Math. Prog. Comp. (2015) 7:367-398 @ CrossMark
DOI 10.1007/s12532-015-0083-5

FULL LENGTH PAPER

Progress in presolving for mixed integer programming

Gerald Gamrath! . Thorsten Koch! .
Alexander Martin> - Matthias Miltenberger! -
Dieter Weninger?

Received: 15 August 2013 / Accepted: 26 March 2015 / Published online: 5 June 2015
© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2015

Abstract This paper describes three presolving techniques for solving mixed integer
programming problems (MIPs) that were implemented in the academic MIP solver
SCIP. The task of presolving is to reduce the problem size and strengthen the formula-
tion, mainly by eliminating redundant information and exploiting problem structures.
The first method fixes continuous singleton columns and extends results known from
duality fixing. The second analyzes and exploits pairwise dominance relations between
variables, whereas the third detects isolated subproblems and solves them indepen-
dently. The performance of the presented techniques is demonstrated on two MIP
test sets. One contains all benchmark instances from the last three MIPLIB versions,
while the other consists of real-world supply chain management problems. The com-
putational results show that the combination of all three presolving techniques almost
halves the solving time for the considered supply chain management problems. For
the MIPLIB instances we obtain a speedup of 20 % on affected instances while not
degrading the performance on the remaining problems.

B Gerald Gamrath
gamrath@zib.de

Thorsten Koch
koch@zib.de

Alexander Martin
alexander.martin @math.uni-erlangen.de

Matthias Miltenberger
miltenberger @zib.de

Dieter Weninger
dieter.weninger @math.uni-erlangen.de

Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

FAU Erlangen-Niirnberg, Cauerstr. 11, 91058 Erlangen, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-015-0083-5&domain=pdf

368 G. Gamrath et al.

Mathematics Subject Classification Primary 90C11 - 90C10; Secondary 90-04 -
90-08 - 90C90

1 Introduction

In order to eliminate redundant information and strengthen the formulation of an
integer program, solvers apply a number of techniques before the first linear pro-
gramming relaxation of an instance is solved. This step is referred to as presolving
or preprocessing. The solvers then work with this reduced formulation rather than
the original and recover the values of original variables afterwards. Presolving tech-
niques are often not only applied before solving the linear programming relaxation
at the root node in a branch-and-bound tree but may also be performed in a reduced
fashion, called node presolving, at other nodes of the tree. In this paper, however
we concentrate on techniques that we apply in the very first step of the solution
process.

Presolving has been applied for solving linear and mixed integer program-
ming problems for decades. Brearly et al. [13] and Williams [27] discussed bound
tightening, row elimination, and variable fixings in mathematical programming
systems, while Andersen and Andersen [5] published presolving techniques in
the context of linear programming. In addition, presolving techniques on zero-
one inequalities have been studied by Guignard and Spielberg [18], Johnson and
Suhl [21], Crowder et al. [14], and Hoffman and Padberg [19]. Williams [28]
developed a projection method for the elimination of integer variables and Savels-
bergh [25] investigated preprocessing and probing techniques for mixed integer
programming problems. An overview of different presolving techniques can be
found in the books of Nemhauser [24] and Wolsey [29], in Fiigenschuh and
Martin [17] and in Mahajan [23]. Details on implementing presolving tech-
niques effectively within a mixed integer linear programming solver are pre-
sented in Suhl and Szymanski [26], Atamtiirk and Savelsbergh [7], and Achter-
berg [2].

The impact of presolving on the entire solution process of mixed integer linear
programming problems was published in Bixby and Rothberg [10]. By disabling root
presolving, a mean performance degradation of about a factor of ten was detected.
Only cutting planes had a bigger influence on the solving process.

This paper is organized as follows. In Sect. 2 we present our notation. Section 3
describes a presolving technique we call Stuffing Singleton Columns, where continu-
ous variables with only one non-zero coefficient in the constraint matrix are fixed at a
suitable bound. In Sect. 4 we characterize a column based method called Dominating
Columns working on a partial order. Using this dominance relation new fixings and
bounds can be derived. Finally, in Sect. 5, a technique based on Connected Com-
ponents is presented that allows to split the whole problem into subproblems which
can be solved independently. In Sect. 6 we show computational results for all three
presolving techniques with the state-of-the-art non-commercial MIP solver SCIP [3]
on supply chain management instances and a test set comprised of all benchmark
instances from the last three MIPLIB versions [4,9,22]. We compare the achieved

@ Springer

Progress in presolving for mixed integer programming 369

reductions as well as the overall performance improvements in Sect. 6 and close our
paper with some conclusions in Sect. 7.

2 Notation and basics

Consider a mixed integer program (MIP)
min ¢”x
s.t. Ax <b
O0<tl<x<u
xeZP xR"7P

D

withc e R", £, u € R U{+o0},A e R"*", be R"and p € {0, 1,...,n}.

We use the notation A.; for column j of the matrix A and A;. to denote the row
vector i. The value in the i-th row and j-th column of A, is called g;;.

Forx € R", supp (x) = {i € {1,2,...,n} | x; # 0} denotes the support of x.

In [13] a procedure for tightening bounds of variables was published. Important
also for our algorithms is the so-called maximal (2) and minimal activity (3) of a linear
constraint A,.x < b,:

U, = Z arkUy + Z arily (2)

Vk, arx>0 Vk, arr <0
L= Z arily + Z arjug 3)
Vk, ar>0 Vk, ar <0

L, may be —oo and U, may be +00. Obviously, L, < A,.x < U, holds. By using
the minimal activity L, it is possible to calculate upper bounds u;‘ and lower bounds
£’ for variable x;. For all feasible solutions x the inequalities

b, — L, +arj€j

xj < ——HF :u;j, Vr witha,; >0 “4)
arj
by — L, +a,iu; .
xj = ————L =4, ¥r witha,; <0)
a,j !

hold. Hence we obtain potentially new bounds by

u’i =min {u;, min {u ;i and 0% = max {£;, max {Z e
J Vr,a;;>0 J Vr,a,j <0

For integer variables we may also apply rounding and use Lu*J or [Z*l instead. Thus,
we may assume that integer variables have integer bounds. However We do not require
that bound tightening is applied prior to the methods described in the following sec-
tions.

@ Springer

370 G. Gamrath et al.

3 Stuffing singleton columns

A singleton column is a column of the matrix A with [supp (A.;)| = 1. In this section
we analyze a set of singleton columns of continuous variables x; within a row r and
try to fix them at one of its bounds.

To illustrate the basic idea, consider the linear programming relaxation of the binary
knapsack problem. Items, each with a certain profit and size, need to be selected to be
put into a knapsack of a given capacity. In contrast to the binary knapsack problem,
it is possible to pack any fraction of an item. An optimal solution can be obtained by
sorting the items by decreasing profit/size ratio and selecting them in this order until
the knapsack capacity is reached [15]. Transferring this idea to a general MIP of the
form (1) causes two difficulties. Integer variables are present and variables usually
appear in more than one row. So we cannot simply proceed in the same manner as in
the linear programming relaxation of the binary knapsack problem, but need to modify
the idea as described in the following.

Suppose there is a column j of problem (1) with ¢; > 0 satisfying a,; > 0 for
allrows r € {1,...,m}. If £; > —o0, we can set variable x; to its lower bound. If
tj = —oo and c¢; > 0, then the problem is unbounded. The appropriate argument
applies to a column j with ¢; < 0 and a,; < O for all rows r. If uj < 00, we
can set variable x; to its upper bound. In case u; = oo and c¢; < 0, the problem is
unbounded. This presolving technique is called duality fixing [17]. Thus, duality fixing
already covers the cases where c;/a,; > 0. We use additional information about the
rows in order to treat the remaining cases where c;/a,; < 0.

Let us first focus on the case a,; > 0 and ¢; < 0. For a given row r, consider the
set of variable indexes

Jry={jel{l,....n}|xj e RAlsupp(A.j)|=1Aa;>0Ac; <0}. (6)

Furthermore, we define the following restricted maximal activity, which is similar to
the maximal activity (2) of row r except that continuous singleton columns x; with
j € J(r) are considered to be at their lower bounds.

0, = Z a,jﬁj+ Z arjuj + Z a,jﬁj (7)

JeJ(r) JEJ(r) J&J(r)
arj>0 arj<0

The values U, can now be used to determine optimal variable values for singleton
columns. First, we sort the indices j € J(r) by their cost/size ratios c;/a,; in non-
decreasing order. Let s be the first index in this order. Define A = a,;(us — £5) to be
the difference in the contribution of variable x; to constraint » when setting x; to its
upper instead of its lower bound. If A < b, — U,, xg can be set to its upper bound.
After this step, s is removed from J (r), U, is updated by adding A and the procedure
is iterated.

Theore{n 1 Given a MIP of the form (1), some row r, the index set J(r) as defined
in (6), U, as defined in (7), and the index s € J(r) with the smallest ratio cs/ays. If
A < b, — U, then xg = ug holds for at least one optimal solution.

@ Springer

Progress in presolving for mixed integer programming 371

Proof Let x* be an optimal solution with x7 < u,. If x;f = ¢ forall j € J(r)\{s},
then a new solution x” constructed by setting x; to uy is feasible because

/ / / 7
E arjx; = E arjx; +arsuy <Up + A < by.
vj Vi, j#s

Additionally, the objective function value improves because c; < 0. This contradicts
our assumption of x* being optimal. Hence there exists a j € J(r)\{s} with x}“ > L.
In this case we can construct a new solution x’ in which we decrease the value of x;‘
to x} while at the same time increasing the value of x; such that A,.x" = A, .x*. In
particular, a,s(x; — xJ) = a; (x;’f - x}) holds. The change of the objective function
can be estimated by

/

j=Csx

csXy+cjx s+t + cs(xy —x)) —¢j (xj — x})

Csdys Cjdrj
= cox) +cjxt + () — x5 — Lt — i)
s j s s ; j J
Ays dyj

csa CsQyi

* % sUrs /7 % sUry k /7

< osxg Fejx; + (xg —x;) — (xj—xj)
Ars Ars

C;
= CS)C:(+ CjX;f + _a d (ars (Xé - x;k) — drj (x;k - x;))
rs

* *
= CsXg +cjxj.

If x; = u,, we proved the theorem. Otherwise, x} = {; holds. Applying this argument
iteratively results in an optimal solution with x| = u or x} = ¢ forall j € J(r)\{s}.
But as we have shown before, the latter case contradicts the optimality of x’. O

A similar procedure is followed where a,; < 0 and ¢; > 0. We define
Jry={jel{l,...,n}|x; e RAlsupp(A.j))|=1Aa;; <0Ac; >0}

and

i,r = Z arjﬁj + Z arjuj + z aerj.
JEJ(r) JEJ(r) Jj&J(r)
a;j<0 arj>0

Now, we begin with the index s € J(r) corresponding to the greatest ratio c; /a,;. If
A > b, — I:r, X5 can be set to its upper bound. We update the set J () and the value
L, according to their definition and repeat the process.

