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Abstract Wepresent a newcriterion space searchmethod, the L-shape searchmethod,
for finding all nondominated points of a triobjective integer program. The method is
easy to implement, and is more efficient than existingmethods.Moreover, it is intrinsi-
cally well-suited for producing high quality approximate nondominated frontiers early
in the search process. An extensive computational study demonstrates its efficacy.

Mathematics Subject Classification 90C29 (Multi-objective and goal
programming) · 90C10 (Integer programming)

1 Introduction

Multiobjective optimization is one of the earliest fields of study in operations research.
Many real world-problems involve multiple objectives. Due to conflict between objec-
tives, finding a feasible solution that simultaneously optimizes all objectives is usually
impossible. Consequently, in practice, decision makers want to understand the trade
off between objectives before choosing a suitable solution. Thus, generating many or
all efficient solutions, i.e., solutions in which it is impossible to improve the value of
one objective without a deterioration in the value of at least one other objective, is the
primary goal in multiobjective optimization.

It has been shown that even for the simplest optimization problems, e.g., the min-
imum spanning tree problem, the shortest path problem, and the matching problem,
and even for just two objective functions, determining whether a point in the criterion
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space is associated with an efficient solution is NP-hard [31]. This “negative” result
may have contributed to the fact that multiobjective optimization has received rela-
tively little attention from the mathematical programming community, but enormous
attention from the evolutionary computing community. For example, the evolutionary
multiobjective optimization (EMOO) website maintained by Carlos A Coello Coello
(http://delta.cs.cinvestav.mx/~ccoello/EMOO/) lists close to 4000 journal papers and
more than 3000 conference papers on the topic. For an introduction to and a recent
survey of evolutionary methods for multiobjective optimization see [11,37] and for
surveys on their use in different domains see [28] (engineering), [8] (economics and
finance), [25] (production scheduling), [18] (combinatorial optimization), and [27]
(traveling salesman problem). Many of the problems considered in these domains can
be modeled as multiobjective (mixed) integer programs (MOIPs), but because of the
absence of powerful and easy-to-use software for solving such problems, researchers
and practitioners alike resort to using readily available evolutionary methods, e.g.,
NSGA and NSGA II [14].

The apparent lack of interest and effort inmultiobjective optimization by themathe-
matical programming community is unfortunate, as multiobjective optimization poses
many interesting theoretical as well as algorithmic challenges. The ubiquitous use of
evolutionary methods for multiobjective optimization in a large number of applica-
tion domains also exposes the huge opportunity that has been missed. However, all
is not lost. Mathematical programming methods can provide performance guarantees
where evolutionary methods cannot. This is an accepted and recognized weakness of
evolutionary methods and as such still provides an opportunity for alternatives that
can do better. We hope that the work discussed in this paper illustrates the challenges
and richness of multiobjective integer programming and that it will stimulate further
research in the area.

Theworkdiscussed in this paper also demonstrates that, in part due to the availability
of cheap computing power and powerful single-objective commercial solvers, such
as IBM ILOGCPLEXOptimizer (http://www-01.ibm.com/software/info/ilog), FICO
Xpress Optimizer (http://www.fico.com), and Gurobi Optimizer (http://www.gurobi.
com), solving certainMOIPs, i.e., computing the complete nondominated frontier, has
become possible. Others have recognized this as well, which has led to an upswing of
interest in the last few years, with a focus on developing efficient algorithms that can
solve practical-sized instances in a reasonable amount of time.

Exact algorithms for MOIPs can be divided into decision space search algorithms,
i.e., methods that search in the space of feasible solutions, and criterion space search
algorithms, i.e., methods that search in the space of objective function values. Because
there can be multiple solutions with the same objective function values, it has long
been argued (see for example Benson et al. [3]) that criterion space search algorithms
have an advantage over decision space search algorithms and are likely to be more
successful. Therefore, in the remainder of the paper, we focus on criterion space search
algorithms. Readers interested in recent advances in the area of decision space search
algorithms are referred to [2,34,36].

The simplest form of a MOIP has only two objectives and is known as a biobjective
integer program (BOIP). The earliest algorithms only generated a subset of all non-
dominated points, the so-called extreme supported nondominated points, e.g., Aneja
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andNair [1]. But not long after, algorithmswere developed that generated the complete
nondominated frontier. The most popular of these are the ε-constraint, Tchebycheff
and perpendicular search methods [6,9,10,12,33]. Interested readers may refer to
Boland et al. [5] and Ehrgott [17] for an overview of recent advances in solving BOIPs
using criterion search space algorithms, including discussions of the box algorithm
[20] and the balanced box method [5].

The situation is quite different when the number of objectives is greater than two;
fewmethods have been proposed for generating the complete nondominated frontier in
these settings. There are two main reasons why it is significantly more challenging to
generate the complete nondominated frontier of aMOIPwithmore than twoobjectives.

1. The number of nondominated points tends to grow with the number of objective
functions (see Brunsch et al. [7] for recent theoretical results that support this
empirical observation). Since at least one search operation has to be performed to
find a nondominated point, and searching for a nondominated point in (current)
criterion space search methods involves solving a single-objective IP, the number
of single-objective IPs that needs to be solved in order to solve even relatively
small MOIP instances becomes quite large as the number of objectives grows.

2. Developing effective strategies for decomposing the criterion search space is much
more difficult, because such strategies need to balance the number and shape of the
elements in the decomposition with the difficulty of the single-objective IP used to
explore an element of the decomposition. As a result, many more single-objective
IP solves or very expensive single-objective IP solves are unavoidable.

Algorithmically, a trade off between solving a small number, but increasingly dif-
ficult single-objective IPs (e.g. [35]) and solving a large number, but manageable size
single-objective IPs (e.g. [13,22,29,30]) has to be made.

The main contribution of our research is the development of the L-shape search
method (LSM) for solving triobjective integer programs (TOIPs). LSM is designed
with practical computation in mind and balances the number of single-objective IPs
solved with the size of the single-objective IPs solved. (Theoretically, the performance
of LSM, in terms of the number of the single-objective IPs that may have to be solved,
is worse than the performance of the algorithm of Dächert and Klamroth [13].) Each of
the single-objective IPs solved in LSM has the same feasible set as the original IP with
either two or three additional objective constraints (each enforcing an upper bound
on one of the objective function values), or with one additional binary variable and
two additional constraints to model a disjunctive constraint on the objective function
values of two of the objectives.

The performance of LSM in practice shows that it has two desirable characteristics:

• it generates the complete nondominated frontier more efficiently than any existing
criterion space search method; and

• it produces high-quality approximate nondominated frontiers early on in the
search.

LSM is the only method to date that provides both benefits. In practice, the ability
to rapidly produce high-quality approximate nondominated frontiers is critical. The
quality of an approximate nondominated frontier depends on the number and variety
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of its nondominated points. Thus, to rapidly produce high-quality approximate non-
dominated frontiers, a method has to generate many nondominated points in a short
amount of time and these nondominated points have to come from different parts of
criterion space. As far as we know, LSM is the only method which achieves this while
retaining the ability to provably produce the complete frontier.

To demonstrate the efficacy of LSM, an extensive computational study has been
conducted using four sets of publicly available instances of triobjective optimization
problems. The study investigates the performance of LSM, and compares it with that
of two recent methods: those of Özlen et al. [30] and Kirlik and Sayın [22], using
the implementations made available by their respective authors. The results show
conclusively that LSM provides the best performance in terms of both overall solution
time and early approximation of the nondominated frontier.

The rest of paper is organized as follows. In Sect. 2,we introduce important concepts
and notation. In Sect. 3, we review existing methods for solving TOIPs. In Sect. 4, we
detail the logic of LSM. In Sect. 5, we investigate enhancements that can improve
LSM’s efficiency. In Sect. 6, we illustrate the workings of LSM on a small instance.
In Sect. 7, we analyze the results of a comprehensive computational study. Finally, in
Sect. 8, we give some concluding remarks.

2 Preliminaries

A multiobjective optimization problem can be stated as follows

min
x∈X

z(x) = (z1(x), . . . , z p(x)) (1)

where X ⊆ R
n represents the feasible set in the decision space and the image Y

of X under the vector-valued function z : R
n → R

p represents the feasible set in
the criterion space, i.e., Y := z(X ) := {y ∈ R

p : y = z(x) for some x ∈ X }.
For convenience, we also define the following sets: R

p
≥ := {y ∈ R

p : y ≥ 0}, the
nonnegative orthant of R

p, and R
p
> := {y ∈ R

p : y > 0}, the positive orthant of R
p.

WhenX is defined by a set of linear constraints and z1, . . . , z p are linear functions,
then (1) is a multiple objective linear program (MOLP), and is a multiple objective
integer program (MOIP) when X ⊆ Z

n .

Definition 1 A feasible solution x ′ ∈ X is called weakly efficient, if there is no other
x ∈ X such that zk(x) < zk(x ′) for k = 1, . . . , p. If x ′ is weakly efficient, then z(x ′)
is called a weakly nondominated point.

Definition 2 A feasible solution x ′ ∈ X is called efficient or Pareto optimal, if there
is no other x ∈ X such that zk(x) ≤ zk(x ′) for k = 1, . . . , p and z(x) �= z(x ′). If x ′
is efficient, then z(x ′) is called a nondominated point. The set of all efficient solutions
in X is denoted by XE . The set of all nondominated points in Y is denoted by YN and
referred to as the nondominated frontier or efficient frontier.

