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Abstract Parallel Enumeration and Branch-and-Bound Library (PEBBL) is a C++
class library implementing the underlying operations needed to support a wide variety
of branch-and-bound algorithms on MPI-based message-passing distributed-memory
parallel computing environments. PEBBL can be customized to support application-
specific operations, while managing the generic aspects of branch and bound, such as
maintaining the active subproblem pool across multiple processors, load balancing,
and termination detection. PEBBL is designed to provide highly scalable performance
on large numbers of processor cores. We describe the basics of PEBBL’s architecture,
with emphasis on the features most critical to is high scalability, including its flexible
two-level loadbalancing architecture and its support for a synchronously parallel ramp-
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up phase.We also present an example application: the maximummonomial agreement
problem arising from certain machine learning applications. For sufficiently difficult
problem instances, we show essentially linear speedup on over 6000 processor cores,
demonstrating a new state of the art in scalability for branch-and-bound implementa-
tions. We also show how processor cache effects can lead to reproducibly superlinear
speedups.

Keywords Branch and bound · Parallel computation

Mathematics Subject Classification 90C57 · 65Y05

1 Introduction

Branch and bound is a fundamental method of numerical optimization with numerous
applications in both discrete optimization and continuous nonconvex global optimiza-
tion. See for example [9] for a general tutorial onbranch-and-bound algorithms.Branch
and bound is potentially well-suited to parallel computing, since exploring a branch-
and-bound tree often generates a large number of weakly coupled tasks. Despite this
suitability, branch-and-bound algorithms are not “embarrassingly parallel” in the sense
that efficient parallel implementation is immediate and straightforward.

It is therefore useful to have parallel branch-and-bound shells, frameworks, or
libraries: software tools that provide parallel implementations of the basic, generic
functionality common to a broad range of branch-and-bound applications. Those seek-
ing to create new parallel branch-and-bound applications can avoid “reinventing the
wheel” by using these tools to handle the generic aspects of searchmanagement, while
concentrating their programming effort primarily on tasks unique to their applications.
The need for branch-and-bound frameworks is greater in parallel than in serial, because
managing the pool of active search nodes is relatively straightforward in serial. By
contrast, parallel branch-and-bound frameworks may require more complex logic for
pool management, distributed termination and load balancing.

This paper describes the Parallel Enumeration and Branch-and-Bound Library
(PEBBL) software framework. The goal of PEBBL, influenced by the needs of Sandia
National Laboratories, is to provide extreme scalability in implementing branch-and-
bound methods on distributed-memory computing systems.

For efficiency and portability, we implemented PEBBL in C++, using the MPI
message-passing API [49] to communicate between processors. PEBBL may also
be used on shared-memory platforms by configuring standard MPI implementations
such as MPICH [27] and Open MPI [26] to emulate message passing through shared
memory. Shared-memory systems can often operate efficiently when programmed
in this way, since the programming environment naturally tends to limit memory
contention.

The most distinctive features of PEBBL are:

– An extremely flexible work distribution and load balancing scheme that achieves
unmatched scalability and has only two strata in its processor hierarchy. That is,
there are just two possibly overlapping kinds of processors: “workers” and “hubs”.
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When scaling to large numbers of processors, the hubs interact in a peer-to-peer
manner and do not require extra levels of controller processors such as “masters
of masters” or “masters of masters of masters”.

– Support for application-specific non-tree parallelism during the search ramp-up
phase, followed by a “crossover” to using tree-based parallelism.

– Support for enumeration of multiple optimal and near-optimal solutions meeting
a variety of configurable criteria.

The rest of this paper is organized as follows: Sect. 2 summarizes PEBBL’s history,
discusses some more of its innovative contributions, and presents a brief literature
review relating it to other work on branch-and-bound computational frameworks.
Section 3 then presents key aspects of PEBBL’s design. Section 4 then presents a
computational study based on the maximum monomial agreement (MMA) problem
described in [13,18,25], showing excellent scaling to over 6000 processor cores. Sec-
tion 5 then presents some computational observervations showing howprocessor cache
behavior can lead to superlinear speedups for some branch-and-bound applications.
Our main conclusions from our computational experiments are:

– PEBBL definitively demonstrates scalability of parallel branch and bound over a
significantly wider range of processor counts than previously published work.

– When enumerating multiple optimal or near-optimal solutions, PEBBL’s scalabil-
ity is nearly as good as when seeking a single solution.

– Despite its apparent complexity, PEBBL’s parallelization strategy adds relatively
little overhead to underlying serial branch-and-bound algorithms.

PEBBL is a large, complex software package, so this paper necessarily omits
many details. For a more detailed description, the reader should refer to the techni-
cal report [22], which is an expanded version of this article, and [23], the current
PEBBL user guide. PEBBL is part of A Common Repository for Optimizers
(ACRO), a collection of optimization-related software projects maintained by San-
dia National Laboratories. PEBBL may be downloaded from http://software.sandia.
gov/acro (under the BSD license). The PEBBL source files include the maximum
monomial agreement (MMA) test problem instances and algorithm implementation
presented in this paper. At the time of writing, the current PEBBL release is version
1.4.1.

2 Literature review and history

PEBBL began its existence as the “core” layer of the parallel mixed integer program-
ming (MIP) solver Parallel Integer andCombinatorial Optimizer (PICO).However, we
separated PICO into two distinct packages to facilitate using its core layer for applica-
tions with bounding procedures not involving linear programming—for example, the
application described in Sect. 4 below. The core layer, which supported generic paral-
lel branch-and-bound algorithms in an application-independent way, became PEBBL.
The remainder of PICO is specific to problems formulated explicitly as MIPs. An
early description of PICO [21] includes a description of the PICO core, which evolved
into PEBBL. However, PEBBL’s design has evolved from this description, and its
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scalability has improved significantly. Similar but more recent material is included
as part of [2], and a somewhat more recent but very condensed description of the
internals of PEBBL and PICO is also embedded in [19]. Neither [2] nor [19] contain
computational results or describe PEBBL’s enumeration capabilities.

Some elements of PEBBL’s design can be traced back to ABACUS [24,30,31], a
serial C++ framework supporting serial LP-based branch-and-bound methods involv-
ing dynamic constraint and variable generation. Some aspects of PEBBL’s task
distribution and load balancing schemes are based on CMMIP [14–17], a parallel
branch-and-bound solver specific both tomixed integer programming and to theThink-
ing Machines CM-5 parallel computing system of the early 1990’s.

PEBBL is neither the first nor the only parallel branch-and-bound implementa-
tion framework. Early C-language general parallel branch-and-bound libraries include
PUBB [47,48], BoB [3], and PPBB-Lib [50]. MINTO [40] is an earlier, C-language
framework specifically addressing MIP problems. SYMPHONY and BCP, both
described in [36,41], are two related frameworks that support parallelism, respec-
tively written in C and C++. However, they do not support large-scale parallelism, and
for applications requiring extensive scalability have been superseded by tools based
on CHiPPS/ALPS [42]. Many aspects of CHiPPS/ALPS [42] were influenced by the
early development of PICO and PEBBL.

To our knowledge, themost recently reported scalability studies for general-purpose
parallel branch-and-bound engines are for BOBPP, a successor to Bob, and ALPS.
Manouer et al. [39] use the general BOBPP framework to parallelize Google’s OR-
Tools constraint solver. Compared to a serial run, they report a speedup of 38.14 on
48 cores (79 % relative efficiency). Xu et al. report computational experience using
ALPS for knapsack problems [54]. Based on average total wall-clock time over 26
difficult knapsack problems on a BlueGene system, they report efficiency of 77 %
on 2048 processors relative to the same problems running on 64 processors. The
largest numbers of processors reported for branch-and-bound-based runs are specific
to integer linear programming:Koch et al. [35] solved a single difficult integer program
with the SCIP integer programming solver (using CPLEX for linear programming
solutions) and MPI on an HLRN-II SGI Altix ICE 8200 Plus supercomputer. They
report 79 % efficiency on 7168 cores relative to a base of 4096 cores. Using such a
large base number of processors may not give an accurate picture of true efficiency
relative to a single processor. In a recent, less formal setting, Shinano [45] reported
efficiencies of 76 % solving a particular integer program using paraSCIP [46] with
4095 processors compared to a base of 239 processors on an HLRN-II. But for another
integer programming problem, the efficiency for the same processor count and base
was only 38 %. The same source also reports attempts to run on 35,000 processors of
a Titan Cray XK7 and reported a run time for almost 10,000 processors, but with no
scalability results.

In other recent work, the FTH-B&B [4] package focuses on fault-tolerant branch-
and-bound mechanisms for grid environments. It includes fault detection through
heartbeat communication between parents and children in a multi-level control hier-
archy, as well as checkpointing and recovery mechanisms. Experiments in [4] focus
on measuring fault-tolerance-related overhead, rather than considering scalability and
search efficiency.
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3 Software architecture

We now describe PEBBL’s software design. Included in this description are a number
of original contributions not mentioned in Sect. 1, namely:

– Division of the software package into serial and parallel layers
– Subproblems that store a state, and the notion of describing a branch-and-bound
implementation as a collection of operators transforming these states; this feature
allows one to easily change search “protocols”—see Sect. 3.2

– Variable amounts of subproblem exchange between “hub” and “worker” proces-
sors

– Use of “threads” (more properly referred to as coroutines) and a nonpreemptive
scheduler module to manage tasks on each individual processor.

Regarding the first item above, the PEBBL software consists of two “layers,” the
serial layer and the parallel layer. The serial layer provides an object-oriented means
of describing branch-and-bound algorithms, with essentially no reference to parallel
implementation. The parallel layer contains the core code necessary to create parallel
versions of serial applications. Creation of a parallel application can thus proceed in
two steps:

1. Create a serial application by defining new classes derived from the serial layer
base classes. Development may take place in an environment without parallel
processing capabilities or an MPI library.

2. “Parallelize” the application by defining new classes derived from both the serial
application and the parallel layer. These classes can inherit most of their methods
from their parents—only a few additional methods are required, principally to tell
PEBBL how to pack application-specific problem and subproblem data into MPI
message buffers, and later unpack them.

Figure 1 shows the conceptual inheritance pattern used by PEBBL. Any parallel
PEBBL application constructed through this multiple-inheritance scheme has the full
capabilities of the parallel layer, including a highly configurable spectrum of parallel
work distribution and load balancing strategies.

PEBBL Serial 
Layer

Serial Application PEBBL Parallel 
Layer

Parallel Application

Fig. 1 The conceptual relationships of PEBBL’s serial layer, the parallel layer, a serial application, and the
corresponding parallel application
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To define a serial branch-and-bound algorithm, a PEBBL user extends two prin-
cipal classes in the serial layer, branching and branchSub. The branching
class stores global information about a problem instance, and it contains methods that
implement various kinds of serial branch-and-bound algorithms, as described below.
The branchSub class stores data about each subproblem in the branch-and-bound
tree, and it contains methods that perform generic operations on subproblems. This
basic organization is borrowed from ABACUS [24,30,31], but PEBBL’s design is
more general, since there is no assumption that linear programming or cutting planes
are involved.

The remainder of this section refers to numerous parameters controlling the details
of the branch-and-bound search. All such parameters have default values so users can
begin using PEBBL without having to explicitly specify their values. The user may
then tune specific parameters based on the runtime behavior of their application.

3.1 Subproblem states, subproblem transition methods, and solution generation

Every PEBBL subproblem stores a state indicator that progresses through some subset
of six states calledboundable,beingBounded,bounded,beingSeparated,
separated, and dead.

The branchSub class has three abstract virtual methods which are responsible for
implementing subproblem state transitions:boundComputation,splitCompu-
tation, and makeChild. A serial PEBBL application is primarily defined by the
instantiations of these three methods in the application subproblem class.

Figure 2 illustrates the subproblem state operator methods and the possible sub-
problem state transitions. The boundComputationmethod advances subproblems
from the initial boundable state through to the bounded state, while the split-
Computation method advances subproblems from the bounded state to the
separated state. Each application of the makeChild method extracts a child
subproblem.

