
Math. Prog. Comp. (2016) 8:435–459
DOI 10.1007/s12532-016-0101-2

FULL LENGTH PAPER

An SR1/BFGS SQP algorithm for nonconvex nonlinear
programs with block-diagonal Hessian matrix

Dennis Janka1 · Christian Kirches1 ·
Sebastian Sager2 · Andreas Wächter3

Received: 23 January 2015 / Accepted: 15 February 2016 / Published online: 29 February 2016
© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2016

Abstract We present a quasi-Newton sequential quadratic programming (SQP) algo-
rithm for nonlinear programs in which the Hessian of the Lagrangian function is
block-diagonal. Problems with this characteristic frequently arise in the context of
optimal control; for example, when a direct multiple shooting parametrization is used.
In this article, we describe an implementation of a filter line-search SQP method that
computes search directions using an active-set quadratic programming (QP) solver.
To take advantage of the block-diagonal structure of the Hessian matrix, each block
is approximated separately by quasi-Newton updates. For nonconvex instances, that
arise, for example, in optimum experimental design control problems, these blocks are
often found to be indefinite. In that case, the block-BFGS quasi-Newton update can
lead to poor convergence. The novel aspect in this work is the use of SR1 updates in
place of BFGS approximations whenever possible. The resulting indefinite QPs neces-
sitate an inertia control mechanism within the sparse Schur-complement factorization

B Dennis Janka
dennis.janka@iwr.uni-heidelberg.de

Christian Kirches
christian.kirches@iwr.uni-heidelberg.de

Sebastian Sager
sager@ovgu.de

Andreas Wächter
andreas.waechter@northwestern.edu

1 Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University,
Im Neuenheimer Feld 368, 69120 Heidelberg, Germany

2 Institute for Mathematical Optimization, Otto-von-Guericke-University Magdeburg,
39106 Magdeburg, Germany

3 Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, IL 60208, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-016-0101-2&domain=pdf

436 D. Janka et al.

that is carried out by the active-set QP solver. This permits an adaptive selection of the
Hessian approximation that guarantees sufficient progress towards a stationary point
of the problem. Numerical results demonstrate that the proposed approach reduces the
number of SQP iterations and CPU time required for the solution of a set of optimal
control problems.

Keywords Quasi-Newton · Sequential quadratic programming · Direct methods for
optimal control · Optimum experimental design

Mathematics Subject Classification 49M37 · 90C20 · 90C30 · 90C53 · 90C55

1 Introduction

We propose a sequential quadratic programming (SQP) algorithm for the solution of
nonlinear programs (NLPs) in which the Hessian of the Lagrangian function is block-
diagonal. This structure arises frequently in the context of optimization problems that
are constrained by systems of ordinary differential equations (ODEs), for example,
during the optimal control [8] or optimum experimental design [28,31,32,39,41] of
dynamic processes. When direct [44] or all-at-once methods [14], such as direct mul-
tiple shooting [7,33,37], are applied, the block-diagonal structure is a consequence of
the discretization of the control trajectory and the parametrization of the state trajec-
tory in time. In this article, we are concerned with quasi-Newton updates that replace
the individual blocks of the block-diagonal Hessian matrix when their exact com-
putation is too costly. Related approaches have been proposed in [7,12,26,27], for
example. In slight abuse of mathematical rigour, we will call these matrices “Hessian
approximation”, although the updated matrices do usually not converge in any sense
to the exact second derivative.

Because these blocks are often not positive definite in general nonlinear nonconvex
optimal control problems, methods based on the block-wise BFGS update can lead to
poor convergence (see Sect. 1.1). Whenever the BFGS formula would yield an indef-
inite matrix, it is common to modify the update formula so that it results in a damped
approximation that lies between the current positive definite approximation and the
one produced by the unmodified BFGS formula. In this way, positive definiteness is
maintained [38]. In the following, we always assume that damping of the BFGS update
takes place if necessary.

In optimal control problems, we typically find many differential state variables that
are restricted by continuity conditions. This leaves only a small number of degrees of
freedom represented by those control variables that are not at their bounds. Hence,
in each iteration of a nonlinear programming method, the null space of the active
constraints will be small compared to the number of variables. It then becomes likely
that the constraint range space contains negative eigenvalues of the Hessian matrix,
so that BFGS updates must be modified to maintain positive definiteness. This often
turns out to be a bad choice because it leads to slow convergence and an increased
number of costly function and derivative evaluations.

123

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 437

In contrast to previous SQP methods, the proposed algorithm addresses this short-
coming by employing the indefinite, block-wise Symmetric Rank One (SR1) update
in place of the block-wise BFGS approximation whenever this is possible. The SR1
update has long been known for its good theoretical properties and has been used
successfully in unconstrained optimization [9,11,30]. It is usually employed in con-
nection with a trust region [10]. Instead, our method determines the inertia of the
Hessian matrix in the appropriate subspace in order to decide whether the search
direction generated by the block-SR1 approximation provides sufficient descent for a
filter line search [45]. If this is not the case, the search direction is recomputed with
the block-BFGS approximation as a fallback. This procedure requires the solution of
nonconvex quadratic subproblems. Such problems are NP-hard in general [36], and
we content ourselves with computing first order critical points. Our implementation
uses the active-set QP solver qpOASES [19,20] that was modified to monitor the
inertia of the submatrix during the active-set updates. This approach is based on a
sparse matrix factorization [18], a Schur complement decomposition [5,23–25], and
a flipping bounds strategy [20]. Numerical results demonstrate that the new algorithm
requires fewer SQP iterations and less CPU time than the pure block-BFGS method
for a number of optimal control problems.

1.1 Motivating nonlinear programming example

To motivate the key contribution of this article, we consider the simple unconstrained
convex minimization problem

min
x1∈R

1
2 x21 .

This example illustrates that the introduction of additional variables and constraints
can lead to negative curvature that impairs the performance of the block-BFGS update.
A more complicated example is discussed in Sect. 5.2. After adding a second variable
x2 along with the constraint x1 = x2, we obtain the equivalent problem

min
x1,x2∈R

x21 − 1
2 x22 (1a)

s.t. x1 − x2 = 0. (1b)

Because the constraint that couples x1 and x2 is linear, theHessian of the Lagrangian
function (6) of NLP (1),

∇2
xxL(x, λ) =

(
2 0
0 −1

)
,

is block diagonal. Furthermore, it has a negative eigenvalue in the range space of (1b).
To study the convergence behavior of different quasi-Newton updates, we choose
identity as the initial Hessian approximation and declare optimality when

‖∇L(x, λ)‖∞
1 + ‖λ‖∞

< ε and ‖c(x)‖∞ < ε (2)

123

438 D. Janka et al.

is satisfied with ε = 10−12. In [29, Chapter 5.3] it is shown for this example that a full-
stepmethodwith block-wise SR1 updates or full-space SR1 or BFGS updates recovers
the solution after at most three iterations but converges only linearly with convergence
rate 1

2 if damped block-wise BFGS updates are used. At the solution, we have λ = 0.
While this may suggest some kind of degeneracy in the example, the algorithms
behave essentially identical if the right-hand side of the constraint is changed to, e.g.,
one, which yields a nonzero multiplier. Note that the linear independence constraint
qualification (LICQ) holds at any point.

The theoretical convergence behavior is confirmed by our implementation: Using
the starting point (x1, x2) = (10, 10), we observe that the standard full-space SR1
update formula recovers the exactHessian∇2

xxL(x, λ) after twoSQP iterations.Hence,
the optimal solution of problem (1) is found after three iterations. The block-SR1
approximation scheme,which exploits the knowledge of linear separability to approxi-
mate the nonzero diagonal entries of∇2

xxL(x, λ) separately, recovers the exact Hessian
already after the first iteration and finds the optimal solution after two iterations.

This situation is entirely different when damped BFGS updates are used. After two
iterations, the standard BFGS approximation yields the positive definite matrix

(
4.5 −2.5

−2.5 1.5

)
. (3)

Damping is not necessary to maintain positive definiteness. The entries of (3) do not
approximate those of the exact Hessian. In particular, the block structure is lost. Nev-
ertheless, the termination criterion (2) is satisfied after three SQP iterations. Finally,
the block-BFGS scheme produces approximations of the form

(
2 0
0 ε

)
, ε > 0,

where ε converges to zero. Thismethod requires 43SQP iterations until the termination
criterion is satisfied. This behavior is similar to that of the steepest descent method,
which needs 45 iterations for the problem at hand.