Observation 3 Let y ∈ Y . If there is no y′ ∈ Y such that y′ �= y and y ∈ y′ + R
p
≥,

then y ∈ YN .

123



The L-shape search method for. . . 221

Next, we introduce concepts and notation that will facilitate the presentation and
discussion of the methods proposed in the literature for solving TOIPs, as well as
of the LSM. Some of the methods, including the LSM, operate in a 2-dimensional
projected space rather than the 3-dimensional criterion space itself. Without loss of
generality, we assume that the 2-dimensional space on which points in the criterion
space are projected is defined by the first two objectives, i.e., by z1(x) and z2(x). We
thus define the projection of a point y ∈ R

3 to be (y1, y2), which we denote by y.
LSM makes use of two shapes in the projected space (i.e. in R

2): the rectangle and
the L-shape, defined as follows. Given u1 and u2 in the projected space, we define the
(closed) rectangle R(u1, u2) = {u ∈ R

2 : u1 ≤ u ≤ u2}. Note that R(u1, u2) = ∅
unless u1 ≤ u2 (i.e. unless u11 ≤ u21 and u

1
2 ≤ u22).We refer to u1 as the lower bound of

rectangle R(u1, u2) and to u2 as the upper bound of rectangle R(u1, u2). The area of
rectangle R(u1, u2) is denoted by a(R(u1, u2)). Given u1, u2 and u∗ in the projected
space, we define the L-shape L(u1, u∗, u2) = R(u1, u2)\R(u∗, u2) and denote its
area by a(L(u1, u∗, u2)). Note that we normally use the L-shape L(u1, u∗, u2) in
situations where u1 ≤ u∗ ≤ u2. The following observation will be useful.

Observation 4 If v ∈ L(u1, u∗, u2) for some u1, u∗, u2 ∈ R
2 then R(u1, v) ⊆

L(u1, u∗, u2).

Other criterion-space search methods make use of the box shape in criterion space:
given y1 and y2 in R

3, we define the (closed) box B(y1, y2) = {y ∈ R
3 : y1 ≤

y ≤ y2}. We also assume the availability of two points in criterion space, zB and
zT , for which the box B(zB, zT ) contains the set of nondominated points YN . If X is
bounded, which we will assume, then zB and zT can readily be calculated by solving
single-objective (min or max) IPs over X , or alternatively by solving single-objective
LPs over the LP relaxation of X , which we denote by XLP .

Note that in some cases it is convenient to extend R
2 and R

3 to include infinite-
valued vectors, and in particular to refer to rectangles, L-shapes or boxes in which the
lower bound point is (−∞,−∞) in the case of the former two and (−∞,−∞,−∞)

in the case of the latter. In such cases the interpretation of the shape is the natural
one, and we will write the lower bound point simply as −, for example, we will write
R(−, u) to indicate R((−∞,−∞), u).

Searching for an as yet unknown nondominated point is a core operation in any
method for generating the nondominated frontier of a TOIP. Below, we discuss three
relevant methods (or scalarization techniques) for doing so.

1. A nondominated point zn = z(xn) with the property that zn � u for a given point
u in the criterion space, if one exists, can be found by solving the following IP

xn ∈ arg min

{
3∑

k=1

zk(x) : x ∈ X and zk(x) ≤ uk, k ∈ {1, 2, 3}
}

.

We denote this type of search by 3D- NDP- Search(u). (Note that this search
combines ideas from the weighted sum method and the ε-constraint method, and
is known as the hybrid method, see, e.g., Chankong and Haimes [10].) By Proposi-
tion 5 below, we have that in criterion space this search returns zn ∈ YN ∩B(−, u).
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Proposition 5 If xn exists, then z(xn) is a nondominated point, i.e. z(xn) ∈ YN .

Proof Suppose xn exists, but that z(xn) is not a nondominated point, i.e., there exists
a point ẑ ∈ Y with ẑk ≤ zk(xn) for all k ∈ {1, 2, 3} and ẑ �= z(xn). This implies
that for some x ∈ X , z(x) = ẑ and

∑3
k=1 zk(x) = ∑3

k=1 ẑk <
∑3

k=1 zk(x
n), which

contradicts the optimality of xn .

2. A nondominated point zn = z(xn) with the property that its projection zn satisfies
zn ≤ u for a given point u in the projected space, if one exists, can be found by
solving two IPs. First, an intermediate point xi ∈ X with minimal third objective
value over those for which z(xi ) has the desired property is found via

xi ∈ arg min{z3(x) : x ∈ X and zk(x) ≤ uk, k ∈ {1, 2}}.

If this IP is feasible, it is followed by the second IP

xn ∈ arg min

{
3∑

k=1

zk(x) : x ∈ X and zk(x) ≤ zk(x
i ), k ∈ {1, 2, 3}

}
.

We denote this search by 2D- NDP- Search(u). (Note that this search is, and is
sometimes referred to as, a two-stage method [22].) If the first IP is infeasible, we
say 2D- NDP- Search(u) returns Null and xi does not exist. Otherwise, i.e., if
xi exists, the second IP must be feasible (as per Proposition 7 below) and 2D-
NDP- Search(u) returns xn . Observe that as a consequence of the results below,
in criterion space this search returns zn with zn3 minimal over those zn ∈ YN with
zn ∈ R(−, u), i.e., 2D- NDP- Search(u) searches the rectangle with upper bound
u for a nondominated point with minimal third objective value.

Proposition 6 If xi exists, then z(xi ) is a weakly nondominated point.

Proof Suppose xi exists, but that z(xi ) is not a weakly nondominated point, i.e., there
exists a point ẑ ∈ Y with ẑk < zk(xi ) for k ∈ {1, 2, 3}. So for some x ∈ X , z(x) = ẑ
and zk(x) < zk(xi ) for k ∈ {1, 2, 3}. Thus zk(x) < zk(xi ) ≤ uk for k = 1, 2 and
z3(x) < z3(xi ), contradicting the optimality of xi . 
�
Proposition 7 If xi exists, then xn exists and z(xn) is a nondominated point, i.e.,
z(xn) ∈ YN .

Proof If xi exists, then it is feasible for the second IP, and hence xn exists. In this case,
suppose z(xn) /∈ YN . Then there must exist some y ∈ YN which dominates z(xn),
i.e. there must exist x ∈ X with z(x) = y ≤ z(xn) and with y �= z(xn). Thus zk(x) =
yk ≤ zk(xn) ≤ zk(xi ) for k = 1, 2, 3 and

∑3
k=1 zk(x) = ∑3

k=1 yk <
∑3

k=1 zk(x
n),

contradicting the optimality of xn . 
�
Proposition 8 If 2D- NDP- Search(u) returns xn, then z(xn) dominates any y ∈ Y
with y ∈ R(z(xn), u) and y �= z(xn).

Proof Suppose 2D- NDP- Search(u) returns xn and let y ∈ Y with y ∈ R(z(xn), u)

and y �= z(xn). By definition, xn has the minimum possible value for z3(x) among
all x ∈ X with z(x) having projection z(x) ≤ u, and hence among all x ∈ X
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with z(x) ∈ R(z(xn), u). Thus y3 ≥ z3(xn). Moreover, y ∈ R(z(xn), u) implies
y ≥ z(xn). Thus y ≥ z(xn). Since y �= z(xn), z(xn) must dominate y. 
�
Corollary 9 If 2D- NDP- Search(u) returns xn, thenYN∩{y ∈ Y :y ∈ R(z(xn), u)}
= {z(xn)}.
Proof The result follows immediately from Propositions 7 and 8.

3. A nondominated point zn = z(xn) with the property that its projection zn satisfies
zn ≤ u and zn � u∗ for two given points u, u∗ ∈ R

2 with u∗ ≤ u, if one exists,
can be found by solving two IPs. First, an intermediate point xi ∈ X with third
objective value minimal over all those with the desired property is found via

xi ∈ arg min{z3(x) : x ∈ X , w ∈ {0, 1}2, zk(x) ≤ (u∗
k − ε)

+ (uk − u∗
k + ε)(1 − wk), k ∈ {1, 2},

and w1 + w2 ≥ 1},

where ε is a small positive constant. If this IP is feasible, it is followed by the
second IP

xn ∈ arg min

{
3∑

k=1

zk(x) : x ∈ X and zk(x) ≤ zk(x
i ), k ∈ {1, 2, 3}

}
.

The constraints in the first IP ensure that either z1(xi ) < u∗
1 or z2(xi ) < u∗

2, so

z(xi ) ∈ L(−, u∗, u). Thus by Observation 4 and the constraints for the second IP,
it must be that z(xn) ∈ L(−, u∗, u) also. We denote this search by 2D- NDP- L-
Search(u∗, u). (Note that this search uses some of the ideas introduced in Sylva and
Crema [35], which we discuss in more detail in the next section.) If the first IP is
infeasible, we say 2D- NDP- L- Search(u∗, u) returns Null and xi does not exist.
Otherwise the second IP must be feasible, as per Proposition 11 below, in which case
2D- NDP- L- Search(u∗, u) returns xn . Observe that as a consequence of the results
below, in criterion space this search returns zn with zn3 minimal over those zn ∈ YN

with zn ∈ L(−, u∗, u), i.e., 2D- NDP- L- Search(u∗, u) searches the L-shape with
upper bound u and “elbow” u∗ for a nondominated point with minimal third objective
value.

