Math. Prog. Comp. (2015) 7:367-398 @ CrossMark
DOI 10.1007/s12532-015-0083-5

FULL LENGTH PAPER

Progress in presolving for mixed integer programming

Gerald Gamrath! . Thorsten Koch! .
Alexander Martin> - Matthias Miltenberger! -
Dieter Weninger?

Received: 15 August 2013 / Accepted: 26 March 2015 / Published online: 5 June 2015
© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2015

Abstract This paper describes three presolving techniques for solving mixed integer
programming problems (MIPs) that were implemented in the academic MIP solver
SCIP. The task of presolving is to reduce the problem size and strengthen the formula-
tion, mainly by eliminating redundant information and exploiting problem structures.
The first method fixes continuous singleton columns and extends results known from
duality fixing. The second analyzes and exploits pairwise dominance relations between
variables, whereas the third detects isolated subproblems and solves them indepen-
dently. The performance of the presented techniques is demonstrated on two MIP
test sets. One contains all benchmark instances from the last three MIPLIB versions,
while the other consists of real-world supply chain management problems. The com-
putational results show that the combination of all three presolving techniques almost
halves the solving time for the considered supply chain management problems. For
the MIPLIB instances we obtain a speedup of 20 % on affected instances while not
degrading the performance on the remaining problems.
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1 Introduction

In order to eliminate redundant information and strengthen the formulation of an
integer program, solvers apply a number of techniques before the first linear pro-
gramming relaxation of an instance is solved. This step is referred to as presolving
or preprocessing. The solvers then work with this reduced formulation rather than
the original and recover the values of original variables afterwards. Presolving tech-
niques are often not only applied before solving the linear programming relaxation
at the root node in a branch-and-bound tree but may also be performed in a reduced
fashion, called node presolving, at other nodes of the tree. In this paper, however
we concentrate on techniques that we apply in the very first step of the solution
process.

Presolving has been applied for solving linear and mixed integer program-
ming problems for decades. Brearly et al. [13] and Williams [27] discussed bound
tightening, row elimination, and variable fixings in mathematical programming
systems, while Andersen and Andersen [5] published presolving techniques in
the context of linear programming. In addition, presolving techniques on zero-
one inequalities have been studied by Guignard and Spielberg [18], Johnson and
Suhl [21], Crowder et al. [14], and Hoffman and Padberg [19]. Williams [28]
developed a projection method for the elimination of integer variables and Savels-
bergh [25] investigated preprocessing and probing techniques for mixed integer
programming problems. An overview of different presolving techniques can be
found in the books of Nemhauser [24] and Wolsey [29], in Fiigenschuh and
Martin [17] and in Mahajan [23]. Details on implementing presolving tech-
niques effectively within a mixed integer linear programming solver are pre-
sented in Suhl and Szymanski [26], Atamtiirk and Savelsbergh [7], and Achter-
berg [2].

The impact of presolving on the entire solution process of mixed integer linear
programming problems was published in Bixby and Rothberg [10]. By disabling root
presolving, a mean performance degradation of about a factor of ten was detected.
Only cutting planes had a bigger influence on the solving process.

This paper is organized as follows. In Sect. 2 we present our notation. Section 3
describes a presolving technique we call Stuffing Singleton Columns, where continu-
ous variables with only one non-zero coefficient in the constraint matrix are fixed at a
suitable bound. In Sect. 4 we characterize a column based method called Dominating
Columns working on a partial order. Using this dominance relation new fixings and
bounds can be derived. Finally, in Sect. 5, a technique based on Connected Com-
ponents is presented that allows to split the whole problem into subproblems which
can be solved independently. In Sect. 6 we show computational results for all three
presolving techniques with the state-of-the-art non-commercial MIP solver SCIP [3]
on supply chain management instances and a test set comprised of all benchmark
instances from the last three MIPLIB versions [4,9,22]. We compare the achieved
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reductions as well as the overall performance improvements in Sect. 6 and close our
paper with some conclusions in Sect. 7.

2 Notation and basics

Consider a mixed integer program (MIP)
min ¢”x
s.t. Ax <b
O0<tl<x<u
xeZP xR"7P

D

withc e R", £, u € R U{+o0},A e R"*", be R"and p € {0, 1,...,n}.

We use the notation A.; for column j of the matrix A and A;. to denote the row
vector i. The value in the i-th row and j-th column of A, is called g;;.

Forx € R", supp (x) = {i € {1,2,...,n} | x; # 0} denotes the support of x.

In [13] a procedure for tightening bounds of variables was published. Important
also for our algorithms is the so-called maximal (2) and minimal activity (3) of a linear
constraint A,.x < b,:

U, = Z arkUy + Z arily (2)

Vk, arx>0 Vk, arr <0
L= Z arily + Z arjug 3)
Vk, ar>0 Vk, ar <0

L, may be —oo and U, may be +00. Obviously, L, < A,.x < U, holds. By using
the minimal activity L, it is possible to calculate upper bounds u;‘ and lower bounds
£’ for variable x;. For all feasible solutions x the inequalities

b, — L, +arj€j

xj < ——HF :u;j, Vr  witha,; >0 “4)
arj
by — L, +a,iu; .
xj = ————L =4, ¥r witha,; <0 )
a,j !

hold. Hence we obtain potentially new bounds by

u’i =min {u;, min {u ;i and 0% = max {£;, max {Z e
J Vr,a;;>0 J Vr,a,j <0

For integer variables we may also apply rounding and use Lu*J or [Z*l instead. Thus,
we may assume that integer variables have integer bounds. However We do not require
that bound tightening is applied prior to the methods described in the following sec-
tions.
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3 Stuffing singleton columns

A singleton column is a column of the matrix A with [supp (A.;)| = 1. In this section
we analyze a set of singleton columns of continuous variables x; within a row r and
try to fix them at one of its bounds.