Although Example (1) may be a special situation from the viewpoint of general
nonlinear optimization, it is very relevant from the viewpoint of numerical optimal
control. There, block-diagonal structured Hessians arise in the context of direct mul-
tiple shooting [7].

In this paper, we propose an algorithm that maintains the advantages of block-wise
updates and avoids the poor performance of the damped BFGS approximation. This
is done by using SR1 updates whenever the resulting search direction has descent
properties that are required for the global convergence of the method.

1.2 Contributions and outline

The remainder of the article is laid out as follows. In Sect. 2 we present an active-set
SQP method with a filter line-search globalization strategy. The method makes it pos-
sible to work with indefinite Hessian matrices or their approximations, and it provides

123

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 439

a suitable framework for our numerical investigations. In Sect. 3 we discuss several
strategies for the indefinite block-wise approximation of the Hessian. We present cri-
teria that decide when to use the block-SR1 or the block-BFGS approximation with
the goal of promoting accelerated local convergence. In Sect. 4 we describe recent
extensions to the active-set parametric QP solver qpOASES that concern the efficient
solution of sparse and block-structured problems.We also discuss a new inertia control
strategy in qpOASES that permits the identification of points that satisfy second-order
necessary optimality conditions in active-set form (e.g. [24], Result 2.2) of an indefi-
nite QP. We study the behavior of the proposed algorithm in detail in Sect. 5, using an
optimum experimental design control example. Section 6 evaluates the merits of the
proposedSQPalgorithmonanumber of representative applicationproblems fromopti-
mum experimental design and optimal control. Finally, Sect. 7 concludes the article.

1.3 Notation

Throughout the article, subscripts, as in xi , indicate the elements of a column vector.
Bracketed superscript indices, as in x [k], denote quantities belonging to an iteration.
The avoid cumbersome notation, we distinguish the type of iteration by the index
letter: SQP iterations k, limited-memory iterations j , and working set iterations ν of
the active-set QP solver.

2 A filter line-search SQP method with indefinite hessian
approximations

In this section, we present an SQP method that is based on the filter line-search
globalization proposed in [45]. It solves nonlinear programs of the form

min
x∈Rn

f (x) (4a)

s.t. c(x) = 0, (4b)

� ≤ x ≤ u. (4c)

Here, the objective function f : Rn −→ R and the constraint function c : Rn −→ R
m

with m < n are assumed to be twice continuously differentiable. The vectors � ∈ R
n

and u ∈ R
n are the lower and upper bounds on the variables x . For future reference,

the Lagrange multipliers of (4b) are denoted by λ ∈ R
n .

Starting with an initial guess x [0], we compute iterates x [k+1] = x [k] + α[k]d[k] in
SQP iteration k ≥ 0. The search direction d[k] is given as the solution of the quadratic
program QP(H [k])

min
d∈Rn

1
2dT H [k]d + g[k]T

d (5a)

s.t. A[k]d + c[k] = 0, (5b)

� ≤ x [k] + d ≤ u. (5c)

123

440 D. Janka et al.

In QP (5), the matrix A[k] is the constraint Jacobian ∇x c(x [k])T , and the matrix
H [k] is an approximation of the Hessian of the Lagrangian function,

∇2
xxL(x [k], λ[k]) = ∇2 f (x [k]) +

m∑
j=1

λ
[k]
j ∇2c(x [k]). (6)

The step size α[k] is determined by the filter line search described in [45]. A step
is accepted if it sufficiently reduces either the objective value f (x) or the constraint
violation‖c(x)‖∞.A feasibility restoration phasemaybenecessary to generate iterates
that reduce the constraint violation when the step size α[k] in direction d[k] falls below
a certain threshold.

Under the assumption that the approximations H [k] are uniformly positive definite
on a certain subspace, it is guaranteed that a solution of (5) exists and that the resulting
search direction has descent properties that are required for the filter line search. In
order to formulate the positive-definiteness condition, let d[k] be the critical point
found by the QP solver and let us define S[k] as the set of bounds that are active at
both x [k] and x [k] + d[k]:

S[k] :=
{
1 ≤ i ≤ n | (x [k]

i = �i or x [k]
i = ui) and d[k]

i = 0
}

. (7)

Furthermore, letA[k] be the matrix whose rows consist of the gradients of the equality
constraints and of the bounds that are active at both x [k] and x [k] + d[k]:

A[k] :=
[
(A[k])T e j1 · · · e jlk

]T
. (8)

Here, S[k] = { j1, . . . , jlk }, and ei is the i-th coordinate vector. With these definitions
in place, we can formally state the assumption.

Assumption 1 There exists a constant λ1 > 0, so that for each k the smallest eigen-
value of (Z [k])T H [k]Z [k] is at least λ1, where Z [k] is a matrix whose columns form an
orthonormal basis of the null space of A[k].

In the rest of the paper, we will refer to (Z [k])T H [k]Z [k] as the “reduced Hessian H̄ [k]
(corresponding to A[k])”.

Global convergence canbe shown ifAssumption1 (named (G3*) in [45]) and further
assumptions, such as boundedness of the function and their derivatives and well-de-
finedness of the restoration phase, hold. In a practical implementation, it is difficult
to guarantee uniform positive definiteness for the entire sequence {H̄ [k]} as required
by Assumption 1, because this would require a very large amount of time for the
computation of the smallest eigenvalue. Instead, our SQP method guarantees positive
definiteness of H̄ [k] in every individual iteration k only, which does not preclude that
zero may be a limit point of the smallest eigenvalues of H̄ [k]. Consequently, in theory,
it is possible that Assumption 1 may not be satisfied and the method is no longer
guaranteed to converge; it might generate arbitrarily large steps so that the method
reverts to the restoration phase too often and the limit points of the iterates are feasible

123

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 441

but not necessarily stationary points. However, this situation is very unlikely in most
practical situations, and heuristic approaches similar to the one described here have
been successfully use in other optimization codes, including Ipopt [46] and Loqo
[43].

Algorithm 1 gives the description of the overall SQP method. It is identical with
Algorithm I in [45], with some details in step 2. As motivated in Sect. 1.1, the method
maintains two block quasi-Newton approximations of the Hessian: (a) a block-SR1
approximation that might be indefinite but permits the approximation of negative
curvature in the constraint range space ; and (b) a block-BFGS approximation that is
guaranteed to be positive definite. The algorithm first attempts to use the block-SR1
update, and if the corresponding reduced Hessian is positive definite, the resulting
step is taken as the search direction. Otherwise, the method recomputes the search
direction with the positive definite block-BFGS approximation.

The following section describes in detail how the Hessian approximations are gen-
erated.

Algorithm 1 Filter Line Search SQP Algorithm with Indefinite Hessian Matrices

Given: Starting point x [0]. Set k = 0.

1. Check convergence. Stop if x [k] is a stationary point of the NLP.
2. Compute search direction.

(a) Construct the block Hessian approximations H [k]
SR1 and H [k]

BFGS.

(b) Solve QP(H [k]
SR1) to obtain a primal-dual critical point (d[k]

SR1, λ̃
[k]
SR1).

(c) If QP(H [k]
SR1) is infeasible, go to 5.

(d) If the reduced Hessian H̄ [k]
SR1 corresponding to A[k] is positive definite, set (d[k], λ̃[k]) =

(d[k]
SR1, λ̃

[k]
SR1), set H [k] = H [k]

SR1, and go to 3.

(e) Solve QP(H [k]
BFGS) to obtain a primal-dual critical point (d[k]

BFGS, λ̃
[k]
BFGS).

(f) Set (d[k], λ̃[k]) = (d[k]
BFGS, λ̃

[k]
BFGS) and set H [k] = H [k]

BFGS.

3. Backtracking line search. Try to find a step length α[k] by the filter line search as described in [45]. If
the trial step size becomes too small, go to 5.