Sorting the ratios takes O(|J (r)|log|J (r)|) and computing whether the variables
can be set to the upper or lower bound requires O(|J(r)|). Furthermore, the size of
J (r) is usually small and hence the algorithm does not deteriorate the performance
on instances where no or only very few reductions are found. This is especially true
for most MIPLIB instances. For certain practical problems, such as supply chain
management, stuffing singleton columns may, however, find fixings quite often (see

Sect. 6).

@ Springer

372 G. Gamrath et al.

4 Dominating columns

This presolving technique is based on a <-relation between the coefficients of two vari-
ables. Because this relation is reflexive, antisymmetric and transitive, it defines a partial
order (poset). The relation causes a consecutive behavior of the variable values and
can thus be seen as a dominance relation. The idea of exploiting a dominance relation
between variables for presolving is not new. Andersen and Andersen [5] used domi-
nating columns in the presolving of linear programming problems and Borndorfer [12]
applied this technique in the context of set partitioning problems. In addition, Babayev
and Mardanov [8] and Zhu and Broughan [31] introduced procedures based on com-
paring pairs of columns for reducing the number of integer variables, mostly applied
on knapsack problems. Our method can be seen as a generalization and extension of
existing dominating columns approaches for mixed integer programming problems.

4.1 Dominance relation

Definition 1 Let a MIP of the form (1) with two different variables x; and x; of
the same type, i.e., binary, integer or continuous, be given. We say x; dominates x;
(xj > x;), if

@) Cj=¢Ci and
(ii) a,j < ay; for every constraint r.

We call x; the dominating variable and x; the dominated variable.
The following example illustrates Definition 1.

Example 1

min —2x; —1xp +1x3 +1x4 —2x5 +1x¢
s.t. +2x1 +3xp —2x3 <1

+1xa —2x3 —lxg =3x5 +1x6 < —11
—lx3 +1xg +2x5 +3x6 < 5
+1xg —2x5 —lx6 < 1.5

0<xi,x2<4, 1<x3,x4 <35
X1,x2 €7, x3,x4 € R, x5,x6 € {0, 1}

In this example x; > x2, x3 > x4 and x5 > xg and the optimal solution is x| =
4,0 =0,x3 =35, x4 =1, x5 =1, x4 = 0 with value —5.5.

Example 1 raises suspicion that one of the variables involved in adominance relation
is at one of its bounds in the optimal solution. Indeed, this is a general property of the
dominance relation that we will prove in the following. To achieve this, we first show
that increasing the dominating variable and decreasing the dominated variable by the
same amount preserves feasibility and optimality, provided the variable bounds are
still satisfied.

@ Springer

Progress in presolving for mixed integer programming 373

Lemma 1 Let X be a feasible solution for (1) and x; > x;. For 0 < a € IR, we define

x* with
Xk +a k=],
Xp=1%—o k=i,
Xk else.

Ifx;‘ =Xj+a <ujandx’ = X; —a > {;, then x* is feasible and its objective value
is not worse than the one of x.

Proof For every constraint A,.x < b,, we get

n n
Zarkx;: = Z ari X + arj(Xj + @) + ari (Xi —)
k=1 k=1
ki, j
n
= Zarkik +a (arj —ay;) < by.
————

k=1
—_—— <0
<b,

By assumption the bounds of the variables are fulfilled, hence x* is feasible. Addition-
ally, we know from Definition 1 that ¢; < ¢;, thus Txr=cTx+ alcj —ci) < cTx,
i.e., the objective value is not getting worse. O

This leads us to the following theorem, stating that the dominated variable is at its
lower bound or the dominating variable is at its upper bound in at least one optimal
solution.

Theorem 2 Let x; > x;, then there always exists an optimal solution x* for (1) with

Proof Let x be an optimal solution with x; < u; A X; > £;. We construct a feasible
solution x* by defining o« = min{Xx; — ¢;, u; — X;} and applying Lemma 1. Since x is
optimal and ¢’ x* < ¢ X, x* is optimal. By definition of «, also x;f =u;Vvx={¢
holds. O

4.2 Predictive bound analysis
Based on Theorem 2 we describe sufficient conditions which allow in combination
with Definition 1 to tighten bounds or fix variables. We first extend the maximal and

minimal row activity from (2) and (3) as a function of one variable x;.

Definition 2 Let a linear constraint A,.x < b, of (1) and a variable x; be given. We
denote by

@ Springer

374 G. Gamrath et al.

n

n
Uln) = D7 apui + D anclic + arexs

k=1 k=1
k#t k#t
ar >0 az <0

the conditional maximal activity of the linear constraint w.r.t. x; and by

n n
Li(x;) = Z arily + Z arkk + arX;

k= k=1
k#t k#t
ar;>0 arr <0

the conditional minimal activity of the linear constraint w.r.t. x;.

Definition 2 is now used to define specific functions, which predict the bounds
of variable x; depending on the value of another variable x;. We call this approach
predictive bound analysis.

Definition 3 Let (1) and two variables x; and x; be given. We define the functions

b, — LL(x;) + aysu
MAXLtY(x,) = max ! 1) " lays, ar < 04,
h r=1,..., m Ayrg
b, — Ul(x;) + ayst
MAXU.(x;) = max |——"" T g a, <0,
r=I1,..., m Arg
. b, — Ll.(x;) + a5t
MINL;(x,) = mi 4 rt "2\ ays,ar >0} and
r=1,...m Arg
. b, — Ul (x;) + aysu
MINU! (x;) = min 4 rt " ays, ar > 01,
’ r=I1,....m Arg

MINLg (x;) takes into account all constraints in which x; and x; have positive coeffi-
cients, i.e., a subset of the constraints that imply an upper bound on x;. Similar to the
bound tightening (see (4)), the upper bound on x; is computed for each constraint,
but instead of using the minimal activity, the conditional minimal activity w.r.t. x; is
used. Therefore, each constraint gives an upper bound for x; subject to the value of x;.
Minimizing over these bounds, MINLZ (xy) gives the tightest implied upper bound on
Xs as a function of the value of x;. Analogously, MAXL? (x;) gives the tightest implied
lower bound on x; as a function of the value of x;.

The other two functions MAXU§ (x;) and MINU§ (x;) take into account the maximal
instead of the minimal activity. Since the maximal activity is the worst-case when
regarding feasibility of a <-constraint, we obtain a larger lower and a smaller upper
bound for x; subject to x;. This range of values for x; is feasible for all constraints,
independent of the other variables. It may, however, exceed the variable’s domain.

In the following, we assume MAXLQ (x¢), MAXU@ (x4), MINLZ (x¢), and MINU§ (x;) to
be finite, in particular, that there are rows satisfying the requirements on the coefficients
as demanded in Definition 3.

@ Springer

Progress in presolving for mixed integer programming 375

Next, we show that these four functions are strictly monotonically decreasing. This
property is fundamental to obtain a maximum value if we assume x; is at its lower
bound and vice versa.

Lemma 2 MAXLE (1), MAXUZ (x;), MlNLg (x¢) and MINU. (x;) are strictly monotoni-
cally decreasing functions, i.e., for £, < x; < x;' < u; holds

MAXLL (x]) > MAXLS (x]),
MAXU (x]) > MAXU (x}),
MINL, (x)) > MINL! (x') and
MINU (x;) > MINUE (x]").

Proof We only prove the first inequality, the others can be shown using a similar
procedure. Let 7 be one row defining the maximum in the computation of MAXL (x/).
Since LL(x;") — LL(x{) = a7 (x; —x]) and az,, a;; < 0by the definition of MAXL} (X)),
the following holds:
b, — Lf, (Xt/) + arsus
Ars
b, — L; (xt//) + arsis
— max |ars,arl <0
r=1,...m Ay

b Li(x) +apsus bp — Ly(x[) + agsus

MAXLS (x) — MAXL! (x) = max [|ars., ar; < 0}
.,m

Uiy Aig
age , g /
= o G =)
arS
>0

m}

These functions can help us to infer bounds for the dominating or the dominated
variable in an optimal solution.

Theorem 3 Let two continuous variables x ;, x; of (1) and x; > x; be given, then the
bounds

(i) x; < MINL'(£;),

(i) x; > MAXL (u;),
(iii) x; > min{u;, MAXL', (£;))},

(iv) x; < max{¢;, MINL! (u;)},

(v) Ifcj <0then x; > min{u;, MINU’j)} and

(vi) Ifc; > 0 then x; < max{¢;, MAXU/ (u)}
hold for at least one optimal solution.
Proof (i) By Definition 3, a,; and a,; are positive for all rows regarded for the com-

putation of MINL; (€;). Therefore setting x; to ¢; does not change the minimal

activity (3) of the row. Thus by (4) follows MINL; (¢;) is an upper bound of x;.

@ Springer

376 G. Gamrath et al.

(ii) By Definition 3, a,; and a,; are negative for all rows regarded for the computa-
tion of MAXL{ (u;). Therefore setting x; to u; does not change the minimal
activity (3) of the row. Thus by (5) follows MAXL{ (u;) is a lower bound
of Xi. .

(iii) We only treat the interesting case £; < MAXL’j (¢;). By Definition 3, there exists
one row r with arjMAXLZ- () + Li(¢;) — ayjuj = b,. Let x* be an optimal

*
arjMAXLlj(Ei) + L;,(Ei) —arjuj = b, < arjx;'.‘ + L’r(fi) —arju; since arj < 0.
This leads to a contradiction, because x* was chosen to be feasible. Thus x;" =
£; + B with 8 > 0 and a,jx;‘ +ari(6i +B)+ Ly —arjuj —ariu; < b,. Together
with aj (x% +) + LL(€) — arjuj > apyMAXL; (6) + LL(6) — arjuj = by we
get the inequality

solution with & = min{u;, MAXL; (£;)} — x% > 0. Assuming x/ = ¢;, then

arjx§ + ari(bi + B) + Ly — arjuj — arit; < arj(x} + o) + L, (&) — arju;,

resulting in 8 > o - a,j/a,; with a,j/a,; > 1. By Lemma 1, we can increase x;‘
by a and decrease x;* by o without loosing feasibility or optimality.