Before discussing useful properties of xn returned by 2D- NDP- L- Search(u∗, u),
we first make some comments about the choice of formulation for the IPs. For 2D-
NDP- Search(u), the constraints z(x) ≤ z(xi ) in the second IP, which ensure z(xn)
is in the rectangle R(−, z(xi )) and hence in R(−, u), could equally well have been
replaced by zk(x) ≤ uk for k = 1, 2 and z3(x) ≤ z3(xi ); all the subsequent proposi-
tions would still hold. In the case of 2D- NDP- L- Search(u∗, u), however, the use of
z(x) ≤ z(xi ) in the second IP allow us to guarantee (via Observation 4) that z(xn) is in
the L-shape L(−, u∗, u)without resorting to any additional binary variables and asso-
ciated disjunctive constraints. This is helpful for efficiency of the second IP solution.
The choice of model presented for the second IP of 2D- NDP- Search(u) maintains
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consistency between the two 2D search methods, and is furthermore consistent with
the use of this search method in the current literature. Finally, we observe that the first
IP in 2D- NDP- L- Search(u∗, u) can be formulated with only one binary variable
rather than two, via the observation that w1 + w2 = 1, rather than w1 + w2 ≥ 1,
gives a valid model. Our computational tests with the former showed only very small
improvements in run time over the latter, on average, with many instances showing no
difference at all. Furthermore the latter form of model is used in other methods in the
literature (discussed in the next section). Thus to be consistent we present the model
and computational results for the latter form of model.

Proposition 10 If xi exists, then z(xi ) is a weakly nondominated point.

Proof Similar to the proof of Proposition 6.

Proposition 11 If xi exists then xn exists and z(xn) is a nondominated point, i.e.
z(xn) ∈ YN .

Proof Similar to the proof of Proposition 7.

The following proposition mirrors Proposition 8 in the case that the search is per-
formed over the L-shape L(−, u∗, u). Note that in general for v ∈ L(u1, u′, u2) for
some u1, u′, u2 ∈ R

2, either R(v, (u′
1, u

2
2)) = ∅, which occurs if v1 > u′

1, (v is in the
horizontal part of the L but not in its corner rectangle), or R(v, (u21, u

′
2)) = ∅, which

occurs if v2 > u′
2, (v is in the vertical part of the L but not in its corner rectangle),

or R(v, (u′
1, u

2
2)) �= ∅ and R(v, (u21, u

′
2)) �= ∅, which occurs if v ≤ u′, (v is in the

corner rectangle of the L). In the latter case, R(v, (u′
1, u

2
2)) ∪ R(v, (u21, u

′
2)) form a

(fully closed) L-shape, nested in the closure of L(u1, u′, u2). In the former two cases,
R(v, (u21, u

′
2)) �= ∅ and R(v, (u′

1, u
2
2)) �= ∅ respectively, with the rectangles con-

tained in the closure of the L-shape. In any of the three cases we may safely say that
R(v, (u′

1, u
2
2))∪R(v, (u21, u

′
2)) is contained in the closure of the L-shape L(u1, u′, u2),

so for positive ε, R(v, (u′
1 − ε, u22)) ∪ R(v, (u21, u

′
2 − ε)) ⊆ L(u1, u′, u2).

Proposition 12 If 2D- NDP- L- Search(u∗, u) returns xn then z(xn) dominates any
y ∈ Y with y ∈ R(z(xn), (u∗

1 − ε, u2)) ∪ R(z(xn), (u1, u∗
2 − ε)) and y �= z(xn).

Proof Suppose 2D- NDP- L- Search(u∗, u) returns xn and let y ∈ Y with y ∈
R(z(xn), (u∗

1 − ε, u2)) ∪ R(z(xn), (u1, u∗
2 − ε)) and y �= z(xn). By definition of

the two IPs, xn has the minimum possible z3(x) value among all x ∈ X with
z(x) ∈ L(−, u∗, u). Now y = z(x) for some x ∈ X and it must be that

z(x) = y ∈ R(z(xn), (u∗
1 − ε, u2)) ∪ R(z(xn), (u1, u

∗
2 − ε)) ⊆ L(−, u∗, u)

by the discussion above. Thus y3 = z3(x) ≥ z3(xn). Moreover y ∈ R(z(xn), (u∗
1 −

ε, u2)) ∪ R(z(xn), and (u1, u∗
2 − ε)) implies that y ≥ z(xn). Thus y ≥ z(xn). Since

y �= z(xn) it must be that z(xn) dominates y. 
�
Corollary 13 If 2D- NDP- L- Search(u∗, u) returns xn then

YN ∩ {y ∈ Y : y ∈ R(z(xn), (u∗
1 − ε, u2)) ∪ R(z(xn), (u1, u

∗
2 − ε))} = {z(xn)}.

Proof This follows directly from Propositions 11 and 12.
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3 Review of existing criterion space search algorithms

LSM method employs several algorithmic ideas for solving MOIPs that have been
explored and embedded in existingmethods. In this section,we describe these algorith-
mic ideas in the context of TOIPs. All these algorithmic ideas focus on the exploration
of the (3-dimensional) criterion space. In some cases, the exploration takes place in the
criterion space itself, in other cases the exploration takes place in the 2-dimensional
projected space.

3.1 Sylva and Crema’s method

Sylva andCrema’smethod [35] directly employs the definition of efficiency (Definition
2). (Note that the method is based on the method of Klein and Hannan [23].) The
method finds the nondominated points one by one, with each subsequent, distinct,
nondominated point found by solving an IP. Denote the distinct nondominated point
obtained in iteration t by zt = (zt1, z

t
2, z

t
3) and its corresponding efficient solution by

xt . In the first iteration, the algorithm solves the IP

x1 ∈ arg minx∈X
3∑

i=k

λk zk(x),

where λk > 0 for k ∈ {1, 2, 3} to guarantee that x1 is efficient. The corresponding
criterion space iterate is z1 = z(x1). At iteration t ≥ 2 of the method, a nondominated
point that is distinct from z1, . . . , zt−1 is sought. Thus, by Definition 2, a point in
X with at least one objective value strictly better than the corresponding element of
zi for each i = 1, . . . , t − 1 is required. This requirement can be enforced in the IP
by adding three binary variables and corresponding disjunctive constraints for each
i = 1, . . . , t − 1, i.e., the following IP is solved

xt ∈ arg minx∈X
3∑

k=1

λk zk(x)

subject to zk(x) ≤ (zik − ε) + M(1 − wi
k), k ∈ {1, 2, 3}, i ∈ {1, 2, . . . , t − 1}

3∑
k=1

wi
k ≥ 1, i ∈ {1, 2, . . . , t − 1}

wi ∈ {0, 1}3, i ∈ {1, 2, . . . , t − 1}

where M is an appropriately chosen large constant. (Note that the IP presented is
slightly simpler than the IP presented by Sylva and Crema [35] and that the IP is still
valid if we replace the constraints

∑3
k=1 wi

k ≥ 1 with
∑3

k=1 wi
k = 1.) The disjunctive

constraints remove the dominated part of the criterion space identified and defined by
z1, . . . , zt−1. An illustration of the part of the criterion space that may still contain as
yet unknown nondominated points after two nondominated points have been found is
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zB

z1

z2

Fig. 1 Area in the criterion space where as yet known nondominated points may be found after finding
nondominated points z1 and z2

shown in Fig. 1, i.e. B(zB, zT )\(B(z1, zT )
⋃

B(z2, zT )). Obviously, as soon as the IP
becomes infeasible, all nondominated points have been found. The obvious weakness
of the method is that the IPs get harder and harder to solve in each iteration, with the
number of additional binary variables and (weak) disjunctive constraints increasing
in proportion to the number of iterations completed.

To avoid having too many disjunctive constraints in the IPs that need to be solved,
the methods discussed in the remainder of this section all decompose the criterion
space into boxes or rectangles (depending on the dimension of the criterion space in
which they operate) after finding a new nondominated point and explore each box or
rectangle separately.

3.2 The recursive method

This recursive method [29,30] is a generalization of the well-known ε-constraint
method for solving biobjective IPs [10]. The basic idea is the following. In each
iteration of the algorithm, the nondominated frontier of a biobjective IP is determined
by solving

Y2D(U ) := min
x∈X

(z1(x), z2(x))

subject to z3(x) ≤ U − ε,

withU = zT3 in the first iteration. The points in the 2-dimensional nondominated fron-
tier are then translated into nondominated points in the original 3-dimension criterion
space, for example, by solving, for each point y ∈ Y2D(U ), the following IP, which
minimizes the value of the third objective
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min
x∈X

z3(x)

subject to zk(x) ≤ yk k ∈ {1, 2}.

The translated points form a subset of the nondominated frontier in the original 3-
dimensional criterion space. In each iteration, the maximum value zmax

3 of the third
objective function over all nondominated points generated in that iteration is computed
and used as the upper bound U in the next iteration. The method terminates as soon
as updating the upper bound U results in an infeasible biobjective IP.