4. Next iteration. Set

x [k+1] = x [k] + α[k]d[k], λ[k+1] = (1 − α[k])λ[k] + α[k]λ̃[k],

k ← k + 1, and go to 1.
5. Feasibility restoration phase. If possible, compute x [k+1] that is accepted by the filter as described in

[45] and go to 1. Otherwise, stop and declare the problem as first-order locally infeasible.

3 Partitioned quasi-Newton updates

We maintain the block-diagonal structure of the true Hessian of the Lagrangian func-
tion with a partitioned quasi-Newton update. Following the approach suggested in [7],
we approximate each block separately by a suitable update formula. This can be seen
as a special case of partitioned quasi-Newton updates proposed in [26,27] and leads to
a high-rank update in each SQP iteration. The updates apply the full-space formulae
to the appropriate subvectors of

123

442 D. Janka et al.

s[k] := x [k+1] − x [k], y[k] := ∇xL(x [k+1], λ[k+1]) − ∇xL(x [k], λ[k+1]).

Likewise, the scaling and damping procedures described below are carried out for
each block independently.

In the following, we refrain from introducing an additional index to indicate a block.
Rather, the quantities s[k], y[k], H [k]

(·) , θ [k], and γ
[k]
(·) refer to any one of the diagonal

blocks in the Hessian for the remainder of this section. Formulae should hence be read
as being applied to each block individually, and to all blocks at the same time.

3.1 Limited-memory storage and build-up

The active-set QP solver qpOASES [20] used in our implementation requires that
the elements of the Hessian matrix are provided explicitly. As a consequence, we
compute the dense quasi-Newton matrices for each block. Nevertheless, we chose the
limited-memory approximation over the full-memory update because we noticed in
our experiments that using full-memory BFGS updates often leads to an increase in
the number of SQP iterations required, see Sect. 6.3.

For the limited-memory update, we store the M most recent vectors

{s[k−1], . . . , s[k−M]}, {y[k−1], . . . , y[k−M]},

where M = min(M̃, k) and M̃ is a fixed number. Startingwith an initial approximation
Hini, we explicitly construct the blocks of the matrix H [k] by forming the sum of the
M most recent updates. This approach is efficient because the blocks are small, and
the computational cost for constructing the dense matrices is negligible compared to
the derivative computation and QP solution.

In the first SQP iteration, we set Hini = I . In a later iteration k, the initial approxi-
mation Hini is chosen as the identity matrix multiplied by the scaling factor

γ
[k]
ini = y[k]T

s[k]

s[k]T s[k]

due toOren and Luenberger [35].We explored alternative initializations, but the exper-
iments reported in [29] showed that this strategy was most efficient in our setting.

3.2 SR1 update

To avoid cluttered notation, we will omit the iteration index k for the remainder of
this section. The index j refers to the steps in the limited-memory update in a given
iteration k. The SR1 update uses the standard formula

H [j+1]
SR1 = H [j]

SR1 + (y[j] − H [j]
SR1s[j])(y[j] − H [j]

SR1s[j])T

(y[j] − H [j]
SR1s[j])T s[j] , j = k − M, . . . , k − 1.

123

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 443

Following the rule in [34], we guard against denominators that are close to zero and
skip the update whenever

∣∣∣(y[j] − H [j]
SR1s[j])T s[j]

∣∣∣ < ε0 · ‖(y[j] − H [j]
SR1s[j])‖2 · ‖s[j]‖2.

In our implementation, we choose ε0 = 10−8.

3.3 Damped BFGS update

We use Powell’s damping strategy [38] that makes it possible to perform the BFGS
update even in a direction of negative curvature. For j = k − M, . . . , k − 1, damping
parameters θ [j] are computed from

θ [j] =

⎧⎪⎪⎨
⎪⎪⎩

0.8s[j]T
H [j]
BFGSs[j]

s[j]T H [j]
BFGSs[j] − s[j]T y[j] , if s[j]T

y[j] < 0.2s[j]T
H [j]
BFGSs[j],

1, else.

With this, we define y[j] by

y[j] = θ [j]y[j] + (1 − θ [j])H [j]
BFGSs[j],

and use y[j] in place of y[j] to compute the damped update:

H [j+1]
BFGS = H [j]

BFGS − H [j]
BFGSs[j]s[j]T

H [j]
BFGS

s[j]T H [j]
BFGSs[j] + y[j]y[j]T

y[j]T
s[j]

, j = k − M, . . . , k − 1.

We store the unmodified vectors y[j] for the limited-memory update, because the
damping parameters are different for each SQP iteration. Note that θ [j] = 1 gives the
unmodified BFGS update.

An additional safeguard is required because the update described above is applied
block-wise, i.e., s[j] is in fact only a subvector of the full-space step. This implies

that s[j] and hence the denominators s[j]T
H [j]s[j] and y[j]T

s[j] can be zero even
though the full-space step is not. We skip the update for the current block whenever

s[j]T
H [j]s[j] < ε1 or y[j]T

s[j] < ε1. In our implementation, we choose ε1 = 10−14.

3.4 Selective sizing of the limited-memory updates

We observed in our experiments that the BFGS update sometimes produces approx-
imations with very large eigenvalues. As a remedy, we consider the option to scale
the approximation H [j]

BFGS before each (inner) iteration in the limited-memory update.
This is based on the selective sizing strategy by Contreras and Tapia [13], which aims
to prevent the accumulation of large eigenvalues in the quasi-Newton approximation

123

444 D. Janka et al.

that may lead to unnecessarily small steps. We use the centered Oren–Luenberger
sizing factor

γ
[j]
COL = 1

2

y[j−1]T
s[j−1]/s[j−1]T

s[j−1] + y[j]T
s[j]/s[j]T

s[j]

s[j−1]T H [j]s[j−1]/s[j−1]T s[j−1] + s[j]T H [j]s[j]/s[j]T s[j]

as follows: Whenever 0 < ε2 < γ
[j]
COL < 1 for a given ε2 ∈ (0, 1), we reset H [j] ←

γ
[j]
COLH [j] before the computation of the update H [j+1]. In our implementation, we

choose ε2 = 10−1. For SR1 updates, this option made no significant difference and
has not been used in our experiments.

4 Solution of sparse nonconvex quadratic programs with qpOASES

Step 2 of Algorithm 1 requires the solution of QP(H [k]) (with H [k] = H [k]
SR1 and

potentially with H [k] = H [k]
BFGS). The QP solver qpOASES in our implementation

works with the parametric QP

min
d

1
2dT H [k]d + gT (τ)d (9a)

s.t. A[k]d + c(τ) = 0, (9b)

� − x [k] ≤ d ≤ u − x [k]. (9c)

Here, the gradient vector g(τ) and the constraint vector c(τ) are affine-linear functions
parameterized by τ ∈ [0, 1], given by

g(τ) = g̃[k−1](1 − τ) + g[k]τ, c(τ) = c̃[k−1](1 − τ) + c[k]τ.

The parametric data in τ = 0 is initialized with

g̃[k−1] = g[k−1] + (H [k,l] − H [k−1])d[k−1] − (A[k] − A[k−1])T λ̃[k−1],
c̃[k−1] = c[k−1] + (A[k] − A[k−1])d[k−1].

This makes it possible to warm-start the solver in τ = 0 from the known optimal
solution (d[k−1], λ̃[k−1]) of the previous SQP iteration. The solution of (9) in τ = 1
is the solution of QP(H [k]) sought for. We refer to [20] and the references therein for
the details of the parametric active-set strategy implemented in qpOASES.

In the following, we focus on two new features that were implemented in the
context of this article. The first exploits the sparsity of H [k] and A[k] using a sparse
Schur complement approach. The second feature is an inertia control mechanism that
determines whether the reduced Hessian H̄ [k] corresponding to A[k] defined in (8) is
positive definite.