(iv) We only treat the interesting case MINL{ (u) < u;. By Definition 3, there exists
one row r with a”-MINL{(uj) + L{(uj) — a;il; = b,. Let x* be an optimal
solution with @ = x/ — max{¢;, MINLij (uj)} > 0. Assuming x;.‘ = uj, then
apMINL (uj) + L] (u}) — a,it; = by < apix* + Ll (uj) — a,i€; since a,; > 0.
This leads to a contradiction, because x* was chosen to be optimal, and therefore
also feasible. Thus x7 = u; — p with B > 0 and a,j(u; — B) + arix] +
L, —arjtj — a;ili < b,. Together with a,;(x} — &) + LI (u}) — anil; >
ariMINL{ (uj) + Lf(uj) — a,i¢; = b, we get the inequality
arj(uj = B) + arixi + Ly — arjlj — arili < api(xf —) + L (u;) — aril;
yielding 8 > « - ayi/a,j with a,; /a,; > 1. By Lemma 1, we can decrease xl.* by
« and increase x;‘f by « without loosing feasibility or optimality.

(v) We only treat the interesting case £; < MINU; (¢;). By Definition 3, there exists
one row r with a,jMINUj i)+ Uri (¢;)—ayjuj = b,. Suppose there is an optimal
solution x* with x < minfu, MINU; (€)}. Leta; = min{u;, MINU; (£)) — x%,
a; = x; —£; and & = min{o;, a;}. By Lemma 1, we can increase x;.k by « and
decrease x* by o without loosing feasibility or optimality. If « = «; we are fin-
ished because we constructed an optimal solution withx ; = min{u, MINU;)}
Otherwise, we get an optimal solution x* with x;" = {;. Now, we show that x
with X; = min{u, MINUj. (¢)}, X; = ¢; and X; = x] fork # j, i is also an opti-
mal solution. Because x™* is feasible and by definition of x 7, x fulfills all bounds.

By increasing x;, we can only loose feasibility for rows r with a,; > 0. From
xj > x; weknow 0 < a,; < ay;, so these rows are exactly the rows regarded in

@ Springer

Progress in presolving for mixed integer programming 377

the definition of MINUZ. (¢;). Assume one of these rows is violated, i.e., arT X > by,
then

n
0>b — Zarkik =b, — Z arkXi + Z ar Xy + aril;

k=1
k#l k;él

ap>0 ay <0

> by — Z arkUk + z arile + arili — arjuj + arjx;
k;tt k#t

ar>0 a, <0

= b, — U.(t;) + arju;j — arj%;

It follows that x; > (b, — Uit +ay juj)/arj = MINU; (¢;), but this contradicts
the deﬁnition of x;, so all rows must still be feasible. x is also optimal since we
getc X <clx* from Xx; > x] and ¢; < 0.

(vi) We only treat the interesting case MAXUJ (u i) < u;. By Definition 3, there
exists one row 7 with a,; MAXU; (uj) + U/ (u;) — arit; = by. Suppose there
is an optimal solution x* with x/ > max{{;, MAXU{ (uj)}. Let oy = x/ —
max{¥¢;, MAXUl.j W}, o =u; —xf;, and o = min{e;, «j}. By Lemma 1, we can
decrease x;* by « and increase x” by & without loosing feasibility or optimality.
If « = «;, then we are finished because we constructed an optimal solution
with x; = max{¢(;, MAXU{ (uj)}. Otherwise, we get an optimal solution x* with
xj = uj. Now, we show that X with x; = max{¢;, MAXU{ (uj)}, xj = u; and

X = xj for k # i, j is also an optimal solution. Because x* is feasible and

by definition of x;, x fulfills all bounds. By decreasing x;, we can only loose

feasibility for rows r with a,; < 0. From x; > x; we know a,; < a,; < 0, so
these rows are exactly the rows regarded in the definition of MAXU{ (). Assume

one of these rows is violated, i.e., a,T X > b,, then

n n n
0> b, — Zarkik =b — Z ar Xy + z ark Xk + apju
k=1 k=1 =1
k#j k#]
az >0 a, <0

n n
> b — | D amu+ D b+ arjuj — arili + ayix;

k=1 k=1
k#j k]
ay>0 a ;<0

=b, — Urj(uj) +arili —apiX;

@ Springer

378 G. Gamrath et al.

Since a,; < 0, it follows that ; < (b, — U/ (u;) + ayili)/ari < MAXU! (u;),
but this contradicts the definition of x;, so all rows must still be feasible. x is also
optimal since we get ¢ x < ¢ x* from x; < x*and ¢; > 0. O

Whenever in Theorem 3, (iii)—(vi), the minimum or maximum is obtained for the
first argument, the variable can be fixed. Since this has the highest impact regarding
presolving, as it reduces the problem size, and we do not need to pay attention to
rounding MAXLE (1), MAXUL (), MINLE (x;) and MINU! (x;) for integer variables, we
summarize the fixing criteria.

Corollary 1 Let a MIP of form (1) be given as well as two variables xj, x; of the
same type, i.e., binary, integer or continuous, with x j > x;. In the following cases, we
can fix a variable while preserving at least one optimal solution.

1) MAXLZJ-(Ei) > uj = x; can be set to u;.

(i1) MINL'l.’ (uj) < ¢; = x; can be set to {;.
(iii) ¢; <0and MINU;(E,-) >uj = xjcan be setto u;.

@iv) ¢; > 0 and MAXU{ (uj) < €; = x; can be set to {;.

We now apply Corollary 1 on Example 1. First we need to calculate some conditional
activities L] (uy) = 1, L3(€s) = —11,U$(¢s) = 4.5, U] (us) = 1.5, which allows
us to determine the values MINL; (uy) =0, MAXLE‘(&) = 3.5, MINUg (£g) = 1.25 and
MAXUg(us) = 0. Thus we can set x, and xg to their lower bounds and x3 and x5 to
their upper bounds.

The following criteria can be used instead of Corollary 1. By having two alternative
criteria for each variable fixing, we can select the one that fits better in a given situation.
In particular, an infinite upper bound is more common than an infinite lower bound
since many problems are modeled using non-negative variables.

Corollary 2 Given a MIP of the form (1) and two variables xj, x; of the same type,
i.e., binary, integer or continuous, with x; > x;. In the following cases, we can fix a
variable while preserving at least one optimal solution.

@) MAXL'l./(uj) > {; = xj canbesettou;.
(i) MINL'j (¢;) <uj = x; canbesetto?;.
(iii) ¢; < 0andMINU/ (1) > ¢; = x can be settou;.
@iv) ¢; > OandMAXU; (¢;) <uj = x; canbesetto/;.
Proof (1) If MAXLZJ (u;) > ¢;, then by Definition 3 and Lemma 2 it follows that
MAXL; ;) > MAXL; (MAXL{ (uj)) =uj.

From MAXL{ (uj) < £; follows

MAXL]; (€;) < MAXL (MAXL] (u})) = u;.

@ Springer

Progress in presolving for mixed integer programming 379

This is the statement of Corollary 1(i).
(i1)—(iv) are similar to case (i). O

4.3 Utilize conflict information for binary variables

For binary variables we can use information from a conflict graph [6] to fix additional
variables in connection with the dominance relation. The use of this information has
the advantage that it was concurrently extracted in preceding presolving rounds.

Anundirected graph G = (V, E) is called a conflict graph of (1), if for every binary
variable x; there is a vertex v; € V and a vertex v; € V forits complement x; = 1 —x;.
The edge set E consists of edges v;v; for all binary variables x; and edges between
two vertices when at most one of the corresponding variables or complements can be
equal to 1 in an optimal solution.

Theorem 4 (i) Let two binary variables x, x; of (1) withxj > x; and vjv; € E be
given, then x; can be set to 0.

(ii) Let two binary variables x;, x; of (1) with x; > x; and v;v; € E be given, then
xj can be set to 1.

Proof (1) With two binary variables, four variable assignments are possible. Because
xj = 1 Ax; = 11is not allowed due to vjv; € E, only the possibilities x; =
Inxi=0,x; =0Ax; =0and x; =0 A x; = 1 remain. From Definition 1 and
Lemma 1 we know that it is possible to increase x; and decrease x; accordingly,
thereby staying feasible and optimal. Thus, only the cases x; = 1 A x; = 0 and
xj = 0 A x; = 0remain. In both cases, x; is at its lower bound.

(ii) The case is similar to (i). Finally, the logical conjunctions x; = 1 A x; = 1 and
xj =1 Ax; = 0 are left. In both cases, x; is at its upper bound. O

4.4 Finding a dominance relation

The complexity of an algorithm that operates on a partial order (poset) is mainly
determined by the width w of the poset. w is defined to be the maximum cardinal-
ity of an anti-chain, which is a subset of mutually incomparable or non-dominating
elements. In [16] an algorithm was introduced that sorts a width-w poset of size n
in O(n(w + logn)). Its representation has size O (wn) and permits retrieval of the
relation between any two elements in time O(1). Since we cannot assume to verify
the relation between any two elements in O (1) and w is usually large in our case,
we decided to go for it heuristically. This approach works well in practice, which
can be seen in the computational results of Sect. 6. Let R~ C {1, ..., m} be the set
of row indices of equalities and C~ = {j € {1,...,n} | axj # 0,k € R~} be
the set of columns of matrix A € R™*" having non-zero entries within equalities.
C==1{l1,...,n\C~ is the set of columns having only non-zeros within inequalities.
The approach consists of two stages. First we sub-divide C~ into different parallel
classes C; concerning the non-zero entries within equalities. The detection of the
parallel classes is performed by an algorithm [11] developed for detecting parallel

@ Springer

380 G. Gamrath et al.

columns in O (ZkeR: [supp (Ax.)| log |supp (Ax.)|). Then we compare all columns of
every C;; in O(m - (|C217 |)). The first stage guarantees to find all dominance relations
within C=. The second stage considers only columns of C= and takes advantage of the
sparsity of A via analyzing the rows by increasing |supp (A,.)| in O (m - (‘S“""(zAr')l)).
After one row was executed, the processed columns therein are not compared to
other columns anymore. Thus the number of columns which should be compared is
usually much smaller than n. In cases where we have to compare a lot of columns,
there is a mechanism which monitors the number of fixings per number of paired
comparisons. If not enough fixings are found, then this row will not be investigated
further.

5 Connected components

The connected components presolver aims at identifying small subproblems that are
independent of the remaining part of the problem and tries to solve those to optimality
during the presolving phase. After a component is solved to optimality, the variables
and constraints forming the component can be removed from the remaining problem.
This reduces the size of the problem and the linear program to be solved at each
node.

Although a well modeled problem should in general not contain independent com-
ponents, they occur regularly in practice. And even if a problem cannot be split into
its components at the beginning, it might decompose after some rounds of presolving,
e.g., because constraints connecting independent problems are detected to be redun-
dant and can be removed. Figure 1 depicts the constraint matrices of two real-world
instances at some point during presolving, reordered in a way such that independent
components can easily be identified.