Once all of a subproblem’s children have been created, it becomes dead. Any
subproblem operator can also set a subproblem’s state to dead if it determines that the
subproblem represents no relevant solutions. The beingBounded state is included
to allow for incremental calculations that might compute progressively tighter bounds

boundComputation() splitComputation() makeChild()

Children

boundable beingBounded bounded beingSeparated separated

dead

Fig. 2 PEBBL subproblem state transition diagram

123



PEBBL: parallel branch and bound 435

for a subproblem, or for lengthy bound calculations that onemight want to temporarily
suspend. The beingSeparated state is provided for similar reasons.

Each subproblem also has a bound data member which may be updated at any
time by any of the three state-transition methods, although it is typically set by
boundComputation. Furthermore, the branchSub class has an incumbent-
Heuristicmethod that is called once a subproblem becomes bounded. Thismethod
is intended to generate feasible solutions, perhaps using information generated during
bounding. However, any of the subproblem operators is free to generate possible new
incumbent solutions at any point in the life of a subproblem. The branchSub class
also contains methods for identifying “terminal” subproblems, and extracting solu-
tions from them. Terminal subproblems are those for which the computed bound is
exact and a matching feasible solution is readily available: in integer programming,
for example, a subproblem is terminal if solving its linear programming relaxation
returns an integral solution. A terminal subproblem does not require further explo-
ration and becomes dead once PEBBL extracts a solution matching its bound value
(unless PEBBL is enumerating multiple solutions—see Sect. 3.6 below).

PEBBL also provides a number of classes for representing problem solutions. If
a specialized solution representation is needed, the user may derive one from the
PEBBL-provided base class solution.

3.2 Pools, handlers, and the search framework

PEBBL’s serial layer orchestrates serial branch-and-bound search through a module
called the “search framework,” which acts as an attachment point for two user-
specifiable objects, the “pool” and the “handler”. The combination of pool and handler
determines the variant of branch-and-bound being applied. Essentially, the framework
executes a loop in which it extracts a subproblem S from the pool and passes it to the
handler, which may create children of S and insert them into the pool. If subproblem
S is not dead after processing by the handler, the framework returns it to the pool.
Figure 3 illustrates the relationship between the search framework, pool object, and
handler object.

The pool object dictates how the currently active subproblems are stored and
accessed, which effectively determines the branch-and-bound search order. Currently,
there are three kinds of pools:

S SPool object
(heap, stack, queue,…)

S

S

S
S

S S

S

Search
framework

routine Handler object
(eager, lazy, hybrid,…)S S

S
S Children

S S

Fig. 3 The search framework, pool, and handler. Each S indicates a subproblem
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– A heap sorted by subproblem bound, which results in a best-first search order.
This pool also has a “diving” option to give priority to an application-defined
“integrality measure” (in general, some measure of closeness to being a terminal
node) until an incumbent solution is found, and then revert to standard best-bound
ordering.

– A FIFO queue, which results in a breadth-first search order.
– A stack, which results in a depth-first search order.

For particular applications, users may implement customized pools that specify other
search orders.

In general, subproblems in the pool may in be in any mix of states. The handler,
the other component “plugged into” the search framework, implements a “search
protocol” specifying how subproblems are advanced through the state diagram, thus
controlling themix of states present in the pool. Three handlers are currently available:
“eager”, “lazy”, and “hybrid”.

The lazy handler implements lazy search, as defined in [10]. In lazy search, the
handler removes a subproblem from the pool and computes its bound. If the subprob-
lem cannot be fathomed, the handler extracts its children and places them back in the
pool without computing their bounds. This variant of branch and bound is typical of
MIP solvers. The eager handler instead implements an eager search protocol [10]. In
eager search, the handler picks a subproblem from the pool, immediately separates it,
and then extracts all its children and calculates their bounds. Children whose bounds
do not cause them to be fathomed are returned to the pool. This type of search is more
typically used in situations in which the bound may be calculated quickly.

PEBBL also contains a third handler, called the hybrid handler. This handler imple-
ments a strategy that is somewhere between eager and lazy search, and is perhaps the
most simple and natural given PEBBL’s concept of subproblem states. Upon removing
a subproblem from the pool, the hybrid handler performs one application of the appro-
priate method to advance it in the state diagram. It then places the subproblem back in
the pool if it is not dead, along with any children generated in the process. With the
hybrid handler, the pool contains subproblems in an arbitrary mix of states, whereas
the lazy and eager handler keep the entire pool in the boundable or bounded state,
respectively, unless the application uses the beingBounded or beingSeparated
states to suspend bounding or separation operations.

3.3 Parallelism: tokens and work distribution within a processor cluster

PEBBL’s parallel layer organizes processors similarly to the later versions of
CMMIP [14,16]. Processors are organized into “clusters”, each consisting of one
“hub” processor that controls one one or more “worker” processors. Through run-time
parameters, the user may control the number of processors per cluster, and whether
hub processors are “pure” hubs or simultaneously function as hubs and workers. It is
possible for a cluster, or even all clusters, to consist of only a single processor.

Although there is a limit to the number of processors that may function efficiently
within a centrally controlled cluster, PEBBL’s philosophy is to make this limit as large
as possible. To this end, its design used two basic principles: first, a hub should be
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able to “guide” rather than “micromanage” its workers, without having to interpose
itself into every worker subproblem-processing decision. Second, the communication
and memory resources of the hub should not be wasted by storing and transmitting
subproblem information irrelevant to the hub’s main purpose of scheduling and dis-
tributing work.

To allow for “guidance” rather than “micromanagement,” workers in a PEBBL
cluster are generally not pure “slaves.” Each worker maintains its own pool of active
subproblems. Depending on various run-time parameters, the pool might be small
(e.g. a single subproblem). Workers use essentially the same search handler objects
present in the serial layer, but in parallel these handlers also have the ability to “release”
subproblems from the worker. The decision whether to release a subproblem is usually
taken when it is created, except when performing eager search, in which case the
decision is taken immediately after the subproblem is bounded. Released subproblems
do not return to the local pool: instead, theworker cedes control over these subproblems
to the hub. Eventually, the hub will send control of the subproblem either back to the
worker or to another worker.

When a processor is both a hub and a worker, it maintains two distinct pools of
subproblems, one under control of the hub thread and one under control of the worker
thread. The two coresident threads communicate in much the same way as a worker
and hub located on different processors, but through local memory operations rather
than MPI messages.

For simplicity throughout the remainder of this subsection, we describe the work
distribution scheme as if a single cluster spanned all the available processors. In the
next subsection, we will amend the description for the case of more than one cluster.

A worker’s decision to release a subproblem is randomized, with the probability of
release controlled by run-time parameters and the current distribution of work among
processors. If PEBBL is configured so that the release probability is always 100 %,
then control of every subproblem returns to the hub at some state in its lifecycle. In
this case, the hub and its workers function like a classic “master-slave” system. When
the release probability is lower, the hub and its workers are less tightly coupled. The
release probability can vary between parameter-determined bounds depending on the
fraction of the estimated total work controlled by the worker processor. To promote
even work distribution early in a run, the release probability is temporarily set to
100 % for the first s subproblems each worker encounters after the initial synchronous
ramp-up phase (see Sect. 3.7 below), where s is a run-time parameter.

As mentioned above, the second major principle in PEBBL’s intracluster architec-
ture is avoiding passing unnecessary information through the hub: when a subproblem
is released, only a small portion of its data, called a “token” [15,43], is actually sent to
the hub. A token consists of the information needed to identify a subproblem, locate it
in memory, and schedule it for execution. On a 64-bit processor, a token occupies 80
bytes of storage, which is much less than typically required to store the full data for a
subproblem in most applications. Since the hub receives only tokens from its workers,
these space savings translate into reduced storage requirements and communication
load at the hub. In certain cases, PEBBL can gain further efficiency by using a single
token to refer to several sibling subproblems.
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The hub processor maintains a pool of subproblem tokens that it has received from
workers. Each time it learns of a change in workload status from one of its workers, the
hub reevaluates the work distribution in the cluster and dispatches subproblem tokens
to workers it deems “deserving”. The notion of “deserving” can take into account both
subproblem quantity and quality (asmeasured by the distance between the subproblem
bound and the incumbent value).

When the hub dispatches a subproblem token t to aworkerw∗, the resultingmessage
might not go directly to w∗. Instead, it goes to the worker w that originally released
t . If w �= w∗, then when w receives the token, it forwards the necessary subproblem
information to w∗, much as in [14–16,43]. To save communication resources, the hub
may pack multiple dispatch operations into the same MPI message.

The hub periodically broadcasts overall workload information to its workers so
they know the approximate relation of their own workloads to those of other workers.
This information allows eachworker to adjust its probability of releasing subproblems.
PEBBL also has a secondmechanism, called “rebalancing”, to helpmaintain the user’s
desired balance between hub and worker control of subproblems (especially near the
end of a run). During rebalancing, workers can send blocks of subproblem tokens to
the hub outside of the usual handler-release cycle.

The subproblem release probabilities and rebalancing operations at the workers,
along with the calculation of when workers are “deserving”, are calibrated to (1) keep
the fraction of subproblems in the cluster controlled by the hub close to the run-time
parameter hubLoadFac and (2) keep the remaining subproblems relatively evenly
distributed among the workers. In this calculation, an adaptively computed “discount”
is applied to a worker process colocated on the hub processor. Specifically, if the hub
processor appears to be spending a fraction h of its time on its hub functions but is
also a worker, then the target number of subproblems for its worker process is a factor
1 − h lower than for other worker processors.

Depending on the settings of the parameters controlling subproblem release and
dispatch, PEBBL’s intracluster work distribution system can range from a classic
“master-slave” configuration to one in which the workers “own” the vast majority
of the subproblems, and the hub controls only a small “working set” that it tries to
use to correct imbalances as they occur. A spectrum of settings between these two
extremes is also possible. For example, there is a configuration in which the hub
controls the majority of work within the cluster, but each worker has a small “buffer”
of subproblems to prevent idleness while waiting for the hub to make work-scheduling
decisions. The best configuration along this spectrum depends on both the application
and the relative communication/computation speedof the systemhardware. In practice,
some run-time experimentation may be necessary to find the best settings for a given
combination of computing enviroment and problem class.

3.4 Work distribution between clusters

For any given combination of computing environment, application, and problem
instance, there will be a limit to the number of processors that can operate efficiently
as a single cluster. Even if PEBBL is configured to maximize the conservation of hub

123



PEBBL: parallel branch and bound 439

resources, the hub may simply not be able to keep up with all the messages from its
workers, or it may develop excessively long queues of incoming messages. At a cer-
tain point, adding more processors to a single cluster will not improve performance.
To take advantage of additional processors, PEBBL therefore provides the ability to
partition the overall processor set into multiple clusters.

PEBBL’s method for distributing work between clusters resembles CMMIP’s [14,
16]: there are twomechanisms for transferringwork between clusters, “scattering” and
“load balancing”. Scattering occurs when workers release subproblems. If there are
multiple clusters and a worker has decided to release a subproblem, then the worker
makes a random decision, controlled by some additional parameters and workload-
state information, as to whether the subproblems should be released to the worker’s
own hub or to the hub of a randomly chosen cluster. At the beginning of a run, PEBBL
promotes even work distribution by forcing release of a worker’s first s subproblems
(using the same notation as in the previous subsection) to random clusters.

To supplement scattering, PEBBL also uses a form of “rendezvous” load balanc-
ing similar to CMMIP [14,16]. Earlier related work [32,37] describes synchronous
application of the same basic idea to individual processors instead of clusters. This
procedure also has the important side effect of gathering and distributing global infor-
mation on the amount of work in the system, which in turn facilitates control of the
scattering process. This information is also critical to termination detection in the
multi-hub case.