To illustrate the basic idea, consider the linear programming relaxation of the binary
knapsack problem. Items, each with a certain profit and size, need to be selected to be
put into a knapsack of a given capacity. In contrast to the binary knapsack problem,
it is possible to pack any fraction of an item. An optimal solution can be obtained by
sorting the items by decreasing profit/size ratio and selecting them in this order until
the knapsack capacity is reached [15]. Transferring this idea to a general MIP of the
form (1) causes two difficulties. Integer variables are present and variables usually
appear in more than one row. So we cannot simply proceed in the same manner as in
the linear programming relaxation of the binary knapsack problem, but need to modify
the idea as described in the following.

Suppose there is a column j of problem (1) with ¢; > 0 satisfying a,; > 0 for
allrows r € {1,...,m}. If £; > —o0, we can set variable x; to its lower bound. If
tj = —oo and c¢; > 0, then the problem is unbounded. The appropriate argument
applies to a column j with ¢; < 0 and a,; < O for all rows r. If uj < 00, we
can set variable x; to its upper bound. In case u; = oo and c¢; < 0, the problem is
unbounded. This presolving technique is called duality fixing [17]. Thus, duality fixing
already covers the cases where c;/a,; > 0. We use additional information about the
rows in order to treat the remaining cases where c;/a,; < 0.

Let us first focus on the case a,; > 0 and ¢; < 0. For a given row r, consider the
set of variable indexes

Jry={jel{l,....n}|xj e RAlsupp(A.j)|=1Aa;>0Ac; <0}. (6)

Furthermore, we define the following restricted maximal activity, which is similar to
the maximal activity (2) of row r except that continuous singleton columns x; with
j € J(r) are considered to be at their lower bounds.

0, = Z a,jﬁj+ Z arjuj + Z a,jﬁj (7)

JeJ(r) JEJ(r) J&J(r)
arj>0 arj<0

The values U, can now be used to determine optimal variable values for singleton
columns. First, we sort the indices j € J(r) by their cost/size ratios c;/a,; in non-
decreasing order. Let s be the first index in this order. Define A = a,;(us — £5) to be
the difference in the contribution of variable x; to constraint » when setting x; to its
upper instead of its lower bound. If A < b, — U,, xg can be set to its upper bound.
After this step, s is removed from J (r), U, is updated by adding A and the procedure
is iterated.

Theore{n 1 Given a MIP of the form (1), some row r, the index set J(r) as defined
in (6), U, as defined in (7), and the index s € J(r) with the smallest ratio cs/ays. If
A < b, — U, then xg = ug holds for at least one optimal solution.
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Proof Let x* be an optimal solution with x7 < u,. If x;f = ¢ forall j € J(r)\{s},
then a new solution x” constructed by setting x; to uy is feasible because

/ / / 7
E arjx; = E arjx; +arsuy <Up + A < by.
vj Vi, j#s

Additionally, the objective function value improves because c; < 0. This contradicts
our assumption of x* being optimal. Hence there exists a j € J(r)\{s} with x}“ > L.
In this case we can construct a new solution x’ in which we decrease the value of x;‘
to x} while at the same time increasing the value of x; such that A,.x" = A, .x*. In
particular, a,s(x; — xJ) = a; (x;’f - x}) holds. The change of the objective function
can be estimated by

/

j=Csx

csXy+cjx s+t + cs(xy —x)) —¢j (xj — x})

Csdys Cjdrj
= cox) +cjxt + () — x5 — Lt — i)
s j s s ; j J
Ays dyj

csa CsQyi

* % sUrs /7 % sUry k /7

< osxg Fejx; + (xg —x;) — (xj—xj)
Ars Ars

C;
= CS)C:( + CjX;f + _a d (ars (Xé - x;k) — drj (x;k - x;))
rs

* *
= CsXg +cjxj.

If x; = u,, we proved the theorem. Otherwise, x} = {; holds. Applying this argument
iteratively results in an optimal solution with x| = u or x} = ¢ forall j € J(r)\{s}.
But as we have shown before, the latter case contradicts the optimality of x’. O

A similar procedure is followed where a,; < 0 and ¢; > 0. We define
Jry={jel{l,...,n}|x; e RAlsupp(A.j))|=1Aa;; <0Ac; >0}

and

i,r = Z arjﬁj + Z arjuj + z aerj.
JEJ(r) JEJ(r) Jj&J(r)
a;j<0 arj>0

Now, we begin with the index s € J(r) corresponding to the greatest ratio c; /a,;. If
A > b, — I:r, X5 can be set to its upper bound. We update the set J () and the value
L, according to their definition and repeat the process.

Sorting the ratios takes O(|J (r)|log|J (r)|) and computing whether the variables
can be set to the upper or lower bound requires O(|J(r)|). Furthermore, the size of
J (r) is usually small and hence the algorithm does not deteriorate the performance
on instances where no or only very few reductions are found. This is especially true
for most MIPLIB instances. For certain practical problems, such as supply chain
management, stuffing singleton columns may, however, find fixings quite often (see

Sect. 6).
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372 G. Gamrath et al.

