
.s
at

23
78

.6
24

9,
81

5.
8

39
3,
93

7.
3(
93

.3
3)

39
4,
11

1(
1)

16
27

.0
3

13
4,
22

3.
1

39
3,
96

6.
3(
79

.1
5)

39
4,
11

1(
1)

jn
h2

20
.s
at

14
56

.9
8

16
7,
31

7.
4

39
4,
18

8.
4(
29

.6
7)

39
4,
23

8(
1)

14
89

.6
3

13
2,

69
1.
9

39
4,
19

0.
7(
32

.0
1)

39
4,
23

8(
1)

jn
h3

01
.s
at

78
0.
52

66
,
74

8.
3

44
4,
79

2.
2(
8.
28

)
44

4,
80

7(
1)

88
4.
31

59
,
61

3.
6

44
4,
80

5.
6(
24

.3
2)

44
4,
85

4(
1)

jn
h3

02
.s
at

14
31

.9
4

12
5,
14

2.
8

44
4,
39

8.
1(
63

.3
7)

44
4,
45

9(
4)

11
68

.2
7

79
,
95

4.
4

44
4,
43

7.
4(
45

.5
4)

44
4,
45

9(
8)

jn
h3

03
.s
at

19
67

.0
2

16
0,

22
5.
3

44
4,
37

2.
9(
47

.9
3)

44
4,
50

3(
1)

11
19

.7
4

72
,
10

4.
4

44
4,
36

6(
0)

44
4,
36

6(
10

)

jn
h3

04
.s
at

14
23

.0
2

12
4,
77

0
44

4,
50

7(
44

.7
4)

44
4,
53

3(
7)

12
81

.3
7

89
,
89

4.
4

44
4,
49

1.
6(
48

.5
1)

44
4,
53

3(
5)

jn
h3

05
.s
at

10
27

.6
8

85
,
92

7.
6

44
3,
98

5.
8(
10

5.
90

)
44

4,
11

2(
3)

72
5.
16

47
,
58

4.
1

44
4,
03

5.
8(
66

.7
2)

44
4,
11

2(
4)

jn
h3

06
.s
at

23
67

.9
1

22
3,
52

4
44

4,
80

2(
31

.8
3)

44
4,
83

8(
4)

22
02

.9
16

1,
10

5.
4

44
4,
80

8.
5(
31

.3
9)

44
4,
83

8(
5)

jn
h3

07
.s
at

18
27

.2
7

15
8,
75

4.
1

44
4,
30

5.
5(
16

.6
7)

44
4,
31

4(
7)

77
8.
54

53
,
18

1.
8

44
4,
29

3.
5(
20

.6
1)

44
4,
31

4(
4)

jn
h3

08
.s
at

13
79

.2
11

8,
15

9.
7

44
4,
53

0.
5(
56

.2
1)

44
4,
56

8(
4)

17
33

.1
2

11
6,
60

5.
2

44
4,
53

8.
8(
36

.2
2)

44
4,
56

8(
4)

jn
h3

09
.s
at

57
2.
28

49
,
80

6.
7

44
4,
57

8(
0)

44
4,
57

8(
10

)
29

2.
8

19
,
91

0.
3

44
4,
57

8(
0)

44
4,
57

8(
10

)

jn
h3

10
.s
at

19
41

.0
9

16
1,
93

3.
4

44
4,
34

3.
4(
33

.5
0)

44
4,
39

1(
3)

16
19

.1
1

10
6,
25

3.
2

44
4,
37

8.
8(
25

.7
2)

44
4,
39

1(
8)

123

296 M. De Santis et al.

Ta
bl
e
3

C
om

pa
ri
so
n
be
tw
ee
n
N
M
-G

R
A
SP

an
d
th
e
cl
as
si
ca
lG

R
A
SP

on
Q
A
P
in
st
an
ce
s
(a
ve
ra
ge

re
su
lts

ov
er

te
n
ru
ns
)

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

ch
r1
2a
.d
at

0.
02

13
5

95
52

(0
)

95
52

(1
0)

0.
02

7.
8

95
52

(0
)

95
52

(1
0)

ch
r1
2b
.d
at

<
10

−3
25

.9
97

42
(0
)

97
42

(1
0)

<
10

−3
2.
1

97
42

(0
)

97
42

(1
0)

ch
r1
2c
.d
at

0.
12

69
3

11
,1
56

(0
)

11
,1
56

(1
0)

0.
11

38
.1

11
,1
56

(0
)

11
,1
56

(1
0)

ch
r1
5a
.d
at

0.
59

20
45

.3
98

96
(0
)

98
96

(1
0)

0.
52

10
9.
2

98
96

(0
)

98
96

(1
0)

ch
r1
5b
.d
at

0.
26

80
0.
7

79
90

(0
)

79
90

(1
0)

0.
16

27
79

90
(0
)

79
90

(1
0)

ch
r1
5c
.d
at

1.
1

40
15

.8
95

04
(0
)

95
04

(1
0)

0.
49

98
.7

95
04

(0
)

95
04

(1
0)

ch
r1
8a
.d
at

8.
73

18
,8
42

.6
11

,0
98

(0
)

11
,0
98

(1
0)

0.
28

24
.4

11
,0
98

(0
)

11
,0
98

(1
0)

ch
r1
8b
.d
at

0.
19

32
8.
5

15
34

(0
)

15
34

(1
0)

0.
08

10
.3

15
34

(0
)

15
34

(1
0)

ch
r2
0a
.d
at

64
.0
8

98
,4
01

.6
21

92
(0
)

21
92

(1
0)

8.
74

97
2.
8

21
92

(0
)

21
92

(1
0)

ch
r2
0b
.d
at

10
12

.6
7

1,
57

4,
76

3.
6

22
98

(0
)

22
98

(1
0)

27
.8
8

27
27

.8
22

98
(0
)

22
98

(1
0)

ch
r2
0c
.d
at

1.
6

22
82

14
,1
42

(0
)

14
14

2(
10

)
1.
15

12
1.
1

14
,1
42

(0
)