The load balancing mechanism defines its estimated “workload” at a cluster c at
time t to be

L(c, t) =
∑

P∈C(c,t)

|z(c, t) − z(P, c, t)|u . (1)

Here, C(c, t) denotes the set of subproblems that c’s hub knows are controlled by the
cluster at time t , z(c, t) represents the fathoming value known to cluster c’s hub at
time t , and z(P, c, t) is the best bound on the objective value of subproblem P known
to cluster c’s hub at time t . The fathoming value is the objective value that allows a
subproblem tobe fathomed; this is typically the incumbent value, but itmaybedifferent
if PEBBL’s enumeration feature is active (see Sect. 3.6). The exponent u is either 0, 1,
or 2, at the discretion of the user. Ifu = 0, only the number of subproblems in the cluster
matters. Values of u = 1 or u = 2 give progressively higher “weight” to subproblems
farther from the incumbent. The default value of u is 1. Using a technique based on
binomial coefficients, PEBBL is able to recalculate the estimate (1) in constant time
whenever the fathoming value z(c, t) changes, individual subproblems are added to
or deleted from C(c, t), or individual z(P, c, t) values change.

The rendezvous load balancing mechanism organizes the hub processors into a
balanced tree. This tree provides a mechanism for bounding the communication
load on each individual hub processor; it is not a hierarchy of control, because all
the hubs in the system are essentially peers. Periodically, messages “sweep” semi-
synchronously through this entire tree, from the leaves to the root, and then back
down to the leaves. These messages repeat a pattern of a “survey sweep” followed by
a “balance sweep”. The survey sweep gathers and distributes system-wide workload
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information. This sweep provides all hubs with an overall system workload estimate,
essentially the sum of the L(c, t) over all clusters c. However, if the sweep detects that
these values were based on inconsistent fathoming values, then it immediately repeats
itself.

After each successful survey sweep, every hub determineswhether its cluster should
be a potential donor of work, a potential receiver of work, or (typically) neither. Donors
are clusters whose workloads are above the average workload by some parameter-
specified factor, while receivers must have loads below average by another parameter-
specified factor. The balance sweep operation then counts the total number of donors d
and receivers r . It assigns to each donor a unique number in the range 0, . . . , d−1, and
to each receiver a unique number in the range 0, . . . , r−1. The balance sweep is a form
of parallel prefixoperation [5], involving a single roundofmessages passingup the tree,
followed by a single pass down. At the end of the balance sweep, all hub processors
also know the values of d and r . After the balance sweep, the first y = min{d, r}
donors and receivers then “pair up” via a rendezvous procedure involving 3y point-
to-point messages. Specifically, donor i and receiver i each send a message to the
hub for cluster i , for i = 0, . . . , y − 1. Hub i then sends a message to donor i ,
telling it the processor number and load information for receiver i . See [28, Sect.
6.3] or [14,16] for a more detailed description of this process. Within each pair, the
donor sends a single message containing subproblem tokens to the receiver. Thus,
the sweep messages are followed by up to 4y additional point-to-point messages,
with at most 6 messages being sent or received by any single processor—this worst
case occurs when a hub is both a donor and a rendezvous point. Both the survey
and balancing sweeps involve at most 2(b + 1) messages being sent or received at
any given hub processor, where b is the branching factor of the load-balancing tree.
During a load-balancing cycle, from the start of a successful survey sweep through
any corresponding work exchanges between hubs, the number of load-balancing-
related messages passing through any given hub processor is bounded above by the
constant 2(b + 1) + 2(b + 1) + 6 = 4b + 10, and the cumulative message latency
associated with propagating this information is O(logb H) = O(log H), where H is
the number of clusters. This design ensures the scalability of PEBBL’s load balancing
mechanism.

The frequency of survey and balance sweeps is controlled by a timer, with the
minimum spacing between survey sweeps being set by a run-time parameter. If the
total workload on the system appears to be zero, then this minimum spacing is not
observed and sweeps are performed as rapidly as possible, to facilitate rapid termi-
nation detection. Under certain conditions, including at least once at the end of every
run, a “termination check” sweep is substituted for the balance sweep; see Sect. 3.8
for a discussion of the termination check procedure.

Finally, we note that interprocessor load balancing mechanisms are sometimes
classified as either “work stealing” initiated by the receiver or “work sharing” initiated
by the donor. PEBBL’s rendezvous method is neither. Instead, donors and receivers
efficiently locate one another on an equal, peer-to-peer basis.
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3.5 Thread and scheduler architecture

The parallel layer requires each processor to perform a certain degree of multi-
tasking. To manage such multitasking in as portable a manner as possible, PEBBL
uses its own system of nonpreemptive “threads”, more precisely described as corou-
tines. These threads are called by a scheduler module and are not interruptible at
the application level. They simply return to the scheduler when they wish to relin-
quish control. On each processor, PEBBL creates some subset of the following
threads:

– Two “compute threads” that handle the fundamental computations: a “worker
thread” for processing subproblems, and an optional “incumbent search thread”
dedicated to running incumbent heuristics.

– Two threads associated with work distribution and load balancing on hub
processors: a “hub thread” that handles the main hub functions and a “load bal-
ancing/termination thread” for handling intercluster load balancing (see Sect. 3.4
above) and termination detection (see Sect. 3.8 below).

– Three worker-based threads to handle communication between workers and from
hubs to workers

– An “incumbent broadcast thread” for distributing information about new incum-
bents, an optional “early output thread” to output provisional solution information
before the end of long runs, and two optional threads to handle enumeration of
multiple solutions (see Sect. 3.6 below).

Furthermore, applications derived from PEBBL have the ability to incorporate
their own additional, application-specific threads into PEBBL’s multitasking frame-
work. For example, the PICO MIP solver creates an additional thread to manage
communication of “pseudocost” branching quality information between proces-
sors.

Except for the compute threads, all of PEBBL’s threads are “message triggered”:
they only run when specific kinds of messages are received. The compute threads run
whenever they have work available and no arriving messages need to be serviced.
When both kinds of compute threads are active, PEBBL manages compute-time
allocations between them through a variant of stride scheduling [34,51], allow-
ing for an intelligent allocation of CPU resources to each thread; see [20,21] for
details. The split of compute resources between the two threads is determined by a
combination or run-time parameters and the current gap between the value of the
incumbment solution and the best currently known global bound on the optimal solu-
tion value.

The incumbent broadcast thread manages asynchronous tree-based broadcasts of
new incumbent values, with special features to handle “collisions” between trees
of potential new incumbent messages spreading from different initiating processors.
Essentially, the broadcast tree will automatically “wither” and cease propagating mes-
sages wherever it encounters a processor with a better incumbent value, or the same
incumbent value but a lower-numbered initiating processor. This scheme ensures that
all processors eventually agree on the incumbent value and on which processor the
incumbent resides.

123



442 J. Eckstein et al.

3.6 Solution enumeration

The extent of PEBBL’s search process is controlled by two nonnegative parameters,
relTolerance and absTolerance. Normally, if a subproblem’s bound is within
either an absolute distance absTolerance or relative distance relTolerance
of the current incumbent, PEBBL fathoms and deletes it. Thus the final incumbent is
guaranteed to be either within absTolerance objective function units or a multi-
plicative factor relTolerance of the true optimum.

PEBBL can also be configured to enumerate multiple solutions. Such enumeration
is controlled by four further parameters, as follows:

enumAbsTol = a: retain solutions within a units of optimal.
enumRelTol = r : retain solutions within a multiplicative factor r of optimal.
enumCutoff = c: retain solutions whose objective value is better than c.
enumCount = n: retain the best n solutions. If the nth-best solution is not uniquely
determined, PEBBL breaks objective-value ties arbitrarily.

If more than one of these parameters is set, then PEBBL retains only solutions jointly
meeting all the specified criteria. If any of these parameters are set, then enumeration
is considered active, and PEBBL stores not just the usual single incumbent solution,
but also a “repository” of multiple solutions. PEBBL adds solutions to the reposi-
tory as they are found, and removes them whenever it deduces they cannot meet the
enumeration criteria.

In serial, the effect of the enumeration parameters is to alter the criteria PEBBL uses
to fathomsubproblems and the behavior of the internalmethod that signals a potentially
new feasible solution. When using just the enumAbsTol or enumRelTol parame-
ters, fathoming only occurs when a subproblem bound is worse than the incumbent
by at least the amount specified by one of the active criteria. For enumCount, sub-
problems are compared not to the incumbent, but to the enumCountth-best solution
in the repository. When the repository already contains enumCount solutions and a
new solution enters, one of the repository’s worst solutions is deleted.

For enumeration to work properly, the application classes need two capabilities:
“branch-through” and solution duplicate detection. Branch-through refers to branch-
ing on terminal subproblem. Without enumeration, PEBBL will never apply the
splitComputationmethod to a terminal subproblem: by definition, one has iden-
tified an optimal solution in the subproblem’s region of the search space, so ordinarily
there would be no need to explore this region further. This may not be the case when
enumerating, so the application must be prepared to split terminal subproblems. In
some applications, splitting terminal subproblems may require a completely different
branching procedure: in integer programming, for example, branching ordinarily uses
variables with fractional values in the linear programming relaxation solution, but a
terminal subproblem will have no such variables.

The second capability normally needed to support enumeration is duplicate solu-
tion detection, which is necessary to prevent applications that generate solutions
heuristically from accumulating multiple identical solutions in the repository. To sup-
port PEBBL’s detection of duplicate solutions, any solution representation used by
a PEBBL application must implement a solution comparision method and a solution
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hash value function. Equivalent solutionsmust have the same hash value. The PEBBL-
supplied solution classes already have these capabilities andPEBBLalso supplies tools
to simplify the construction of such methods for customized solution representation
classes.

PEBBLcurrently lacks any gradated notion of solution distance or “diversity.” It has
only a boolean sense of solutions being “the same” or “not the same”. For applications
that can generate large numbers of symmetric or nearly identical solutions, it may be
desirable to monitor and control the diversity of the repository in a non-boolean sense.
For an example of this kind of technique for MIP problems, see [11]. Unlike PEBBL’s
enumeration scheme, however, the technique described in [11] does not guarantee
complete enumeration of specific sets of solutions; such full solution enumeration
appears to be a unique feature of PEBBL.

When running in parallel, PEBBL promotes scalability by partitioning the repos-
itory approximately equally among all processors through a mapping based on the
solution hash value—every solution s has a unique “owning” processor based on its
hash value. New feasible solutions are sent to their owning processor, where they are
checked for duplication before entering the repository.

If only the enumRelTol, enumAbsTol, or enumCutoff criteria are set, this
storage logic is essentially all that is needed to enumerate solutions in parallel. How-
ever, if enumCount is set, then the implementation becomes more complicated.
For proper pruning, one would like to have an estimate of the enumCountth-best
solution in the union of the repository segments of all processors, which we call the
“cutoff solution”. In order for each processor to maintain a valid estimate of the cutoff
solution, PEBBL periodically passes messages up and down a balanced tree simi-
lar to that used for load balancing, but consisting of all processors, rather than just
hubs. These messages contain sorted lists of solution identifiers (objective values,
owning processor and serial number), that are merged as messages converge up the
tree. The root forms an estimate of the cutoff solution that is then broadcast down the
tree.

3.7 Synchronous ramp-up support

PEBBL provides support for specialized, synchronous ramp-up procedures at the
beginning of the search process. PEBBL’s main approach to parallelism is to eval-
uate multiple nodes of the search tree simultaneously. Early in the search process,
however, the pool of search nodes is still small, and particular applications may
have different opportunities for parallelism that provide more concurrency. Therefore,
PEBBLprovides support for a synchronous ramp-up phasewith an application-defined
crossover point. During the ramp-up phase, every processor redundantly develops an
exactly identical branch-and-bound tree. As they synchronously process each sub-
problem, the processors are free to exploit any parallelism they wish in executing
boundComputation, splitComputation, makeChild, or the incumbent
heuristic. Because different processors might find different incumbents—for exam-
ple by using randomized procedures with different random-number seeds—PEBBL
provides special methods to sychronize the incumbent value during ramp-up. Without
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such synchronization, there are various mechanisms by which the ramp-up phase may
deadlock.