(a) tanglegram? (b) scm-1-1

Fig. 1 Matrix structures of one instance from MIPLIB 2010 and one supply chain management instance:
columns and rows were permuted to visualize the block structure. Dots represent non-zero entries while
gray rectangles represent the blocks, which are ordered by their size from top left to bottom right

@ Springer

Progress in presolving for mixed integer programming 381

We detect independent subproblems by first transferring the structure of the problem
to an undirected graph G and then searching for connected components like in [20].
The graph G is constructed as follows: for every variable x;, we create anode v;, and for
each constraint, we add edges to G connecting the variables with non-zero coefficients
in the constraint. Thereby, we do not add an edge for each pair of these variables, but—
in order to reduce the graph size—add a single path in the graph connecting all these
variables. More formally, the graph is defined as follows: G = (V, E) with

V ={vili=1,..n

E=U/ {(vi,vj) I1<i<j<n: ay#0
Aagj #0
ANagg=0Yeelitl,....j—1}).

Given this graph, we identify connected components using depth first search. By
definition, each constraint contains variables of only one component and can easily
be assigned to the corresponding subproblem.

The size of the graph is linear in the number of variables and non-zeros. It has n
nodes and—adue to the representation of a constraint as a path—exactly z — m edges,'
where z is the number of non-zeros in the constraint matrix. The connected components
of a graph can be computed in linear time w.r.t. the number of nodes and edges of the
graph [20], which is also linear in the number of variables and non-zeros of the MIP.

If we identify more than one subproblem, we try to solve the small ones immedi-
ately. In general, we would expect a better performance by solving all subproblems
to optimality one after another rather than solving the complete original problem to
optimality. However, this has the drawback that we do not compute valid primal and
dual bounds until we start solving the last subproblem. In practical applications, we
often do not need to find an optimal solution, but a time limit is applied or the solving
process is stopped when a small optimality gap is reached. In this case, it is preferable
to only solve easy components to optimality during presolving and solve remaining
larger problems together, thereby computing valid dual and primal bounds for the
complete problem.

To estimate the computational complexity of the components, we count the number
of discrete variables. In case this number is larger then a specific amount we do not
solve this particular component separately to avoid spending too much time in this step.
In particular, subproblems containing only continuous variables are always solved,
despite their dimensions.

However, the number of discrete variables is not a reliable indicator for the com-
plexity of a problem and the time needed to solve it to optimality.” Therefore, we
also limit the number of branch-and-bound nodes for every single subproblem. If the
node limit is hit, we merge the component back into the remaining problem and try
to transfer as much information to the original problem as possible; however, most

1 Assuming that no empty constraints exist; otherwise, the number of edges is still not larger than z.

2 See, e.g., the markshare instances [1] contained in MIPLIB 2003 that are hard to solve for state-of-the-art
solvers although having only 60 variables.

@ Springer

382 G. Gamrath et al.

insight is typically lost. Therefore, it is important to choose the parameters in a way
such that this scenario is avoided.

6 Computational results

In this section, we present computational results that show the impact of the new
presolving methods on the presolving performance as well as on the overall solution
process.

We implemented three new presolving techniques, which were already included
in the SCIP 3.0 release. The stuffing algorithm is implemented within the dominated
columns presolver, because it makes use of the same data structures.

The experiments were performed on a cluster of Intel Xeon X5672 3.20 GHz com-
puters, with 12 MB cache and 48 GB RAM, running Linux (in 64 bit mode). We used
two different test sets: a set of real-world supply chain management instances provided
by our industry partner and the MMM test set, which is the union of MIPLIB 3 [9],
MIPLIB 2003 [4], and the benchmark set of MIPLIB 2010 [22]. For the experi-
ments, we used the development version 3.0.1.2 of SCIP [3] (git hash 7e5af5b) with
SoPlex [30] version 1.7.0.4 (git hash 791a5cc) as the underlying LP solver and a
time limit of two hours per instance. In the following, we distinguish two versions of
presolving: the basic and the advanced version. The basic version performs all the
presolving steps implemented in SCIP (for more details, we refer to [2]), but disables
the techniques newly introduced in this paper, which are included in the advanced
presolving. This measures the impact of the new methods within an environment that
already contains various presolving methods. SCIP triggers a so-called restart if during
root node processing a certain fraction of integer variables has been fixed. In this case
presolving is also applied once more. Restarts were disabled to prevent further calls
of presolvers during the solving process, thereby ensuring an unbiased comparison of
the methods.

Figure 2 illustrates the presolve reductions for the supply chain management
instances. For each of the instances, the percentage of remaining variables (Fig. 2a)
and remaining constraints (Fig. 2b) after presolving is shown, both for the basic as
well as the advanced presolving. While for every instance, the new presolving meth-
ods do some additional reductions, the amount of reductions varies heavily. On the
one hand, only few additional reductions are found for the 1- and 3-series as well
as parts of the 4-series, on the other hand, the size of some instances, in particular
from the 2- and 5-series, is reduced to less than 1 % of the original size. The reason
for this is that these instances decompose into up to 1000 independent subproblems
most of which the connected components presolver does easily solve to optimality
during presolve. Average results including presolving and solving time are listed in
Table 1, detailed instance-wise results can be found in Table 2 in Appendix A. This also
includes statistics about the impact of the new presolvers. On average, the advanced
presolving reduces the number of variables and constraints by about 59 and 64 %,
respectively, while the basic presolving only removes about 33 and 43 %, respectively.
The components presolver fixes on average about 18 % of the variables and 16 % of
the constraints. 3.5 and 0.9 % of the variables are fixed by dominating columns and

@ Springer

Progress in presolving for mixed integer programming 383

(D basic @B advanced presolving

100%
80% -
60% M _
40%
20%
0% I = I e =
scm-1 scm-2 scm-3 scm-4 scm-5 scm-8
(a) variables after presolve
(D basic @B advanced presolving
100%
80% 1
60% Ml
40%
20% ‘
0% —I e
scm-1 scm-2 scm-3 scm-4 scm-5 scm-8

(b) constraints after presolve

Fig.2 Size of the presolved supply chain management instances relative to the original number of variables
and constraints

stuffing, respectively. This increases the shifted geometric mean of the presolving time
from 2.12 to 3.18 s, but pays off since the solving time can be reduced by almost 50 %.
For a definition and discussion of the shifted geometric mean, we refer to [2].

The structure of the supply chain management instances allows the new presolving
methods to often find many reductions. This is different for the instances from the more
general MMM test set, where on average, the advanced presolving removes about 3 %
more variables and 1 % more constraints. It allows to solve one more instance within
the time limit and reduces the solving time from 335 to 317 s in the shifted geometric
mean. This slight improvement can also be registered in the performance diagram
shown in Fig. 3.

@ Springer

384 G. Gamrath et al.

120 -
£
©
i
3
~ 100 -
w0
Q
9]
<!
3
£
4 80
e
S
-
13
e 60
g basic presolving

advanced presolving
40
1800 3600 5400 7200
time

Fig. 3 Performance diagram for the MMM test set. The graph indicates the number of instances solved
within a certain time

Table 1 Comparison of basic and advanced presolving on the supply chain management test set and the
MMM test set, complete as well as divided into instances with equal presolving reductions and instances
where the new presolvers found additional reductions

Test set Basic presolving Advanced presolving

Vars% Conss% PTime STime Solv. Vars% Conss% PTime STime Solv.

scm (41) 67.24 57.29 222 1000.8 15 40.90 35.79 3.18 527.0 17
MMM:all (168) 83.33 82.69 0.17 3349 124 80.04 81.65 0.19 317.1 125
MMM:eq (129) 83.53 82.62 0.13 3464 96 83.53 82.62 0.13 346.6 96
MMM:add (39) 82.66 82.90 0.42 299.4 28 68.50 78.43 0.63 235.9 29

We list the average percentage of variables and constraints remaining after presolving, the shifted geometric
means of presolving and solving times, and the number of instances solved to optimality

However, many of the instances in the MMM test set do not contain a structure that
can be used by the new presolving techniques: they are able to find reductions for less
than a quarter of the instances. On the set of instances where no additional reductions
are found, the time spent in presolving as well as the total time are almost the same,
see row MMM:eq in Table 1. Slight differences are due to inaccurate time measure-
ments. When regarding only the set of instances where the advanced presolving does
additional reductions, the effects become clearer: while increasing the presolving time
by about 50 % in the shifted geometric mean, 14.1 % more variables and 4.5 % more
constraints are removed from the problem. This is depicted in Fig. 4. The majority
of the variables is removed by the dominating columns presolver, which removes
about 11 % of the variables on average, the connected components presolver and the
stuffing have a smaller impact with less than 1 % removed variables and constraints,
respectively. Often, the reductions found by the new techniques also allow other pre-
solving methods to find additional reductions. As an example, see bley_xl1, where the
dominating columns presolver finds 76 reductions, which results in more than 4200

@ Springer

Progress in presolving for mixed integer programming 385

(D basic @B advanced presolving
100%

80% I —
60%
40%
20% ‘ |
. AN

(a) variables after presolve

(D basic @B advanced presolving
100%

80% I
60%
40%
0% i B

(b) constraints after presolve

Fig. 4 Size of the presolved instances relative to the original number of variables and constraints for all
instances from the MMM test set where the new presolving techniques find reductions

additionally removed variables and 135,000 additionally removed constraints. On this
set of instances, the advanced presolving reduces the shifted geometric mean of the
solving time by 21 % in the end.

7 Conclusions
In this paper, we reported on three presolving techniques for mixed integer program-

ming which were implemented in the state-of-the-art academic MIP solver SCIP. At
first, they were developed with a focus on a set of real-world supply chain manage-

@ Springer

386 G. Gamrath et al.

ment instances. Many of these contain independent subproblems which the connected
components presolver can identify, solve, and remove from the problem during pre-
solving. On the other hand, the dominating columns presolver finds reductions for
all the regarded instances, removing about a quarter of the variables from some of
the problems. In addition the stuffing singleton columns presolver finds reductions,
although not as many as the dominating columns presolver. Together, they help to
significantly improve SCIP’s overall performance on this class of instances.

Besides this set of supply chain management instances, we also regarded a set
of general MIP instances from various contexts. On this set, we cannot expect the
presolving steps to work on all or a majority of the instances, because many of them
miss the structure needed. As a consequence, itis very important that the new presolvers
do not cause a large overhead when the structure is missing, a goal we obtained by
our implementation. On those instances where the new presolvers do find reductions,
however, they notably speed up the solution process.

Our results show that there is still a need for new presolving techniques, also in
an environment which already incorporates various such techniques. In spite of the
maturity of MIP solvers, these results should motivate further research in this area,
especially since presolving is one of the most important components of a MIP solver.