14
,1
42

(1
0)

ch
r2
2a
.d
at

39
1.
24

43
6,
75

2
61

56
(0
)

61
56

(1
0)

2.
79

20
5.
8

61
56

(0
)

61
56

(1
0)

ch
r2
2b
.d
at

12
18

.5
9

1,
33

8,
05

0.
7

61
94

(0
)

61
94

(1
0)

11
.9
5

80
3.
1

61
94

(0
)

61
94

(1
0)

ch
r2
5a
.d
at

20
4.
32

14
4,
58

7.
4

37
96

(0
)

37
96

(1
0)

9.
46

47
9.
5

37
96

(0
)

37
96

(1
0)

el
s1
9.
da
t

0.
33

39
5.
9

17
,2
12

,5
48

(0
)

17
,2
12

,5
48

(1
0)

0.
79

11
3.
4

17
,2
12

,5
48

(0
)

17
,2
12

,5
48

(1
0)

es
c1
6a
.d
at

<
10

−3
2.
7

68
(0
)

68
(1
0)

<
10

−3
1.
5

68
(0
)

68
(1
0)

es
c1
6b
.d
at

0
1

29
2(
0)

29
2(
10

)
<
10

−3
1

29
2(
0)

29
2(
10

)

es
c1
6c
.d
at

<
10

−3
2.
1

16
0(
0)

16
0(
10

)
<
10

−3
1.
3

16
0(
0)

16
0(
10

)

es
c1
6d
.d
at

<
10

−3
2

16
(0
)

16
(1
0)

<
10

−3
1.
4

16
(0
)

16
(1
0)

es
c1
6e
.d
at

<
10

−3
3.
6

28
(0
)

28
(1
0)

<
10

−3
3.
2

28
(0
)

28
(1
0)

es
c1
6f
.d
at

<
10

−3
1

0(
0)

0(
10

)
<
10

−3
1

0(
0)

0(
10

)

es
c1
6g
.d
at

<
10

−3
2.
5

26
(0
)

26
(1
0)

<
10

−3
1.
7

26
(0
)

26
(1
0)

123

A nonmonotone GRASP 297

Ta
bl
e
3

co
nt
in
ue
d

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

es
c1
6h
.d
at

<
10

−3
1

99
6(
0)

99
6(
10

)
<
10

−3
1

99
6(
0)

99
6(
10

)

es
c1
6i
.d
at

<
10

−3
1.
1

14
(0
)

14
(1
0)

<
10

−3
1

14
(0
)

14
(1
0)

es
c1
6j
.d
at

<
10

−3
1.
7

8(
0)

8(
10

)
<
10

−3
1.
5

8(
0)

8(
10

)

es
c3
2a
.d
at

11
4.
39

39
,0
49

.4
13

0(
0)

13
0(
10

)
5.
31

85
7

13
0(
0)

13
0(
10

)

es
c3
2b
.d
at

0.
75

21
7.
6

16
8(
0)

16
8(
10

)
0.
37

39
.6

16
8(
0)

16
8(
10

)

es
c3
2c
.d
at

<
10

−3
1.
8

64
2(
0)

64
2(
10

)
<
10

−3
1.
2

64
2(
0)

64
2(
10

)

es
c3
2d

.d
at

0.
1

25
.7

20
0(
0)

20
0(
10

)
0.
07

9.
3

20
0(
0)

20
0(
10

)

es
c3
2e
.d
at

<
10

−3
1

2(
0)

2(
10

)
<
10

−3
1

2(
0)

2(
10

)

es
c3
2g
.d
at

<
10

−3
1

6(
0)

6(
10

)
<
10

−3
1

6(
0)

6(
10

)

es
c3
2h

.d
at

0.
42

12
3.
6

43
8(
0)

43
8(
10

)
0.
12

21
.9

43
8(
0)

43
8(
10

)

es
c6
4a
.d
at

0.
12

2.
9

11
6(
0)

11
6(
10

)
0.
14

3.
3

11
6(
0)

11
6(
10

)

es
c1
28

.d
at

6.
58

19
.5

64
(0
)

64
(1
0)

5.
06

14
.4

64
(0
)

64
(1
0)

kr
a3
0a
.d
at

15
.0
3

54
56

.4
88

,9
00

(0
)

88
,9
00

(1
0)

0.
98

55
.6

88
,9
00

(0
)

88
,9
00

(1
0)

kr
a3
0b
.d
at

10
5.
81

38
,1
23

.1
91

,4
20

(0
)

91
,4
20

(1
0)

2.
62

15
4.
9

91
,4
20

(0
)

91
,4
20

(1
0)

lip
a2
0a
.d
at

0.
26

30
3

36
83

(0
)

36
83

(1
0)

0.
07

5.
6

36
83

(0
)

36
83

(1
0)

lip
a2
0b
.d
at

0.
01

12
.8

27
,0
76

(0
)

27
,0
76

(1
0)

0.
03

1.
1

27
,0
76

(0
)

27
,0
76

(1
0)

lip
a3
0a
.d
at

6.
64

23
89

.6
13

,1
78

(0
)

13
,1
78

(1
0)

0.
34

7.
9

13
,1
78

(0
)

13
,1
78

(1
0)

lip
a3
0b
.d
at

0.
1

23
.7

15
1,
42

6(
0)

15
1,
42

6(
10

)
0.
15

1.
4

15
1,
42

6(
0)

15
1,
42

6(
10

)

lip
a4
0a
.d
at

12
34

.7
4

16
9,
23

5.
3

31
,5
47

.4
(2
9.
73

)
31

,5
38

(9
)

1.
58

12
.4

31
,5
38

(0
)

31
,5
38

(1
0)

lip
a4
0b
.d
at

0.
35

33
.4

47
6,
58

1(
0)

47
6,
58

1(
10

)
0.
24

1
47

6,
58

1(
0)

47
6,
58

1(
10

)

lip
a5
0a
.d
at

18
43

.9
1

11
4,
77

1.
4

62
,6
18

.4
(2
7.
18

)
62

,5
72

(1
)

4.
42

15
.1

62
,0
93

(0
)