A virtual method controls the termination of the ramp-up phase: Once this method
signals the end of ramp-up, theworker processors partition the leaf nodes of the current
search tree as equally as possible on both the intercluster and intracluster level. This
partition operation can be performed without any communication, since all processors
have copies of the same leaf nodes in local memory; it is simply a matter of each
processor deleting the subproblems it does not “own”. After partitioning the active
subproblems, PEBBL enters its normal asychronous search mode.

PEBBL’s default implementation of the crossover trigger method senses whether
the tree has at least αW nodes, where α is a run-time parameter defaulting to 1, andW
is the number of worker processors. Ideally, however, it is best to also consider whether
the parallelism available in the active nodes of the search tree appears to exceed any
alternative source of parallelism available to the application. Such a test is necessarily
application-dependent and must be implemented by the user overriding the default
crossover-triggering method.

3.8 Startup and termination

In addition to the ramp-phase and the main asynchronous search phase, a PEBBL run
has two additional phases: an initial problem read-in operation at the very beginning,
and a solution and statistics output phase at the end.

The read-in stage is straightforward: processor 0 reads the problem instance data
and broadcasts it to all other processors. The solution output phase is also relatively
straightforward: in the absence of enumeration, the processor p∗ holding the final
incumbent solution simply outputs it directly or through processor 0. When enu-
meration is being used, this phase is more complicated, but consists essentially of a
synchronous parallel sort-merge operation to output the entire repository in objective-
value order. Finally, some synchronous MPI reduction operations gather performance
statistics for output by the processor 0.

A critical aspect of the implementation is detecting the end of the asynchronous
search phase, so that the solution output phase can commence. Detecting termina-
tion is simple for parallel programs that are organized on a strictly “master-slave”
or hierarchical principle. PEBBL has a more complicated messaging pattern with
multiple asychronous processes, introducing subtleties into the detection of termina-
tion.

Essentially, PEBBL terminates when it has detected and confirmed “quiescence”,
the situation inwhich allworker subproblemandhub tokenpools are empty, and all sent
messages have been received. To confirm quiescence, PEBBL uses a method derived
from [38], but adapted and specialized to its particular processor organization and
messaging pattern. All PEBBL processors keep count of the total number of messages
they have sent and received (other than load-balancing sweep and termination detection
messages). These counts are aggregated at the hub processors, and (if there is more
than one hub) through the message sweeps of the load-balancing tree. Thus, it is
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straightforward for processor 0, the hub of the cluster at the root of the load-balancing
tree, to detect the situation in which the subproblem workload in the system sums to
zero, and the total counts of sent and received messages are in balance. We call this
situation “pseudoquiescence”. Pseudoquiescense is necessary for search termination,
but it is not sufficient because the measurements making up the various sums involved
are typically not taken at exactly the same time. For efficiency reasons relating to
PEBBL’s specific messaging pattern, especially if enumeration is active, detection
of pseudoquiescence is a two-stage process. The first detection level involves only
messages relating to work distribution, but not incumbent or repository management,
and it is easily triggered at processor 0 as part of the ordinary process of load balancing.
If the first level of pseudoquiescence is detected, an additional “quiescence check”
pattern of messages confirms whether the total count of all messages sent and received
appears to balance. If this check confirms that pseudoquiescence has indeed occurred,
PEBBL proceeds to a second check, the “termination check”.

Suppose that pseudoquiescence has occurred, and the total number of messages
sent and received is m. It is shown in [38] that to confirm that true quiescence has
occurred, it is sufficient to perform one additional measurement of the total number
of messages sent at every processor and verify that its sum is still m. PEBBL uses an
additional message sweep to confirm whether this is the case.

3.9 Checkpointing

PEBBL has a checkpointing feature that allows partial runs of branch-and-bound
search to be resumed at a later time. This feature can be useful when a system failure
or expiration of allotted time stops a PEBBL run before its natural completion. Note
that some MPI implementations, for example Open MPI [26], now provide their own
transparent checkpointing features, which could be used instead. However, PEBBL’s
application checkpointing feature has some capabilities that transparent checkpointing
does not, such as the ability to restart a run with different parameter settings or even
a different number of processors.

PEBBL’s checkpointing feature is integrated into its termination-detection mecha-
nism. A run-time parameter can be used to specify that PEBBL writes a checkpoint
approximately every t minutes after the synchronous ramp-up phase. Once PEBBL
detects that a checkpoint is due to be written, it signals all processors through the
same process used to signal termination. Upon receiving the checkpoint signal, work-
ers stop processing subproblems, and PEBBLwaits until it has confirmed that there are
no messages in transit, using the same procedure it employs for termination detection.
Once this condition has been confirmed, each processorwrites a binary checkpoint file.
This file typically consists of the subproblems and tokens in the processor’s memory.
Writing the file reuses the methods for constructing work-distribution messages, so
no additional customization of PEBBL is needed to support checkpointing. However,
PEBBL also provides virtual methods that can be customized to include additional
application-specific internal state information in checkpoints.
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PEBBL provides twomethods, “restart” and “reconfigure”, that support restarting a
run from a collection of checkpoint files. For a restart, the number of processors and the
processor cluster configuration must exactly match the run that wrote the checkpoint.
In this case, each processor reads a single checkpoint file, which is a potentially
parallel operation. For a reconfigure, the number of processors and the clustering
arrangement may be different from the one that wrote the checkpoint. In this case,
processor 0 simply reads the checkpoint files one-by-one, and distributes subproblems
as evenly as possible to theworker processors using a round-robinmessage pattern. The
reconfiguremechanism ismore flexible than the restart mechanism, but it is potentially
much slower because it requires a serial pass through all the checkpoint data.

4 Application to maximum monomial agreement

4.1 The MMA problem and algorithm

To illustrate PEBBL’s performance and capabilities, we now describe its applica-
tion to the maximum monomial agreement (MMA) problem. Eckstein and Gold-
berg [18] describe this problem and an efficient serial branch-and-bound method for
solving it. An earlier, less efficient algorithm is described in [25], and a slightly more
general formulation of the same problem class may be found in [13]. The algorithm
described in [18] uses a combinatorial bound not based on linear programming, and
it significantly outperforms applying a standard professional-quality MIP solver. This
property makes MMA a practical example of applying branch-and-bound in a non-
MIP setting. Conveniently, the algorithm in [18] had already been coded using the
PEBBL serial layer, so it was only necessary to extend the implementation to incor-
porate the parallel layer. We now give a condensed description of the MMA problem
and solution algorithm; further details may be found in [18].

The goal of MMA is to find a logical pattern that “best fits” a set of weighted,
binary-encoded observations divided into two classes, in the sense that it maximizes
the difference between the weight of matching observations from one class and the
weight of matching observations from the other class. This problem arises as a natural
subproblem in various machine learning applications. Each MMA instance consists
of a set of M binary N -vectors in the form of a matrix A ∈ {0, 1}M×N , along with
a partition of its rows into “positive” observations Ω+ ⊂ {1, . . . , M} and “negative”
observations Ω− = {1, . . . , M}\Ω+. Row i of A, denoted by Ai , indicates which
of N binary features are possessed by observation i . In a medical machine learning
application, for example, each feature could represent the presence of a particular gene
variant or the detection of a particular antibody, while Ω+ could represent a set of
patients with a given disease andΩ− a set of patients without the disease. EachMMA
instance also includes a vector of weights wi ≥ 0 on the observations i = 1, . . . , M .

A “monomial” on {0, 1}N is a logical conjunctionof features and their complements,
that is, a function mJ,C : {0, 1}N → {0, 1} of the form

mJ,C (x) =
∏

j∈J

x j
∏

c∈C
(1 − xc), (2)
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where J and C are (usually disjoint) subsets of {1, . . . , N }. The monomial mJ,C is
said to “cover” a vector x ∈ {0, 1}N if mJ,C (x) = 1, that is, if x has all the features in
J and does not have any of the features in C . We define the “coverage” of a monomial
mJ,C as

cJ,C
def= {

i ∈ {1, . . . , M} | mJ,C (Ai ) = 1
}
.

Define the weight of a set of observations S ⊆ {1, . . . , M} to be w(S) = ∑
i∈S wi .

The MMA problem is to find a monomial whose coverage “best fits” the dataset
(A,Ω+) with weights w, in the sense of matching a large net weight of observations
in Ω+ less those matched in Ω−, or vice versa. Formally, we wish to find subsets
J,C ⊆ {1, . . . , N } solving

max
∣∣w

(
cJ,C ∩ Ω+) − w

(
cJ,C ∩ Ω−) ∣∣

s.t. J,C ⊆ {1, . . . , N }. (3)

When the problem dimension N is part of the input, [18] proves that this problem
formulation is N P-hard, using techniques derived from [33].

Themain ingredients in any branch-and-bound algorithm are a subproblem descrip-
tion, a bounding function, and a branching rule. For MMA, each possible subproblem
is described by some partition (J,C, E, F) of {1, . . . , N }. Here, J and C respectively
indicate the features which must be in the monomial, or whose complements must
be in the monomial. E indicates a set of “excluded” features: neither they nor their
complements may appear in the monomial. F = {1, . . . , N }\(J ∪ C ∪ E) is the set
of “free”, undetermined features. The root of the branch-and-bound tree is the sub-
problem (J,C, E, F) = (∅,∅,∅, {1, . . . , N }). Subproblems with F = ∅ correspond
to only one possible monomial and cannot be subdivided.

The details of the bound b(J,C, E, F) may be found in [18] and are not necessary
for the discussion here. It involves equivalence classes of observations induced by the
set E and has complexity O(MN ).

The final ingredient required to describe the branch-and-bound method is the
branching procedure. Here we only use the most efficient of the branching schemes
tested in [18], a ternary lexical strongbranching rule.Given a subproblem (J,C, E, F),
this method evaluates |F | possible branches, one for each element j of F . Given
some j ∈ F , there are three possibilities: either j will be in the monomial, its
complement will be in the monomial, or j will not be used in the monomial. These
possibilities respectively correspond to the three subproblems, (J∪{ j},C, E, F\{ j}),
(J,C ∪ { j}, E, F\{ j}), and (J,C, E ∪ { j}, F\{ j}). We use this three-way branch-
ing of (J,C, E, F), selecting j through a lexicographic strong branching procedure.
Specifically, for each member of j , we compute the three prospective child bounds
b(J ∪{ j},C, E, F\{ j}), b(J,C∪{ j}, E, F\{ j}), and b(J,C, E∪{ j}, F\{ j}), round
them to 5 decimal digits of accuracy, place them in a triple sorted in descending order,
and then select the j leading to the lexicographically smallest triple. A byproduct of
this procedure is the following potentially tighter “lookahead” bound on the current
subproblem objective:

123



448 J. Eckstein et al.

b̄(J,C, E, F) = min
j∈F

⎧
⎪⎨

⎪⎩
max

⎧
⎪⎨

⎪⎩

b(J ∪ { j},C, E, F\{ j})
b(J,C ∪ { j}, E, F\{ j})
b(J,C, E ∪ { j}, F\{ j})

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
. (4)

A fourth possible component of a branch-and-bound scheme is an incumbent heuris-
tic. For the MMA problem, there is no difficulty in identifying feasible solutions; we
use the straightforward strategy of [18], which is simply to use (J,C) as a trial feasible
solution whenever processing a subproblem (J,C, E, F).

4.2 Parallel implementation in PEBBL

Weextended the serial PEBBL implementation tested in [18] to use the PEBBLparallel
layer. The fundamental part of this effort was the creation of pack and unpack
routines to allow problem instance and subproblem data to be respectively written
to and read from MPI buffers. Beyond this basic task, there are three additional,
optional implemention steps which may be taken to improve parallel performance
when converting a serial PEBBL application to a parallel one:

1. Implementing a synchronous ramp-up procedure, if applicable.
2. Creating an enhanced incumbent heuristic that can run semi-independently from

the search process as part of the incumbent heuristic thread.
3. Implementing interprocessor communication for any application-specific state

information beyond what can be included in the initial problem instance broadcast
or stored within individual subproblems.

Steps 2 and 3 are not applicable to theMMA algorithm described above, because of its
simple procedure for generating incumbent solutions and its lack of any “extra” data
structures relevant to step 3. However, because of the strong branching procedure, the
MMA algorithm does have a secondary source of parallelism that lends itself naturally
to PEBBL’s synchronous ramp-up phase.