A few comments about the recursive method follow. (1) The idea to convert a TOIP
to a sequence of BOIPs can, of course, also be used to convert a BOIP to a sequence
of single-objective IPs. The lexicographic method [30] combines these two ideas into
a single method. (2) Solving an IP to translate a point in Y2D(U ) to a nondominated
point in the original 3-dimensional criterion space can be avoided by adding z3(x)
to the other objective functions with a small, appropriately chosen weight. This is
referred to as an augmented approach and is used by Özlen and Azizoğlu [29].

3.3 The full p-split method

The full p-split method [13,15] maintains a priority queue of boxes, each of which
may still contain as yet unknown nondominated points. The priority queue is initialized
with B(zB, zT ) and the method terminates when the priority queue is empty.

We will outline a simple version of the full p-split method and then comment on
how its efficiency can be improved. In the simple version, the lower bound of all boxes
in the priority queue is equal to zB , i.e., the boxes are all of the form B(zB, u) with
u ∈ Y . Moreover, a nondominated point, if one exists, is found by using an arbitrary
scalarizationmethod (e.g., 3D- NDP- Search(u)). After finding a nondominated point
zn ∈ YN , the boxes in the priority queue are examined and, if necessary, split into
smaller boxes. Observe that B(zn, u) ∩YN = {zn} for any box B(zB, u) with zn ≤ u.
This observation suggests a decomposition scheme that splits a box in the priority
queue into at most three boxes [15]: if a box B(zB, u) in the priority queue has
zn ≤ u − ε, where zn is the most recently found nondominated point, then the box
is removed from the priority queue, and for each i ∈ {1, 2, 3}, if zni ≥ zBi + ε, then
B(zB, û) with ûi = zni − ε and û j = u j for j ∈ {1, 2, 3}\{i} is added to the priority
queue. An illustration of the three boxes created after the first nondominated point zn

is found, i.e., B(z1, u′), B(z1, u′′), and B(z1, u′′′), is shown in Fig. 2.
The decomposition may result in redundancy. If there are two boxes B(zB, u) and

B(zB, u′) in the priority queue with u′ ≥ u, then box B(zB, u) can be removed from
the priority queue. Dächert and Klamroth [13] present a version of the full p-split
method that is designed to efficiently avoid redundancy.

Assuming that the ideal point is known, Dächert and Klamroth [13] prove that
the full 3-split method solves at most 3|YN | − 2 subproblems, where a subproblem
is any scalarization that should be solved. Thus, if 3D-NDP-Search is used as the
scalarization, the algorithm solves 3|YN | − 2 IPs (at most 2|YN | − 2 of which are
infeasible).
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u

u

u

zB

zn

Fig. 2 Upper bounds u′, u′′ and u′′′ of each of the three boxes create after finding the first nondominated
point zn

3.4 The full ( p− 1)-split method

The full (p−1)-split method is a special case of the full p-split method [13,22,24,26].
Like the Recursive Method, it operates in a projected 2-dimensional criterion space.
To be able to work in the projected space, searching for a nondominated point must
be done by a special operation, for instance by 2D- NDP- Search.

Since we have used the variant of the full (p−1)-split method introduced by Kirlik
andSayın [22] in our computational study,wewill explain that one inmore detail. Their
variant maintains a priority queue of rectangles, each of which may still contain as yet
unknown nondominated points. The priority queue is initialized with R(zB, zT ) and
themethod terminateswhen the priority queue is empty.Anondominated point in a rec-
tangle is found, if one exists, by calling (a slight modification of) 2D- NDP- Search.
After finding a nondominated point zn ∈ YN , the rectangles in the priority queue
are examined and split if one of the components of zn intersects the corresponding
side of the rectangle. More specifically, any rectangle R(u1, u2) with u11 < zn1 < u21
is split into two rectangles: R(u1, (zn1 − ε, u22)) � {y ∈ R(u1, u2) : y1 < zn1} and
R((zn1, u

1
2), u

2) = {y ∈ R(u1, u2) : y1 ≥ zn1}, both immediately added to the priority
queue. Then any rectangle R(u1, u2) with u12 < zn2 < u22 is split into two rectangles
R(u1, (u21, z

n
2 − ε)) and R((u11, z

n
2), u

2). Any new rectangles created by splitting may
be split again, until no rectangle R(u1, u2) in the priority queue has u1i < zni < u2i for
any i ∈ {1, 2}.

To avoid redundant computations when exploring R(u1, u2) three ideas are
employed. (1) The priority queue uses a(R(zB, u2)) as the priority for a rectangle
R(u1, u2), i.e., the rectangle with the largest area is always chosen to be explored
next. This implies that R(u1, u2) cannot be dominated by any other as yet unexplored
rectangle. (2) After finding a nondominated point zn while exploring R(u1, u2) and
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z̄B

z̄T

(a)
z̄B

z̄T

(b)

z̄B

z̄T

(c)

Fig. 3 Three iterations of the variant of the full (p − 1)-split method introduced by Kirlik and Sayın [22]

after applying the decomposition scheme, any rectangle R(u3, u4) in the priority queue
with R(u3, u4) ⊆ R(zn, u2) is removed (correctness follows from Proposition 8). (3)
Similarly, after determining that R(u1, u2) contains no nondominated points, any rec-
tangle R(u3, u4) in the priority queue with R(u3, u4) ⊆ R(zB, u2) is removed.

An illustration of the first three iterations of the variant of the full (p − 1)-split
method introduced by Kirlik and Sayın [22] can be found in Fig. 3. The rectangle
being investigated in an iteration is shown in bold, the nondominated point found is
shown as a solid circle, and the resulting split rectangles and the dominated area are
shaded (in green). Observe that in the third iteration, the nondominated point found
lies outside the rectangle being investigated. After splitting, the hatched rectangle is
dominated and can be removed from the priority queue.

Note that working in the projected space has some advantages. For example,
whereas in the full p-split method many IPs solved are infeasible, this rarely hap-
pens in the full (p − 1)-split method; instead of the IP being infeasible, it returns a
previously obtained nondominated point. This is important from an efficiency point
of view, because IP solvers tend to struggle with infeasible IPs.

4 The L-shape search method

4.1 High-level description

The LSM maintains a priority queue of rectangles, each of which still has to be
explored, i.e., may still contain as yet unknown nondominated points. The rectangles
are maintained in nonincreasing order of their area. The priority queue is initialized
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with R(zB, zT ). The method also maintains an ordered list of nondominated points
(and their corresponding solutions) LN , which is updated after finding a new non-
dominated point. The nondominated points are maintained in nondecreasing order of
their third objective value. If two different nondominated points have the same third
objective value, the one that LSM finds first has a higher priority in LN .

The method explores a rectangle by finding all nondominated points with a pro-
jection in the rectangle, other than those lying within a set of disjoint subrectangles
identified during the search procedure. The disjoint subrectangles are added to the
priority queue to be explored later. A high-level overview of the process for exploring
a rectangle is given below; more detail is provided later.

The method explores a rectangle by searching for a nondominated point with pro-
jection in the rectangle. In the process, known nondominated points (already in LN )
with projection outside the rectangle may be found, in which case the rectangle is
“shrunk”. The search either determines that the rectangle contains no nondominated
pointswith projection in the rectangle and that therefore the rectangle can be discarded,
or it finds a nondominated point with projection in the rectangle. This point induces an
L-shape contained in the rectangle, which is then searched for a nondominated point
with projection in the L-shape. Again, known nondominated points with projection
outside the L-shape may be found, in which case the L-shape is shrunk. Either the
L-shape is shown to contain no nondominated point with projection in the L-shape and
can be discarded, or a nondominated point with projection in the L-shape is identified.
This point induces a new rectangle, one of the set of disjoint subrectangles, which is
added to the priority queue, and the L-shape is shrunk. The process of searching an
L-shape continues until it is proved that all nondominated points with projection in
the rectangle have been identified and added to LN , or must have their projection in
one of the subrectangles added to the priority queue.

The critical factors for LSM’s success are that it (1) keeps the size of the single-
objective IPs small by working with rectangles and L-shapes only, and (2) “fully”
explores a rectangle, i.e., does not decompose a rectangle as soon as a nondominated
point is found. The latter ensures that different parts of the criterion space are explored
early in the search (e.g., by fully exploring the first rectangle R(z̄ B, z̄T )).

4.2 Detailed description

We now give the details of LSM. The first important operation in LSM, denoted by
Find- NDP(u1, u2, LN ), searches for an as yet unknown nondominated point with
projection in a given rectangle R(u1, u2) by repeated calls to 2D- NDP- Search. The
operation starts by calling 2D- NDP- Search(u2). This can either return Null or an
efficient solution xn . Since 2D- NDP- Search(u2) searches R(−, u2) it is possible
that z(xn) /∈ R(u1, u2). Four cases need to be considered:

1. 2D- NDP- Search(u2) returns an efficient point xn and z(xn) ∈ R(u1, u2). In
this case, xn is returned.

2. 2D- NDP- Search(u2) fails to find an efficient point (returns Null). This implies
that there does not exist a nondominated with its projection in R(u1, u2). In this
case, Null is returned.
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Fig. 4 z(xn) lies outside
R(u1, u2)

u1

u2

z(xn) (u2
1, z2(x

n))

3. 2D- NDP- Search(u2) returns an efficient point xn , z(xn) /∈ R(u1, u2), and
z1(xn) < u11 and z2(xn) < u12. In this case, by Proposition 8 and since
R(z(xn), u2)\{z(xn)} ⊃ R(u1, u2), all points in Y that have their projection in
R(u1, u2) are dominated by z(xn). Thus there cannot exist any nondominated
point with its projection in R(u1, u2) and Null is returned.