Acknowledgments The authors would like to thank the anonymous reviewers for helpful comments on
the paper. The work for this article has been partly conducted within the Research Campus Modal funded
by the German Federal Ministry of Education and Research (fund number 05M14ZAM). Finally, we thank
the DFG for their support within Projects A0S, BO7, and Z02 in CRC TRR 154.

Appendix A: Detailed computational results

In this appendix, we present detailed results of our computational experiments pre-
sented in Sect. 6. Table 2 lists results for the supply chain management instances,
while Table 3 shows the instances from the MMM test set.

For each instance, we list the original number of variables and constraints. For both
the basic presolving as well as the advanced presolving, which includes the presolving
techniques presented in this paper, we list the number of variables and constraints after
presolving, the presolving time (PTime), and the total solving time (STime). If the time
limit was reached, we list the gap at termination instead of the time, printed in italics.
As in [22], the gap for a given primal bound pb and dual bound db is computed by
the following formula:

0.0 pb=db

gap(db, pb) = { o0 pb-db <0
_pb—dbl e
min{[pbl;|dbl}

If the gap is infinite, we print “inf%”, if it is larger than 100,000, we replace the
last three digits by a “k”. For the advanced presolving, we additionally present the
increase in the root LP dual bound (before cutting plane separation) in column “LP
A%”. For the dominating columns and stuffing presolver, we show the number of

@ Springer

387

Progress in presolving for mixed integer programming

L€08 6SE°LI €EL/ITEL 09°0 o 9¢L ¥00 ¥ 0T 00°0+ 60 8¢ 9¢T 81 T0 6L08 LST'8T OET'El L6S°9T ¢0-+00-dus
0 0 1/0 ¥0°0 I o o1 o S wILZl 000+ €1 LL8'8T O0EL'8S % 6FI 'L LS8'ST 0SL'SS LO6'LY TS9'LS €00-dus
0 0 1/0 200 Lo 81 oro ¥ ®»sc 000+ 90 €8TST TWI'IE % T S0 68TSI S9I'IE ¥L9'9T €IL'Ly 90-€00-dus
0 0 1/0 100 I o 8 9or'o ¥ %ocr 000+ 8'0 099°€T 9VI‘8T % L'€] P00 999°€l 091°8T 68Y°€C 89v'TH SO-€00-dus
0 0 1/0 10°0 10 8¢ I€0 0T %LZ6 000+ 60 9TP8 O0SE°LT % 8Tl 0 S8 8SH LT T€0°ST #9S°9T #0-£00-dus
0 0 1/0 000 I o 14! s00 8 80 000+ €0 LO06T LTLY <0 0 Ic6C LSLY 508 1606 €0-€00-dus
0 0 1/0 00°0 I o 9 100 ¥ I'0 000+ I'0 6S6 LSIT 1o I'0 96 1L1T SEYT 8YLE 20-€00-dus
0 0 1/0 000 I o 4 000 ¢ I'0 000+ I'0 08 ¥8pI I'0 00 €8S 06v1 8¢Cl soce 10-€00-dus
LSO'El €0€°€T OIT1/T0IT 90°€E I €¥8 VITLOL 9LT ¥ %00 910+ L'Lv SLET Y061 % S9IC SLI1 168°¢6 LLY'STT 919°60T €5S°T8E 200-dus
6L9¢ 7818 0€5/6TS 970 I 8691 €61°6E 0F0 T €€ W00t Te €€ € %00 0TE 19%'1€ TLL'6L LIS'6L +06°6¥T 90-C00-dus
680¢ 000L 06¥/061 €¥°0 I €19 081'9C 670 8I v'c ot (44 LI € %00 ¥SI 8LT'E€C SIE6S S89°09 €¥O'SIT S0-zo0-dus
910¢ €008 S8Y/V8Y 10 I S8¢ L9p'¥1 010 Tl 91T 100+ Sl 91 6¥ ls €T vhp'el Seb'pe TIOLE +91°0L +0-co0-dus
SOLT yleg 18%/08y T'0 I S6IT 6CT9 900 8 L €00t o (48 LE I'6 €0 v9CL T61°81 8LE'IT 6SPOF £0-Co0-dus
1021 909¢ 9G€/SSE 8T0 I ¥vLS 0LTE €00 S 80 ¥0°0+ 80 (1) 1€ 1 v'0 8er 87901 9LS'€T T€9°ST ¢0-co0-dus
ss 13481 ELI/TLT TTO | 8¢S 000 ¥ 70 000+ 0 8 61 (4} 0 8¢CI 189¢ S6£9 70Tl 10-200-dus
0€6 9191 Sl/el ¢I'o I ¢ 44! L6T 91 %6'L6I 000— STIT 9TL'LS 686001 % £88C 8T8 VIL'SS €I8°TOI 6€L°06 6V6°6€1 100-dus
¥09 [411! ¥1/¢1 60°0 I ¢ 611 LLT €1 %T9IT 000~ TU'ST ¥9TTF €LV'EL % 8061 88T 661y L8L'PL 86599 8LO‘VOI L0-100-dus
S6¢ S8L CI/0T 90°0 1 C Pel €T Y1 %IF 000+ ¥IT THT0E SET'SS BrS 8TL LOLOE 8EI°9S SES0S LET'08 90-100-dus
60T 8y 01/8 CI'91 I <6 6 €60 8 %OEE 000+ 90T TE8'6T 90SSE % 66T 0v 9L0°0T SLI'9€ S09'FE 985°9S S0-100-dus
CLE L 6/8 8C'1 I cr LT €0 9 %BI0oI €Tt €€ TEYTL TOETT % FIT 81 8L0°CI €IT'TC 8ISTT +L8°9¢ +0-100-dus
sel 09¢ 6/8 €0°0 LIS [9¢'0 IC %BI0 8§9+ 7T 68y 96¢€8 % 10 6T 08LY 6¢£88 €L6°01 1L0'81 €0-100-dus
Ivel 06¥¢ I1/01 90°0 I 0 4! 900 ¢ %10 000+ T1 9pL9 €SOTT % 20 0T 0608 196°€1 80€°01 100°91 20-100-dus
S6¢ 008 Sy €00 o ¥ 100 ¢ %10 000+ 70 90¢T 9L61 % 10 0 TOLT 18LT S61T yIee 10-100-dus
SSUOD[O(POXIJ [BIO)A[OS oWl S[[D HmS poXL] Qwil, S[[&) OWILS 9%V dT WL SSuoD) SIep QWIS QWILJ SSU0) SIep SSUOD) SIEA
syuouodwo)) Suyyms + joowoq Surajosaid paoueApy Surajosaxd orseg reursuQ Qoue)sul

saoue)sur JuowaSeuew ureyo-A1ddns jo jos oy uo synsar reuonendwod paqreIdg g AqeL

pringer

As

G. Gamrath et al.

388

% 8TTE BYTIE 1'68T/1'88C 8T0 01 BYTT %ETY 800 9L 8¢ 100+ 660 %¥901 BTISTI 9€C 6£0 BSTOS %L809 %OOI %001 (S1)1do [y
LT ST (T J0) paAjoS
%68ST BEY'8T T'08I/6'8LT T€0 0T %980 %ESE TE0 €€l 0°LTS TEO+ 8I'€ %6L'SE %060F 80001 TCT B6TLS %YTLI %00T %001 (I+) 98e1oay
€88L ¥9L0T 9T/ST L6'T I S96 SEv T89T 85 %ELOI 000+ TLST TOT9ET 86+'VIT % ELOI T'8ST 6E1°EPT €TO'9LT 80S'0IT 0€0'6LE 800-dus
6287 979 97/ST 0S'T T 959 IvE €L°6 0F %rrOl 000— 699 969°SL SIEGET % #+OI 8 TIT 8LO08 +6SOFI OPI'60T ISL'P61 S0-800-dus
ST 1TST 1T v70 T 696 6S¢ ¥0'1 L1 BIO 000— 601 €596 96v€h %10 OT1 8LSTT SSS'Ly LIO'€E 8TI'L9 +0-800-dus
0I¢l 6€CC TT/1T 8€°0 I 16S 0S¢ CLO 91 %00 000— 8L €6T'ST 0IT9E %070 ¥'L SO0'LT €S0°0F YLE'LT LOL'LS £0-800-dus
€ITC 68¢8 89/S9 €1°L [12€C 6LE 11°0 81 %00 ST0+ 8L 69 0Ly %00 0 896T STOTI €PLL OP80T T0-800-dus
18C 1611 6£/8¢ T1°0 T 90T ¥$ 000 S 0 000+ TO 8 34 €0 o (333 €961 86T ¥ITy 10-800-dus
016°¢8 9TI°6¥S TCE/TE TO'01 T 80TT 6£0€ IT°9€ 6€ %FTF 000+ L'OEE 686°6TT YI0TYS % CL8I 1'66€ TL'SIT €0SL60'T 6T9°SST 9ET'T8IT G00-dus
96C°0S 959'70€ €TE/TTE 16°S I $601 TSET SL'El 9T %00 000+ ST8 TOCIL 0TTAIE %00 9LOT LOBTTI SIL'0T9 €1TOPT SPL'089 90-S00-dus
17766 TS9T0S [LE/0LE OT'TI [€0CI ¥LIT St'6 1T ST0T 000+ 9°0F 1€T €0T SSTHL €SS 1KL00L LYP'LOS €¥6°ITI LE9'09S S0-S00-dus
YL6'ES €¥S°S9T 08¢T/6LT TS'Y T TLET 869CT 0€¢ 91 907 000+ €SI 8ST 9T SL6E L9 096'PS €9L°0LT LSEIL €91°01€ +0-S00-dus
8ST'LL 78019 STEMIE 8T'T T LLYT LEOT 9%°0 1 ve€ 000+ TE 6 01 191 60 vO8'LT S9THY 8SHST 0g€'€8 €£0-500-dus
6869 L86°1C 6¥C/8%C 010 T L06 II¥ LOO 9 't 000+ 'l 6 (1) '€ 0 6TSL S98°€T T€9°11 €€6'v€ T0-S00-dus
8¢0C L6E9 €LT/TLT ¥€°0 I S6¢ $9 ¥0°0 S Lo 000+ 90 8 8 60 TO0 80£C LLIL 610§ 8ISl 10-600-dus
6L1 00L 9/S 0T°0 [o TS8 OI'1 S WAKPLI TO0+ TV VIS8VL 616°89T %ASHLI 6'€ 8SO'SL 88YOLT €9S'II1 LTS'ITE $00-dus
€91 819 9/S ¥1°0 1 8% LT8 650 v %BASELI TOO+ 9T OVE0S TS9TLT %ISELI T 8IS0S OII'PLT €€8°GL 6LT0TC 90-700-dus
LST 09 Sy 60°0 1 66 88L8TO € %YX6zLI Y00+ 9T PIO0SE OITTIT % d6cLl TI T8I'SE STYOEIT 80S'ES SESOFT SO-+00-dus
LST 09 Sy 80°0 1 §S S8L €TO € %I Y00+ YT TIGIE TSO00T % ST/ 6'0 080°TE VOKI0I TEO'6F €SS°9TT $0-+00-dus
86Tl 667°C¢E 8LS/LLS 06°0 [91 8¢L 800 € e 100+ 91 pbLE S8L6 9'I86I P00 €0L9L 0SO'ty LE9'9T €69°8S €0-F00-dus
SSUOD[A(POXL] [BIOYA[OS QWL S[[ED JJMS PAXI] Qwil S[[8) OQWILS 9%V JT dWILJ S$SU0D sIeA QWIS QWILJ SSUOD sIep SSU0D STRA
syuouodwio)) Suggms + joowoq Surajosaid paoueApy Surajosaid o1seqg reursuQ Qour)sug
panunuod g dqel,