4 Dominating columns

This presolving technique is based on a <-relation between the coefficients of two vari-
ables. Because this relation is reflexive, antisymmetric and transitive, it defines a partial
order (poset). The relation causes a consecutive behavior of the variable values and
can thus be seen as a dominance relation. The idea of exploiting a dominance relation
between variables for presolving is not new. Andersen and Andersen [5] used domi-
nating columns in the presolving of linear programming problems and Borndorfer [12]
applied this technique in the context of set partitioning problems. In addition, Babayev
and Mardanov [8] and Zhu and Broughan [31] introduced procedures based on com-
paring pairs of columns for reducing the number of integer variables, mostly applied
on knapsack problems. Our method can be seen as a generalization and extension of
existing dominating columns approaches for mixed integer programming problems.

4.1 Dominance relation

Definition 1 Let a MIP of the form (1) with two different variables x; and x; of
the same type, i.e., binary, integer or continuous, be given. We say x; dominates x;
(xj > x;), if

@) Cj=¢Ci and
(ii) a,j < ay; for every constraint r.

We call x; the dominating variable and x; the dominated variable.
The following example illustrates Definition 1.

Example 1

min —2x; —1xp +1x3 +1x4 —2x5 +1x¢
s.t. +2x1 +3xp —2x3 <1

+1xa —2x3 —lxg =3x5 +1x6 < —11
—lx3 +1xg +2x5 +3x6 < 5
+1xg —2x5 —lx6 < 1.5

0<xi,x2<4, 1<x3,x4 <35
X1,x2 €7, x3,x4 € R, x5,x6 € {0, 1}

In this example x; > x2, x3 > x4 and x5 > xg and the optimal solution is x| =
4,0 =0,x3 =35, x4 =1, x5 =1, x4 = 0 with value —5.5.

Example 1 raises suspicion that one of the variables involved in adominance relation
is at one of its bounds in the optimal solution. Indeed, this is a general property of the
dominance relation that we will prove in the following. To achieve this, we first show
that increasing the dominating variable and decreasing the dominated variable by the
same amount preserves feasibility and optimality, provided the variable bounds are
still satisfied.
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Lemma 1 Let X be a feasible solution for (1) and x; > x;. For 0 < a € IR, we define

x* with
Xk +a k=],
Xp=1%—o k=i,
Xk else.

Ifx;‘ =Xj+a <ujandx’ = X; —a > {;, then x* is feasible and its objective value
is not worse than the one of x.

Proof For every constraint A,.x < b,, we get

n n
Zarkx;: = Z ari X + arj(Xj + @) + ari (Xi — )
k=1 k=1
ki, j
n
= Zarkik +a (arj —ay;) < by.
————

k=1
—_—— <0
<b,

By assumption the bounds of the variables are fulfilled, hence x* is feasible. Addition-
ally, we know from Definition 1 that ¢; < ¢;, thus Txr=cTx+ alcj —ci) < cTx,
i.e., the objective value is not getting worse. O

This leads us to the following theorem, stating that the dominated variable is at its
lower bound or the dominating variable is at its upper bound in at least one optimal
solution.

Theorem 2 Let x; > x;, then there always exists an optimal solution x* for (1) with

Proof Let x be an optimal solution with x; < u; A X; > £;. We construct a feasible
solution x* by defining o« = min{Xx; — ¢;, u; — X;} and applying Lemma 1. Since x is
optimal and ¢’ x* < ¢ X, x* is optimal. By definition of «, also x;f =u;Vvx={¢
holds. O

4.2 Predictive bound analysis
Based on Theorem 2 we describe sufficient conditions which allow in combination
with Definition 1 to tighten bounds or fix variables. We first extend the maximal and

minimal row activity from (2) and (3) as a function of one variable x;.

Definition 2 Let a linear constraint A,.x < b, of (1) and a variable x; be given. We
denote by
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n

n
Uln) = D7 apui + D anclic + arexs

k=1 k=1
k#t k#t
ar >0 az <0

the conditional maximal activity of the linear constraint w.r.t. x; and by

n n
Li(x;) = Z arily + Z arkk + arX;

k= k=1
k#t k#t
ar;>0 arr <0

the conditional minimal activity of the linear constraint w.r.t. x;.

Definition 2 is now used to define specific functions, which predict the bounds
of variable x; depending on the value of another variable x;. We call this approach
predictive bound analysis.

Definition 3 Let (1) and two variables x; and x; be given. We define the functions

b, — LL(x;) + aysu
MAXLtY(x,) = max ! 1) " lays, ar < 04,
h r=1,..., m Ayrg
b, — Ul(x;) + ayst
MAXU.(x;) = max |——"" T g a, <0,
r=I1,..., m Arg
. b, — Ll.(x;) + a5t
MINL;(x,) = mi 4 rt "2\ ays,ar >0} and
r=1,...m Arg
. b, — Ul (x;) + aysu
MINU! (x;) = min 4 rt " ays, ar > 01,
’ r=I1,....m Arg

MINLg (x;) takes into account all constraints in which x; and x; have positive coeffi-
cients, i.e., a subset of the constraints that imply an upper bound on x;. Similar to the
bound tightening (see (4)), the upper bound on x; is computed for each constraint,
but instead of using the minimal activity, the conditional minimal activity w.r.t. x; is
used. Therefore, each constraint gives an upper bound for x; subject to the value of x;.
Minimizing over these bounds, MINLZ (xy) gives the tightest implied upper bound on
Xs as a function of the value of x;. Analogously, MAXL? (x;) gives the tightest implied
lower bound on x; as a function of the value of x;.