The time to process each subproblem (J,C, E, F), especially near the root of
the branch-and-bound tree, tends to be dominated by the strong branching proce-
dure’s calculations of b(J ∪ { j},C, E, F\{ j}), b(J,C ∪ { j}, E, F\{ j}), and b(J,C,

E ∪ { j}, F\{ j}), one such triple for each j ∈ F . These calculations are independent
and readily parallelizable. While all other calculations are performed redundantly, the
ramp-up-phase version of the separation procedure divides the |F | undecided features
as evenly as possible between the available processors. Then each processor com-
putes the triple of potential child bounds for each feature j that it has been allocated.
Each processor rounds the elements of these triples, sorts the elements within each
triple in descending order, and determines the lexicographically smallest triple. Next,
using MPI’s Allreduce reduction function with a customized MPI datatype and
reduction operator, we determine the j ∈ F , across all processors, leading to the lex-
icographically minimum triple. This j becomes the branching variable. Another MPI
Allreduce operation computes the tightened “lookahead” bound (4).

Overriding PEBBL’s default implementation of the method that senses the end of
ramp-up, we terminate the synchronous ramp-up phase when the size of the subprob-
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lem pool becomes comparable to the number of features, in the sense that |P| > ρN ,
whereP is the set of active search nodes and ρ is a run-time parameter. In some brief
experimentation, we found that ρ = 1 yielded good performance, so we used that
value in most of our experimental tests. Below, we refer to ρ as the “ramp-up factor”.

4.3 Computational testing and scalability results

To demonstrate PEBBL’s scalability, we tested our parallel MMA solver on “Red
Sky”, a parallel computing system at Sandia National Laboratories that consists of
2816 compute nodes, each with two quad-core Intel Xeon X5570 processors sharing
48GB of RAM.Red Sky’s compute nodes are connected by an Infiniband interconnect
arranged as a torroidal three-dimensional mesh, with a 10 GB/s link data rate and end-
to-end message latencies on the order of one microsecond. Each Red Sky compute
node runs a version of the Red Hat 5 Linux operating system. We compiled PEBBL
with the Intel 11.1 C++ compiler with -O2 optimization, using the Open MPI 1.4.3
implementation of the MPI library.

The simplest way to use MPI on Red Sky is to launch 8 independent MPI processes
on each processing node, one for each of the 8 cores. Thus, a job allocated ν compute
nodes behaves as an MPI job with 8ν parallel “processors”. By using shared memory

Table 1 Performance of PEBBL on MMA instance hung23 on Red Sky, without enumeration

Cores ρ = 0 ρ = 1

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

1 979.5 71,296 979.5 71,296

2 492.0 2.0 1.00 71,185 −0.2 491.4 2.0 1.00 71,030 −0.4

3 328.6 3.0 0.99 71,046 −0.4 328.0 3.0 1.00 70,738 −0.8

4 245.0 4.0 1.00 70,872 −0.6 244.8 4.0 1.00 70,933 −0.5

6 168.3 5.8 0.97 70,891 −0.6 168.6 5.8 0.97 71,010 −0.4

8 126.8 7.7 0.97 70,954 −0.5 126.7 7.7 0.97 71,012 −0.4

16 63.2 15.5 0.97 70,591 −1.0 63.0 15.5 0.97 70,778 −0.7

24 42.6 23.0 0.96 70,842 −0.6 42.1 23.3 0.97 70,797 −0.7

32 32.2 30.4 0.95 70,670 −0.9 31.9 30.7 0.96 70,896 −0.6

48 22.0 44.6 0.93 70,892 −0.6 21.5 45.6 0.95 71,262 −0.0

64 17.2 57.0 0.89 71,125 −0.2 16.6 59.1 0.92 71,155 −0.2

96 12.2 80.3 0.84 71,698 +0.6 11.4 86.2 0.90 71,419 +0.2

128 9.7 100.6 0.79 73,110 +2.5 8.9 109.6 0.86 71,548 +0.4

192 8.5 115.8 0.60 77,412 +8.6 6.9 142.8 0.74 71,741 +0.6

256 7.3 133.8 0.52 84,497 +18.5 6.1 160.0 0.63 72,121 +1.2

384 6.8 144.9 0.38 97,460 +36.7 5.4 182.7 0.48 75,277 +5.6

512 6.5 149.8 0.29 99,296 +39.3 4.7 208.4 0.41 77,664 +8.9
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areas rather than the Infiniband interconnect, MPI processes on the same node can
communicate faster than processes on different nodes. Our only attempt to exploit this
property in configuring PEBBL was to choose cluster sizes that were multiples of 8.

For runs on fewer than 8 “processors”, we simply allocated a single compute node,
but launched fewer than 8 MPI processes on it. Otherwise, we always used a multiple
of 8 processes. Essentially, we tested all configurations with either p = 2k or p = 3·2k
processor cores in the range 1 ≤ p ≤ 8192, with the exception of p = 12, since 12 is
neither less than 8 nor a multiple of 8.

For our tests, we used a collection of nine difficult MMA test instances derived
from two data sets in the UC Irvine machine learning repository [1], each converted
to an all-binary format using a procedure described in [6], and dropping observations
with missing fields. Four of the problems are derived from the Hungarian heart disease
dataset, the most challenging one tested in [18], and have 294 observations and 72
features. The remaining five instanceswere derived from the larger “spambase” dataset
of spam and legitimate e-mails, and have 4601 observations described by 75 binary
features.

The only difference between different MMA instances derived from the same
dataset is in the weights wi , which strongly influence the difficulty of the instance.
To generate realistic weights, we embedded our MMA solver within the LP-Boost
column-generation method for creating weighted voting classifiers [12]. This proce-

Table 2 Performance of PEBBL on MMA instance hung46 on Red Sky, without enumeration

Cores ρ = 0 ρ = 1

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

1 1836.9 151,265 1836.9 151,265

2 921.3 2.0 1.00 151,186 −0.1 921.0 2.0 1.00 151,398 +0.1

3 615.3 3.0 1.00 151,263 −0.0 613.5 3.0 1.00 151,286 +0.0

4 458.7 4.0 1.00 151,250 −0.0 458.5 4.0 1.00 151,180 −0.1

6 315.0 5.8 0.97 151,528 +0.2 315.0 5.8 0.97 151,289 +0.0

8 236.8 7.8 0.97 151,516 +0.2 236.8 7.8 0.97 151,495 +0.2

16 118.0 15.6 0.97 151,322 +0.0 117.5 15.6 0.98 151,694 +0.3

24 78.7 23.3 0.97 151,354 +0.1 78.3 23.5 0.98 151,628 +0.2

32 59.1 31.1 0.97 151,459 +0.1 58.8 31.3 0.98 151,693 +0.3

48 39.9 46.0 0.96 151,296 +0.0 39.5 46.5 0.97 151,782 +0.3

64 30.7 59.9 0.94 151,584 +0.2 30.2 60.9 0.95 151,948 +0.5

96 21.0 87.4 0.91 152,023 +0.5 20.4 90.0 0.94 152,208 +0.6

128 16.6 110.9 0.87 152,798 +1.0 15.7 117.1 0.92 152,541 +0.8

192 12.7 144.9 0.75 154,941 +2.4 11.4 161.4 0.84 151,886 +0.4

256 10.6 173.9 0.68 157,209 +3.9 9.3 197.1 0.77 152,699 +0.9

384 8.6 212.6 0.55 164,665 +8.9 7.7 239.8 0.62 153,383 +1.4

512 7.6 241.1 0.47 169,226 +11.9 6.6 277.5 0.54 155,518 +2.8
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dure starts by applying its “weak learner”, in this case the MMA solver, with uniform
weights. As it proceeds, it uses a linear program to construct the best possible dataset
classification thresholding function that is a linear combination of the weak learner
solutions obtained so far. The dual variables of this linear programprovide newweights
from which the weak learner creates a new term to add to the classification rule, and
then the process repeats. As observed in [18], the MMA instances generated in this
manner tend to become progressively more difficult to solve as the algorithm pro-
ceeds. The problems derived from the Hungarian heart disease dataset, which we
denote hung23, hung46, hung110, and hung253, respectively use the weights
from iterations 23, 46, 110, and 253 of the LP-Boost procedure. The problems derived
from iterations before the 23rd were too easy to test in a large-scale parallel setting.
The spam-derived instances are spam, spam5, spam6, spam12, and spam26, and
respectively use the weights from iterations 1, 5, 6, 12, and 26 of LP-Boost.

In our testing, we left most of PEBBL’s parameters in their default configuration,
except those concerned with sizing processor clusters. Processing an MMA subprob-
lem tends to be fairly time-consuming due to the effort involved in computing the
equivalence classes used in the bound calculation, which is multiplied by the require-

Table 3 Performance of PEBBL on MMA instance hung110 on Red Sky, without enumeration

Cores ρ = 0 ρ = 1

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

1 3623.1 329,489 3623.1 329,489

2 1806.5 2.0 1.00 328,899 −0.2 1816.6 2.0 1.00 330,541 +0.3

3 1209.5 3.0 1.00 329,026 −0.1 1208.8 3.0 1.00 328,748 −0.2

4 907.8 4.0 1.00 330,675 +0.4 903.8 4.0 1.00 329,142 −0.1

6 618.2 5.9 0.98 329,074 −0.1 618.3 5.9 0.98 329,238 −0.1

8 464.4 7.8 0.98 329,018 −0.1 464.9 7.8 0.97 329,147 −0.1

16 230.9 15.7 0.98 329,600 +0.0 230.4 15.7 0.98 329,160 −0.1

24 153.4 23.6 0.98 329,325 −0.0 153.3 23.6 0.99 329,246 −0.1

32 114.9 31.5 0.99 329,049 −0.1 114.9 31.5 0.99 329,774 +0.1

48 77.0 47.1 0.98 329,207 −0.1 76.9 47.1 0.98 329,774 +0.1

64 59.2 61.2 0.96 330,225 +0.2 58.6 61.8 0.97 329,954 +0.1

96 40.0 90.5 0.94 330,231 +0.2 39.2 92.4 0.96 329,787 +0.1

128 30.6 118.5 0.93 331,207 +0.5 29.8 121.7 0.95 331,066 +0.5

192 22.2 163.2 0.85 332,312 +0.9 21.1 171.5 0.89 330,529 +0.3

256 17.5 206.6 0.81 333,326 +1.2 16.7 217.2 0.85 330,211 +0.2

384 14.1 257.7 0.67 337,697 +2.5 12.5 289.4 0.75 332,331 +0.9

512 11.1 326.4 0.64 340,258 +3.3 10.4 348.4 0.68 333,977 +1.4

768 9.2 394.7 0.51 344,002 +4.4 8.3 434.4 0.57 335,733 +1.9

1024 8.9 408.0 0.40 345,871 +5.0 7.4 489.6 0.48 332,765 +1.0
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ments of the strong branching procedure. Because subproblems take relatively long
to process—on the order of 0.01–0.02 s for the heart disease problems, and 0.7–0.8 s
for the problems derived from the much larger spam dataset—a single hub can handle
a large number of workers without becoming overloaded. Consequently, we set the
cluster size to 128 processor cores. In clusters below 64 processor cores, we configured
the hub to double as a worker.

Our first set of tests did not use enumeration. To demonstrate the usefulness of
PEBBL’s synchronous ramp-up procedure, we ran each problem instance in two dif-
ferent modes, one with the default value of ρ = 1, and one with ρ = 0, which
essentially disables the synchronous ramp-up procedure and starts the asynchronous
search from the root subproblem. Because PEBBL’s run-time behavior is not strictly
deterministic, we ran each combination of problem instance and ρ value at least 5
times, with the exception of runs on a single processor core. Such single-core runs
used only PEBBL’s serial layer, which has deterministic behavior.