62
,0
93

(1
0)

lip
a5
0b
.d
at

1.
44

73
.9

1,
21

0,
24

4(
0)

1,
21

0,
24

4(
10

)
0.
88

1.
8

1,
21

0,
24

4(
0)

1,
21

0,
24

4(
10

)

123

298 M. De Santis et al.

Ta
bl
e
3

co
nt
in
ue
d

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

lip
a6
0a
.d
at

14
28

.7
7

47
,3
38

.4
10

8,
11

1.
8(
15

.4
6)

10
8,
07

6(
1)

64
.7
6

11
9.
7

10
7,
21

8(
0)

10
7,
21

8(
10

)

lip
a6
0b
.d
at

12
.1
4

36
2.
9

2,
52

0,
13

5(
0)

2,
52

0,
13

5(
10

)
2.
12

2.
6

2,
52

0,
13

5(
0)

2,
52

0,
13

5(
10

)

lip
a7
0a
.d
at

13
67

.4
8

25
,8
95

.6
17

1,
01

7.
9(
30

.4
7)

17
0,
95

0(
1)

19
6.
54

20
9.
2

16
9,
75

5(
0)

16
9,
75

5(
10

)

lip
a7
0b
.d
at

16
.1
1

27
3.
4

4,
60

3,
20

0(
0)

4,
60

3,
20

0(
10

)
3.
37

2.
6

4,
60

3,
20

0(
0)

4,
60

3,
20

0(
10

)

lip
a8
0a
.d
at

16
36

.8
8

19
,2
63

.4
25

4,
88

7.
8(
23

.0
5)

25
4,
84

5(
1)

17
18

.0
3

10
27

.4
25

3,
94

2.
6(
64

7.
10

)
25

3,
19

5(
4)

lip
a8
0b
.d
at

17
1.
88

18
11

.4
7,
76

3,
96

2(
0)

7,
76

3,
96

2(
10

)
11

.4
6

5.
1

7,
76

3,
96

2(
0)

7,
76

3,
96

2(
10

)

lip
a9
0a
.d
at

18
49

.8
14

,1
90

.6
36

2,
91

2.
4(
31

.8
4)

36
2,
84

0(
1)

18
65

.2
8

73
9.
6

36
1,
81

2.
2(
81

6.
67

)
36

0,
63

0(
3)

lip
a9
0b
.d
at

28
7.
74

19
70

.3
12

,4
90

,4
41

(0
)

12
,4
90

,4
41

(1
0)

12
.2
2

3.
8

12
,4
90

,4
41

(0
)

12
,4
90

,4
41

(1
0)

nu
g1

2.
da
t

<
10

−3
72

57
8(
0)

57
8(
10

)
<
10

−3
3.
7

57
8(
0)

57
8(
10

)

nu
g1

5.
da
t

0.
01

35
.1

11
50

(0
)

11
50

(1
0)

0.
05

11
.2

11
50

(0
)

11
50

(1
0)

nu
g2

0.
da
t

0.
35

42
0

25
70

(0
)

25
70

(1
0)

0.
15

10
.6

25
70

(0
)

25
70

(1
0)

nu
g3

0.
da
t

35
9.
59

12
1,
70

5.
1

61
24

(0
)

61
24

(1
0)

1.
11

27
.8

61
24

(0
)

61
24

(1
0)

ro
u1

2.
da
t

0.
02

11
8.
7

23
5,
52

8(
0)

23
5,
52

8(
10

)
0.
02

4.
9

23
5,
52

8(
0)

23
5,
52

8(
10

)

ro
u1

5.
da
t

0.
08

6
22

2.
7

35
4,
21

0(
0)

35
4,
21

0(
10

)
0.
06

7.
7

35
4,
21

0(
0)

35
42

10
(1
0)

ro
u2

0.
da
t

5.
09

70
49

.4
72

5,
52

2(
0)

72
5,
52

2(
10

)
3

19
5.
9

72
5,
52

2(
0)

72
5,
52

2(
10

)

sc
r1
2.
da
t

<
10

−3
17

.3
31

,4
10

(0
)

31
,4
10

(1
0)

0.
01

3.
4

31
,4
10

(0
)

31
,4
10

(1
0)

sc
r1
5.
da
t

0.
04

97
.8

51
,1
40

(0
)

51
,1
40

(1
0)

0.
03

4.
4

51
,1
40

(0
)

51
,1
40

(1
0)

sc
r2
0.
da
t

1.
58

20
60

11
0,
03

0(
0)

11
0,
03

0(
10

)
0.
27

16
.4

11
0,
03

0(
0)

11
0,
03

0(
10

)

sk
o4

2.
da
t

13
17

.9
9

13
7,
41

8
15

,8
21

.2
(1
1.
75

)
15

,8
12

(3
)

5.
19

44
.6

15
,8
12

(0
)

15
,8
12

(1
0)

sk
o4

9.
da
t

20
77

.5
5

12
4,
98

9.
8

23
,4
45

.4
(1
2.
19

)
23

,4
26

(1
)

31
8.
15

17
44

.7
23

,3
86

(0
)

23
,3
86

(1
0)

sk
o5

6.
da
t

15
05

.4
5

56
,0
54

.1
34

,5
59

.4
(3
2.
39

)
34

,4
90

(1
)

45
8.
64

15
39

.2
34

,4
58

(0
)

34
,4
58

(1
0)

sk
o6

4.
da
t

21
11

.5
4

48
,5
12

.6
48

,6
88

.4
(2
5.
83

)
48

,6
56

(1
)

26
4.
69

57
7.
1

48
,4
98

(0
)

48
49

8(
10

)

123

A nonmonotone GRASP 299

Ta
bl
e
3

co
nt
in
ue
d

Pr
ob
le
m

G
R
A
SP

N
M
-G

R
A
SP

T
im

e
It
er

O
bj

B
es
tO

bj
T
im

e
It
er

O
bj

B
es
tO

bj

sk
o7

2.
da
t

16
01

.3
4

24
04

7.
8

66
,5
97

(3
0.
26

)
66

,5
52

(1
)