The other two functions MAXU§ (x;) and MINU§ (x;) take into account the maximal
instead of the minimal activity. Since the maximal activity is the worst-case when
regarding feasibility of a <-constraint, we obtain a larger lower and a smaller upper
bound for x; subject to x;. This range of values for x; is feasible for all constraints,
independent of the other variables. It may, however, exceed the variable’s domain.

In the following, we assume MAXLQ (x¢), MAXU@ (x4), MINLZ (x¢), and MINU§ (x;) to
be finite, in particular, that there are rows satisfying the requirements on the coefficients
as demanded in Definition 3.
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Next, we show that these four functions are strictly monotonically decreasing. This
property is fundamental to obtain a maximum value if we assume x; is at its lower
bound and vice versa.

Lemma 2 MAXLE (1), MAXUZ (x;), MlNLg (x¢) and MINU. (x;) are strictly monotoni-
cally decreasing functions, i.e., for £, < x; < x;' < u; holds

MAXLL (x]) > MAXLS (x]),
MAXU (x]) > MAXU (x}),
MINL, (x)) > MINL! (x') and
MINU (x;) > MINUE (x]").

Proof We only prove the first inequality, the others can be shown using a similar
procedure. Let 7 be one row defining the maximum in the computation of MAXL (x/).
Since LL(x;") — LL(x{) = a7 (x; —x]) and az,, a;; < 0by the definition of MAXL} (X)),
the following holds:
b, — Lf, (Xt/) + arsus
Ars
b, — L; (xt//) + arsis
— max |ars,arl <0
r=1,...m Ay

b Li(x) +apsus  bp — Ly(x[) + agsus

MAXLS (x) — MAXL! (x) = max [ |ars., ar; < 0}
.,m

Uiy Aig
age , g /
= o G =)
arS
>0

m}

These functions can help us to infer bounds for the dominating or the dominated
variable in an optimal solution.

Theorem 3 Let two continuous variables x ;, x; of (1) and x; > x; be given, then the
bounds

(i) x; < MINL'(£;),

(i) x; > MAXL (u;),
(iii) x; > min{u;, MAXL', (£;))},

(iv) x; < max{¢;, MINL! (u;)},

(v) Ifcj <0then x; > min{u;, MINU’j )} and

(vi) Ifc; > 0 then x; < max{¢;, MAXU/ (u)}
hold for at least one optimal solution.
Proof (i) By Definition 3, a,; and a,; are positive for all rows regarded for the com-

putation of MINL; (€;). Therefore setting x; to ¢; does not change the minimal

activity (3) of the row. Thus by (4) follows MINL; (¢;) is an upper bound of x;.
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(ii) By Definition 3, a,; and a,; are negative for all rows regarded for the computa-
tion of MAXL{ (u;). Therefore setting x; to u; does not change the minimal
activity (3) of the row. Thus by (5) follows MAXL{ (u;) is a lower bound
of Xi. .

(iii) We only treat the interesting case £; < MAXL’j (¢;). By Definition 3, there exists
one row r with arjMAXLZ- () + Li(¢;) — ayjuj = b,. Let x* be an optimal

*
arjMAXLlj(Ei) + L;,(Ei) —arjuj = b, < arjx;'.‘ + L’r(fi) —arju; since arj < 0.
This leads to a contradiction, because x* was chosen to be feasible. Thus x;" =
£; + B with 8 > 0 and a,jx;‘ +ari(6i +B)+ Ly —arjuj —ariu; < b,. Together
with aj (x% + ) + LL(€) — arjuj > apyMAXL; (6) + LL(6) — arjuj = by we
get the inequality

solution with & = min{u;, MAXL; (£;)} — x% > 0. Assuming x/ = ¢;, then

arjx§ + ari(bi + B) + Ly — arjuj — arit; < arj(x} + o) + L, (&) — arju;,

resulting in 8 > o - a,j/a,; with a,j/a,; > 1. By Lemma 1, we can increase x;‘
by a and decrease x;* by o without loosing feasibility or optimality.

(iv) We only treat the interesting case MINL{ (u) < u;. By Definition 3, there exists
one row r with a”-MINL{(uj) + L{(uj) — a;il; = b,. Let x* be an optimal
solution with @ = x/ — max{¢;, MINLij (uj)} > 0. Assuming x;.‘ = uj, then
apMINL (uj) + L] (u}) — a,it; = by < apix* + Ll (uj) — a,i€; since a,; > 0.
This leads to a contradiction, because x* was chosen to be optimal, and therefore
also feasible. Thus x7 = u; — p with B > 0 and a,j(u; — B) + arix] +
L, —arjtj — a;ili < b,. Together with a,;(x} — &) + LI (u}) — anil; >
ariMINL{ (uj) + Lf(uj) — a,i¢; = b, we get the inequality
arj(uj = B) + arixi + Ly — arjlj — arili < api(xf — ) + L (u;) — aril;
yielding 8 > « - ayi/a,j with a,; /a,; > 1. By Lemma 1, we can decrease xl.* by
« and increase x;‘f by « without loosing feasibility or optimality.