4. 2D- NDP- Search(u2) returns an efficient point xn , z(xn) /∈ R(u1, u2), and either
z1(xn) ≥ u11 or z2(xn) ≥ u12, or equivalently z2(xn) < u12 or z1(xn) < u11.
In this case, by Proposition 8, all points in Y that have their projection in
R(z(xn), u2)\{z(xn)} are dominated by z(xn). Thuswe can safely ignore either the
top part of R(u1, u2), in the case that z2(xn) ≥ u12 (equivalently z1(xn) < u11), or
the right part of R(u1, u2), in the case that z1(xn) ≥ u11 (equivalently z2(x

n) < u12).
Specifically, we know that any nondominated point with its projection in R(u1, u2)
must have its projection within R(u1, (u21, z2(x

n)− ε)) if z1(xn) < u11 and within
R(u1, (z1(xn) − ε, u22)) if z2(x

n) < u12. The former case is illustrated in Fig. 4,
where the (green) shaded rectangle shows the part of the criterion space dominated
by z(xn). In this case, the search is continued, with 2D- NDP- Search applied
again, to the updated upper bound (either (u21, z2(x

n) − ε) or (z1(xn) − ε, u22),
depending on the case).

Note that as long as Case 4 applies, 2D- NDP- Search is repeated, each time
searching a rectangle that is a strict subset of the rectangle before. The process
finishes as soon as one of Cases 1–3 is encountered. A precise description of
Find- NDP(u1, u2, LN ) is given in Algorithm 1. Note that by Proposition 7, a point xn

returned by 2D- NDP- Search(u2) must be efficient, and therefore the list of known
efficient points is updated each time 2D- NDP- Search(u2) returns a point xn , i.e., it
is added to LN if it is not already in LN .

Next, we discuss how rectangles are explored (treated). The exploration of a rec-
tangle R(u1, u2) starts by calling Find- NDP(u1, u2, L) to find a nondominated point
zn with projection inside the rectangle. If zn = Null or zn = u1, then (using Proposi-
tion 8) there do not exist as yet unknown nondominated points with projection in the
rectangle, and no further exploration of the rectangle is required. If zn �= Null and
zn �= u1, then zn must be a point in the rectangle that is not in either of the two lower
side boundaries (the left and the bottom sides). In this case, we convert the rectangle
to the L-shape L(u1, zn, u2) and the LSM continues by exploring the L-shape. Note
that during Find- NDP(u1, u2, LN ) u2 may have been updated.
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Algorithm 1: Find- NDP(u1, u2, LN )

Input: u1, u2 , LN
znew ← Null
Not Exist ← False
while znew = Null & Not Exist = False do

xn ← 2D- NDP- Search(u2)
if xn = Null then

Not Exist ← True
else

Add xn to LN

if z(xn) ∈ R(u1, u2) then
znew ← z(xn)

else
if z1(xn) ≤ u11 & z2(x

n) > u12 then
u22 ← z2(x

n) − ε

else
if z2(xn) ≤ u12 & z1(x

n) > u11 then
u21 ← z1(x

n) − ε

else
Not Exist ← True

return znew

An L-shape L(u1, u∗, u2) is explored by calling 2D- NDP- L- Search(u∗, u2)
repeatedly to find a new nondominated point znew with projection inside the L-shape,
or show that no such point exists. Four possible cases need to be considered.

1. 2D- NDP- L- Search(u∗, u2) fails to find a nondominated point. In this case, the
exploration of the L-shape is complete.

2. 2D- NDP- L- Search(u∗, u2) returns an efficient point xn , z(xn) /∈ L(u1, u∗, u2)
and z1(xn) ≤ u11 and z2(xn) ≤ u12. This implies, by Proposition 12 and since
in this case the region dominated by z(xn) contains all points with projection in
L(u1, u∗, u2), that there does not exist a nondominated point with its projection
in L(u1, u∗, u2), other than zn itself if zn = u1. In this case, too, the exploration
of the L-shape is complete.

3. 2D- NDP- L- Search(u∗, u2) returns an efficient point xn , zn /∈ L(u1, u∗, u2),
and either zn1 < u11 and zn2 ≥ u12, or z

n
2 < u12 and zn1 ≥ u11, where z

n = z(xn). In
this case, by Proposition 12, zn dominates either a rectangle at the top of the vertical
part of the L or dominates a rectangle at the right of the horizontal part of the L .
The L-shape can thus be “shrunk”: if zn1 < u11 and zn2 ≥ u12 then the only part of
the L-shape that may still contain nondominated points is L(u1, u∗, (u21, zn2 − ε));
if zn2 < u12 and zn1 ≥ u11 then the only part of the L-shape that may still contain
nondominated points is L(u1, u∗, (zn1−ε, u22)). An illustration of this case is shown
in Fig. 5. Note that the remaining L-shape may degenerate to a rectangle (e.g. if
zn1 < u11 and u

∗
2 ≥ zn2 ≥ u12 it becomes the rectangle R(u1, (u21, z

n
2 −ε))), in which

case the rectangle is searched using 2D- NDP- Search; otherwise the search is
continued with 2D- NDP- L- Search.
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u1

u2

u∗
zn

(a)

L-shape
u1

(u2
1, z

n
2 − )

u∗

(b)

Fig. 5 zn lies outside L(u1, u∗, u2) with zn1 < u11 and zn2 > u∗
2 ≥ u12 after a call to

2D- NDP- L- Search(u∗, u2) (Case 3)

u1

u2

u∗ub

zn

(a)

R

u1

u2

ub

(b)

Fig. 6 zn lies inside L(u1, u∗, u2) after a call to 2D- NDP- L- Search(u∗, u2) (Case 4)

4. 2D- NDP- L- Search(u∗, u2) returns an efficient point xn , and zn ∈ L(u1, u∗, u2)
where zn = z(xn). In this case, we create a new point ub = (min(zn1, u

∗
1),

min(zn2, u
∗
2)) (see Fig. 6a). Now by Proposition 12, all points with projections

in R(zn, (u∗
1 − ε, u22)) ∪ R(zn, (u21, u

∗
2 − ε)) are dominated by zn , other than zn

itself. There are two sub-cases to consider.
(a) If ub = zn , then zn1 ≤ u∗

1 and zn2 ≤ u∗
2, (z

n is in the corner rectangle of the
L), and removing the projected region known to be dominated by zn from the
L-shape causes it to be “shrunk” to L(u1, zn, u2).

(b) Otherwise, removing the projected region known to be dominated by zn from
the L-shape results in a kind of “step” shape, formed by the intersection of
L(u1, u∗, u2) and L(u1, zn, u2). Rather than handle such a shape directly,
we partition it into the rectangle R(ub, ut ) where ut = (max(zn1, u

∗
1) −

ε,max(zn2, u
∗
2)−ε) (indicated by R in Fig. 6b) and the L-shape L(u1, ub, u2).

The rectangle is added to the priority queue.
Note that in both of these subcases, there is a “remaining” L-shape given by
L(u1, ub, u2) that may still contain the projections of nondominated points; this
revised L-shape is again searched with 2D- NDP- L- Search.

A precise description of LSM is shown in Algorithm 2. Next, we prove that LSM
solves at most O(|YN |2) single-objective IPs when solving a TOIP.
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Algorithm 2: The L-shape search method
Initialize the list of efficient solutions LN to be empty

Initialize the priority queue P of rectangles with R(z̄ B , z̄T )

while P is not empty do
Pop an element off P and denote it by R(u1, u2)
shape ← rectangle
R_not_treated ← True
while R_not_treated = True do

if shape = rectangle then
z∗ ← Find- NDP(u1, u2, LN )

if z∗ = Null or z∗ = u1 then
R_not_treated ← False

else
shape ← L-shape

u∗ ← z∗

else
xn ← 2D- NDP- L- Search(u∗, u2) and zn ← z(xn)

if xn = Null then
R_not_treated ← False

else
Add xn to the list of efficient solutions LN

if zn1 ≤ u11 and zn2 ≤ u12 then
R_not_treated ← False (the entire L-shape is dominated by zn )

else
if zn ∈ L(u1, u∗, u2) then

ub ← (min(zn1 , u∗
1),min(zn2 , u∗

2))

if ub �= zn then
Add R(ub, (max(zn1 , u∗

1) − ε,max(zn2 , u∗
2) − ε)) to the priority queue P

u∗ ← ub (the L-shape is “shrunk”)

else
if zn1 < u11 and zn2 ≥ u12 then

u22 ← zn2 − ε (remove dominated part of L-shape)
if u∗

2 ≥ zn2 then
shape ← rectangle (the L-shape has degenerated)

else
(In this case it must be that zn1 ≥ u11 and zn2 < u12)

u21 ← zn1 − ε (remove dominated part of L-shape)
if u∗

1 ≥ zn1 then
shape ← rectangle (the L-shape has degenerated)

return LN

Theorem 14 The number of single-objective IPs solved by LSM to generate the
nondominated frontier of a TOIP is bounded below by 2|YN | + 1 and above by
(|YN | − 1)2 + 3|YN |.
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Proof Each nondominated point will be obtained at least once as the solution to either
2D- NDP- Search or 2D- L- NDP- Search, each requiring the solution of two IPs.
This, together with the fact that at least one IP has to be solved to recognize that there
are no other nondominated points, shows that the number of IPs that must be solved is
at least 2|YN |+1. After finding a nondominated point, LSMadds atmost one rectangle
to the priority queue. For LSM to terminate, the rectangles in the priority queue must
not contain any as yet unknown nondominated points. Establishing that a rectangle
does not contain as yet unknown nondominated points requires the solution of one
IP. It is clear that the first nondominated point is found at most once. Next, consider
any other nondominated point generated by LSM. The point might be generated again
when investigating any of the other |YN |−1 rectangles. However, when that happens,
it is recognized after one IP is solved. Consequently, the IPs solved is bounded by
2|YN | + |YN | + (|YN | − 1)2. 
�

We note that the method by Dächert and Klamroth [13] has a better worst-case
behavior than LSM as the number of single-objective IPs solved can be bounded by a
linear function of |YN |.