123

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 445

4.1 Schur-complement approach

Every active-set iteration ν in the parametric active-setQPmethod requires the solution
of linear systems involving the KKT matrix

K [ν] :=
[

H [ν] A[ν]T

A[ν] 0

]
. (11)

Here, H [ν] is the matrix composed from the rows and columns of H [k] with indices
in the working set of free variables, F [ν]. The matrix A[ν] consists of the columns of
A[k] with indices in F [ν]. The working set F [ν] is chosen such that A[ν] has full row
rank and such that H̄ [ν] is regular. Furthermore, the complement of F [ν], denoted by
(F [ν])�, contains only fixed variables active at their bounds; i.e., (F [ν])� ⊆ {i | d[ν]

i =
�i − x [k]

i or d[ν]
i = ui − x [k]

i }.
We follow the approach described by [5,23–25] and compute a symmetric indefinite

L BLT -factorization of (11) for the initial working set F [0]. In our implementation,
this is accomplished by the sparse multifrontal solver MA57 [18] with approximate
minimum degree ordering computed by MC47 [1]. Before the first QP iteration, pivot
information from MA57 is used to identify a subset of rows with full rank for a given
working set guess. Then, the exchange logic of an active-set method (here qpOASES)
maintains this property over the course of all active-set QP iterations. Details can be
found in [20].

The working setF [ν] changes over iterations ν affect the rows and columns present
in (11), and this must be reflected in the factorization. As shown in [23], we border
the matrix (11) by appropriately chosen matrices M [ν] and N [ν]:

K [0] =
[

H [0] A[0]T

A[0] 0

]
, K [ν] :=

[
K [0] M [ν]

M [ν]T
N [ν]

]
, ν = 1, 2,

The dimension of thematrices M [ν] and N [ν] grows or shrinks by one in each iteration.
The key insight is that solutions with K [ν] only require solutions with K [0] and with

the dense Schur complement S[ν] = N [ν] − M [ν]T
K [0]−1

M [ν]. The L BLT -factors
for K [0] are computed only once at the beginning, and we compute and update a dense
QR factorization of S[ν].

4.2 Refactorization and restoring linear independence

Because the cost for maintaining a dense QR factorization of the Schur complement
S[ν] grows with the size of S[ν], a new L BLT -factorization is computed when the size
of S[ν] exceeds a given threshold nSmax. A refactorization is also triggered when an
estimate of the condition number of S[ν] is larger than a given threshold condMax.
In our implementation, the estimate is computed by the LAPACK routine DTRCON
which is applied to the triangular factor R of the QR decomposition. We found that
the values nSmax = 100 and condMax = 1014 work well in practice.

123

446 D. Janka et al.

It is possible that the L BLT -factorization cannot be performed because the matrix
K [ν] is singular. This can occur because of numerical error in the linear-independence
test due to finite precision. Similarly, already the initial KKT matrix K [0] may be
singular because the constraint Jacobian A[k] and Hessian approximation H [k] are
different at the new iterate.

In both cases, we make use of a feature of the symmetric indefinite solver MA57
and obtain the list of zero pivot indices. This enables us to remove linearly dependent
rows and columns from K [ν] by manipulating the working set F [ν] appropriately.
According to this list, we either (1) remove a variable from the working set F [ν] if
the zero pivot is found in the first block diagonal of (11), or (2) add a dummy slack
variable 0 ≤ s ≤ 0 to an equality constraint and add it to the working set F [ν] if the
zero pivot corresponds to the second, all-zero block diagonal in (11).

4.3 Monitoring the inertia of the KKT matrix

Throughout the working set iterations, we ensure that the reduced Hessian H̄ [ν] cor-
responding to A[ν] is always positive definite. To this purpose, we monitor the inertia
In(K [ν]) = (n+, n−, n0) of the full KKT matrix K [ν] (11), where n+, n−, and n0 are
the number of positive, negative, and zero eigenvalues of K [ν]. Using the techniques
described next, we then make sure that n+ equals the size of the first block diagonal
in (11), and n− equals the size of the second block diagonal in (11). This implies
positive-definiteness of H̄ [ν] [34].

We start with an initial KKT matrix K [0] with correct inertia. The case of incorrect
inertia is addressed in Sect. 4.4. We then follow the approach presented in [25] that
makes use of the fact that the inertia of K [ν] is correct if and only if

In(S[ν]) = (σ+, σ−, 0), (12)

where σ+ is the number of variables added and σ− is the number of variable removed
from the set F [ν] since the most recent L BLT -factorization of the KKT matrix. The
inertia of K [ν] can thus be determined from the inertia of S[ν], and it can be tracked
efficiently by observing the sign of the determinant of S[ν] in every modification of
S[ν].

If a variable is removed from the working set, the reduced Hessian shrinks by one
dimension and remains positive definite. Now consider a variable xi that is added
to the working set and that subsequently the KKT matrix has no longer the desired
inertia. By the properties of the working set, xi must be at one of its bounds (9c), say
xi (τ) = li (τ)− x [k]

i . qpOASES treats this situation using the flipping bounds strategy
[20]. Here, xi is removed again from the working set and fixed to its bound on the
opposite side, xi (τ) = ui (τ)− x [k]

i . In the parametric active-set strategy, however, the
value of xi is not actually changed. Instead, the parametric upper bound is redefined,
ui (τ) := li (τ), and primal feasibility is preserved. We point out that this procedure
does not necessarily guarantee convergence. An alternative strategy, due to Fletcher
[21], reduces the quadratic objective bymoving along a direction of negative curvature
and can be shown to terminate finitely in a non-parametric QP solver. (At this point

123

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 447

it is not clear to us whether a parametric variant of Fletcher’s approach also has finite
convergence).

4.4 Warm-start and early termination

For each subproblem in Step 2 of Algorithm 1, qpOASES is warm-started using the
primal-dual solution and working set of the previous SQP iteration. If the resulting
KKTmatrix is singular, theworking set is reduced according to the procedure described
in Sect. 4.2.

In step 2b, it is important to determine whether the reduced Hessian H̄ [k]
SR1 corre-

sponding to the optimal solution d[k]
SR1 is positive definite. If the initial working set

yields a KKTmatrix with correct inertia, the parametric active-set algorithm is carried
out to find a critical point of QP(H [k]

SR1). Afterwards, we factorize the KKT matrix

corresponding to the subset S[k] of the working set and obtain its inertia from the
linear solver.

In case the inertia of the KKT matrix K [0] is not correct for the initial working
set F [0], we can conclude without solving the QP that the reduced Hessian H̄ [k]

SR1

corresponding to the solution d[k]
SR1 cannot be positive definite because the set S[k] in

(7) is a subset of (F [0])�. The solution of QP(H [k]
SR1) is then terminated immediately

and the method proceeds to Step 2e.

5 Numerical case study: optimum experimental design

Our work is motivated by the solution of nonconvex optimal control problems. As a
basic example, we consider a dynamic process y(·) ∈ R

ny that is modeled by a system
of ordinary differential equations on a fixed time horizon [t0, tf] ⊂ R and depends
on a set of time-independent parameters p ∈ R

np . The process can be controlled by
a control function u(·) ∈ R

nu which is constrained by bounds, bl ≤ u(·) ≤ bu. The
optimal control problem is then written as

min
y(·),u(·),p

φ(y(tf)) (13a)

s.t. ẏ(t) = f (t, y(t), p, u(t)) t ∈ [t0, tf], (13b)

y(t0) = y0, (13c)

bl ≤ u(t) ≤ bu t ∈ [t0, tf]. (13d)

A particularly interesting subclass are optimum experimental design (OED) control
problems. OED problems occur as subproblems in the process of model validation,
where unknown model parameters p ∈ R

np are to be identified, see Fig. 1.
We consider an ODE system of the form

ẏ(t) = f (t, y(t), p, u(t)), y(t0) = y0.

123

448 D. Janka et al.

Optimum experimental design
Given p̂, determine u (·)

such that C(p̂, u) → min

Experiment
Given u , take measurements η

Parameter estimation
Given measurements η and u (·),
determine a maximum-likelihood p̂

Is p̂
identified
well?