pringer

As

389

Progress in presolving for mixed integer programming

0 0 1/0 000 1 0 0 100 ¢ §09¢ 000+ 80 L9LT 8ELI 0'85¢ Lo LOLT 8ELT €C6y 0SIE 0geneuq
0 0 170 000 1 0 9L 8TS 06 8SP 66'S+ 6’11 9196 WL %6591 L'8T LOE'Syl 8S6F 0TY'SLI 1€8S 11X 4o1q
0 0 /0 000 1 0 0 000 ¢ 80 000+ 00 oSI 90¢ L0 00 oSl 90¢ YLT £6¢ puRIq
0 0 /0 000 I 0 0 000 I Ty8l 000+ I'o 94 I 4| 8'¥81 1'o g8 evvl 9201 86CC 101eyuIq
0 0 1/0 000 1 0 0 100 I 6’807 000+ 00 0cs (44 807 00 0cs (44 9LS Sos aisuerq
0 0 /0 100 1 0 0 2o I 69L8 000+ L0 TOCI TI€L T6L8 Lo Tt TIEL €0CT 8TEL Te[e1q
0 0 /0 200 1 0 0 €00 I %6’ I 000+ €Y ObLy TEY'IT %61 144 OvLy TEV'IT ¥96% 009°1¢C Sqeq
81 (44 ol €00 I 0 I 000 ¥ 90 PO+ 00 2% 9¢ 80 00 [49 6L 16 Y01 Sleq
0 0 1/0 000 I 0 0 000 I 79 000+ 00 0L 88 9 00 0L 88 €l gel BEIeq
0 0 1/0 000 1 0 0 000 I %9tl 000+ 00 €SIT VYOLT %9*FI 00 €SIT YOLT 0SLT ~ 00ST £DAarseaq
0 0 170 200 1 0 0 ¢ro v b9€ 000+ v’ €80°61 OFT'LI %98 T'l €806l OVT'LL TELIT SEL'SY dr-eyuepe
0 0 [/0 100 I 0 0 €00 I 908 000+ €0 SYLYT 1S9¢ 1'08 €0 8PLYT 1S9€ 8PL'bT 1S9¢ 109¢-erdSgogyse
0 0 /0 100 I 0 LE 100 € %00 000+ o 9L 196 %00 1’0 19L 866 8¥0I 83¢l 1001
0 0 1/0 €00 1 0 0 850 €I L'8L0T 000+ ¥'S SSSTS S9T9T S1801 8y SSSTS S9T9T LIYES 1L8°9C ¢-1dde
0 0 170 000 1 0 91 v00 ¥ €8¢ 000+ €0 we 0L19 6Ly 0 eve L8I9 9Ty S6IL sore
0 0 /0 100 1 0 Iy L00 ¢S TOL 000+ o L09 98SL 8'8L 1l L09 LTOL €8 1068 PoIe
0 0 [/0 100 I 0 69%¢ 610 ¢ 1L 000+ 90 08 8PIL 9°¢ S0 08 L1901 ¥Tl LSLO1 €oIre
0 0 1/0 000 1 0 0 100 ¢ 0°608C 000+ 90 ObPl 9TLT ¥'86LC 90 o¥yl 9TLT vl 8CLT qoymope
0 0 1/0 000 1 0 0 000 ¢ 0€l 000+ 0 8Ly 178 9Tl 0 8Ly 178 6Ly w8 eQgmopye
0 0 /0 000 1 0 0 €00 oI sor - 000+ Tl LSTT 966 07601 'l LSTT 966 cs0e 6tel Gysn-ooe
0 0 [/0 000 [0 0 o ¢ BILI 000+ €0 cece vt wlLl 0 cece eve clee 8¥9¢ [S]o1®
0 0 1/0 000 I 0 Ie LLO LET 6189 000+ 7’8 oy S99 8°70S €L €0r 9697 9LS 08¢81 840CU0¢
0 0 1/0 000 1 0 0 100 I 6'Se 000+ 10 0Ic 0091 e 1’0o 0Ic 0091 0€C ST0T swed) 01
SSUOD[O(POXI [BIO)A[OS QWL S[[B) JMS PoXL] QWi S[BD OQWILS 9%V d1 SWILd SSU0) SIBA QWILS OWI]d SSU0) SIBA SSUOD) SIBA
syuouodwo)) Suyyms + joowoq Surajosaid paoueApy Surajosaid orseg [eursuQ Qoue)sul

195 NTATIAL @) o sy[nsai [euoneindwod pafreldq € dqeL

pringer

As

G. Gamrath et al.

390

0 0 /0 100 I 67 SL 000 ¢ 10 000+ 00 ¥8¢ 60S 1’0 00 ¥9% 8¢9 08L 0L8 uag
0 0 /0 000 I 0 0 000 I o 000+ 00 €l 14! 00 00 €l 14! 81 81 [d3ny
0 0 1/0 000 ! 0 0 000 I ST 000+ 00 LLY LL8 91 00 LLY LL8 8Ly 8L8 guxy
0 0 1/0 000 I 0 € 000 ¢ 81 000+ 00 68T €pOI 'l 00 68T 9¥0I €9¢ 86CI 1oqy
0 0 /0 2T00 I 0 S8TTr €80 € €00 000+ 81 Obb 00L'0T €9SST 80 TLY L66TY LOS 600°€9 L0S0Ise)
0 0 0/0 000 0 0 ¥ 890 SI 0're 000+ 6°0¢ 0 0 90¢ v0¢€ o1 Tl 296°0F ¥0¥01 6%
0 0 170 100 I 0 0 000 I %fut 000+ 00 96l 6t %fut 00 96l °6¢ 961 °6¢ F1Y3Iud
0 0 1/0 000 I 0 0 000 I %09S 000+ 00 691 8¢ »0O9S 00 691 8¢¢ 691 8¢¢ ¢nysiue
0 0 /0 000 I 0 0 000 I 90 000+ 00 1 001 90 00 1 001 1 001 pwsuo
0 0 /0 100 I 0 € o0 ¢ LS0vy 000+ 0 00l SILT 891¢ 0 00l 8ILT 00l 8I8¢ rordie
0 0 /0 000 I 0 0 €10 I €09 000+ S0 [%144 €09 0 (4 144 e 9ISy ceele
0 0 1/0 000 I 0 0 000 I 00 000+ 00 LE 9% 00 00 LE 6 86 Il 039
0 0 1/0 100 I 0 0 100 ¢ 6’1 000+ 0 L86 8¢9l 0T 0 L86 8¢9l TBIT 9831 diugsp
0 0 ¢/0 TI'o I 0 9r0c tTe ¢ %8009 000+ 8¢ ST9 0€0Y9 % 9TLS ST ST9 9L0°L9 959 TEL'LY sp
0 0 /0 100 I 0 0 100 I €e¢ 000t I'0 ¥6¢€ 1666 e I'0 ¥6€ 1666 66€ 00001 wo3osIp
0 0 1/0 000 I 0 0 000 I L'esl 000+ 00 9sI 9¢6 8¢l 00 9SI 9¢6 861 866 INNN-UIM3-uyp
0 0 1/0 000 I 0 0 000 ¢ 6’1 000+ 00 ILT LYS 6'1 00 1L LYS 06T 129 nnuop
0 0 /0 000 I 0 0 000 I Sy6LS 000+ 00 999 €IS €'e8LS 00 999 €15 799 1cs jurouep
0 0 /0 100 I 0 0 €00 I %91 000+ 80 ISIE LESEl %H9IC 60 ISIE LES'El TOTE €L8€El druigouep
0 0 170 000 I 0 0 000 I 9'86¢€9 000+ I'0 S6C ¥S91 L'S9€9 10 g6 ¥S91 16 8SLI 010P2Ydsd
0 0 /0 100 I 0 0 000 I BEL 00°0+ [0 L€9 (4} BTL I'o L9 0cl LE9 0cl SLOTAOD
0 0 1/0 100 I 0 ocor SI0 9 L'€eET 000+ I'T 68T 8€TTI 6'€CL 80 0T61 69TSI 6£ST €6T°ST 169-9€579100
0 0 /0 100 I 0 9Icl €00 ¢ LeT 000+ ¢0 SS8T 099% 1'9¢ 0 180T ¥06S 9LIT 0009 0009de>
SSUOD[O(POXL] [BIO)A[OS QWIL, S[[8D HJMS PoOXI] QWL S[[8D OWILS %V d1 Wl SSuo) SIepA QWILS OWI[J SSUO) SIBA SSUOD) SIBA
syuouodwo)) Suyyms + joowoq Surajosaid paoueapy Surajosaid orseg [euIsuQo Qoue)suf