5 Implementation issues and enhancements

LSM starts by exploring rectangle R(z̄ B, z̄T ), with the projection of the upper bound
zT passed as the argument of2D- NDP- Search and2D- NDP- L- Search. The initial
choice of zT can be important to the performance of the algorithm. One possibility,
which we use in our implementation of LSM, is to take zTi = maxx∈XLP zi (x) for each
i = 1, 2, 3, whereXLP is the LP-relaxation ofX , assumed throughout to be bounded.
Another, more expensive, option is to take zTi = maxx∈X zi (x) for each i = 1, 2, 3.

Note that the lower bound zB is not used in 2D- NDP- Search or
2D- NDP- L- Search. Thus, the choice of zB is not important for the efficiency of
LSM but only for its correctness. In our implementation, we set zBi = minx∈XLP zi (x)
for each i = 1, 2, 3.

As LSM relies heavily on solving single-objective IPs, it is important that these IPs
are solved as efficiently as possible. Therefore, high-quality initial feasible solutions
are provided to the solver whenever possible. This is done by exploiting the list of
known nondominated points. In many cases, one or more of the known solutions in
LN are feasible for the first IP solved in 2D- NDP- Search or 2D- NDP- L- Search.
Furthermore, if the first IP solved in 2D- NDP- Search or 2D- NDP- L- Search is
feasible, then its optimal solution is obviously feasible for the second IP. Note that
the list of known nondominated points LN is maintained in nondecreasing order of
their third objective values. Therefore, the first feasible solution encountered in the
list is that with the best objective value for the first IP in 2D- NDP- Search and
2D- NDP- L- Search.

We also make sure that we avoid solving IPs unnecessarily. For example, if
we provide a feasible solution x from LN to the first IP in 2D- NDP- Search or
2D- NDP- L- Search and we find that x is optimal, then, because x is efficient, x will
be optimal for the second IP as well and there is no need to solve it.
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Propositions 15–18 presented below provide additional opportunities to avoid solv-
ing IPs unnecessarily. The propositions rely on the fact that solving an IP may be
unnecessary if a relaxation (with respect to the objective function constraints that
have been added) has been solved previously. Similar ideas have been used in several
other methods (e.g., Lokman and Köksalan [26], Özlen et al. [30]). Since in all cases
the proofs are straightforward, we omit them.

Proposition 15 Let R(u1, u2) and R(v1, v2) be two rectangles such that u2 ≥ v2. If
2D- NDP- Search(u2) is infeasible, then 2D- NDP- Search(v2) is also infeasible.
Otherwise, let xn be an optimal solution of 2D- NDP- Search(u2). If z(xn) ≤ v2 then
xn is also optimal for 2D- NDP- Search(v2).

Proposition 16 Let R(u1, u2) and L(v1, v∗, v2) be a rectangle and an L-shape such
that u2 ≥ v2. If 2D- NDP- Search(u2) is infeasible, then 2D- NDP- L- Search
(v∗, v2) is also infeasible. Otherwise, let xn be an optimal solution of 2D- NDP-
Search(u2). If z(xn) ≤ v2 and z(xn) /∈ R(v∗, v2), then xn is also optimal for
2D- NDP- L- Search(v∗, v2).

Proposition 17 Let L(u1, u∗, u2) and R(v1, v2) be an L-shape and a rectangle such
that u2 ≥ v2 and v2 /∈ R(u∗, u2). If 2D- NDP- L- Search(u∗, u2) is infeasible,
then 2D- NDP- Search(v2) is also infeasible. Otherwise, let xn be an optimal solu-
tion of 2D- NDP- L- Search(u∗, u2). If z(xn) ≤ v2 then xn is also optimal for
2D- NDP- Search(v2).

Proposition 18 Let L(u1, u∗, u2) and L(v1, v∗, v2) be two L-shapes such that u2 ≥
v2 and either v∗ ≤ u∗ or v2 /∈ R(u∗, u2) or both. If 2D- NDP- L- Search(u∗, u2)
is infeasible, then 2D- NDP- L- Search(v∗, v2) is also infeasible. Otherwise, let xn

be an optimal solution to 2D- NDP- L- Search(u∗, u2). If z(xn) ≤ v2 and z(xn) /∈
R(v∗, v2), then xn is also optimal for 2D- NDP- L- Search(v∗, v2).

We note that a careful analysis of the logic of LSM reveals that the conditions
of Propositions 16 and 18 never hold in LSM, which implies that solving the first
IP in 2D- NDP- L- Search cannot be avoided. To be able to exploit these proposi-
tions, information about every call to 2D- NDP- Search and 2D- NDP- L- Search
is recorded. Specifically, two data structures are employed, the first to record infor-
mation about every call to 2D- NDP- Search and 2D- NDP- L- Search that returned
Null, i.e. that was infeasible, and the second to record information about calls that
resulted in an efficient solution in LN . In the former case, every value of u for which
2D- NDP- Search(u) was found to be infeasible and every pair of values u∗, u for
which 2D- NDP- L- Search(u∗, u) was found to be infeasible are recorded. Before
solving the first IP in any new call to 2D- NDP- Search or 2D- NDP- L- Search,
we check this stored information to see whether any of the above propositions can be
applied to deduce a priori that infeasibility will result. The second data structure is
used to record, for each efficient solution in LN , the parameters of any calls to either
2D- NDP- Search or 2D- NDP- L- Search that returned this solution. Because a
nondominated point can be “discovered” multiple times, we keep track of the informa-
tion for each discovery. This information is sufficient to check whether the conditions
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of any of the propositions hold. More specifically, before solving the first IP in any
new call to 2D- NDP- Search or 2D- NDP- L- Search, we go through the known
efficient solutions in LN and find the first feasible point for this IP, if it exists. If a
feasible point is found, we check the stored information regarding its discovery to
see whether one of the propositions can be applied. If unsuccessful, then we check
any other points in LN with the same third objective function value, since the exis-
tence of the feasible point with this value is assurance that the optimal value of the
first IP cannot be higher than this (and recall the list is kept in nondecreasing order
of the third objective value). Note that we check for feasible points in LN first and
only if that fails check the data recorded on infeasible calls to 2D- NDP- Search and
2D- NDP- L- Search.

6 An example

We illustrate the workings of LSM on a 5 × 5 instance of an assignment problem
with three objectives introduced by Özlen and Azizoğlu [29]. The objective function
coefficients can be found in Table 1. The instance has 15 nondominated points shown
in Fig. 7.

The steps of the search performed by LSM on this instance are represented in
Table 2, where we refer to the exploration of a rectangle as an “Iteration” and the
search for a nondominated point as a “Step”. Column zn shows the nondominated point
found in each step, or ∞ in case no nondominated was found (i.e., no nondominated
point with projection in the rectangle or L-shape existed). When a nondominated
point is found for the first time, it is shown in bold font; when a nondominated point

Table 1 Objective function coefficients of a 5×5 instance of an assignment problem with three objectives

c1 1 2 3 4 5 c2 1 2 3 4 5 c3 1 2 3 4 5

1 99 19 74 55 41 1 28 39 19 42 7 1 29 67 2 90 7

2 23 81 93 39 49 2 66 98 49 83 42 2 84 37 64 64 87

3 66 21 63 24 38 3 73 26 42 13 54 3 54 11 100 83 61

4 65 41 7 39 66 4 46 42 28 27 99 4 75 63 69 96 3

5 93 30 5 4 13 5 80 17 99 59 68 5 66 99 34 33 21

Fig. 7 Nondominated points of
a 5 × 5 instance of an
assignment problem with three
objectives with their projections
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Table 2 Demonstration of LSM on a 5 × 5 AP instance taken from Özlen and Azizoğlu [29]