Model
validated

no

yes

Fig. 1 Model validation flowchart. The focus of this article is on the numerical solution of the optimum
experimental design problem

The controlu(·) represents experimental conditions. InOEDone is interested infinding
the control u(·) that minimizes the uncertainty of a given estimate p̂. The estimate is
obtained, e.g., frompreviously takenmeasurements.Wequantify the uncertainty by the
trace of the covariance matrix of the parameter estimates, also called the A-criterion,
a common objective in experimental design [39]. Suppose we can take observations
ηi ∈ R

ny of the differential state y(ti) at times ti ∈ [t0, tf], 0 ≤ i ≤ M . The matrices

C(p̂) = H(p̂)−1, H(p̂) :=
M∑

i=0

yp(ti)
T yp(ti) (14)

are the covariance matrix C and Fisher information matrix H that describe the uncer-
tainty of the maximum-likelihood estimate p̂ that can be obtained from the data η [6].
Herein, yp(·) := dy(·)

dp is the solution of the variational ODE system evaluated at p̂

ẏp(t) = fy(t, y(t), p̂, u(t)) · yp(t) + fp(t, y(t), p̂, u(t)), yp(t0) = 0,

on [t0, tf], and fy := ∂ f
∂y and fp := ∂ f

∂p denote the partial derivatives of f . We assume
that the OED problem is well posed, that is, all components of p are identifiable.
This implies regularity of the Fisher information matrix H(p̂). If this assumption is
violated in practice, prior information about p can be incorporated in the formulation
by adding a term ε I to the right-hand side of Eq. (14).

Notably, both matrices are independent of the data η itself. It is this observation that
enables us to determine u(·) optimally and predict the covariance C(p̂) for a given
estimate p̂ beforewe obtain the data. For nonlinear systems, the choice of u(·) not only
affects C(p̂) but p̂ itself. In practice, however, we expect that the parameter estimates
converge to their true values after few iterations of the loop in Fig. 1. Hence, C(p̂) is
a good estimate for the true covariance matrix.

In summary, theOEDproblem can be cast as the following optimal control problem,
see [28,41]:

min
y(·),yp(·),u(·),C tr(C) (15a)

123

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 449

s.t. ẏ(t) = f (t, y(t), p̂, u(t)) t ∈ [t0, tf], (15b)

y(t0) = y0, (15c)

ẏp(t) = fy(t, y(t), p̂, u(t)) · yp(t)

+ fp(t, y(t), p̂, u(t)) t ∈ [t0, tf], (15d)

yp(t0) = 0, (15e)

bl ≤ u(t) ≤ bu t ∈ [t0, tf], (15f)

C =
(∑M

i=0
yp(ti)

T yp(ti)

)−1

. (15g)

5.1 Direct multiple shooting

To solve this problem numerically, it is discretized in time and transformed into an
NLP by a special variant of the direct multiple shooting method [7].

1. Choose a (possibly coarse) partition of the time horizon into N > 1 intervals,
t0 = τ0 < τ1 < · · · < τN = tf. To ease the notation, we will assume that
the points τ j coincide with the observation times ti in (15g), hence N = M . In
practice, however, it is often beneficial to choose separate grids.

2. Construct a piecewise discretization of the control u(·) on the intervals [τ j , τ j+1),
represented by finite-dimensional control vectors q j . For simplicity of exposition,
we assume a piecewise constant discretization,

u(t) = q j ∈ R
nu , t ∈ [τ j , τ j+1).

3. Introduce intermediate initial values s j ∈ R
ny and S j ∈ R

ny×np for 0 ≤ j ≤ N .
The initial value problem (15b)–(15e) is solved independently on each of the N
intervals. Add continuity conditions to ensure equivalence to the original problem:

y(τ j+1; τ j , s j , q j) − s j+1 = 0,

yp(τ j+1; τ j , s j , S j , q j) − S j+1 = 0, j = 0, . . . , N − 1.

Here, y(τ j+1; τ j , s j , q j) is the value of y at time τ j+1 obtained by integrating
(15d) starting at τ j with initial value s j and control value q j . The expression
yp(τ j+1; τ j , s j , S j , q j) is defined in a similar way.

4. Linear separability of the objective is achieved through a linearly coupled con-
straint for the inverse H = C−1(p̂) of the covariance matrix,

N∑
j=1

yp(τ j)
T yp(τ j) − H = 0.

This preserves the block-diagonal Hessian structure introduced by the multiple
shooting discretization. Note that this would not be the case if the constraint was
formulated in terms of C .

123

450 D. Janka et al.

The resulting discretized and parameterized problem is an NLP in the variables

z j = (s j , S j , q j) ∈ R
ny+nynp+nu , 0 ≤ j ≤ N − 1,

zN = (sN , SN) ∈ R
ny+nynp,

H ∈ R
np×np .

With z := (z0, . . . , zN), this NLP reads

min
z,H

tr(H−1) (16a)

s.t. 0 = y(τ j+1; s j , q j) − s j+1 0 ≤ j ≤ N − 1, (16b)

0 = y0 − s0, (16c)

0 = yp(τ j+1; s j , S j , q j) − S j+1 0 ≤ j ≤ N − 1, (16d)

0 = S0, (16e)

bl ≤ q j ≤ bu 0 ≤ j ≤ N − 1, (16f)

0 =
∑M

j=0
ST

j S j − H. (16g)

Direct multiple shooting offers several advantages. Among others, it allows for the
straightforward parallelization of state and derivative evaluation, the efficient treatment
of DAE systems via a relaxed formulation, and the robust solution of the underlying
problem with specialized ODE solvers. Furthermore, efficient linear algebra tech-
niques may be employed for the solution of the NLP [33].

5.2 Numerical case study

We discuss a minimal, but prototypical experimental design example. It allows an
analytical investigation, in contrast to the more complex problems in the next section.
We consider the ODE system

ẏ(t) = p · u(t), y(t0) = 0, (17)

with one scalar parameter p and given estimate p̂ = 2 on the time horizon [t0, t f] =
[0, 1]. Let the control u(·) be constrained by 0 ≤ u(t) ≤ 1. The variational differential
equation corresponding to (17) is

ẏp(t) = u(t), yp(t0) = 0.

With a piecewise-constant discretization of u(·), the ODE solutions on the shooting
intervals [τ j , τ j+1], 0 ≤ j < N have the representations

y(τ j+1; τ j , s j , q j) = s j + pq j (τ j+1 − τ j), (18a)

yp(τ j+1; τ j , s j , S j , q j) = S j + q j (τ j+1 − τ j). (18b)

123

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 451

Independent of N , the global minimum of this problem is tr((H∗)−1) = 4.5796·10−2.
It is attained at q j = 1, 0 ≤ j < N . This can be seen by applying amaximum principle
[41]. Hence, the system reveals themost information about the parameter p if we excite
it by the maximum amount possible.

If we insert equations (18) into the NLP (16), we note that the only nonlinear
constraint is (16g); its Lagrangemultiplier is denoted by λH ∈ R

np . Linear separability
with respect to the variables z j , j = 0, . . . , N , implies the following block-diagonal
structure of the Hessian of the Lagrangian L(z, λH) of (16):

∇2
z,zL(z, λH) = diag

(
∇2

z0,z0L(z, λH), . . . ,∇2
zN ,zN

L(z, λH),∇2
H,HL(z, λH)

)
,

∇2
z j ,z j

L(z, λH) =
⎡
⎣0 0 0
0 2λH 0
0 0 0

⎤
⎦ , ∇2

H,HL(z, λH) = 2H−3. (19)

While 2H−3 is positive close to the optimal solution, 2λH is not. In our example,
we have λ∗

H = −2.1 · 10−3. Consequently, we expect that the SQP algorithm with
block-wise updates performs better if the updates can reflect the negative curvature of
the exact Hessian.

To examine this, we choose a grid of N = 65 equidistant points on [0, 1]. As initial
guess, we set q j = 0.9 and we initialize s j and S j such that all continuity conditions
(18) are satisfied. The initial Hessian approximation is identity. With this setup, our
SQP implementation finds the solution in 31 iterations with damped block-LBFGS
updates. In all iterations, the LBFGS update is damped in 64 out of the 65 blocks to
preserve positive definiteness of the approximation, or they are skipped entirely due
to ill-conditioning as described in Sect. 3.3. In comparison, the block-LSR1/LBFGS
SQP algorithm needs only 14 iterations to converge. In nine of these iteration, the
block-LSR1 update is rejected by the inertia condition and a damped block-LBFGS
approximation is employed instead.

At the solution, the exact Hessian (19) has 64 negative eigenvalues correspond-
ing to the 64 intervals. If we choose a coarser multiple shooting grid for the state
parameterization, but keep the control discretization grid fixed, we obtain a family of
NLPs. In each instance, the number of control degrees of freedom is the same and the
reduced Hessian at the solution has the same dimension. Table 1 shows the number of
SQP iterations taken for these NLPs. We see that when block-SR1 updates are used,
the number of SQP iterations decreases when the grid is refined. When block-BFGS
updates are used this effect can also be observed, but the performance gain is smaller.