penunuod ¢ Iqey,

pringer

As

391

Progress in presolving for mixed integer programming

0 0 1/0 000 I 0 0 000 T opfut 000+ 00 L 09 %fut 00 L 09 L YL CoreysyIew
0 0 1/0 000 I 0 0 000 I ot 000+ 00 9 0S %fit 00 9 0S 9 9 [oreysyrew
0 0 [/0 200 I 0 0 o 1 o8y 000+ 0T LOTIE TIP'SI 691y 0T LOTIE TIY'SI 8I88TE LYSYII Ogdew
0 0 /0 200 I 0 0 o I Lo 000+ 1'C LOT'IE TI¥'S1 14504 0T LOTIE TIY'SI 8I8QTE LySHII g1dew
0 0 1/0 000 I 0 0 000 T 80 000+ 1'0 08¥9 Tcee 60 0 08%9 Icee 08%9 Tcee Jgeuueur
99 s /e 900 I 0 0 20 ¢ DbT0E 00006+ I'0 860€ 60CC HEPE I'0 v91€ 09CC y91¢€ 09¢e a5eydonoey
0 0 170 000 I 0 0 100 I xad 000+ 00 001 00S %l*t 00 001 00S 001 00S THA00SUO0 W
0 0 I/0 000 I 0 I 000 ¢ g0 000+ 00 Le <8 S0 00 LT 98 8¢ 68 nos|
0 0 1/0 000 I 0 0 000 I LT 000+ 00 L6 6861 €T 00 L6 6861 L6 6861 ABITCTT
0 0 1/0 000 I 0 0 000 I %SLTI 000+ 00 8LIT ¥SIT BSLII 00 8LIT ¥SIIT 8LIT 9STT nIp
0 0 1/0 000 I 0 0 v00 Tl 00Ie 000+ 91 88LV S09C L'80¢ Sl 88LF S09T €91%I 106L [qo-p-payos1oa|
0 0 [/0 000 I 0 0 000 I g0 000+ 00 00l 66CI S0 00 00l e6cCl 101 0sel 0sTS0quy
0 0 /0 200 I 0 9 wWo ¢ 07798 000+ 0 10CL 0€L I'vIi8 I'0 10CL 9¢L 10TL 89L Aod-euntd-sit
0 0 1/0 000 I 0 0 000 I 77659 000+ 1’0 €08¥% Ive L'€€S9 0 €08% %3 €081 943 A09-edng-sit
0 0 1/0 000 I 0 0 100 I serel 000+ I'0 1¢8¢ 00T €¥I6l 0 1€8¢ 001 1€8¢ 00T A02-Q-QQT-SI
0 0 [/0 000 I 0 0 000 I €061 000+ 00 6 666 CTYI6l 00 6 666 [48! £66C gdrey
0 0 /0 000 I 0 0 000 I 00 000+ 00 8¢ €LI 1’0 00 8¢ €L1 6C 881 o3
0 0 1/0 000 I 0 0 o0 ¢ %00 000+ (4 LSE 9 %00 4 LSE (45 vy SocI Op-Gg-nws
0 0 1/0 000 I 0 0 100 I %008 000+ 00 6¢ L1E %00S 00 6¢ LT€ 96¢ (443 psse[s
0 0 1/0 000 I 0 0 100 ¢ ST 000+ 00 TSIT 0801 ST 00 TSIT 0801 11! 1! 0~ gesa3
0 0 I/0 000 I 0 0 000 ¢ L1 000+ I'0 96Cl 0801 91 I'0 96CI 0801 89¢1 1! gesod
0 0 /0 000 I 0 0 000 ¢ [000+ 1’0 el 9LII [I'0 ¥¥e€l 9LIIT (43! ¥l qesos
0 0 1/0 000 I 0 0 000 ¢ €1 000+ I'0 00CI 9LIT [10 00CT 9LII 8¥CI el 0-gesad
SSUOD[O(POXIJ [BIOYA[OS QWIL], S[[BD JMmS poxn] QWi S[B) QWIS 9%V d1 QWILd SSU0) SIBA QWILS OwWlld SSu0) SIBA SSU0) SIBA

syuouodwo)) Suyynms + joowoq Surajosaid peoueApy Surajosaid orseg [eu1suQ Qoue)suf

penunuod ¢ Iqey,

pringer

As

G. Gamrath et al.

392

0 0 /0 %00 1 0 8IST 800 ¢ %E6 000+ 0 €Sty T09'0T %86 €1 €Svr 0T1°CC ¥8¥¥ 0T1°CTC 9EAIpEU
1L 88 o1l €00 1 0 I Tl ¥8 LSt 000+ 6'¢C 00€L 9VPL SL61 8'CC ShvL 8TLL 09¥'01 LIL'TL Zgpazzu
0 0 1/0 100 [0 w6l LOT 6L 8'L0¢ OI'T+ T'9C €€€9 LESY 6'6sC 10T w99 61L9 6676 0¥T01 [[AZzW
0 0 1/0 9T'C I 0 0 ¢9¢ 1 I'vbTy 000+ 68y ¥ISYTS SO0V L'S9Ty +¥8F ¥ISHTS S90v LS9'19S 08T'6T 91ddsw
0 0 1/0 100 1 0 0 LOO € %rTl 000+ 60 LS6VI €ELTI BT L0 LS6FI €ELTI 0SS'ST €¥1°1C di-ggosu
0 0 /0 SO0 ! 0 0 W0 9 %rPST 000+ €50T SLE'6Y ISI'El %r#+ST 1°€0C SLEGY ISI'El T89S TES'El gunuatow
0 0 /0 100 1 0 0 S0 €I BDLO 000+ PEl 198V VLLT HLO 6T 198Vl PLLT LETYT TELE cumuaswow
0 0 1/0 000 I 0 0 ¢ro ¢l %98 000+ 0S TITEL 9vLT %98l 6v TITEl 9vLT 089°Cy PLIS [umuotow
0 0 /0 000 1 0 0 000 I 't 000+ 00 98¢ ¥8¢ 01 00 98¢ 8¢ 16T (444 qoj3pow
0 0 /0 000 1 0 ¢ 900 ¢ 091 000+ 70 IS61 06V9 6°1ST €0 ¥S61 S619 08¥ 85601 [Topow
0 0 /0 000 1 0 0 000 I L0 000+ 10 Pyl TLST 60 1o ¥l TLST oyl SS9T orTopowr
0 0 1/0 000 I 0 0 000 I 60 000+ 00 9 6l¢ 01 00 9 6l¢ 9 6l¢ 800powt
0 0 /0 000 ! 0 0 90 I %I 000+ €0 L8CT €LTE Bl 0 L8CI €LTE Iye STes o
0 0 1/0 000 1 0 L9 680 LSI ¢S 000+ 49 oLyl 8€6b vy 184 69%T 1¥6¥ ¥S0T ¥TL01 nrw
0 0 1/0 000 I 0 0 000 ¢ 811 000+ 1’0o €CC [4%4 911 1o €CC [4%4 [4¥4 09¢ LOdsT
0 0 1/0 000 [0 0 000 I 90 000+ 00 LIS 09Cl 90 00 LIS 09CI 0c8 8081 90ostu
0 0 1/0 000 ! 0 0 000 ¢ ¥'1 000+ 00 S6 8¢l Tl 00 S6 8¢l 96 091 £0osIu
0 0 /0 100 1 0 0 100 ¢ 6'L9S 000+ Lo 718¢ L98 8°09S 80 ¥18¢ L98 0L79 006 01-06-our
0 0 /0 000 ! 0 0 €00 V¥ ey 000+ 91 8699 60L Sey 91 8699 60L 678 0¢8 G-991-ouru
0 0 /0 000 ! 0 0 000 I 8'1v6l 000+ 00 001 IS ¢8¢ol 00 001 1sT 161 1ST 1-001-1-0ST-yru
0 0 1/0 000 I 0 0 000 I L'S91 000+ o €681 Sovl S'e9l 00 €681 sovl LOIT LYLI payosout
0 0 /0 000 1 0 0 000 I €0S 000+ 00 [0ST 608 00 4! 0ST ! ST gLseuwt
0 0 1/0 000 1 0 0 000 I 0er9 000+ 00 €l 0ST TSS9 00 €l 0ST €1 IST pLsewt
SSUOD[O(POXL] [BIOYA[OS QWIL S[[&D JMS PoXI] QwWI] S[[D QWILS %Yy 41 QWILd SSU0) SIBA OWILS OWILJ SSUOD SIBA SSUOD SIBA
syuouodwo) Suyyns + joowoq Surajosaid pasueapy Surajosaxd orseg [eu1suQ Qoue)suf

penunuod ¢ Iqey,

pringer

As

393

Progress in presolving for mixed integer programming

0 0 1/0 100 I 0 T08C 900 ¢ %TE 000+ 1 939 86LE BEE Lo ges 0099 SeEL 1299 xdi-puersu
0 0 1/0 100 I 0 0 000 ¢ 9898 000+ 90 9071 €L9 91L8 90 90v1 €L9 (4314 6291 €690€81sU
0 0 1/0 000 [0 0 000 I €68L 000+ 00 Orl 001 S'E6L 00 oLl 001 (23! 001 LO99LISU
0 0 /0 €10 ! 0 0 920 I %9LZS 000+ LYT 061°S19 VYT8LL %9LZS v'¥T 061°S19 ¥T8LL 9914C9 9S6°L1 €168SLISU
0 0 1/0 000 1 0 0 0T0 <€ 8'0CL 000+ Y 060¢ 09%1 I'elL Y 060¢ 09%1 161 $89C LyE8891sU
0 0 1/0 100 I 0 0 100 I TYeor 000+ €0 1861 96SC 01191 €0 1861 96SC 68T £88C 00¥80CTsU
0 0 1/0 000 I 0 0 000 ¢ TILT 000t 00 IL1 0cl €ILT 00 ILT 0cl (4! 8¢l jomsou
0 0 I/0 000 ! 0 0 000 I 8'90¢9 000+ 00 0cs 6y 0v9¢9 00 0cs (924 9LS Sos ouepmau
0 0 1/0 TI'0 1 0 0 TIo 1 9YTI9 000+ 191 €84°66 896°8CT1 8TII9 TIOI €8¥'66 896'STI 685611 081°6TI UOISIAIPIRU
0 0 /0 100 1 0 0 vS0 0C 9’18y 000+ 'y L9LTI €TSTL T96vY 9°€ L9LTI €TSTI 1T0%1 SIIPI [qeel
0 0 1/0 000 I 0 0 100 I %0t 000+ L0 €C18 ICI8 %0t 80 €CI8 1218 S6V 11 €TI'CT 8LTPEG-SOU
0 0 1/0 200 I 0 0 200 I Y91y 000+ L0 80V 19¢1 €LY 90 8011 19¢1 6061 YLYT T6L916-S0°U
0 0 /0 000 I 0 0 100 I ¥'Sry 000+ 1’0 L86 691 8'8¥y o L86 691 Iv01 LELT TOL6Y8-sO°U
0 0 1/0 000 1 0 0 000 I 9'6L 000+ 10 869¢ 099¢ 808 1o 869¢ 099¢ ¥99¢ 099¢ 061989-s0°u
0 0 1/0 T¥0 I 0 0 050 I 0°6SCT 000+ 681 7096 €¥8'T1 §96C ¢8I 096 €¥S°I1 S10°01 SI6'II €8T9Lp-Sodu
0 0 1/0 000 [0 0 100 I 0'1e 000+ 0 06C¢ 8SL L0g 10 06ce 8SL TOVIL clee 8[soau
0 0 /0 100 I 0 0 200 I BEEE 000t €0 Sore 0C6E BEEE €0 Sole 0C6¢ Iere PPy 9€61091-s09U
0 0 1/0 100 I 0 0 TIo 1 %ETE 000t v 0TELl LT81 %ETE ¥ 0TELL LT81 TS80T LT81 grsoau
0 0 /0 000 I 0 0 000 I oLyl 000+ 10 T6¥1 8GIT 1°98%1 1o Tovl 8STT o1 1911 STI96€1-s0au
0 0 1/0 100 I 0 0 vI'0 ¢ %00 000+ [£€20T 08T %00 'l £20T 018¢ L89S 08T LOELEET-SO™U
0 0 1/0 000 I 0 0 100 I 7681 000+ 60 6L66 0TSl ¥'681 Lo 6L66 0TST 6L6'8T 0CST 78601 1-soau
S €l 9/S 100 1 0 0¢C °W0 ¥ SYSL 06'0T+ 1’0o 9L6 00T€ 8'CLL 1’0 966 09¢€ 9¢Cl 96S¢ £-pu
0 0 1/0 9%°0 I 0 0 Lo 1 %ror 000+ 8Tl 0S6S 958611 %# 0l LTI 0S6S 958°611 709 958°611 ghasgu
SSUOD[O(POXL] [BIOYA[OS OWIL], S[[BD JMS PoxI] owl], S[BD QWILS 9%V d1 SWILd Ssuo) SIeA QWILS QWILJ SSU0) SIBA Ssuo) STeA
syuouodwo)) Suyynms + joowoq Surajosaxd pasueapy Surajosaid orseg [eursuQ Qoue)suf