17
64

.7
5

26
09

66
,2
60

.2
(3
.3
3)

66
,2
56

(2
)

sk
o8

1.
da
t

16
13

.3
8

15
,6
95

.3
91

,4
69

.2
(6
3.
12

)
91

,3
74

(1
)

25
70

.3
6

25
45

.1
91

0,
12

.8
(1
2.
73

)
90

,9
98

(2
)

sk
o9

0.
da
t

13
10

.8
9

87
20

11
6,
24

1.
4(
91

.1
3)

11
6,
08

2(
1)

19
81

.9
6

13
91

.9
11

5,
56

2.
8(
17

.2
1)

11
5,
53

4(
1)

sk
o1

00
a.
da
t

18
03

.8
6

80
85

.8
15

2,
82

8.
6(
85

.5
9)

15
2,
70

8(
1)

21
31

.2
3

10
38

.7
15

2,
05

0.
8(
35

.3
5)

15
2,
00

2(
3)

sk
o1

00
b.
da
t

23
91

.5
9

10
,7
23

.6
15

4,
69

9(
12

9.
49

)
15

4,
49

4(
1)

18
53

.6
1

89
4.
8

15
3,
91

4.
8(
19

.2
8)

15
3,
89

0(
2)

sk
o1

00
c.
da
t

19
18

.0
8

85
69

.3
14

8,
65

3.
2(
13

0.
13

)
14

8,
50

0(
1)

17
69

.9
7

86
3.
7

14
7,
88

3.
2(
15

)
14

7,
86

2(
1)

sk
o1

00
d.
da
t

18
03

.0
4

81
18

.8
15

0,
52

2.
8(
12

9.
14

)
15

0,
29

2(
1)

16
76

.2
9

81
1

14
9,
60

7(
17

.3
7)

14
9,
57

6(
1)

sk
o1

00
e.
da
t

17
67

.3
5

78
78

.1
15

0,
08

4.
2(
13

9.
80

)
14

9,
85

6(
1)

16
55

.6
79

8.
8

14
9,
16

6.
4(
11

.8
1)

14
9,
15

0(
2)

sk
o1

00
f.
da
t

14
48

.5
3

65
58

15
0,
04

4.
6(
11

2.
92

)
14

9,
80

2(
1)

21
16

.3
6

10
35

14
9,
09

3(
39

.2
6)

14
9,
03

6(
1)

st
e3
6a
.d
at

13
73

.9
3

25
0,
87

8.
7

95
40

(1
0.
28

)
95

26
(2
)

16
.4
5

27
6.
8

95
26

(0
)

95
26

(1
0)

st
e3
6b
.d
at

16
8.
29

29
,6
26

.6
15

,8
52

(0
)

15
,8
52

(1
0)

1.
2

16
.4

15
,8
52

(0
)

15
,8
52

(1
0)

st
e3
6c
.d
at

13
70

.8
3

24
6,
80

8.
8

8,
24

7,
33

7.
2(
67

28
.7
5)

8,
23

9,
11

0(
2)

3.
76

50
.8

8,
23

9,
11

0(
0)

8,
23

9,
11

0(
10

)

th
o4

0.
da
t

23
47

.4
6

29
1,
48

8.
4

24
0,
74

9.
6(
24

6.
39

)
24

0,
51

6(
1)

16
9.
75

12
30

.6
24

0,
51

6(
0)

24
0,
51

6(
10

)

th
o1

50
.d
at

18
29

.5
3

18
06

.5
8,
20

2,
95

5.
2(
92

33
.5
9)

8,
19

1,
89

0(
1)

17
45

.6
9

14
7.
2

8,
14

0,
21

0.
6(
32

53
.1
1)

8,
13

3,
39

8(
1)

w
il5

0.
da
t

20
95

.1
11

6,
93

0.
9

48
,8
54

.2
(1
9.
79

)
48

,8
28

(1
)

59
.0
5

31
5.
3

48
,8
16

(0
)

48
,8
16

(1
0)

w
il1

00
.d
at

19
78

.6
5

89
24

.6
27

3,
90

8.
6(
11

4.
40

)
27

3,
74

8(
1)

16
46

.0
1

83
6.
4

27
3,
07

5.
2(
18

.4
8)

27
3,
03

8(
1)

123

300 M. De Santis et al.

0

500

1000

1500

2000

2500

3000

GRASP NM GRASP

av
er

ag
e

cp
u

tim
e

MAX−CUT

0

500

1000

1500

2000

GRASP NM GRASP
av

er
ag

e
cp

u
tim

e

MAX−SAT

0

500

1000

1500

2000

2500

GRASP NM GRASP

av
er

ag
e

cp
u

tim
e

QAP

Fig. 8 Box plots related to the CPU time (average results over ten runs)

the classical GRASP. For the QAP problem, the NM-GRASP find its best solutions
generally much faster than the classical GRASP.
As a further experiment for the MAX-CUT problem, we considered the empiri-
cal distributions of the random variable time-to-target-solution-value (see [1,2] for
further details) considering instances g1250.n, G40, sg3dl142000.mc, and
toruspm3-15-50 using different target values. We performed 100 independent
runs of each heuristic and recorded the time needed to find a solution at least as good
as the target solution. For each run, we considered one hour as the time limit. The
Time-To-Target-plot analysis is reported in Appendix 1.
Finally, we compared the solutions obtained by both GRASP and NM-GRASP with
the best known solutions (optimal solutions when available) from the literature. More
specifically, for the MAX-CUT problem we considered the best known solutions
related to sg3dl, torus and G instances; for the MAX-SAT problem we considered
the optimal solutions for all the available instances; for theQAPproblemweconsidered
the best known/optimal solutions for all the QAPLIB instances. We calculated for
both MAX-CUT and MAX-SAT problems the deviation ρmax = (fbest − f)/ fbest
from the best known solution fbest , where f is the best objective value attained by
a given approach. In the QAP case we instead calculated ρmin = (f − fbest)/ fbest .
In Table 4, we report for both approaches the average deviation obtained on the three
classes of instances. As it can be easily noticed, NM-GRASP always gets a better
average deviation than the classical GRASP.
Summarizing, our computational experience shows that considering a nonmonotone
local search in the GRASP heuristic often gives a significant improvement in the
quality of the solution, and this improvement is achieved without deteriorating the
CPU time.