These results were carried out without the scaling heuristics. Table 1 also shows
the number of iterations when we apply the block-LBFGS and block-LSR1 updates
in connection with the scaling strategies presented in Sect. 3.4. Here, the number of
iterations can be reduced significantly, especially for coarse grids. For the finest grid,
where the nodes of themultiple shooting grid and the control grid coincide, the number
of iterations for block-LBFGS is still considerably higher, which supports our use of
block-LSR1 updates in these situations.

We remark that a full-space LBFGSupdate (that does not exploit the block-diagonal
structure) with identity as initial approximation takes 55 iterations for this problem,

123

452 D. Janka et al.

Table 1 Number of SQP iterations taken to solve example (16) to a KKT tolerance (Eq. 2) of 10−12

N No scaling With scaling

b-BFGS b-SR1 (rej.) b-BFGS b-SR1 (rej.)

2 55 47 (23) 9 23 (1)

3 52 44 (23) 9 22 (1)

5 48 38 (24) 10 14 (2)

9 54 30 (22) 10 11 (4)

17 46 24 (19) 12 11 (6)

33 36 18 (13) 15 9 (4)

65 31 14 (9) 28 10 (5)

N is the number of multiple shooting nodes. Iteration counts are reported for the block-LBFGS and block-
LSR1 updates. For the latter, the number in parentheses is the number of iterations in which the block-
LSR1 update is not accepted in Step 2 and the block-LBFGS update is used instead. The experiments
were performed with and without the scaling heuristics. In the unscaled case, identity is taken as initial
approximation. In the other case, the initial approximation for SR1 is scaled by γini defined in Sect. 3.1.
LBFGS updates are scaled in every limited-memory-update iteration using the selective sizing described in
Sect. 3.4. The memory size is set to M̃ = 20 as in all our numerical experiments

independent of N . When scaled with the selective sizing strategy, the number of
iterations is reduced to 8. Results for the full-space BFGS update onmore complicated
examples are presented in Sect. 6.3.

6 Numerical results

In this sectionwe examine the performance of our algorithm on awider set of problems
from optimal control and optimum experimental design.

6.1 Software implementation

The SQP algorithm presented in this paper is implemented in the C++ code
blockSQP. It can be obtained from https://github.com/djanka2/blockSQP. It uses
qpOASES release 3.2.0 available from https://projects.coin-or.org/qpOASES to solve
the quadratic subproblems.Within qpOASES,MA57 [18] is used to solve sparse linear
systems involving the initial KKT matrix.

The objective and constraint evaluation is handled by the software package VPLAN
[31]. It calls the variable step-size BDF method DAESOL [2,3] to evaluate the differ-
ential states in the continuity conditions and their derivatives. The required derivatives
of the model right-hand side are supplied by ADIFOR [4].

All results were obtained on a workstation with 4 Intel Xeon CPUs (3.3 GHz)
and 256 GB memory running CentOS Linux 7.0.1406. All C++ source code was
compiled with gcc and all Fortran code with gfortran with the -O3 option. For
our experiments, only one core is used.

123

https://github.com/djanka2/blockSQP
https://projects.coin-or.org/qpOASES

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 453

Table 2 Numbers n of variables
and m of constraints of the NLPs
in the test set. The number of
multiple shooting discretization
nodes is 64 for all problems

Problem n m

oc-batchdist 1092 1027

oc-cops-catalyst-mixing 257 193

oc-cops-goddard 322 258

oc-cops-hangglider 386 324

oc-cops-hanging-chain 257 195

oc-cops-particle-steering 450 388

oc-fermenter 900 708

oc-lotka 322 257

oc-ocean 322 194

oc-williams-otto 706 578

oed-catalyst-mixing 447 255

oed-lotka 383 383

oed-urethane 3331 3124

6.2 Test set and algorithmic parameters

Our set of test instances comprises the problems listed in Table 2. From the COPS 3.0
test set [17], we consider the optimal control problems 4 (hanging chain), 9 (particle
steering), 10 (Goddard rocket), 11 (hang glider), and 14 (catalyst mixing). The catalyst
mixingmodel can also be formulated as an optimumexperimental design problemwith
the frequency factor of x2 as uncertain parameter and both states as observables. The
Lotka–Volterra optimal control and experimental design models are described in [42]
and [40], respectively. The Williams-Otto semi-batch reactor is described in [22],
and the batch distillation process in [15]. The Urethane reaction was first described
as optimum experimental design problem in [31]. Both the fermenter and the ocean
problem are found in the MUSCOD-II collection of optimal control problems [7,33].

All problems are discretized using the direct multiple shooting method outlined in
Sect. 5 with N = 64 multiple shooting intervals. The relative integration tolerances in
DAESOL are set between 10−7 and 10−9, depending on the dynamical system. Table
2 shows the characteristics of the resulting NLPs.

All NLPs have a block-diagonal Hessianmatrix. Block-wise quasi-Newton updates
are computed as described in Sect. 3. The limited memory size is set to M̃ = 20. The
SQP method is terminated when the KKT error (2) is less than 10−5.

6.3 Comparison of different update strategies

First, we evaluate the performance of our implementation of Algorithm 1 for the test
set with different Hessian update strategies. Figure 2 compares the number of SQP
iterations for six different strategies in the form of a performance profile [16]:

– block-wise BFGS, full memory (b-BFGS)
– block-wise BFGS, limited memory (b-LBFGS)

123

454 D. Janka et al.

1 2 3 4 5 6 7 8 9 10
T

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n
of

pr
ob
le
m
ss

ol
ve
d

w
ith

in
T
×(

#i
t.
of

th
e
be
st
so
lv
er
)

b-BFGS
b-SR1/BFGS

b-LBFGS
b-LSR1/LBFGS

f-BFGS
f-SR1/BFGS

Fig. 2 Performance profile comparing the number of SQP iterations for six different update strategies

– block-wise SR1 with block-wise BFGS as fallback, full memory (b-SR1/BFGS)
– block-wise SR1 with block-wise BFGS as fallback, limited memory (b-LSR1/
LBFGS)

– full-space BFGS, full memory (f-BFGS)
– full-space SR1 with BFGS as fallback, full memory (f-SR1/BFGS)

Some problems could not be solved by all algorithms due to errors in the line search
or restoration phase

– oc-cops-hangglider: b-BFGS, b-SR1/BFGS, f-BFGS, f-SR1/BFGS
– oc-batchdist: b-BFGS, f-BFGS
– oed-lotka: b-BFGS, b-SR1/BFGS
– oed-urethane: f-SR1/BFGS
– oc-fermenter: b-SR1/BFGS
– oc-cops-catalyst-mixing: b-BFGS

We see that block-wise updates with limited memory perform better than their full-
memory counterparts. We attribute this to the fact that “old” curvature information is
retained by the full-memory update. Recall that the constraints involve the solution
of dynamical systems with an error-controlled numerical integration routine that uses
adaptively generated grids. If the integration grid changes from one SQP iteration to
another, certain numerical noise is introduced in the secant information. We speculate
that this can result in poor Hessian approximations that prevent fast progress of the
algorithm.

Furthermore, we see that full-space BFGS updates sometimes find solutions in
fewer SQP iterations than block-wise updates, see Table 3 for details. In some cases
(oc-cops-catalyst-mixing, oc-cops-hanging-chain) where the algo-
rithm with block-wise updates needs significantly more iterations, many updates are
skipped because of ill-conditioning as described in Sect. 3.3. Note that full-space

123

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 455

Table 3 SQP iterations and run times for full-space BFGS and block-wise LSR1/LBFGS

Instance f-BFGS b-LSR1/LBFGS

SQP it Time (s) SQP it Time (s) Skip upd.(%)

oc-batchdist 73a 430.09a 66 6.11 0.4

oc-cops-catalyst-mixing 45 1.45 90 1.58 47.6

oc-cops-goddard 37 2.48 42 0.48 2.3

oc-cops-hangglider 8a 4.39a 51 0.83 0.7

oc-cops-hanging-chain 62 1.72 151 1.04 19.8

oc-cops-particle-steering 110 27.61 19 0.5 0.5

oc-fermenter 32 29.69 79 4.87 6.5

oc-lotka 38 3.05 18 0.33 2.1

oc-ocean 330 94.1 40 1.68 0.4

oc-williams-otto 24 30.07 40 2.8 11.5

oed-catalyst-mixing 49 3.05 46 0.69 33.2

oed-lotka 25 4.72 120 2.9 2.2

oed-urethane 180 13,947.56 99 551.94 1.2

For the latter, the percentage of updates that are skipped due to ill-conditioning is given. Smaller numbers
are printed in italics
a Failures due to errors in the line search or restoration phase

updates are not competitive in terms of run times because block-sparsity in the Hessian
cannot be exploited and much time is spent for solving the dense linear systems inside
the QP solver.