(v) We only treat the interesting case £; < MINU; (¢;). By Definition 3, there exists
one row r with a,jMINUj i)+ Uri (¢;)—ayjuj = b,. Suppose there is an optimal
solution x* with x < minfu, MINU; (€)}. Leta; = min{u;, MINU; (£)) — x%,
a; = x; —£; and & = min{o;, a;}. By Lemma 1, we can increase x;.k by « and
decrease x* by o without loosing feasibility or optimality. If « = «; we are fin-
ished because we constructed an optimal solution withx ; = min{u, MINU; )}
Otherwise, we get an optimal solution x* with x;" = {;. Now, we show that x
with X; = min{u, MINUj. (¢)}, X; = ¢; and X; = x] fork # j, i is also an opti-
mal solution. Because x™* is feasible and by definition of x 7, x fulfills all bounds.

By increasing x;, we can only loose feasibility for rows r with a,; > 0. From
xj > x; weknow 0 < a,; < ay;, so these rows are exactly the rows regarded in
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the definition of MINUZ. (¢;). Assume one of these rows is violated, i.e., arT X > by,
then

n
0>b — Zarkik =b, — Z arkXi + Z ar Xy + aril;

k=1
k#l k;él

ap>0 ay <0

> by — Z arkUk + z arile + arili — arjuj + arjx;
k;tt k#t

ar>0 a, <0

= b, — U.(t;) + arju;j — arj%;

It follows that x; > (b, — Uit +ay juj)/arj = MINU; (¢;), but this contradicts
the deﬁnition of x;, so all rows must still be feasible. x is also optimal since we
getc X <clx* from Xx; > x] and ¢; < 0.

(vi) We only treat the interesting case MAXUJ (u i) < u;. By Definition 3, there
exists one row 7 with a,; MAXU; (uj) + U/ (u;) — arit; = by. Suppose there
is an optimal solution x* with x/ > max{{;, MAXU{ (uj)}. Let oy = x/ —
max{¥¢;, MAXUl.j W}, o =u; —xf;, and o = min{e;, «j}. By Lemma 1, we can
decrease x;* by « and increase x” by & without loosing feasibility or optimality.
If « = «;, then we are finished because we constructed an optimal solution
with x; = max{¢(;, MAXU{ (uj)}. Otherwise, we get an optimal solution x* with
xj = uj. Now, we show that X with x; = max{¢;, MAXU{ (uj)}, xj = u; and

X = xj for k # i, j is also an optimal solution. Because x* is feasible and

by definition of x;, x fulfills all bounds. By decreasing x;, we can only loose

feasibility for rows r with a,; < 0. From x; > x; we know a,; < a,; < 0, so
these rows are exactly the rows regarded in the definition of MAXU{ (). Assume

one of these rows is violated, i.e., a,T X > b,, then

n n n
0> b, — Zarkik =b — Z ar Xy + z ark Xk + apju
k=1 k=1 =1
k#j k#]
az >0 a, <0

n n
> b — | D amu+ D b+ arjuj — arili + ayix;

k=1 k=1
k#j k]
ay>0 a ;<0

=b, — Urj(uj) +arili —apiX;
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Since a,; < 0, it follows that ; < (b, — U/ (u;) + ayili)/ari < MAXU! (u;),
but this contradicts the definition of x;, so all rows must still be feasible. x is also
optimal since we get ¢ x < ¢ x* from x; < x*and ¢; > 0. O

Whenever in Theorem 3, (iii)—(vi), the minimum or maximum is obtained for the
first argument, the variable can be fixed. Since this has the highest impact regarding
presolving, as it reduces the problem size, and we do not need to pay attention to
rounding MAXLE (1), MAXUL (), MINLE (x;) and MINU! (x;) for integer variables, we
summarize the fixing criteria.

Corollary 1 Let a MIP of form (1) be given as well as two variables xj, x; of the
same type, i.e., binary, integer or continuous, with x j > x;. In the following cases, we
can fix a variable while preserving at least one optimal solution.

1) MAXLZJ-(Ei) > uj = x; can be set to u;.

(i1) MINL'l.’ (uj) < ¢; = x; can be set to {;.
(iii) ¢; <0and MINU;(E,-) >uj = xjcan be setto u;.

@iv) ¢; > 0 and MAXU{ (uj) < €; = x; can be set to {;.

We now apply Corollary 1 on Example 1. First we need to calculate some conditional
activities L] (uy) = 1, L3(€s) = —11,U$(¢s) = 4.5, U] (us) = 1.5, which allows
us to determine the values MINL; (uy) =0, MAXLE‘(&) = 3.5, MINUg (£g) = 1.25 and
MAXUg(us) = 0. Thus we can set x, and xg to their lower bounds and x3 and x5 to
their upper bounds.

The following criteria can be used instead of Corollary 1. By having two alternative
criteria for each variable fixing, we can select the one that fits better in a given situation.
In particular, an infinite upper bound is more common than an infinite lower bound
since many problems are modeled using non-negative variables.

Corollary 2 Given a MIP of the form (1) and two variables xj, x; of the same type,
i.e., binary, integer or continuous, with x; > x;. In the following cases, we can fix a
variable while preserving at least one optimal solution.

@) MAXL'l./(uj) > {; = xj canbesettou;.
(i) MINL'j (¢;) <uj = x; canbesetto?;.
(iii) ¢; < 0andMINU/ (1) > ¢; = x can be settou;.
@iv) ¢; > OandMAXU; (¢;) <uj = x; canbesetto/;.
Proof (1) If MAXLZJ (u;) > ¢;, then by Definition 3 and Lemma 2 it follows that
MAXL; ;) > MAXL; (MAXL{ (uj)) =uj.