Iteration Step u1 u∗ u2 zn A-IP1 A-IP2

1 1 zB zT (291,348,129) N N

2 zB (291,348) zT (188,269,133) N N

3 zB (188,269) zT (283,261,140) N N

4 zB (188,261) zT (212,242,173) N N

5 zB (188,242) zT (224,187,190) N N

6 zB (188,187) zT (171,261,191) N N

7 zB (171,187) zT (96,186,204) N N

8 zB (96,186) zT (180,183,229) N N

9 zB (96,183) zT (91,246,314) N N

10 zB (91,183) zT (269,173,320) N N

11 zB (91,173) zT (86,214,324) N N

12 zB (86,173) zT (253,132,328) N N

13 zB (86,132) zT (125,131,342) N N

14 zB (86,131) zT (209,128,367) N N

15 zB (86,128) zT ∞ N Y

2 1 (86,132) (253,173) (125,131,342) N Y

2 (86,132) (125,173) ∞ N Y

3 1 (188,187) (224,242) (179,233,194) N N

2 (188,187) (224,233) (96,186,204) N Y

4 1 (91,173) (269,183) (253,132,328) N Y

2 (91,173) (253,183) (125,131,342) N Y

3 (91,173) (125,183) ∞ N Y

5 1 (171,187) (188,261) (179,233,194) N Y

2 (171,187) (179,233) (188,261) (96,186,204) N Y

6 1 (188,261) (283,269) (212,242,173) N Y

2 (188,261) (212,269) (171,261,191) N Y

7 1 (188,242) (212,261) (179,233,194) N Y

8 1 (86,128) (209,131) ∞ N Y

9 1 (91,183) (96,246) (86,214,324) N Y

2 (91,183) (96,214) ∞ N Y

10 1 (96,183) (180,186) (125,131,342) N Y

2 (96,183) (125,186) ∞ N Y

11 1 (86,173) (91,214) ∞ Y Y

12 1 (86,131) (125,132) ∞ Y Y

is found again, it is shown in regular font. LSM terminates after 12 iterations, but
found all 15 nondominated points in the first three iterations. Columns u1, u∗ and
u2, define the rectangle or L-shape being searched in each step. If u∗ is blank, then
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LSMsearches a rectangle (using 2D- NDP- Search), otherwise it searches an L-shape
(using 2D- NDP- L- Search). For presentational convenience, the upper bound points
u2 have integer coordinates, whereas in reality, a small constant ε has been subtracted
from each component. Columns A-IP1 and A-IP2 show whether the first IP or second
IP is avoided, due to the use of enhancements. For instance, because of the results of
iterations 9 and 10, no IP is solved in iterations 11 and 12.

7 A computational study

To assess the performance of LSM, we have carried out an extensive computational
study. Based on our review of the recent literature, two of the fastest existing methods
for solvingTOIPs are the enhanced recursivemethod (ERM) ofÖzlen et al. [30], where
the enhancements are based on propositions similar to those discussed in Sect. 5, and
the full (p − 1)-split method of Kirlik and Sayın [22] (which we denote by KSA). In
our computational study, we have used the implementations of ERM and KSA made
available by their authors (at https://bitbucket.org/melihozlen/moip_aira/ and http://
home.ku.edu.tr/~moolibrary/, respectively). KSA is coded in C++ and ERM is coded
in C. LSM has been coded in C++. To ensure that our performance comparison is
fair, we made all codes use CPLEX 12.5.1 as the integer programming solver and we
carried out all computational experiments on the same hardware, a Dell PowerEdge
R710 with dual hex core 3.06Gz Intel Xeon X5675 processors and 96GB RAM,
running the RedHat Enterprise Linux 6 operating system, and using a single thread.

We note that the method with the best known theoretical performance is the full
(p−1)-splitmethodofDächert andKlamroth [13], because the number of subproblems
solved by their method is linearly bounded. Unfortunately, no C or C++ implementa-
tion of their method is (publicly) available, and, as a result, we were unable to include
their method in our computational study.

In our computational study, we use two publicly available sets of instances, Set I
and Set II, used in previous studies ofmethods for solving TOIPs. The first set has been
used by Özlen et al [30] and contains 19 instances with different sizes, including 10
instances of the triobjective assignment problem (AP), 6 instances of the triobjective
3-dimensional knapsack problem (3DKP), and 3 instances of the triobjective traveling
salesman problem (TSP). The second set has been used by Kirlik and Sayın [22]
and has a class of AP instances and a class of 1DKP instances. Each class contains
10 subclasses, each with 10 instances. A subclass is characterized by the size of the
instances it contains (in terms of the number of agents and tasks in AP and in terms
of the number of items in 1DKP). The subclasses of AP have instances of size 5, 10,
15, 20, 25, 30, 35, 40, 45, and 50. The subclasses of 1DKP have instances of size 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100. (Note that the size of an instance of 1DKP and
3DKP gives the number of binary variables in the formulation; the size of instance of
AP to the power two gives the number of binary variables in the formulation, the size
of an instance of TSP is in terms of the number of cities and thus the size to the power
of two gives the number of binary variables in the formulation.) In our computational
study, each instance was solved five times and averages over the five instances are
reported in the result tables.
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7.1 Performance

We start by comparing the performance of LSM, ERM, and KSA on the instances in
Set I. Table 3 shows instance information, namely the class, the size, and the number
of points in the nondominated frontier, as well as result information, namely for each
method the number of single-objective IPs solved and the time taken to generate the
nondominated frontier, and the percent improvement in number of IPs solved and time
taken to generate the nondominated frontier of LSM over ERM and KSA. (In these
experiments, LSM is initializedwith zTi = maxx∈XLP zi (x) and zBi = minx∈XLP zi (x)
for i = 1, 2, 3.)

We observe that LSM outperforms both ERM and KSA. It is, on average, 32%
faster than ERM and 17% faster than KSA, primarily because it solves fewer IPs,
namely on average 42% fewer than ERM and 8% fewer than KSA.

Detailed performance statistics of LSM on instances of Set I can be found in Table
4, where, in addition to the number of single-objective IPs solved and the time taken to
generate the nondominated frontier, we also report the number of rectangles processed
(#Rec), the number of IPs solved (#S), and the number of times the solution of an IP
was avoided because of one of the propositions in Sect. 5 (#A). These counts are
grouped by 2D- NDP- Search and 2D- NDP- L- Search as well as by whether it is
the first or the second of the IPs solved in these operations. Where appropriate, we
give the number of IPs that were infeasible in parentheses. Note that if solving the first
IP in 2D- NDP- Search or 2D- NDP- L- Search can be avoided because of one of
the propositions and corollaries in Sect. 5, we automatically avoid solving the second
IP too. Therefore, we only report the number of times the solution of the second IP
was avoided when the first IP was solved.

We observe that the enhancements are critical to the performance, because the
solution of many IPs is avoided. (Recall that the conditions of Propositions 16 and
18 never hold in LSM and therefore no first IP solves of 2D- NDP- L- Search are
avoided; the related column is included only for aesthetics and completeness sake.)

The importance of the enhancements is illustrated in a different way in Fig. 8,
which shows the ratio of the number of IPs solved when all enhancements are enabled
and the number of IPs solved when all enhancements are disabled. (The instances
are presented along the horizontal axis in nondecreasing order of their number of
nondominated points.) Again, we see that the number of IPs actually solved reduces
substantially (by a factor of about 0.35) when the enhancements are enabled.

The importance of the enhancements becomes more obvious when we look at a
breakdown of the solution time. Figure 9 shows the fraction of time taken up by solving
2D- NDP- Search and 2D- NDP- L- Search as well as the fraction of time taken up
by solving the first and second IPs of 2D- NDP- Search and 2D- NDP- L- Search.
We see that more than 90% of the solution time is consumed by solving single-
objective IPs and, not surprisingly, that the largest fraction of that time is solving first
IPs.

We have mentioned earlier, that one of the critical factors for LSM’s success is that
it “fully” explores a rectangle, i.e., that it does not decompose a rectangle as soon as
a nondominated point is found. This ensures that different parts of the criterion space
are explored early in the search (e.g., by fully exploring the first rectangle R(zB, zT )).
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Fig. 8 Ratio of number of IPs
solved by LSM with
enhancements to the number of
IPs solved by LSM without
enhancements

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

T
SP

5
3D

K
P
10

A
P
5

3D
K
P
20

T
SP

10
3D

K
P
30

A
P
10

3D
K
P
40

A
P
15

T
SP

15
3D

K
P
50

A
P
20

A
P
25

A
P
30

3D
K
P
10
0

A
P
35

A
P
40

A
P
45

A
P
50

R
at
io

Instance

Fig. 9 Ratio of the IP solve
time to the total solve time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
SP

5
3D

K
P
10

A
P
5

3D
K
P
20

T
SP

10
3D

K
P
30

A
P
10

3D
K
P
40

A
P
15

T
SP

15
3D

K
P
50

A
P
20

A
P
25

A
P
30

3D
K
P
10
0

A
P
35

A
P
40

A
P
45

A
P
50

R
at
io

Instance
First IP Second IP Total IP

Figure 10 illustrates this aspect of LSM by showing the area of the 2nd through 20th
rectangles explored by LSM for instance AP50 as a fraction of the area of the initial
rectangle R(zB, zT ). The figure clearly shows that the area of the rectangles explored
decreases sharply in the first few iterations.

Because the number of instances inSet II ismuch larger than the number of instances
inSet I,wepresent performanceprofiles rather than result tables.Aperformanceprofile
is a graph with along the horizontal axis the ratio of the run time of an instance to
the minimum run time for that instance among all methods and along the vertical axis
the fraction of instances that achieved a ratio that is less than or equal to the ratio on
the horizontal axis [16]. (This implies that values in the upper left-hand corner of the
graph indicate the best performance.)