Tables 1, 2, 3, 4, 5, 6, 7, 8, and 9 show the results, one table per problem instance.
The range of processor cores shown varies by problem instance: four of the spambase

Table 4 Performance of PEBBL on MMA instance hung253 on Red Sky, without enumeration

Cores ρ = 0 ρ = 1

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

1 9021.5 847,774 9021.5 847,774

2 4271.4 2.1 1.06 847,976 +0.0 4270.7 2.1 1.06 848,087 +0.0

3 2842.3 3.2 1.06 848,171 +0.0 2837.0 3.2 1.06 848,144 +0.0

4 2109.1 4.3 1.07 848,004 +0.0 2116.7 4.3 1.07 848,084 +0.0

6 1446.2 6.2 1.04 848,219 +0.1 1443.4 6.2 1.04 848,118 +0.0

8 1084.0 8.3 1.04 848,200 +0.1 1084.6 8.3 1.04 848,385 +0.1

16 537.9 16.8 1.05 848,062 +0.0 538.4 16.8 1.05 848,302 +0.1

24 357.4 25.2 1.05 848,297 +0.1 357.7 25.2 1.05 848,365 +0.1

32 267.8 33.7 1.05 848,302 +0.1 267.5 33.7 1.05 848,606 +0.1

48 178.4 50.6 1.05 848,802 +0.1 178.3 50.6 1.05 848,820 +0.1

64 135.7 66.5 1.04 848,735 +0.1 135.5 66.6 1.04 848,908 +0.1

96 90.0 100.2 1.04 849,005 +0.1 89.7 100.6 1.05 849,388 +0.2

128 68.1 132.4 1.03 849,399 +0.2 67.3 134.0 1.05 849,423 +0.2

192 46.7 193.1 1.01 849,151 +0.2 46.2 195.4 1.02 849,334 +0.2

256 36.0 250.9 0.98 849,904 +0.3 35.1 256.7 1.00 849,569 +0.2

384 25.5 353.5 0.92 850,075 +0.3 24.8 364.4 0.95 849,241 +0.2

512 20.8 434.1 0.85 850,235 +0.3 19.6 461.2 0.90 849,522 +0.2

768 18.7 482.4 0.63 850,625 +0.3 14.5 623.9 0.81 849,569 +0.2

1024 14.6 616.2 0.60 851,105 +0.4 11.9 758.1 0.74 849,433 +0.2

1536 13.8 652.8 0.42 852,023 +0.5 9.3 965.9 0.63 849,771 +0.2

2048 16.3 552.1 0.27 852,799 +0.6 8.7 1041.7 0.51 850,346 +0.3
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Table 5 Performance of PEBBL on MMA instance spam on Red Sky, without enumeration

Cores ρ = 0 ρ = 1

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

1 1784.7 2,450 1784.7 2,450

2 891.1 2.0 1.00 2,451 +0.1 890.7 2.0 1.00 2,449 −0.0

3 596.9 3.0 1.00 2,446 −0.1 596.6 3.0 1.00 2,447 −0.1

4 451.4 4.0 0.99 2,455 +0.2 448.5 4.0 0.99 2,453 +0.1

6 316.2 5.6 0.94 2,469 +0.8 314.4 5.7 0.95 2,474 +1.0

8 244.4 7.3 0.91 2,491 +1.7 240.5 7.4 0.93 2,470 +0.8

16 140.7 12.7 0.79 2,718 +10.9 130.5 13.7 0.86 2,553 +4.2

24 112.9 15.8 0.66 3,071 +25.4 92.7 19.3 0.80 2,614 +6.7

32 101.5 17.6 0.55 3,520 +43.7 67.8 26.3 0.82 2,499 +2.0

48 91.6 19.5 0.41 4,332 +76.8 55.0 32.4 0.68 2,457 +0.3

64 82.0 21.8 0.34 4,863 +98.5 50.7 35.2 0.55 2,463 +0.5

96 75.8 23.6 0.25 5,284 +115.7 47.8 37.3 0.39 2,458 +0.3

128 76.9 23.2 0.18 5,938 +142.4 46.6 38.3 0.30 2,460 +0.4

Table 6 Performance of PEBBL on MMA instance spam5 on Red Sky, without enumeration

Cores ρ = 0 ρ = 1

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

8 11799.7 158,904 11642.2 156,181

16 5863.0 15.9 0.99 158,747 +1.6 5855.3 15.9 0.99 158,598 +1.5

24 3876.1 24.0 1.00 157,975 +1.1 3882.1 24.0 1.00 158,458 +1.5

32 2932.2 31.8 0.99 159,533 +2.1 2905.1 32.1 1.00 158,271 +1.3

48 1937.8 48.1 1.00 158,393 +1.4 1923.9 48.4 1.01 157,531 +0.9

64 1481.6 62.9 0.98 158,086 +1.2 1473.8 63.2 0.99 158,398 +1.4

96 990.9 94.0 0.98 159,513 +2.1 978.0 95.2 0.99 158,911 +1.7

128 747.5 124.6 0.97 159,799 +2.3 738.7 126.1 0.98 159,653 +2.2

192 526.5 176.9 0.92 166,316 +6.5 492.4 189.1 0.99 157,824 +1.1

256 392.6 237.2 0.93 164,004 +5.0 376.2 247.6 0.97 159,796 +2.3

384 281.5 330.9 0.86 172,453 +10.4 257.0 362.4 0.94 160,146 +2.5

512 226.8 410.7 0.80 181,387 +16.1 196.5 473.9 0.93 160,591 +2.8

768 164.7 565.4 0.74 182,631 +16.9 135.8 686.0 0.89 159,639 +2.2

1024 140.9 661.2 0.65 194,038 +24.2 109.5 850.6 0.83 163,256 +4.5

1536 117.0 795.9 0.52 203,513 +30.3 80.6 1155.3 0.75 163,788 +4.9

2048 112.8 825.4 0.40 222,768 +42.6 70.6 1319.6 0.64 165,470 +5.9
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Table 7 Performance of PEBBL on MMA instance spam6 on Red Sky, without enumeration

Cores ρ = 0 ρ = 1

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

8 22402.1 311,899 22328.3 311,201

16 11094.1 16.1 1.01 312,018 +0.3 11075.1 16.1 1.01 311,562 +0.1

24 7361.2 24.3 1.01 312,102 +0.3 7349.9 24.3 1.01 311,834 +0.2

32 5499.5 32.5 1.02 311,954 +0.2 5496.2 32.5 1.02 311,787 +0.2

48 3653.0 48.9 1.02 312,008 +0.3 3647.1 49.0 1.02 311,748 +0.2

64 2781.8 64.2 1.00 312,427 +0.4 2776.9 64.3 1.01 311,567 +0.1

96 1844.4 96.9 1.01 312,535 +0.4 1833.8 97.4 1.01 311,674 +0.2

128 1384.5 129.0 1.01 312,862 +0.5 1370.7 130.3 1.02 311,633 +0.1

192 934.1 191.2 1.00 312,814 +0.5 918.1 194.6 1.01 311,658 +0.1

256 704.3 253.6 0.99 312,535 +0.4 689.3 259.1 1.01 311,882 +0.2

384 478.3 373.4 0.97 312,701 +0.5 462.6 386.1 1.01 312,182 +0.3

512 366.9 486.9 0.95 313,810 +0.8 350.9 509.1 0.99 313,428 +0.7

768 254.7 701.2 0.91 312,407 +0.4 238.2 750.0 0.98 314,097 +0.9

1024 204.3 874.5 0.85 313,950 +0.9 182.9 976.8 0.95 314,136 +0.9

1536 153.3 1164.9 0.76 313,509 +0.7 130.0 1373.6 0.89 313,562 +0.8

2048 137.5 1299.1 0.63 313,642 +0.8 105.0 1701.5 0.83 313,415 +0.7

3072 117.2 1523.9 0.50 308,055 −1.0 88.3 2023.4 0.66 314,293 +1.0

problems are too time-consuming to run on small processor configurations, and so
their smallest number of processors is 8. For all the problem instances, we stopped
increasing the number of processor cores after the relative speedup level had departed
significantly from linear, or when we reached 8192 processor cores. All CPU times are
in seconds, and the “Spdp.” and “Eff.” columns display relative speedup and relative
efficiency, respectively. For problems too difficult to solve on a single processor core,
these values are computed by linearly extrapolating the average time of the runs with
the fewest cores to estimate the single-core running time. The “Tree growth” columns
display the size of the search tree relative to the run(s) with the fewest cores.

Figures 4 and 5 graphically display the run time information for two of the tables.
Figure 4 depicts the hung110 problem, which is of modest difficulty, and Fig. 5
shows spam26, the most difficult problem. Each graph uses a log-log scale, with
processor cores on the horizontal access and run time (in s) on the vertical axis. On
such a graph, perfectly linear speedup is represented by a straight line. On each graph,
the dashed straight line shows an extrapolation of perfect linear relative speedup from
the smallest procssor configuration tested. The “+” marks depict the runs without the
synchronous ramp-up phase (ρ = 0), and the “×” marks represent the runs with a
full synchronous ramp-up phase (ρ = 1). For each combination of problem instance,
number of processors, and ρ value, we computed the arithmetic mean of the sampled
run times. The solid lines in each figure trace these means for ρ = 1, and the dotted
lines show them for ρ = 0.
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Table 8 Performance of PEBBL on MMA instance spam12 on Red Sky, without enumeration

Cores ρ = 0 ρ = 1

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

8 30499.5 420,980 30458.9 420,898

16 15064.5 16.2 1.01 420,709 −0.0 15052.7 16.2 1.01 420,616 −0.1

24 10000.4 24.4 1.02 421,016 +0.0 9990.1 24.4 1.02 420,782 −0.0

32 7473.9 32.6 1.02 420,829 −0.0 7472.5 32.6 1.02 420,993 +0.0

48 4968.7 49.0 1.02 421,507 +0.1 4957.1 49.2 1.02 420,782 −0.0

64 3780.5 64.5 1.01 421,644 +0.2 3782.6 64.4 1.01 421,103 +0.0

96 2509.3 97.1 1.01 422,114 +0.3 2496.1 97.6 1.02 421,155 +0.1

128 1879.6 129.6 1.01 422,815 +0.5 1864.4 130.7 1.02 421,058 +0.0

192 1260.6 193.3 1.01 424,007 +0.7 1245.8 195.6 1.02 420,920 +0.0

256 951.0 256.2 1.00 425,483 +1.1 934.9 260.6 1.02 421,069 +0.0

384 641.9 379.6 0.99 427,773 +1.6 625.6 389.5 1.01 420,846 −0.0

512 490.8 496.5 0.97 431,180 +2.4 472.3 515.9 1.01 421,498 +0.1

768 337.4 722.3 0.94 434,532 +3.2 320.5 760.4 0.99 421,259 +0.1

1024 264.5 921.1 0.90 442,836 +5.2 242.8 1003.7 0.98 420,520 −0.1

1536 192.5 1266.1 0.82 451,665 +7.3 168.2 1448.7 0.94 418,104 −0.7

2048 159.5 1527.5 0.75 462,696 +9.9 132.7 1836.5 0.90 419,506 −0.3

3072 125.5 1941.6 0.63 468,931 +11.4 96.6 2521.4 0.82 416,004 −1.2

4096 110.0 2216.0 0.54 472,170 +12.2 81.1 3003.1 0.73 418,068 −0.7

The following observations are apparent from the tables and charts:

– Using a synchronous ramp-up phase improves scalability for all problem instances.
Its effect is limited for relatively small numbers of processors, but as one increases
the processor count it eventually significantly increases efficiency and reduces tree
growth.

– Speedups are close to linear over a wide range of processor configurations for all
the problem instances, with the point of departure from linear speedup depending
on the difficulty of the subproblems and the size of its search tree. For the problem
with the smallest search tree, spam, behavior departs signficantly from linear at
about 48 processor cores for ρ = 1 and 16–24 processor cores for ρ = 0. For the
instancewith the largest search tree,spam26, relative speedup remains essentially
linear, with an efficiency of 94 %, even at 6144 processor cores. For 8192 cores,
efficiency is still 89 %.