From MAXL{ (uj) < £; follows

MAXL]; (€;) < MAXL (MAXL] (u})) = u;.
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This is the statement of Corollary 1(i).
(i1)—(iv) are similar to case (i). O

4.3 Utilize conflict information for binary variables

For binary variables we can use information from a conflict graph [6] to fix additional
variables in connection with the dominance relation. The use of this information has
the advantage that it was concurrently extracted in preceding presolving rounds.

Anundirected graph G = (V, E) is called a conflict graph of (1), if for every binary
variable x; there is a vertex v; € V and a vertex v; € V forits complement x; = 1 —x;.
The edge set E consists of edges v;v; for all binary variables x; and edges between
two vertices when at most one of the corresponding variables or complements can be
equal to 1 in an optimal solution.

Theorem 4 (i) Let two binary variables x, x; of (1) withxj > x; and vjv; € E be
given, then x; can be set to 0.

(ii) Let two binary variables x;, x; of (1) with x; > x; and v;v; € E be given, then
xj can be set to 1.

Proof (1) With two binary variables, four variable assignments are possible. Because
xj = 1 Ax; = 11is not allowed due to vjv; € E, only the possibilities x; =
Inxi=0,x; =0Ax; =0and x; =0 A x; = 1 remain. From Definition 1 and
Lemma 1 we know that it is possible to increase x; and decrease x; accordingly,
thereby staying feasible and optimal. Thus, only the cases x; = 1 A x; = 0 and
xj = 0 A x; = 0remain. In both cases, x; is at its lower bound.

(ii) The case is similar to (i). Finally, the logical conjunctions x; = 1 A x; = 1 and
xj =1 Ax; = 0 are left. In both cases, x; is at its upper bound. O

4.4 Finding a dominance relation

The complexity of an algorithm that operates on a partial order (poset) is mainly
determined by the width w of the poset. w is defined to be the maximum cardinal-
ity of an anti-chain, which is a subset of mutually incomparable or non-dominating
elements. In [16] an algorithm was introduced that sorts a width-w poset of size n
in O(n(w + logn)). Its representation has size O (wn) and permits retrieval of the
relation between any two elements in time O(1). Since we cannot assume to verify
the relation between any two elements in O (1) and w is usually large in our case,
we decided to go for it heuristically. This approach works well in practice, which
can be seen in the computational results of Sect. 6. Let R~ C {1, ..., m} be the set
of row indices of equalities and C~ = {j € {1,...,n} | axj # 0,k € R~} be
the set of columns of matrix A € R™*" having non-zero entries within equalities.
C==1{l1,...,n\C~ is the set of columns having only non-zeros within inequalities.
The approach consists of two stages. First we sub-divide C~ into different parallel
classes C; concerning the non-zero entries within equalities. The detection of the
parallel classes is performed by an algorithm [11] developed for detecting parallel
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columns in O (ZkeR: [supp (Ax.)| log |supp (Ax.)|). Then we compare all columns of
every C;; in O(m - (|C217 |)). The first stage guarantees to find all dominance relations
within C=. The second stage considers only columns of C= and takes advantage of the
sparsity of A via analyzing the rows by increasing |supp (A,.)| in O (m - (‘S“""(zAr')l)).
After one row was executed, the processed columns therein are not compared to
other columns anymore. Thus the number of columns which should be compared is
usually much smaller than n. In cases where we have to compare a lot of columns,
there is a mechanism which monitors the number of fixings per number of paired
comparisons. If not enough fixings are found, then this row will not be investigated
further.

5 Connected components

The connected components presolver aims at identifying small subproblems that are
independent of the remaining part of the problem and tries to solve those to optimality
during the presolving phase. After a component is solved to optimality, the variables
and constraints forming the component can be removed from the remaining problem.
This reduces the size of the problem and the linear program to be solved at each
node.

Although a well modeled problem should in general not contain independent com-
ponents, they occur regularly in practice. And even if a problem cannot be split into
its components at the beginning, it might decompose after some rounds of presolving,
e.g., because constraints connecting independent problems are detected to be redun-
dant and can be removed. Figure 1 depicts the constraint matrices of two real-world
instances at some point during presolving, reordered in a way such that independent
components can easily be identified.

(a) tanglegram? (b) scm-1-1

Fig. 1 Matrix structures of one instance from MIPLIB 2010 and one supply chain management instance:
columns and rows were permuted to visualize the block structure. Dots represent non-zero entries while
gray rectangles represent the blocks, which are ordered by their size from top left to bottom right
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We detect independent subproblems by first transferring the structure of the problem
to an undirected graph G and then searching for connected components like in [20].
The graph G is constructed as follows: for every variable x;, we create anode v;, and for
each constraint, we add edges to G connecting the variables with non-zero coefficients
in the constraint. Thereby, we do not add an edge for each pair of these variables, but—
in order to reduce the graph size—add a single path in the graph connecting all these
variables. More formally, the graph is defined as follows: G = (V, E) with

V ={vili=1,..n

E=U/ {(vi,vj) I1<i<j<n: ay#0
Aagj #0
ANagg=0Yeelitl,....j—1}).

Given this graph, we identify connected components using depth first search. By
definition, each constraint contains variables of only one component and can easily
be assigned to the corresponding subproblem.

The size of the graph is linear in the number of variables and non-zeros. It has n
nodes and—adue to the representation of a constraint as a path—exactly z — m edges,'
where z is the number of non-zeros in the constraint matrix. The connected components
of a graph can be computed in linear time w.r.t. the number of nodes and edges of the
graph [20], which is also linear in the number of variables and non-zeros of the MIP.