The performance profile of run time of LSM, ERM, and KSA for the 1DKP and
AP instances in Set II can be found in Figs. 11 and 12, respectively. We observe that
LSM clearly outperforms ERM and KSA (and that KSA clearly outperforms ERM).
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Fig. 10 Area of the rectangles 2
through 20 as a fraction of the
area of R(z̄ B , z̄T ) for instance
AP50
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Fig. 11 Performance profile of
the run time of the algorithms on
1DKP instances in Set II
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Fig. 12 Performance profile of
the run time of the algorithms on
AP instances in Set II
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7.2 Approximate frontiers

In practice, finding approximate nondominated frontiers, especially if this can be done
quickly, is of premium importance. LSM is designed, in part, to enable the efficient
generation of approximate frontiers. We have conducted a number of computational
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Fig. 13 Fraction of nondominated points that needs to be generated to achieve a hypervolume gap of less
than 20%

experiments to assess whether LSM, ERM, and KSA are capable of generating a high-
quality approximate frontier early in the search. We start our investigation using one
of the best-known measures for assessing and comparing approximate frontiers: the
hypervolume indicator (or S-metric), which is the volume of the dominated part of
the criterion space with respect to a reference point [38,40]. As the reference point
impacts the value of the hypervolume indicator, we have used the nadir point, i.e.,
zNi := max{zi (x) : z ∈ YN } for i = 1, 2, 3, as the reference point, which is the best
possible choice for the reference point. (Note that computing the nadir point is not easy
in general, but trivial once the nondominated frontier is known.) The effort required to
compute the hypervolume indicator is a function of both the number of nondominated
points and the dimension of the criterion space; for more information on computing
the hypervolume indicator see [4]. Several public domain codes for calculating the
hypervolume indicator are available. We have used the one at http://www.tik.ee.ethz.
ch/~sop/download/supplementary/weightedHypervolume.

Let the hypervolume of a given set of nondominated points S be denoted by h(S)

and let the hypervolume gap of an approximate frontier with nondominated points

Y A
N ⊆ YN be defined as

h(YN )−h(Y A
N )

h(YN )
. (Note that the hypervolume gap can only be

computed once the nondominated frontier is known.)
In Fig. 13, we show the number of nondominated points (as a fraction of the total

number of nondominated points) that must be generated to achieve a hypervolume
gap of less than 20% for LSM, ERM, and KSA on the instances from Set I and Set II
with at least 500 nondominated points. We have chosen to restrict the set of instances
in this way, because computing approximate frontiers is of interest primarily when it
is too costly to compute the complete nondominated frontier, which is more likely to
be the case when the number of points in the nondominated frontier is large. In each
figure, the instances (represented on the horizontal axis) are ordered by the number of
points in their nondominated frontier, from small to large.

We observe that LSM has to generate fewer nondominated points to reach a hyper-
volume gap of less than 20% than both ERM and KSA, in general. Moreover, these
figures suggest that for the instances with a larger number of points in the nondomi-
nated frontier, LSM needs to generate, on average, around 5% of the points to reach
a hypervolume gap of less than 20%, KSA has to generate, on average, around 25%
of the points, and ERM has to generate, on average, around 50% of the points.

In Fig. 14, we show the time (as a fraction of the total time required to obtain the
complete nondominated frontier by LSM) needed to achieve a hypervolume gap of
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Fig. 14 Fraction of time needed to achieve a hypervolume gap of less than 20%

less than 20% for LSM, ERM, and KSA on the instances from Set I and Set II with
at least 500 nondominated points. The patterns are similar to those of Fig. 13, which
demonstrates that algorithms that need to find more nondominated points to reach a
hypervolume gap of less than 20% require more computational time.

Even though the hypervolume indicator provides meaningful insights in the quality
of an approximation, many researchers have argued that the quality of an approxi-
mation must be assessed using multiple (or orthogonal) indicators. There are at least
three dimensions of interests when assessing the quality of an approximation, includ-
ing cardinality, coverage, and uniformity [32]. For each of these dimensions several
indicators have been proposed in the literature (mostly to be able to evaluate the quality
of approximations obtained by evolutionary methods). We refer the interested reader
to Zitzler et al. [39] for further information about quality indicators. Therefore, to com-
plement our initial assessment of the capability of LSM, ERM, and KSA to produce
high-quality approximate frontiers quickly, we will also investigate measures related
to cardinality, coverage, and uniformity.

Note that our setting is quite different from the typical setting encountered when
evaluating the quality of approximate frontiers produced by evolutionary methods.
We have a finite nondominated frontier and an approximate frontier that consists of a
subset of the nondominated points of the frontier. As a consequence, we can introduce
indicators that make use of this information.

Let ti be time required by LSM to compute the nondominated frontier of instance i .
To assess the capability ofLSM,ERM, andKSA toproduce a high-quality approximate
frontier quickly for instance i , we give each method a run time limit of ti

10 .
To present the quality indicators used for evaluation, we have to introduce some

new notation. Let the nondominated frontier of an instance be YN and the approxi-
mate frontier be Y A

N . Furthermore, denote the Euclidean distance between two points
y and y′ by d(y, y′). Define k1(y) and k2(y) to be the closest and second closest
nondominated point in the approximate frontier to a nondominated point y ∈ YN ,
respectively. Finally, for each y ∈ Y A

N , define n(y) to be the number of nondominated
points y′ ∈ YN\Y A

N with k1(y′) = y.

CardinalityWe define the cardinality of an approximate frontier simply as the fraction

of the points of the nondominated points it contains, i.e.,
|Y A

N |
|YN | . Figure 15 shows the

cardinality for the approximate frontiers obtained by LSM, ERM, and KSA. None of
the methods clearly dominates the others, although we see that LSM does better than
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Fig. 15 Cardinality of approximate frontiers after 10% of total CPU time of LSM

ERM and KSA for the 1DKP instances of Set II and for the AP instances of Set II
with larger nondominated frontiers, and KSA does better than ERM and LSM for the
AP instances of Set II with smaller nondominated frontiers.

Coverage We define two coverage indicators: max coverage and average coverage.
Let f̂ m , f̂ a , and f a be

f̂ m = max
y∈YN \Y A

N

d(k1(y), y),

i.e., the maximum distance from any nondominated point not contained in the approx-
imate frontier to the closest point in the approximate frontier,

f̂ a =
∑

y∈YN \Y A
N
d(k1(y), y)

|YN\Y A
N | ,

i.e., the average distance from any nondominated point not contained in the approxi-
mate frontier to the closest point in the approximate frontier, and

f a =
∑

y∈YN
d(k2(y), y)

|YN | ,

i.e., the average distance to the closest point (other than the point itself) in the nondom-
inated frontier, respectively. Observe that f a can be viewed as a measure of dispersion
of the points in the nondominated frontier. Smaller values of f̂ m and f̂ a indicate that
the nondominated points in the approximate frontier are in different parts of the cri-
terion space. As a consequence, an algorithm has a better coverage if f̂ m or f̂ a are

smaller. Tomake these indicators scale invariant, we divide them by f a .We refer to f̂ a

f a

as average coverage and to f̂ m

f a as max coverage. Figures 16 and 17 show the average
coverage and the max coverage indicators for the approximate frontiers obtained by
LSM, ERM, and KSA. It is clear that LSM significantly outperforms both ERM and
KSA in both coverage indicators.

Uniformity A uniformity indicator should capture how well the points in an approx-
imate frontier are spread out. Points in a cluster do not increase the quality of an
approximate frontier. Let μ̃ and σ̃ be
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Fig. 16 Average coverage of the approximate frontiers after 10% of total CPU time of LSM
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Fig. 17 Max coverage of the approximate frontiers after 10% of total CPU time of LSM
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Fig. 18 Uniformity of the approximate frontiers after 10% of total CPU time of LSM

μ̃ =
∑

y∈Y A
N
n(y)

|Y A
N | ,

and

σ̃ =
∑

y∈Y A
N
(n(y) − μ̃)2

|Y A
N | ,

respectively. We define the uniformity indicator to be σ̃
μ̃
; the smaller the value of this

indicator, the better the uniformity of an approximate frontier. Figure 18 shows the
uniformity of the approximate frontiers obtained by LSM, ERM, and KSA. It is clear
that the approximate frontiers produced by LSM have a significantly better spread
than those produced by ERM and KSA.
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8 Conclusion

We have introduced a new criterion space search method, the LSM, for general triob-
jective integer programs. The method cleverly combines and enhances ideas of many
of the approaches that have been proposed and discussed in the literature. The method
is highly effective and, equally if not more important, allows the generation of high-
quality approximate frontiers in a reasonable amount of time; in practice, being able
to compute high-quality approximate frontiers efficiently is critical.

Wehope that the simplicity, versatility, andperformance of theLSMmethod encour-
ages (more) practitioners to consider using exact methods for solving triobjective
integer programs.

In regard to future research, there remainmanyopportunities to develop and improve
algorithms for multiobjective integer programming. Two directions we believe hold
particular promise are as follows. (1) Even though some fundamental results regarding
approximate frontiers exist, e.g., [31] show that for any multiobjective optimization
problem and any ε > 0, there is always an ε-approximate Pareto set consisting of a
number of solutions that is polynomial in the input size of the problem and 1

ε
, there

have been few, if any, attempts to exploit this algorithmically. (2) There have been
exciting advances in the development of a duality theory for multiobjective linear
programming, e.g., [19,21], and again, this theory may be useful in the design of new
algorithms for multiobjective integer programming.
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