In Table 4, we compare b-LSR1/LBFGS updates to b-LBFGS updates in more
detail. We note that the b-LSR1/LBFGSmethod needs fewer SQP iterations for 12 out
of 13 problems. Interestingly, SR1 updates are accepted relatively rarely by the inertia
controlling strategy. Figure 3 shows in which particular iterations the SR1 updates are
accepted. This is mostly the case during the last iterations, when the active set has
settled and the reduced Hessian with exact derivatives, corresponding to the active
constraints, is positive definite.

The KKT error threshold of 10−5 used to obtain these results may seem relatively
loose. Tighter thresholds would even play in favor of the proposed approach as they
require better numerical approximations of the ODE solution. These come at a higher
relative cost per SQP iteration, which makes solving up to two relatively cheap QPs
per iteration even more affordable.

Furthermore, we note that the savings in CPU time are not as significant as the
reduction of SQP iterations. Sometimes, the b-LSR1/LBFGS method is even slower
although fewer SQP iterations are needed. This is mainly due to the fact that many
additional QPs need to be solved. Note, however, that the total number of QP iterations
is often not much higher for the b-LSR1/LBFGS algorithm compared to the pure b-
LBFGS case. The reason for this is that we terminate the QP solver early whenever the
initial active set has the wrong inertia (see Sect. 4.4). Table 5 shows that this technique
saves many QP iterations and is necessary to make the algorithm competitive with

123

456 D. Janka et al.

Table 4 SQP iterations, QP iterations, and run times for b-LSR1/LBFGS and b-LBFGS

Instance b-LSR1/LBFGS b-LBFGS

SQP it QP it Time (s) SQP it QP it Time (s)

oc-batchdist 66 (7) 622 13.83 75 642 14.95

oc-cops-catalyst-mixing 90 (2) 1415 2.48 114 1250 2.54

oc-cops-goddard 42 (5) 313 0.75 76 491 1.36

oc-cops-hangglider 51 (5) 417 1.73 73 385 2.31

oc-cops-hanging-chain 151 (7) 303 1.63 166 363 1.63

oc-cops-particle-steering 19 (2) 337 0.7 20 321 0.65

oc-fermenter 79 (2) 1367 6.5 73 1781 5.94

oc-lotka 18 (4) 507 0.48 20 355 0.41

oc-ocean 40 (4) 5167 2.06 55 4919 2.29

oc-williams-otto 40 (5) 1750 3.75 66 1759 4.62

oed-catalyst-mixing 46 (5) 650 1.33 47 533 1.58

oed-lotka 120 (8) 1738 4.92 140 2025 5.53

oed-urethane 99 (8) 5669 549.33 113 10028 600.84

Listed in parentheses is the number of SQP iterations in which the SR1 update was accepted by the inertia
controlling strategy. The BFGS approximation was used in all other iterations. Smaller numbers are printed
in italics

0 20 40 60 80 100 120 140 160
SQP iteration

oed-urethane

oed-lotka

oed-catalyst-mixing

oc-williams-otto

oc-ocean

oc-lotka

oc-fermenter

oc-cops-particle-steering

oc-cops-hanging-chain

oc-cops-hangglider

oc-cops-goddard

oc-cops-catalyst-mixing

oc-batchdist

Distribution of SR1 updates for b-LSR1/LBFGS

SR1 accepted
SR1 rejected
b-LBFGS

Fig. 3 Distribution of accepted and rejected b-LSR1 updates for the b-LSR1/LBFGS algorithm. The
number of iterations for the BFGS algorithm are given for comparison

b-LBFGS. Note that this early termination does not impact the convergence of the
SQP method, as the QP that delivers the SQP step is always solved to completion.

In practical situations, the dynamical systems are larger and more complicated
than those considered here. The derivative evaluation, which is required for each SQP
iteration, is then expected to dominate the computation time compared to the solution
of the QPs. This is especially true for OED problemswhich require exact second-order

123

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 457

Table 5 Total number of QP iterations and overall computing times of the b-LSR1/LBFGS algorithm with
and without early termination of the QP solution

Instance With QP early term Without QP early term

QP Time (s) QP Time (s)

oc-batchdist 622 13.83 31,683 130.54

oc-cops-catalyst-mixing 1415 2.48 4410 4.31

oc-cops-goddard 313 0.75 7727 4.17

oc-cops-hangglider 417 1.73 56,407 33.91

oc-cops-hanging-chain 303 1.63 179,449 61.44

oc-cops-particle-steering 337 0.7 21,754 18.04

oc-fermenter 1367 6.5 20,873 48.64

oc-lotka 507 0.48 1525 1.05

oc-ocean 5167 2.06 23,171 8.69

oc-williams-otto 1750 3.75 7889 14.87

oed-catalyst-mixing 650 1.33 7828 5.04

oed-lotka 1738 4.92 16,591 21.07

oed-urethane 5669 549.33 260,394 1706.15

The number of SQP iterations is not affected

derivatives of the dynamics for the computation of the first derivative of (15d). We
thus expect that our b-LSR1/LBFGS method will be superior in terms of CPU time
for large dynamic systems.

7 Summary

We presented a filter line-search SQP algorithm that exploits block-diagonal structure
of the Hessian matrix. This structure often occurs in the context of direct methods
for optimal control. A blockwise approximation scheme based on the SR1 update
and a scaled BFGS update was devised that uses the SR1 update whenever possible.
The BFGS update is employed as fallback strategy. The resulting sparse and noncon-
vex quadratic subproblems are handled by a new Schur-complement variant of the
parametric active-set code qpOASES. An inertia control technique that was added to
the QP solver permits the efficient verification of the positive definiteness condition
required by the globalization strategy. A small numerical case study and numerical
experiments with 13 large benchmark problems from optimal control and optimum
experimental design demonstrate the performance improvement gained by the new
method in terms of the number of SQP iterations and CPU time.

Acknowledgments The authors thank two anonymous referees and an anonymous technical editor for
their constructive and helpful comments.
D. Janka and C. Kirches were supported by DFG Graduate School 220 (Heidelberg Graduate School of
Mathematical and Computational Methods for the Sciences) funded by the German Excellence Initiative.
D. Janka was supported by BASF SE within the junior research group experimental design. C. Kirches and
S. Sager were supported by the German FederalMinistry of Education and Research program “Mathematics
for Innovations in Industry and Service 2013–2016”, Grant No. 05M2013-GOSSIP. Financial support by

123

458 D. Janka et al.

the European Union within the 7th Framework Programme under Grant Agreement No 611909 is gratefully
acknowledged. A.Wächter was supported in part by the National Science Foundation Grant DMS-1216920.
Parts of this work were carried out during an appointment of D. Janka to Northwestern University.