– By applying a sufficient number of processors, the solution time for each instance
can be reduced to the range of approximately 1–3 min. For example, spam26
can be solved in less than 3 min on 6144 processor cores, whereas solving it on 8
processor cores takes over 27 h, from which it may be extrapolated that solution
on one processor core would require over 9 days.
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Table 9 Performance of PEBBL on MMA instance spam26 on Red Sky, without enumeration

Cores ρ = 0 ρ = 1

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

Time Spdp. Eff. Tree
nodes

Tree
growth
(%)

8 114884.1 1,949,533 115029.9 1,952,015

16 56668.7 16.2 1.01 1,949,472 −0.1 56705.3 16.2 1.01 1,952,580 +0.0

24 37447.6 24.6 1.02 1,949,573 −0.1 37507.7 24.5 1.02 1,952,433 +0.0

32 27930.2 32.9 1.03 1,949,615 −0.1 27973.6 32.9 1.03 1,952,160 +0.0

48 18500.2 49.7 1.04 1,949,517 −0.1 18532.0 49.7 1.03 1,952,282 +0.0

64 14041.1 65.5 1.02 1,949,562 −0.1 14121.9 65.2 1.02 1,955,219 +0.2

96 9273.8 99.2 1.03 1,949,722 −0.1 9284.0 99.1 1.03 1,952,368 +0.0

128 6914.0 133.1 1.04 1,950,024 −0.1 6920.6 133.0 1.04 1,952,336 +0.0

192 4611.3 199.6 1.04 1,950,055 −0.1 4612.7 199.5 1.04 1,952,499 +0.0

256 3448.7 266.8 1.04 1,950,524 −0.1 3447.5 266.9 1.04 1,952,518 +0.0

384 2297.8 400.5 1.04 1,951,492 −0.0 2291.3 401.6 1.05 1,951,256 −0.0

512 1725.9 533.2 1.04 1,952,537 +0.0 1718.1 535.6 1.05 1,952,104 +0.0

768 1155.7 796.2 1.04 1,955,600 +0.2 1145.9 803.0 1.05 1,952,580 +0.0

1024 873.5 1053.6 1.03 1,958,905 +0.4 861.2 1068.6 1.04 1,951,931 −0.0

1536 592.2 1553.9 1.01 1,963,065 +0.6 578.6 1590.3 1.04 1,954,442 +0.1

2048 452.4 2033.9 0.99 1,966,829 +0.8 438.0 2101.0 1.03 1,955,466 +0.2

3072 316.4 2908.7 0.95 1,975,231 +1.2 299.1 3076.7 1.00 1,957,375 +0.3

4096 245.8 3744.5 0.91 1,983,256 +1.6 227.7 4040.7 0.99 1,959,468 +0.4

6144 181.4 5073.5 0.83 1,993,530 +2.1 159.8 5758.7 0.94 1,962,657 +0.5

8192 150.7 6107.2 0.75 2,004,048 +2.7 126.7 7265.4 0.89 1,967,053 +0.8

– Since there is no significant departure from ideal linear speedup when moving
from 1 processor core to 2 processor cores, it may be inferred that the overhead
imposed by moving from PEBBL’s serial to parallel layer is essentially negligible
for the MMA class of problems.

– There is no noticeable loss of efficiency in moving from a single processor cluster
(in the runswith 128or fewer cores) tomultiple processor clusters. For example, the
spam26 instance shows linear relative speedup between 128 and 4096 processor
cores, even though the 128-processor configuration has a single cluster and the
4096-processor configuration requires the coordination of 32 such clusters.

– Tree growth is the primary reason that speedups begin to depart from linear asmore
processors are applied. At the beginning of the asynchronous search phase, a large
number of processors may need to share a relatively small pool of subproblems,
with the result that some processors will evaluate subproblems that would have
eventually been pruned prior to evaluation in a run with fewer processors. These
subproblems may be subdivided multiple times and persist in the work pool until
the final incumbent value is found. This form of inefficiency results from a com-
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Fig. 4 Speedup behavior on problem instance hung110

bination of (1) the application not having a strong incumbent-generating heuristic
and (2) it being increasingly difficult to approximate a best-first search order as
the number of processors increases. In applications where heuristics can gener-
ate high-quality initial incumbents early in the solution process (e.g. the quadratic
assignment problem), themain impediments to scalabilitywould instead be proces-
sor idleness caused by a lack of available subproblems and inefficiencies inmoving
subproblems between processors.

– Modestly superlinear speedups, corresponding to efficiencies slightly higher than
1.00, are sometimes observed.Webelieve that themain reason for this phenomenon
is that more cache memory becomes available to the computation as the number of
processor cores increases. PEBBL’s parallelization has sufficiently low overhead
that such speedup effects are observable. In Sect. 5 below, we investigate a more
dramatic version of this cache-related speedup effect using a simple knapsack
algorithm.

Our second set of tests used PEBBL’s enumeration feature. One principle applica-
tion of the MMA is in a column-generation setting, and column generation algorithms
typically try to add several dozen columns to the master problem at a time. Hence,
enumeration is a realistic application for MMA.

Weused the same set of problems as above, butwithenumCount = 25, instructing
PEBBL to find a best possible set of 25 solutions. TheenumCount enumerationmode
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Fig. 5 Speedup behavior on problem instance spam26

Table 10 Performance of
PEBBL on MMA instance
hung23 on Red Sky, ρ = 1
only, enumerating multiple
solutions with
enumCount = 25

Cores Time Spdp. Eff. Tree nodes Tree growth
(%)

1 1179.4 88,492

2 589.2 2.0 1.00 88,641 +0.2

3 395.3 3.0 0.99 88,584 +0.1

4 294.7 4.0 1.00 88,622 +0.1

6 202.7 5.8 0.97 88,882 +0.4

8 152.1 7.8 0.97 88,703 +0.2

16 77.4 15.2 0.95 89,564 +1.2

24 52.3 22.6 0.94 89,662 +1.3

32 39.7 29.7 0.93 90,116 +1.8

48 28.4 41.5 0.87 90,920 +2.7

64 22.3 52.8 0.83 91,761 +3.7

96 16.2 72.9 0.76 93,062 +5.2

128 14.2 82.9 0.65 96,832 +9.4

192 13.2 89.3 0.47 106,585 +20.4

256 11.8 99.6 0.39 112,266 +26.9

384 10.8 109.4 0.28 122,887 +38.9
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Table 11 Performance of
PEBBL on MMA instance
hung46 on Red Sky, ρ = 1
only, enumerating multiple
solutions with
enumCount = 25

Cores Time Spdp. Eff. Tree nodes Tree growth
(%)

1 1869.7 157,819

2 932.9 2.0 1.00 156,680 −0.7

3 622.7 3.0 1.00 156,130 −1.1

4 465.8 4.0 1.00 156,785 −0.7

6 322.4 5.8 0.97 158,085 +0.2

8 240.8 7.8 0.97 157,302 −0.3

16 120.3 15.5 0.97 157,071 −0.5

24 80.8 23.2 0.96 157,697 −0.1

32 61.5 30.4 0.95 158,797 +0.6

48 44.0 42.5 0.89 162,240 +2.8

64 35.0 53.4 0.83 165,089 +4.6

96 25.2 74.1 0.77 170,697 +8.2

128 21.3 87.6 0.68 170,332 +7.9

192 16.8 111.3 0.58 176,815 +12.0

256 15.0 124.3 0.49 188,492 +19.4

384 12.9 144.9 0.38 198,787 +26.0

512 12.0 156.3 0.31 204,802 +29.8

768 11.3 165.5 0.22 218,509 +38.5

1024 11.4 164.0 0.16 269,745 +70.9

Table 12 Performance of
PEBBL on MMA instance
hung110 on Red Sky, ρ = 1
only, enumerating multiple
solutions with
enumCount = 25

Cores Time Spdp. Eff. Tree nodes Tree growth
(%)

1 3999.4 363,786

2 1972.5 2.0 1.01 364,391 +0.2

3 1317.3 3.0 1.01 364,070 +0.1

4 984.0 4.1 1.02 364,592 +0.2

6 674.0 5.9 0.99 364,646 +0.2

8 505.2 7.9 0.99 364,662 +0.2

16 252.6 15.8 0.99 364,964 +0.3

24 168.9 23.7 0.99 366,077 +0.6

32 127.4 31.4 0.98 366,363 +0.7

48 85.7 46.7 0.97 367,832 +1.1

64 67.1 59.6 0.93 368,094 +1.2

96 46.6 85.8 0.89 369,307 +1.5

128 36.8 108.6 0.85 369,207 +1.5

192 27.9 143.5 0.75 373,400 +2.6

256 22.5 177.4 0.69 373,381 +2.6

384 18.4 217.1 0.57 386,690 +6.3

512 16.2 247.2 0.48 393,499 +8.2

768 13.5 297.1 0.39 405,187 +11.4

1024 12.7 315.4 0.31 417,996 +14.9

123



460 J. Eckstein et al.

Table 13 Performance of
PEBBL on MMA instance
hung253 on Red Sky, ρ = 1
only, enumerating multiple
solutions with
enumCount = 25

Cores Time Spdp. Eff. Tree nodes Tree growth
(%)

1 9005.3 856,159

2 4307.4 2.1 1.05 858,106 +0.2

3 2865.3 3.1 1.05 858,233 +0.2

4 2136.2 4.2 1.05 858,863 +0.3

6 1458.8 6.2 1.03 859,347 +0.4

8 1096.1 8.2 1.03 858,963 +0.3

16 545.2 16.5 1.03 861,324 +0.6

24 363.1 24.8 1.03 862,063 +0.7

32 271.9 33.1 1.04 862,801 +0.8

48 182.3 49.4 1.03 864,311 +1.0

64 140.2 64.2 1.00 865,715 +1.1

96 95.0 94.8 0.99 866,883 +1.3

128 72.4 124.5 0.97 866,986 +1.3

192 50.6 178.0 0.93 867,546 +1.3

256 40.7 221.5 0.87 867,817 +1.4

384 29.8 302.4 0.79 869,918 +1.6

512 24.3 370.0 0.72 870,155 +1.6

768 19.1 472.0 0.61 874,577 +2.2

1024 16.2 556.6 0.54 878,796 +2.6

1536 13.9 649.7 0.42 911,618 +6.5

2048 12.8 701.3 0.34 930,150 +8.6

Table 14 Performance of
PEBBL on MMA instance
spam on Red Sky, ρ = 1 only,
enumerating multiple solutions
with enumCount = 25

Cores Time Spdp. Eff. Tree nodes Tree growth
(%)

1 2163.9 3,422

2 1092.9 2.0 0.99 3,437 +0.4

3 726.6 3.0 0.99 3,422 +0.0

4 543.7 4.0 1.00 3,419 −0.1

6 379.1 5.7 0.95 3,432 +0.3

8 292.1 7.4 0.93 3,455 +1.0

16 155.5 13.9 0.87 3,511 +2.6

24 107.6 20.1 0.84 3,531 +3.2

32 85.1 25.4 0.79 3,602 +5.3

48 62.9 34.4 0.72 3,600 +5.2

64 53.2 40.7 0.64 3,648 +6.6

96 48.3 44.8 0.47 3,931 +14.9

128 48.6 44.5 0.35 4,339 +26.8

192 48.9 44.3 0.23 5,265 +53.8

256 47.9 45.2 0.18 5,226 +52.7
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Table 15 Performance of
PEBBL on MMA instance
spam5 on Red Sky, ρ = 1 only,
enumerating multiple solutions
with enumCount = 25

Cores Time Spdp. Eff. Tree nodes Tree growth
(%)

8 12,685.6 175,478

16 6208.1 16.3 1.02 172,599 −1.6

24 4113.8 24.7 1.03 171,991 −2.0

32 3069.8 33.1 1.03 171,688 −2.2

48 2045.4 49.6 1.03 171,850 −2.1

64 1579.7 64.2 1.00 174,476 −0.6

96 1032.2 98.3 1.02 172,014 −2.0

128 775.1 130.9 1.02 172,589 −1.6

192 525.9 193.0 1.01 174,422 −0.6

256 403.9 251.2 0.98 178,658 +1.8

384 274.5 369.7 0.96 179,610 +2.4

512 210.7 481.7 0.94 180,629 +2.9

768 150.0 676.6 0.88 186,893 +6.5

1024 124.8 812.9 0.79 203,088 +15.7

Table 16 Performance of
PEBBL on MMA instance
spam6 on Red Sky, ρ = 1 only,
enumerating multiple solutions
with enumCount = 25