Table 4 Average deviation from best known/optimalsolution

GRASP NM-GRASP

MAX-CUT 0.0066 0.0027

MAX-SAT 0.0018 0.0016

QAP 0.0922 0.0000

123

A nonmonotone GRASP 301

6 Concluding remarks

In this paper, we introduced a new nonmonotone strategy to explore the neighborhood
of the current solution during a local search phase and formally stated the convergence
of the resulting nonmonotone local search to a locally optimal solution. To illustrate its
effectiveness, we used it as local search procedure in a GRASP framework and com-
pared the resulting Nonmonotone GRASP (NM-GRASP) with a classical GRASP on
three selected hard combinatorial optimization problems: the MAX-CUT, the MAX-
SAT, and the QAP. The comparison showed that the new proposed approach is very
competitive, outperforming the classical GRASP.

Appendix 1: Detailed tables for MAX-CUT, MAX-SAT and QAP

In this appendix, we report the detailed tables related to the comparison between NM-
GRASP and the original version of GRASP for MAX-CUT, MAX-SAT and QAP.
The first column of the three tables reports the name of the instance. The remaining
columns report for each of the two approaches the average CPU time (Time), the
average number of iterations (Iter), the average objective function value (Obj) with
the standard deviation in brackets, and the best objective function value obtained over
the ten runs (Best Obj) with the number of times the best value is obtained in brackets.

Appendix 2: Time to target-plots analysis on MAX-CUT problems

To plot the empirical distribution, we associate with the i-th sorted running time (ti)
a probability pi = (i − 1

2)/100, and plot the points zi = (ti , pi), for i = 1, . . . , 100.
For the instancesg1250.n,G40,sg3dl142000.mc, and toruspm3-15-50we
fixed as target values 2518, 2275, 2379, and 2925, respectively. These values represent
a standard target for both heuristics. As we can see in Fig. 9, apart from the instance
toruspm3-15-50 where for 3 runs the classical GRASP is better, we can notice
that the NM-GRASP is always superior. It is able to reach the target value in less than
100s CPU time for all the runs, while in several runs the classical GRASP needs more
than 1000s.

Figure 10 depicts the empirical distributions of the random variable time-to-target-
solution-value using as target values 2532, 2293, 2382, and 2932, for the instances
g1250.n, G40, sg3dl142000.mc, and toruspm3-15-50, respectively. These
values are the best objective function values found by the classical GRASP over 10
runs. As we can see from the plots, also in this case, the NM-GRASP is able to
reach the target value in less than 100s for all the runs. On the other hand, the clas-
sical GRASP failed to reach the target solution within the time limit in several runs,
especially for instances g1250.n and G40. By using instances g1250.n, G40,
sg3dl142000.mc, and toruspm3-15-50, we plot in Fig. 11 the empirical dis-
tributions of the random variable time-to-target-solution-value using as target values
2556, 2362, 2420, and 2980, respectively. These target values are the best cuts found
by the NM-GRASP over 10 runs. In this case, the classical GRASP failed to reach the
target solution within the time limit for all runs and all instances. On the contrary, the

123

302 M. De Santis et al.

Fig. 9 TTTplots for the easy
targets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)
cu

m
ul

at
iv

e
pr

ob
ab

ili
ty

g1250.n (target solution: 2518)

NM-GRASP

GRASP

100 101 102 103 104

100 101 102 103 104

100 101 102 103 104

100 101
102 103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

t y

 G40 (target solution: 2275)

NM-GRASP

GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

a b
ili

ty

sg3dl142000.mc (target solution: 2379)

NM-GRASP

GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

a b
ili

ty

toruspm3−15−50 (target solution: 2925)

NM-GRASP

GRASP

123

A nonmonotone GRASP 303

100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

g1250.n (target solution: 2532)

NM-GRASP
GRASP

100 101 102 103
104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

 G40 (target solution: 2293)

NM-GRASP

GRASP

100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
o b

ab
ili

ty

sg3dl142000.mc (target solution: 2382)

NM-GRASP

GRASP

100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

a b
ilit

y

toruspm3−15−50 (target solution: 2932)

NM-GRASP

GRASP

Fig. 10 TTTplots for the classical GRASP targets

123

304 M. De Santis et al.

100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

g1250.n (target solution: 2556)

NM-GRASP

GRASP

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

 G40 (target solution: 2362)

NM-GRASP

GRASP

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

sg3dl142000.mc (target solution: 2420)

NM-GRASP

GRASP

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

toruspm3−15−50 (target solution: 2980)

NM-GRASP

GRASP

Fig. 11 TTTplots for the Nonmonotone GRASP targets

123

A nonmonotone GRASP 305

NM-GRASP is able to reach the target solution for all runs for instances g1250.n
and sg3dl142000.mc.

References

1. Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in grasp: an
experimental investigation. J. Heuristics 8, 343–373 (2002)

2. Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Ttt plots: a perl program to create time-to-target plots.
Optim. Lett. 1, 355–366 (2007)

3. Alvarez-Valdes, R., Parreño, F., Tamarit, J.M.: Reactive GRASP for the strip-packing problem. Com-
put. Oper. Res. 35(4), 1065–1083 (2008)

4. Andrade, D.V., Resende, M.G.C.: GRASP with path-relinking for network migration scheduling. In:
Proceedings of the international network optimization conference (INOC 2007) (2007)

5. Andres, C., Miralles, C., Pastor, R.: Balancing and scheduling tasks in assembly lines with sequence-
dependent setup times. Eur. J. Oper. Res. 187(3), 1212–1223 (2008)

6. Areibi, S., Vannelli, A.: A GRASP clustering technique for circuit partitioning. In: Gu, J., Pardalos,
P.M., (eds.), Satisfiability Problems, vol. 35 ofDIMACSseries on discretemathematics and theoretical
computer science, pp. 711–724. American Mathematical Society, Providence (1997)