If we identify more than one subproblem, we try to solve the small ones immedi-
ately. In general, we would expect a better performance by solving all subproblems
to optimality one after another rather than solving the complete original problem to
optimality. However, this has the drawback that we do not compute valid primal and
dual bounds until we start solving the last subproblem. In practical applications, we
often do not need to find an optimal solution, but a time limit is applied or the solving
process is stopped when a small optimality gap is reached. In this case, it is preferable
to only solve easy components to optimality during presolving and solve remaining
larger problems together, thereby computing valid dual and primal bounds for the
complete problem.

To estimate the computational complexity of the components, we count the number
of discrete variables. In case this number is larger then a specific amount we do not
solve this particular component separately to avoid spending too much time in this step.
In particular, subproblems containing only continuous variables are always solved,
despite their dimensions.

However, the number of discrete variables is not a reliable indicator for the com-
plexity of a problem and the time needed to solve it to optimality.” Therefore, we
also limit the number of branch-and-bound nodes for every single subproblem. If the
node limit is hit, we merge the component back into the remaining problem and try
to transfer as much information to the original problem as possible; however, most

1 Assuming that no empty constraints exist; otherwise, the number of edges is still not larger than z.

2 See, e.g., the markshare instances [1] contained in MIPLIB 2003 that are hard to solve for state-of-the-art
solvers although having only 60 variables.
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insight is typically lost. Therefore, it is important to choose the parameters in a way
such that this scenario is avoided.

6 Computational results

In this section, we present computational results that show the impact of the new
presolving methods on the presolving performance as well as on the overall solution
process.

We implemented three new presolving techniques, which were already included
in the SCIP 3.0 release. The stuffing algorithm is implemented within the dominated
columns presolver, because it makes use of the same data structures.

The experiments were performed on a cluster of Intel Xeon X5672 3.20 GHz com-
puters, with 12 MB cache and 48 GB RAM, running Linux (in 64 bit mode). We used
two different test sets: a set of real-world supply chain management instances provided
by our industry partner and the MMM test set, which is the union of MIPLIB 3 [9],
MIPLIB 2003 [4], and the benchmark set of MIPLIB 2010 [22]. For the experi-
ments, we used the development version 3.0.1.2 of SCIP [3] (git hash 7e5af5b) with
SoPlex [30] version 1.7.0.4 (git hash 791a5cc) as the underlying LP solver and a
time limit of two hours per instance. In the following, we distinguish two versions of
presolving: the basic and the advanced version. The basic version performs all the
presolving steps implemented in SCIP (for more details, we refer to [2]), but disables
the techniques newly introduced in this paper, which are included in the advanced
presolving. This measures the impact of the new methods within an environment that
already contains various presolving methods. SCIP triggers a so-called restart if during
root node processing a certain fraction of integer variables has been fixed. In this case
presolving is also applied once more. Restarts were disabled to prevent further calls
of presolvers during the solving process, thereby ensuring an unbiased comparison of
the methods.

Figure 2 illustrates the presolve reductions for the supply chain management
instances. For each of the instances, the percentage of remaining variables (Fig. 2a)
and remaining constraints (Fig. 2b) after presolving is shown, both for the basic as
well as the advanced presolving. While for every instance, the new presolving meth-
ods do some additional reductions, the amount of reductions varies heavily. On the
one hand, only few additional reductions are found for the 1- and 3-series as well
as parts of the 4-series, on the other hand, the size of some instances, in particular
from the 2- and 5-series, is reduced to less than 1 % of the original size. The reason
for this is that these instances decompose into up to 1000 independent subproblems
most of which the connected components presolver does easily solve to optimality
during presolve. Average results including presolving and solving time are listed in
Table 1, detailed instance-wise results can be found in Table 2 in Appendix A. This also
includes statistics about the impact of the new presolvers. On average, the advanced
presolving reduces the number of variables and constraints by about 59 and 64 %,
respectively, while the basic presolving only removes about 33 and 43 %, respectively.
The components presolver fixes on average about 18 % of the variables and 16 % of
the constraints. 3.5 and 0.9 % of the variables are fixed by dominating columns and
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(a) variables after presolve
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(b) constraints after presolve

Fig.2 Size of the presolved supply chain management instances relative to the original number of variables
and constraints

stuffing, respectively. This increases the shifted geometric mean of the presolving time
from 2.12 to 3.18 s, but pays off since the solving time can be reduced by almost 50 %.
For a definition and discussion of the shifted geometric mean, we refer to [2].

The structure of the supply chain management instances allows the new presolving
methods to often find many reductions. This is different for the instances from the more
general MMM test set, where on average, the advanced presolving removes about 3 %
more variables and 1 % more constraints. It allows to solve one more instance within
the time limit and reduces the solving time from 335 to 317 s in the shifted geometric
mean. This slight improvement can also be registered in the performance diagram
shown in Fig. 3.
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Fig. 3 Performance diagram for the MMM test set. The graph indicates the number of instances solved
within a certain time

Table 1 Comparison of basic and advanced presolving on the supply chain management test set and the
MMM test set, complete as well as divided into instances with equal presolving reductions and instances
where the new presolvers found additional reductions

Test set Basic presolving Advanced presolving

Vars% Conss% PTime STime Solv. Vars% Conss% PTime STime Solv.