Cores Time Spdp. Eff. Tree nodes Tree growth

8 23,029.4 325,033

16 11,399.5 16.2 1.01 325,104 +0.0

24 7563.6 24.4 1.01 325,211 +0.1

32 5655.5 32.6 1.02 325,242 +0.1

48 3755.5 49.1 1.02 325,357 +0.1

64 2860.9 64.4 1.01 325,322 +0.1

96 1892.6 97.3 1.01 325,730 +0.2

128 1418.2 129.9 1.01 326,302 +0.4

192 954.0 193.1 1.01 327,790 +0.8

256 716.3 257.2 1.00 328,460 +1.1

384 482.8 381.6 0.99 330,368 +1.6

512 368.4 500.1 0.98 333,884 +2.7

768 252.0 731.1 0.95 338,536 +4.2

1024 194.0 949.9 0.93 340,697 +4.8

1536 141.2 1304.6 0.85 347,682 +7.0

2048 118.4 1555.8 0.76 359,656 +10.7

3072 98.6 1867.8 0.61 377,464 +16.1

places the largest additional communication burden on the PEBBL parallel layer.
Generally, enumerating multiple solutions means exploring a larger search tree. We
observed that the base tree size (for the smallest number of cores tested) changed little
for the heart disease problems, but increased by roughly 25 % for the spam problems.
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Table 17 Performance of
PEBBL on MMA instance
spam12 on Red Sky, ρ = 1
only, enumerating multiple
solutions with
enumCount = 25

Cores Time Spdp. Eff. Tree nodes Tree growth
(%)

8 37,125.0 523,287

16 18,317.7 16.2 1.01 523,199 −0.0

24 12,149.0 24.4 1.02 523,181 −0.0

32 9074.8 32.7 1.02 523,228 −0.0

48 6024.5 49.3 1.03 523,205 −0.0

64 4593.3 64.7 1.01 523,571 +0.1

96 3025.2 98.2 1.02 523,329 +0.0

128 2261.4 131.3 1.03 523,549 +0.1

192 1512.5 196.4 1.02 524,134 +0.2

256 1132.1 262.3 1.02 524,497 +0.2

384 758.0 391.8 1.02 525,668 +0.5

512 571.2 519.9 1.02 526,929 +0.7

768 384.9 771.7 1.00 529,491 +1.2

1024 293.5 1011.8 0.99 530,916 +1.5

1536 202.7 1465.2 0.95 535,375 +2.3

2048 159.7 1859.3 0.91 537,927 +2.8

3072 119.5 2484.9 0.81 546,267 +4.4

4096 100.7 2950.5 0.72 550,352 +5.2

Tables 10, 11, 12, 13, 14, 15, 16, 17, and 18 show results of the experiments using
enumeration.We tested only ρ = 1, themore efficient ramp-up setting from the single-
solution tests. Overall, the results are similar to those without enumeration. In general,
scalability is slightlyworse in the heart disease problems, since the base search trees are
of similar size but the implementation has more communication overhead (especially
during the synchronous ramp-up phase, because synchronizing the repository requires
significant communication). The results for the spam-detection problems are quite
similar to those without enumeration; in some cases scalability improves slightly due
to the larger base search tree. Enumeration’s extra communication overhead is of less
concern for the spam problems, because a similar amount of overhead is “amortized”
over more time-consuming subproblems.

5 Cache-related superlinear speedups

Some of the data tables contain a curious phenomenon: numerous relative efficien-
cies are greater than 1.00, indicating that speedups are slightly better than linear. One
mechanism through which such a phenomenon can occur, depending on the subprob-
lem pool ordering and the means of generating incumbent solutions, is that using
more processors may allow an incumbent solution to be found at a relatively ear-
lier point in the search process, which shrinks the size of the search tree. However,
that is not the case here, because tree sizes gradually increase with the number of
processors.
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Table 18 Performance of
PEBBL on MMA instance
spam26 on Red Sky, ρ = 1
only, enumerating multiple
solutions with
enumCount = 25

Cores Time Spdp. Eff. Tree nodes Tree growth
(%)

8 132,996.0 2,338,175

16 65,612.9 16.2 1.01 2,338,043 −0.0

24 43,430.7 24.5 1.02 2,339,840 +0.1

32 32,282.8 33.0 1.03 2,334,058 −0.2

48 21,405.2 49.7 1.04 2,337,107 −0.0

64 16,302.0 65.3 1.02 2,341,934 +0.2

96 10,687.4 99.6 1.04 2,334,356 −0.2

128 7977.1 133.4 1.04 2,337,007 −0.0

192 5309.1 200.4 1.04 2,332,914 −0.2

256 3979.6 267.4 1.04 2,340,722 +0.1

384 2651.7 401.2 1.04 2,345,555 +0.3

512 1980.4 537.2 1.05 2,336,781 −0.1

768 1324.4 803.4 1.05 2,342,848 +0.2

1024 997.0 1067.1 1.04 2,343,364 +0.2

1536 670.8 1586.0 1.03 2,350,458 +0.5

2048 509.1 2090.1 1.02 2,363,376 +1.1

3072 341.8 3113.0 1.01 2,327,884 −0.4

3384 315.4 3373.6 1.00 2,355,573 +0.7

4096 264.9 4016.5 0.98 2,354,345 +0.7

6144 190.5 5585.7 0.91 2,384,924 +2.0

8192 155.0 6862.5 0.84 2,331,413 −0.3

Instead, the slightly superlinear results are due to processor memory cache behav-
ior. We demonstrate this by studying an instance of a different problem class in which
the effect is far more pronounced. Figure 6 shows the speedup behavior on Red Sky of
a PEBBL knapsack application on a 3000-object binary knapsack problem in which
the object weights and values are strongly correlated. This knapsack application is
distributed with PEBBL, but we did not use this application for our main numerical
tests because it does not implement a competitive method for solving knapsack prob-
lems: its algorithm is equivalent to using the linear programming relaxation of the
problem without any cutting planes. However, it does serve as a simple demonstration
application of PEBBL that has rather different properties from the MMA problem. In
particular, subproblems tend to evaluate extremely quickly for this problem class: the
runs shown in Fig. 6 all evaluated approximately 200 million subproblems. To avoid
congestion at the hubs, we used a much smaller cluster size than inMMA; we selected
a cluster size of 8, which matches the number of cores on each Red Sky node, and
configured the hubs to be “pure” (i.e. hubs do not also function as workers). Otherwise,
we used PEBBL’s default configuration settings (see Sect. 4.3). We tried all multiples
of 8 processor cores from 8 to 128, solving the problem instance three times for each
configuration.

As can be seen in the figure, significant and reproducible superlinear speedup
occurs. To explain this phenomenon, we first checked the size of the search tree
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Fig. 6 PEBBL speedups on a 3000-object strongly correlated knapsack problem

explored, but it was virtually constant. We then instrumented the executable code
using Open|SpeedShop [44], and observed that the total number of machine instruc-
tions executed across all processors grew slightly between 8 and 16 processor cores,
and then remained essentially flat. Thus, the only possible explanation for the super-
linear speedup is that the average instruction execution time fell as we added more
processors. In turn, the only reasonable explanation of this reduction in instruction
time is the use of cache memory. Figure 7 shows the total number of level-3 cache
misses across all processors, using information also obtained from Open|SpeedShop.
Clearly, the larger processor configurations are able to keep a larger fraction of their
working data within cache. Even with the higher relative communication overhead
arising from the knapsack problem’s easier subproblems (as compared to MMA), the
communication overhead of PEBBL is small enough that the cache effects dominate
and speedups are reproducibly superlinear over a broad range of processor counts.

Although true superlinear speedups are sometimes considered theoretically impos-
sible, it is important to note that the classical definitions of speedup and efficiency
do not consider memory speed. In practice, as the number of processors increases,
the memory resources available to an application often increases as well, includ-
ing the total amount of each level of cache memory. If the total memory needed to
store the active search pool is of a similar magnitude to the total amount of cache
memory across all processors, adding cache may increase efficiency more than inter-
processor communication overhead decreases it. Despite the apparent complexity of
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Fig. 7 Number of level-3 cache misses, summed across all processors, for the runs shown in Fig. 6

PEBBL’s communication, its overhead is low enough that this situation can indeed
occur.

For various kinds of algorithms, superlinear speedups attributed to cache effects
have been observed since at least the 1990s [7,53]. More recent examples of such
effects are remarked upon in [52], which studies matrix multiplication methods,
in [8], which describes matrix factorization methods specifically designed to elicit
such effects for particular cache architectures, and in [29], which describes a robot
motion planning system. We are not aware of any previous claims of superlinear
speedup for branch-and-bound algorithms.

6 Concluding remarks

A clear conclusion from our results is that branch-and-bound algorithms can be highly
scalable for applications with large search trees. For the hardest problem instance we
considered, spam26, we obtained 99 % relative efficiency on 4096 processor cores,
94 % on 6144 cores, and 89 % on 8192 cores. As opposed to some earlier published
massively parallel results, we calculated our relative efficiencies relative to base runs
with minimal numbers of processors, only 8 cores in the case of difficult instances
like spam26, and only a single core for the easier ones. We thus demonstrate good
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scaling more definitively and over a wider range of processor counts than in prior
published branch-and-bound work. Despite the complexity of PEBBL’s paralleliza-
tion strategy, it is apparent from our results that it does not add appreciable overhead
to the search process for the MMA and knapsack applications. For harder problem
instances, furthermore, PEBBL can maintain nearly the same scalability when enu-
merating multiple MMA solutions (for easier problem instances, enumeration takes a
greater toll on scalability, but it remains good).

Our computational results do not include any direct comparisons with other paral-
lel branch-and-bound frameworks. To this end, we attempted to empirically compare
PEBBL to ALPS, because it is the only similar generic branch-and-bound framework
with published scaling results on thousands of processors. Furthermore, these results
were for a simple knapsack algorithmmathematically identical to the knapsack exam-
ple already present in PEBBL.Unfortunately, ALPS’ implementation of this algorithm
is much slower and more memory-intensive than PEBBL’s, making “head-to-head”
comparisons difficult. Furthermore, we could not get the ALPS knapsack application
to run reliably on the Red Sky platform we used for computational testing. Therefore,
we were forced to abandon direct comparison with ALPS.

Our results may have implications regarding parallel computer architectures, in
particular the current trend toward large, cache-coherent global memories. The results
we have obtained with PEBBL, especially in Sect. 5, suggest that fast local memory,
including local cache, may be more critical than global memory to the performance
of applications based on branch and bound or similar search processes.

One clear direction in which our work could be generalized is implementing a gen-
eral MIP solver, rather than a specialized application likeMMA. This is the purpose of
the PICO project, of which PEBBL was formerly a part. However, it is harder to pro-
duce competitive results in that application domain, due to the difficulty of replicating
the many person-years of work commercial MIP solver implementers have invested
in tuning their cutting-plane generators and incumbent heuristics. Nevertheless, there
appears to be no fundamental reason scalability results like those shown here could not
also be obtained for general MIP. In particular, the technique of synchronous parallel
ramp-up seems just as applicable in that setting as inMMA.Within-subproblem paral-
lelism could be exploited near the search tree root through selective strong branching,
the related process of initializing pseudocost tables that help “learn” good branching
variables, and generating multiple cutting planes. Although it might be more scalable,
aMIP solver based on PEBBLwould differ from the parallel branch-and-cut solvers in
current commercialMIP packages in that PEBBLmakes no effort to enforce determin-
ism: two runs of the same problem instance on the same processor configuration could
easily explore different numbers of search nodes and find different optimal solutions
(but with the same objective valuewithin the specified termination tolerance). Depend-
ing on the application, such nondetermism may be either desirable or undesirable.
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