7. Arroyo, J.E.C., Vieira, P.S., Vianna, D.S.: A GRASP algorithm for the multi-criteria minimum span-
ning tree problem. Ann. Oper. Res. 159, 125–133 (2008)

8. Asano, T.: Approximation algorithms for MAX-SAT: Yannakakis vs. Goemans–Williamson. In: 5th
IEEE Israel symposium on the theory of computing and systems, pp. 24–37 (1997)

9. Atkinson, J.B.: A greedy randomised search heuristic for time-constrained vehicle scheduling and
the incorporation of a learning strategy. J. Oper. Res. Soc. 49, 700–708 (1998)

10. Barahona, F.: The max-cut problem in graphs not contractible to k5. Oper. Res. Lett. 2, 107–111
(1983)

11. Bard, J.F., Huang, L., Jaillet, P., Dror,M.: A decomposition approach to the inventory routing problem
with satellite facilities. Transp. Sci. 32, 189–203 (1998)

12. Battiti, R., Protasi, M.: Approximate algorithms and heuristics for the MAX-SAT. In: Du, D.Z.,
Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 1, pp. 77–148. KluwerAcademic
Publishers, Berlin (1998)

13. Benlic, U., Hao, J.-K.: Breakout local search for maximum clique problems. Comput. Oper. Res.
40(1), 192–206 (2013)

14. Binato, S., Hery, W.J., Loewenstern, D., Resende, M.G.C.: A greedy randomized adaptive search
procedure for job shop scheduling. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys on Meta-
heuristics, pp. 58–79. Kluwer Academic Publishers, Berlin (2002)

15. Brusco, M.J., Stahl, S.: Using quadratic assignment methods to generate initial permutations for
least-squares unidimensional scaling of symmetric proximity matrices. J. Classif. 17(2), 197–223
(2000)

16. Burer, S., Monteiro, R.D.C.: Rank-two relaxation heuristics for max-cut and other binary quadratic
programs. SIAM J. Optim. 12, 503–521 (2001)

17. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM Press, Philadelphia (2009)
18. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB—a quadratic assignment problem library. J. Global

Optim. 10, 391–403 (1997)
19. Carreto, C., Baker, B.: A GRASP interactive approach to the vehicle routing problem with backhauls.

In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 185–200. Kluwer
Academic Publishers, Berlin (2002)

20. Chen, J., Friesen, D., Zheng, H.: Tight bound on johnson’s algorithm for MAX-SAT. In: Proceedings
of the 12th annual IEEE conference on computational complexity, pp. 274–281 (1997)

21. Christofides, N., Benavent, E.: An exact algorithm for the quadratic assignment problem. Oper. Res.
37(5), 760–768 (1989)

22. Commander, C.W.: Maximum cut problem, MAX-CUT. In: Floudas, C.A., Pardalos, P.M. (eds.)
Encyclopedia of Optimization, pp. 1991–1999. Springer, Berlin (2009)

23. Contreras, I.A., Díaz, J.A.: Scatter search for the single source capacitated facility location problem.
Ann. Oper. Res. 157, 73–89 (2008)

123

306 M. De Santis et al.

24. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM
symposium on theory of computing, pp. 151–158 (1971)

25. Cravo, G.L., Ribeiro, G.M., Nogueira Lorena, L.A.: A greedy randomized adaptive search procedure
for the point-feature cartographic label placement. Comput. Geosci. 34(4), 373–386 (2008)

26. Drezner, Z., Hahn, P.M., Taillard, É.D.: Recent advances for the quadratic assignment problem with
special emphasis on instances that are difficult for meta-heuristic methods. Ann. Oper. Res. 139,
65–94 (2005)

27. Eschermann, B., Wunderlich, H.J.: Optimized synthesis of self-testable finite state machines. In: 20th
international symposium on fault-tolerant computing (FFTCS 20), pp. 390–397 (1990)

28. Facchiano, A., Festa, P., Marabotti, A., Milanesi, L., Musacchia, F.: Solving Biclustering with a
GRASP-like Metaheuristic: Two Case-Studies on Gene Expression Analysis, vol. 7548 of Lecture
Notes in Computer Science, pp. 253–267. Springer, Berlin (2012)

29. Feige, U., Goemans,M.X.: Approximating the value of two proper proof systems, with applications to
MAX-2SAT andMAX-DICUT. In: Proceeding of the third Israel symposium on theory of computing
and systems, pp. 182–189 (1995)

30. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering
problem. Oper. Res. Lett. 8, 67–71 (1989)

31. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Global Optim. 6,
109–133 (1995)

32. Ferone, D., Festa, P., Resende, M.G.C.: Hybrid metaheuristics for the far from most string problem.
In: Proceedings of HM 2013, vol. 7919 of lecture notes in computer science, pp. 174–188. Springer,
Berlin (2013)

33. Festa, P.: On some optimization problems inmolecular biology.Math. Biosci. 207(2), 219–234 (2007)
34. Festa, P.: A biased random-key genetic algorithm for data clustering. Math. Biosci. 245(1), 76–85

(2013)
35. Festa, P., Pardalos, P.M.: Efficient solutions for the far from most string problem. Ann. Oper. Res.