scm (41) 67.24 57.29 222 1000.8 15 40.90 35.79 3.18 527.0 17
MMM:all (168) 83.33  82.69 0.17 3349 124 80.04 81.65 0.19 317.1 125
MMM:eq (129) 83.53  82.62 0.13 3464 96 83.53 82.62 0.13 346.6 96
MMM:add (39) 82.66 82.90 0.42 299.4 28 68.50 78.43 0.63 235.9 29

We list the average percentage of variables and constraints remaining after presolving, the shifted geometric
means of presolving and solving times, and the number of instances solved to optimality

However, many of the instances in the MMM test set do not contain a structure that
can be used by the new presolving techniques: they are able to find reductions for less
than a quarter of the instances. On the set of instances where no additional reductions
are found, the time spent in presolving as well as the total time are almost the same,
see row MMM:eq in Table 1. Slight differences are due to inaccurate time measure-
ments. When regarding only the set of instances where the advanced presolving does
additional reductions, the effects become clearer: while increasing the presolving time
by about 50 % in the shifted geometric mean, 14.1 % more variables and 4.5 % more
constraints are removed from the problem. This is depicted in Fig. 4. The majority
of the variables is removed by the dominating columns presolver, which removes
about 11 % of the variables on average, the connected components presolver and the
stuffing have a smaller impact with less than 1 % removed variables and constraints,
respectively. Often, the reductions found by the new techniques also allow other pre-
solving methods to find additional reductions. As an example, see bley_xl1, where the
dominating columns presolver finds 76 reductions, which results in more than 4200
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Fig. 4 Size of the presolved instances relative to the original number of variables and constraints for all
instances from the MMM test set where the new presolving techniques find reductions

additionally removed variables and 135,000 additionally removed constraints. On this
set of instances, the advanced presolving reduces the shifted geometric mean of the
solving time by 21 % in the end.

7 Conclusions
In this paper, we reported on three presolving techniques for mixed integer program-

ming which were implemented in the state-of-the-art academic MIP solver SCIP. At
first, they were developed with a focus on a set of real-world supply chain manage-
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ment instances. Many of these contain independent subproblems which the connected
components presolver can identify, solve, and remove from the problem during pre-
solving. On the other hand, the dominating columns presolver finds reductions for
all the regarded instances, removing about a quarter of the variables from some of
the problems. In addition the stuffing singleton columns presolver finds reductions,
although not as many as the dominating columns presolver. Together, they help to
significantly improve SCIP’s overall performance on this class of instances.

Besides this set of supply chain management instances, we also regarded a set
of general MIP instances from various contexts. On this set, we cannot expect the
presolving steps to work on all or a majority of the instances, because many of them
miss the structure needed. As a consequence, itis very important that the new presolvers
do not cause a large overhead when the structure is missing, a goal we obtained by
our implementation. On those instances where the new presolvers do find reductions,
however, they notably speed up the solution process.

Our results show that there is still a need for new presolving techniques, also in
an environment which already incorporates various such techniques. In spite of the
maturity of MIP solvers, these results should motivate further research in this area,
especially since presolving is one of the most important components of a MIP solver.
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Appendix A: Detailed computational results

In this appendix, we present detailed results of our computational experiments pre-
sented in Sect. 6. Table 2 lists results for the supply chain management instances,
while Table 3 shows the instances from the MMM test set.

For each instance, we list the original number of variables and constraints. For both
the basic presolving as well as the advanced presolving, which includes the presolving
techniques presented in this paper, we list the number of variables and constraints after
presolving, the presolving time (PTime), and the total solving time (STime). If the time
limit was reached, we list the gap at termination instead of the time, printed in italics.
As in [22], the gap for a given primal bound pb and dual bound db is computed by
the following formula:

0.0 pb=db

gap(db, pb) = { o0 pb-db <0
_pb—dbl e
min{[pbl;|dbl}

If the gap is infinite, we print “inf%”, if it is larger than 100,000, we replace the
last three digits by a “k”. For the advanced presolving, we additionally present the
increase in the root LP dual bound (before cutting plane separation) in column “LP
A%”. For the dominating columns and stuffing presolver, we show the number of
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calls, the time spent in the presolver, and the number of variables fixed by dominating
columns (fixed) and stuffing (stuff). Finally, for the components presolver, we list the
number of calls, the time, the number of components solved, and the total number of
components detected as well as the number of fixed variables and deleted constraints.
Whenever one variant dominates the other in one criterion significantly, we print the
dominating value in bold for the instance.

At the bottom of the table, we present aggregated results. We list the average
percentage of variables and constraints remaining after presolving, the average root
LP dual bound increase, and the shifted geometric mean of the presolving and solving
time (instances hitting the time limit account for 7200s). We use a shift of 10s for
the solving time and 0.01 s for the presolving time. For the presolvers, we show the
average number of presolving calls, the shifted geometric mean of the time spent in
the presolver, again with a shift of 0.01, the average number of components solved
and detected, and the average percentages of variables and constraints fixed or deleted
by the presolvers. Underneath we print the number of solved instances for the two
different presolving settings and a line which lists the same averages, but computed
for only the subset of instances solved to optimality by both variants. Moreover, for
the MMM test set, we print two rows with averages restricted to the instances where
the advanced presolving found additional reductions (“applied”) and did not find any
reductions (“not appl.”), together with the number of instances in the corresponding
sets. These lines are only printed for the MMM test set because the advanced presolving
finds additional reductions for all supply chain management instances.
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