References

1. Amestoy, P., Dollar, H.S., Reid, J.K., Scott, J.A.: An approximate minimum degree algorithm for
matrices with dense rows. Technical Report RAL-TR-2007-020, Rutherford Appleton Laboratory
(2007)

2. Bauer, I., Bock, H.G., Körkel, S., Schlöder, J.P.: Numerical methods for initial value problems and
derivative generation for DAE models with application to optimum experimental design of chemical
processes. Sci. Comput. Chem. Eng. II(2), 282–289 (1999)

3. Bauer, I., Bock, H.G., Schlöder, J.P.: DAESOL—a BDF-code for the numerical solution of differential
algebraic equations. Preprint, IWR der Universität Heidelberg, SFB 359 (1999)

4. Bischof, C., Khademi, P., Mauer, A., Carle, A.: ADIFOR 2.0: automatic differentiation of fortran 77
programs. IEEE Comput. Sci. Eng. 3(3), 18–32 (1996)

5. Bisschop, J., Meeraus, A.: Matrix augmentation and partitioning in the updating of the basis inverse.
Math. Program. 13(1), 241–254 (1977)

6. Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Dif-
ferentialgleichungen, volume 183 of Bonner Mathematische Schriften. Universität Bonn, Bonn (1987)

7. Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems.
In: Proceedings of the 9th IFAC World Congress, pages 242–247, Budapest, 1984. Pergamon Press.
Available at http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf

8. Bryson,A.E.: AppliedOptimalControl: Optimization, Estimation andControl. CRCPress, BocaRaton
(1975)

9. Byrd, R.H., Khalfan, H.F., Schnabel, R.B.: Analysis of a symmetric rank-one trust region method.
SIAM J. Optim. 6(4), 1025–1039 (1996)

10. Conn, A.R., Gould, N.I.M., Toint, PhL: Testing a class of methods for solving minimization problems
with simple bounds on the variables. Math. Comput. 50(182), 399–430 (1988)

11. Conn, A.R., Gould, N.I.M., Toint, PhL: Convergence of quasi-Newton matrices generated by the
symmetric rank one update. Math. Program. 50(1–3), 177–195 (1991)

12. Conn, A.R., Gould, N.I.M., Toint, PhL: LANCELOT: A Fortran Package for Large-scale Nonlinear
Optimization (Release A). Volume 17 of Springer Series in Computational Mathematics. Springer,
Heidelberg (1992)

13. Contreras, M., Tapia, R.A.: Sizing the BFGS and DFP updates: numerical study. J. Optim. Theory
Appl. 78(1), 93–108 (1993)

14. Cuthrell, J.E., Biegler, L.T.: Simultaneous optimization and solution methods for batch reactor control
profiles. Comput. Chem. Eng. 13(1), 49–62 (1989)

15. Diehl, M., Bock, H.G., Kostina, E.: An approximation technique for robust nonlinear optimization.
Math. Program. 107, 213–230 (2006)

16. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002)

17. Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking optimization software with COPS 3.0. Argonne
National Laboratory Technical Report ANL/MCS-TM-273 (2004)

18. Duff, I.S.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM
Trans. Math. Softw. 30(2), 118–144 (2004)

19. Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy to overcome the limitations of
explicit MPC. Int. J. Robust Nonlinear Control 18(8), 816–830 (2008)

20. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES 3.0: a parametric active-set
algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)

21. Fletcher, R.: Stable reduced hessian updates for indefinite quadratic programming. Math. Program.
87(2), 251–264 (2000)

22. Forbes, J.:Model structure and adjustable parameter selection for operations optimizations. PhD thesis,
McMaster University, Hamilton, Canada (1994)

23. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: A Schur-complement method for sparse
quadratic programming. Technical report, Stanford Univ., CA (USA). Systems Optimization Lab.
(1987)

123

http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf

An SR1/BFGS SQP algorithm for nonconvex NPs. . . 459

24. Gill, P.E., Wong, E.: Methods for convex and general quadratic programming. Technical report, Uni-
versity of California at San Diego (2013)

25. Gould, N.I.M., Toint, PhL: An iterative working-set method for large-scale nonconvex quadratic pro-
gramming. Appl. Numer. Math. 43(1), 109–128 (2002)

26. Griewank, A., Toint, PhL: Local convergence analysis for partitioned quasi-Newton updates.
Numerische Mathematik 39(3), 429–448 (1982)

27. Griewank, A., Toint, PhL: Partitioned variable metric updates for large structured optimization prob-
lems. Numerische Mathematik 39(1), 119–137 (1982)

28. Janka, D.: Optimum experimental design andmultiple shooting. Diplomarbeit, Universität Heidelberg,
Heidelberg (2010)

29. Janka, D.: Sequential quadratic programming with indefinite Hessian approximations for nonlin-
ear optimum experimental design for parameter estimation in differential-algebraic equations. PhD
thesis, Ruprecht-Karls-Universität Heidelberg, 2015. Available at http://archiv.ub.uni-heidelberg.de/
volltextserver/19170/

30. Khalfan, H.F., Byrd, R.H., Schnabel, R.B.: A theoretical and experimental study of the symmetric
rank-one update. SIAM J. Optim. 3(1), 1–24 (1993)

31. Körkel, S.: Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-
Modellen. PhD thesis, Universität Heidelberg (2002)

32. Körkel, S., Potschka, A., Bock, H.G., Sager, S.: A multiple shooting formulation for optimum experi-
mental design. (2008). (submitted to Mathematical Programming, under review)

33. Leineweber, D.B., Bauer, I., Schäfer, A.A.S., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting
based reduced SQP strategy for large-scale dynamic process optimization (parts I and II). Comput.
Chem. Eng. 27, 157–174 (2003)

34. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006). ISBN 0-387-
30303-0 (hardcover)

35. Oren, S.S., Luenberger, D.G.: Self-scaling variable metric (SSVM) algorithms part i: criteria and
sufficient conditions for scaling a class of algorithms. Manag. Sci. 20(5), 845–862 (1974)

36. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J.
Glob. Optim. 1(1), 15–22 (1991)

37. Plitt, K.J.: Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschränkter
optimaler Steuerungen. Diplomarbeit. Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (1981)

38. Powell, M.J.D.: The convergence of variable metric methods for non-linearly constrained optimization
calculations. Nonlinear Program. 3, 27–63 (1978)

39. Pukelsheim, F.: Optimal Design of Experiments. Classics in Applied Mathematics 50. SIAM (2006).
ISBN 978-0-898716-04-7

40. Sager, S.: On the Integration of Optimization Approaches for Mixed-Integer Nonlinear Optimal Con-
trol. Universität Heidelberg, August (2011). Habilitationsschrift

41. Sager, S.: Sampling decisions in optimum experimental design in the light of Pontryagin’s maximum
principle. SIAM J. Control Optim. 51(4), 3181–3207 (2013)

42. Sager, S., Bock, H.G., Diehl, M., Reinelt, G., Schlöder, J.P.: Numerical methods for optimal control
with binary control functions applied to a Lotka–Volterra type fishing problem. In: Seeger, A. (ed.)
Recent Advances in Optimization, Volume 563 of Lectures Notes in Economics and Mathematical
Systems, pp. 269–289. Springer, Heidelberg (2009). ISBN 978-3-5402-8257-0

43. Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming.
Comput. Optim. Appl. 13, 231–252 (1999)

44. Vassiliadis, V.S., Sargent, R.W.H., Pantelides, C.C.: Solution of a class of multistage dynamic opti-
mization problems. Parts 1. and 2. Indus. Eng. Chem. Res. 10(33), 2111–2133 (1994)

45. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and
global convergence. SIAM J. Optim. 16(1), 1–31 (2005)

46. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

123

http://archiv.ub.uni-heidelberg.de/volltextserver/19170/
http://archiv.ub.uni-heidelberg.de/volltextserver/19170/

	An SR1/BFGS SQP algorithm for nonconvex nonlinear programs with block-diagonal Hessian matrix
	Abstract
	1 Introduction
	1.1 Motivating nonlinear programming example
	1.2 Contributions and outline
	1.3 Notation

	2 A filter line-search SQP method with indefinite hessian approximations
	3 Partitioned quasi-Newton updates
	3.1 Limited-memory storage and build-up
	3.2 SR1 update
	3.3 Damped BFGS update
	3.4 Selective sizing of the limited-memory updates

	4 Solution of sparse nonconvex quadratic programs with qpOASES
	4.1 Schur-complement approach
	4.2 Refactorization and restoring linear independence
	4.3 Monitoring the inertia of the KKT matrix
	4.4 Warm-start and early termination

	5 Numerical case study: optimum experimental design
	5.1 Direct multiple shooting
	5.2 Numerical case study

	6 Numerical results
	6.1 Software implementation
	6.2 Test set and algorithmic parameters
	6.3 Comparison of different update strategies

	7 Summary
	Acknowledgments
	References