196(1), 663–682 (2012)
36. Festa, P., Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: GRASP with path-relinking for the

weighted MAXSAT problem. ACM J. Exp. Algorithmics 11, 1–16 (2006)
37. Festa, P., Pardalos, P.M., Resende, M.G.C.: Algorithm 815: FORTRAN subroutines for computing

approximate solution to feedback set problems using GRASP. ACMTrans. Math. Softw. 27, 456–464
(2001)

38. Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuristics for the MAX-CUT
problem. Optim. Methods Softw. 17(6), 1033–1058 (2002)

39. Festa, P., Resende, M.G.C.: GRASP: an annotated bibliography. In: Ribeiro, C.C., Hansen, P. (eds.)
Essays and Surveys on Metaheuristics, pp. 325–367. Kluwer Academic Publishers, Berlin (2002)

40. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP—Part I: algorithms. Int. Trans.
Oper. Res. 16(1), 1–24 (2009)

41. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP—Part II: applications. Int. Trans.
Oper. Res. 16(2), 131–172 (2009)

42. Festa, P., Resende, M.G.C.: GRASP: basic components and enhancements. Telecommun. Syst. 46(3),
253–271 (2011)

43. Frinhani, R.M.D., Silva, R.M.A., Mateus, G.R., Festa, P., Resende, M.G.C.: GRASP with Path-
Relinking for Data Clustering: A Case Study for Biological Data, vol. 6630 of Lecture Notes in
Computer Science, pp. 410–420. Springer, Berlin (2011)

44. Fujisawa, K., Fukuda, M., Fojima, M., Nakata, K.: Numerical evaluation of SDPA (semidefinite
programming algorithm). In: High performance optimization, pp. 267–301. Kluwer Academic Pub-
lishers, Berlin (2000)

45. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness.
W.H. Freeman and Company, New York (1979)

46. Geoffrion, A.M., Graves, G.W.: Scheduling parallel production lines with changeover costs: practical
applications of a quadratic assignment/LP approach. Oper. Res. 24, 595–610 (1976)

47. Glover, F.: Tabu search—Part I. ORSA J. Comput. 1, 190–206 (1989)
48. Glover, F.: Tabu search—Part II. ORSA J. Comput. 2, 4–32 (1990)
49. Glover, F.: Tabu search and adaptive memory programing—advances, applications and challenges.

In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.) Interfaces in Computer Science and Operations
Research, pp. 1–75. Kluwer, Berlin (1996)

123

A nonmonotone GRASP 307

50. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Berlin (1997)
51. Goëffon, A., Richer, J.-M., Hao, J.-K.: Progressive tree neighborhood applied to the maximum par-

simony problem. IEEE/ACM Trans. Comput. Biol. Bioinf. 5(1), 136–145 (2008)
52. Goemans, M.X., Williamson, D.P.: A new 3

4 approximation algorithm for the maximum satisfiability
problem. SIAM J. Discr. Math. 7, 656–666 (1994)

53. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and sat-
isfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115–1145
(1995)

54. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley,
Boston (1989)

55. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method.
SIAM J. Numer. Anal. 23, 707–716 (1986)

56. Grippo, L., Palagi, L., Piacentini, M., Piccialli, V., Rinaldi, G.: Speedp: an algorithm to compute sdp
bounds for very large max-cut instances. Math. Program. 136(2), 353–373 (2012)

57. Grötschel, M., Pulleyblank, W.R.: Weakly bipartite graphs and the max-cut problem. Oper. Res. Lett.
1, 23–27 (1981)

58. Hadlock, F.O.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comp. 4,
221–225 (1975)

59. Hansen, P., Mladenović, N.: Developments of variable neighborhood search. In: Ribeiro, C.C.,
Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 415–439. Kluwer Academic Publish-
ers, Berlin (2002)

60. Hastad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)
61. Heffley, D.R.: The quadratic assignment problem: a note. Econometrica 40(6), 1155–1163 (1972)
62. Heffley, D.R.: Decomposition of the koopmansbeckmann problem. Reg. Sci. Urban Econ. 10(4),

571–580 (1980)
63. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim.

10, 673–696 (2000)
64. Hirsch, M.J., Meneses, C.N., Pardalos, P.M., Ragle, M.A., Resende, M.G.C.: A continuous GRASP

to determine the relationship between drugs and adverse reactions. In: Seref, O., Kundakcioglu, O.E.,
Pardalos, P.M., (eds.), Data Mining, Systems Analysis, and Optimization in Biomedicine, vol. 953
of AIP Conference Proceedings, pp. 106–121. Springer, Berlin (2007)

65. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–
278 (1974)

66. Karisch, S.E., Rendl, F., Clausen, J.: Solving graph bisection problems with semidefinite program-
ming. SIAM J. Comput. 12, 177–191 (2000)

67. Karloff, H., Zwick, U.: A 7
8 -approximation algorithm for MAX-3SAT. In: Proceedings of the 38th

annual IEEE symposium on foundations of computer science, pp. 406–415 (1997)
68. Karp,R.M.:Reducibility among combinatorial problems. In:Miller, R., Thatcher, J. (eds.)Complexity

of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
69. Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34, 975–986

(1984)
70. Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of economic activities.

Econometrica 25, 53–76 (1957)
71. Krarup, J., Pruzan, P.M.: Computer-aided layout design. Math. Program. Study 9, 75–94 (1978)
72. Laguna, M., Martí, R.: A GRASP for coloring sparse graphs. Comput. Optim. Appl. 19, 165–178

(2001)
73. De Leone, R., Festa, P., Marchitto, E.: A bus driver scheduling problem: a new mathematical model

and a GRASP approximate solution. J. Heuristics 17(4), 441–466 (2011)
74. De Leone, R., Festa, P., Marchitto, E.: Solving a bus driver scheduling problem with randomized

multistart heuristics. Int. Trans. Oper. Res. 18(6), 707–727 (2011)
75. Li, Y., Pardalos, P.M.: Generating quadratic assignment test problems with known optimal permuta-

tions. Comput. Optim. Appl. 1, 163–184 (1992)
76. Li, Y., Pardalos, P.M., Resende, M.G.C.: A greedy randomized adaptive search procedure for the

quadratic assignment problem. In Pardalos, P.M., Wolkowicz, H., (eds.), Quadratic Assignment and
Related Problems, vol. 16 of DIMACS Series on Discrete Mathematics and Theoretical Computer
Science, pp. 237–261. American Mathematical Society, Providence (1994)

123

308 M. De Santis et al.

77. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper.
Res. 21, 498–516 (1973)

78. Loiola, E.M., Maia de Abreu, N.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the
quadratic assignment problem. Euro. J. Oper. Res. 176, 657–690 (2007)

79. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT–25, 1–7 (1979)
80. Martí, R., Laguna, M.: Heuristics and meta-heuristics for 2-layer straight line crossing minimization.

Discr. Appl. Math. 127(3), 665–678 (2003)
81. Mautor, T.: Contribution à la résolution des problèmes d’implanation: algorithmes séquentiels et

parallèles pour l’affectation quadratique. PhD thesis, Université Pierre et Marie Curie, Paris, France.
In: French (1992)

82. Mavridou, T., Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: A GRASP for the biquadratic assign-
ment problem. Euro. J. Oper. Res. 105, 613–621 (1998)

83. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)
84. Nugent, C.E., Vollman, T.E., Ruml, J.: An experimental comparison of techniques for the assignment

of facilities to locations. Oper. Res. 16, 150–173 (1968)
85. Osman, I.H., Al-Ayoubi, B., Barake,M.: A greedy random adaptive search procedure for theweighted

maximal planar graph problem. Comput. Ind. Eng. 45(4), 635–651 (2003)
86. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Com-

put. Syst. Sci. 43(3), 425–440 (1991)
87. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Prentice-

Hall, Upper Saddle River (1982)
88. Pardalos, P.M., Pitsoulis, P.S., Resende, M.G.C.: Algorithm 769: Fortran subroutines for approximate

solution of sparse quadratic assignment problems using GRASP. ACM Trans. Math. Softw. 23, 196–
208 (1997)

89. Pardalos, PM, Resende,M.G.C., (eds.): Handbook of AppliedOptimization. OxfordUniversity Press,
Oxford (2002)

90. Pardalos, P.M., Wolkowicz, H.: Quadratic assignment and related problems. In: Pardalos, P.M.,
Wolkowicz, H. (eds.) High Performance Optimization. American Mathematical Society, Providence
(1994)

91. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for 0-1 quadratic program-
ming. J. Global Optim. 7, 51–73 (1995)

92. Pu, G.G., Chong, Z., Qiu, Z.Y., Lin, Z.Q., He, J.F.: A hybrid heuristic algorithm for HW-SW par-
titioning within timed automata. In: Proceedings of Knowledge-based Intelligent Information and
Engineering Systems, vol. 4251 of Lecture Notes in Artificial Intelligence, pp. 459–466. Springer,
Berlin (2006)

93. Resende, M.G.C., Feo, T.A.: A GRASP for satisfiability. In: Johnson, D.S., Trick, M.A., (eds.),
Cliques, Coloring, and Satisfiability: The Second DIMACS Implementation Challenge, vol. 26 of
DIMACSSeries onDiscreteMathematics and Theoretical Computer Science, pp. 499–520.American
Mathematical Society, Providence (1996)

94. Resende,M.G.C., Pitsoulis, L.S., Pardalos, P.M.: Approximate solution of weightedMAX-SAT prob-
lems using GRASP. In: Gu, J., Pardalos, P.M., (eds.), Satisfiability problems, vol. 35 of DIMACS
Series on Discrete Mathematics and Theoretical Computer Science, pp. 393–405. American Mathe-
matical Society, Providence (1997)

95. Resende, M.G.C., Pitsoulis, L.S., Pardalos, P.M.: Approximate solutions of weighted MAX-SAT
problems using GRASP. In: Du, D.-Z., Gu, J., Pardalos, P.M. (eds.) Satisfiability Problem: Theory
and Applications, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp.
393–405. American Mathematical Society, Providence (1997)

96. Resende, M.G.C., Pitsoulis, L.S., Pardalos, P.M.: Fortran subroutines for computing approximate
solutions of weighted MAX-SAT problems using GRASP. Discr. Appl. Math. 100, 95–113 (2000)

97. Resende, M.G.C., Ribeiro, C.C.: A GRASP for graph planarization. Networks 29, 173–189 (1997)
98. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Euro. J. Oper.

Res. 179, 775–787 (2007)
99. Robertson, A.J.: A set of greedy randomized adaptive local search procedure (GRASP) implementa-

tions for the multidimensional assignment problem. Comput. Optim. Appl. 19, 145–164 (2001)
100. Roucairol, C.: Du sequentiel au parallele: la recherche arborescente et son application a la program-

mation quadratique en variables 0 et 1. PhD thesis, Université Pierre et Marie Curie, Paris, France.
(In French) (1987)

123

A nonmonotone GRASP 309

101. Sahni, S., Gonzales, T.: P-complete approximation problems. J. Assoc. Comput. Mach. 23, 555–565
(1976)

102. Scriabin, M., Vergin, R.C.: Comparison of computer algorithms and visual based methods for plant
layout. Manag. Sci. 22, 172–187 (1975)

103. Shor, N.Z.: Quadratic optimization problems. Soviet J. Comput. Syst. Sci. 25, 1–11 (1987)
104. Skorin-Kapov, J.: Tabu search applied to the quadratic assingnment problem. ORSA J. Comput. 2(1),

33–45 (1990)
105. Steinberg, L.: The backboard wiring problem: a placement algorithm. SIAM Rev. 3, 37–50 (1961)
106. Thonemann, U.W., Bölte, A.: An improved simulated annealing algorithm for the quadratic assign-

ment problem. Technical report, Department of Production and Operations Research (1994)
107. Trevisan, L.: Approximating satisfiable satisfiability problems. Algorithmica 28(1), 145–172 (2000)
108. Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation, and linear pro-

gramming. SIAM J. Comput. 29(6), 2074–2097 (2000)
109. Wilhelm, M.R., Ward, T.L.: Solving quadratic assignment problems by simulated annealing. IIE

Trans. 19(1), 107–119 (1987)
110. Yannakakis, M.: On the approximation of maximumSatisfiability. In: Proceedings of the Third ACM-

SIAM symposium on discrete algorithms, pp. 1–9 (1992)

123

	A nonmonotone GRASP
	Abstract
	1 Introduction
	2 The classical GRASP
	3 A GRASP for the MAX-CUT, the MAX-SAT, and the QAP
	3.1 MAX-CUT
	3.2 MAX-SAT
	3.3 QAP

	4 A nonmonotone GRASP
	5 Computational results
	6 Concluding remarks
	Appendix 1: Detailed tables for MAX-CUT, MAX-SAT and QAP
	Appendix 2: Time to target-plots analysis on MAX-CUT problems
	References