penunuod ¢ Iqey,

pringer

As

G. Gamrath et al.

394

(44 €C €/C 100 1 0 € €0 ¢S I'c 000+ €0 €0ET 180€ 6’1 €0 Ster soIE €089 LSS6 Tedejuax
0 0 /0 200 ! 0 0 2Io ¢+ WAL 000+ $9€ TLT'ST s BAILI 1'9€ TLT'ST TS 668°ST1 79 Ig-osnjdi-pi
0 0 1/0 000 [0 0 000 ¢ €L9¢ 000+ 80 ILTC LT9 I'cLe 80 ILTC LT9 £¢5T 0L9 L9Fd0[ga1
0 0 1/0 000 I 0 0 000 I 8'66C 000+ 00 88¢ cls 1'00¢ 00 88¢ cls 88¢ 419 9Ix9ruer
0 0 1/0 200 1 0 88Tty 9¢1 ¢S Pe9€ 000+ LT by 869°0T €L6LT VI €LY L66°T9 60S 610°€9 LOSTrel
0 0 1/0 000 ! 0 0 000 I re 000+ 00 Sv¥c 0gel e 00 S¥T 0gel oSy I¥SIT o [1eub
0 0 1/0 000 1 0 0 000 I LS 000+ 10 o€ LIVl Y 1o v9¢ LIVl €0S IvSI [1oub
0 0 1/0 000 I 0 0 000 I 669 000+ 00 ¢oll 0y8 1oL 00 coll 0r8 <ol 0y8 nib
0 0 1/0 000 1 0 0 100 ¢ 0°699¢ 000+ 90 08I €101 S'1L9S Lo 08I €101 $918 6501 plorAur-md
0 0 1/0 000 1 0 0 100 I 9t 000+ 0 TIIT S€81 %ful I'0 ¢Clic <81 (48 FAREES 3 propoxd
0 0 /0 000 1 0 0 000 I S1T 000+ 00 €V LET €1 00 eve LET 9T 0¥z SLNOegedd
0 0 1/0 000 I 0 0 000 I ST 000+ 00 el €T 6’1 00 gel 1474 9¢l 0ve egodd
0 0 1/0 000 I 0 0 000 I £9¢ 000+ 00 94 98 §9¢ 00 Sy 98 St 98 d
0 0 1/0 000 1 0 0 000 I BITI 000+ 00 STs 06€ BI'II 00 949 06¢ 1€6 067 01-uoa5id
0 0 /0 000 ! 0 0 000 I 8'LLET 000+ 10 §TC 009C OvLET 1’0o §TT 009C S§Z¢ 009C e ¢8d
0 0 1/0 000 [0 €€ €00 ¢ ST Wi+ €0 9wl L90T Sl 0 99¥l €sle SSL - 9SLT 9grzd
0 0 1/0 000 ! 0 € 000 ¢ €0 000+ 00 60T °9¢ €0 00 6¢£C 88¢ 9LI 149 8rsod
0 0 1/0 100 1 0 0 000 I Lo 000+ 00 S0g 00T Lo 00 Soe 00T 1844 [4:14 z8zod
0 0 /0 000 1 0 ¢l 000 ¢ 9T ot 00 LOT €81 €1 00 LOT sol €el 10T 10zod
0 0 /0 000 ! 0 0 000 I 00 000+ 00 cl 9T 00 00 cl 9T 91 23 £eood
0 0 1/0 100 I 0 0 000 I 0T 000+ 00 9 6SL 60 00 9 6SL 9 69L Ligndo
0 0 1/0 100 1 0 0 100 I ¢'e8CI 000+ '€ 1699C 9681 1°16C1 TE 1699 9681 86L1E€ €20T ¢s-Lz-gudo
0 0 /0 900 1 0 Ty 9I'S T 0'I€ 000+ €8 SE EvI'op T8¢ 8'€ S€ YSY'LS 9¢ T8¥L8 yomu

SSUOD[O(POXI] [BIO)A[OS OWIL], S[[eD PMmMS PpoXL] Qwil S[BD) OQWILS 9%V T SWILd SSuoD SIEA QWILS OWILd SSuo) sIep SSuoD) SIBA
syuouodwo)) Suyyms + joowoq Surajosaid paoueApy Surajosaxd oiseg [euiuQ Qoue)suf

penunuod ¢ Iqey,

pringer

As

395

Progress in presolving for mixed integer programming

0 0 1/0 000 I 0 0 000 T %&9 000+ 00 68¢ 7€ %89¢ 00 68¢ 1843 ¥6¢ SL9 cqeiumn

0 0 /0 000 I 0 0 000 ¢ ¥ory 0000+ 00 991 10 ¥ory 00 991 102 ILT L6€ Tqeawun
Wy L6t LE9E 100 [0 0 o ¢ 69 000+ 0 8€s8 LIvy €8 I'0 0868 YILY 0868 VILY gweisa[sue)
8CL 099 8Cl/LET LOO I 0 0 800 ¢ 0'€89 000+ 80 VI9LY 660FE L'LO6 L'0 TYE'89 6SLYE TPESI 6SLYE Jweida[Sue)
0 0 1/0 100 1 0 vI9'IS LTO T %S8E 000+ [1SS TOT9T %Z'IF 60 1SS 91L°L9 1SS 688°€L LILTY
0 0 170 100 I 0 09 ¢00 T %I 000+ 0 (434 09¢9 % 9°SI 10 (414 0Te9 788 S089 qrems

0 0 170 +v1°0 I 0 0 L90 ¥ %S 000+ 6TE $86'96 1¥TOET % fur 9'TE €86'96 1vT9€l 88¥°6S1 088+0T pedis
0 0 /0 000 I 0 0 000 I I'vl 000+ 00 Iee St vyl 00 £33 St £33 St Syutas
0 0 1/0 100 I 0 0 000 I 1 000+ 00 811 LT 'l 00 811 LT 8II1 LT LTurals
0 0 1/0 100 1 0 0 100 I 9€Cl 000+ 60 SLET LSST L'TCl 0T SLET LSST T€ST 0891 ngeds
0 0 170 €00 I 0 LT ¢TI0 ¢ %0°CT 000t Tl L6L LLSOT %ST 80 L6L ¥68°01 ST8 16801 o186ds

0 0 1/0 00 I 0 e SI'o ¢ %69 €00— Y1 9€9T LIOVT %EL 60 LT 66071 19L1 101°%1 Te/6ds

0 0 1/0 100 ! 0 061 100 ¢ %6’ 000+ 70 9vhp ¥e6 »lT T0 999 (U401 laiig CLET Inowkoas

0 0 1/0 000 1 0 0 000 I 't 000+ 00 9Ty 9%9 80 00 9ty 9%9 [4ii4 CIL Uo1308

0 0 /0 000 I 0 0cc €0 81 9€IST 000+ S6 091y 0IL L'8e0V 76 8SIv T160L 9665 €106 ST—1sanares

0 0 1/0 000 [0 0 000 I L'se 000+ I'0 06C 939 L'Se 1’0 06¢ 999 16C 9¢¢ nol
0 0 1/0 000 ! 0 0 100 ¢ %cl 000+ ¢'0 6lcl w8 wl'l §0 6lCl (4% S6cT 9911 0oogror
0 0 1/0 100 I 0 0 000 I %LT 000+ 1’0 9LS T %9l 1’0 9LS e cocl LTTE 000T00-01D030001

0 0 /0 000 ! 0 0 01o o0c 9ver 000+ 8'C ohre 99C1 1'8¢¥ 6'S obre 99C1 8ELIT €76 TT-t-11901

0 0 /0 100 I 0 0 000 I 6°€LST 000+ 60 990L 801 9°€9SC 60 990L 801 8LOL 9601 9aurunx

0 0 1/0 000 I 0 0 000 ¢ 0c6C 000+ 60 <898 8.8 €7T6C 01 6898 ¥8L8 G898 ¥8L8 gd-ppew

0 0 1/00 000 1 0 0 o ¢ 8'1¥1 000+ 80 09CL 6SEL 9Tl 60 09CL 6S€EL 09¢L 6S€EL 01d-00 1 new

0 0 1/0 000 1 0 0 000 I 70 000+ 00 ¥C SLT 0 00 ¥ SLT ¥C 081 ug1

SSUOD[O(POXI] [BIO)A[OS QWL S[[BD JMS PoxXI] owl], S[[B) OSWILS 9%V dT SWIld SSuo) SIBA QWILS OWIld SSuo) sIBA SSUOD STeA

syuouodwo)) Suyyms + joowoq Surajosaid peoueApy Surajosaid orseg [euisuQ Qoue)suf

penunuod ¢ Iqey,

pringer

As

G. Gamrath et al.

396

%000 %000 01/00 000 OT %000 %000 100 ST 99vE 000+ €10 %TI9T8 %HESE] +IPE €10 %TIT8 %HESE] %00T %001 (6T1) pariddeoN
BbSL'O %S8O LS/Ly 100 01T %yI'0 %8I'IL 0I'0 €LT 6°S€C S8'¢€ct €90 %eV8L %0S89 V¥'66C V0O %06C8 %99C8 %00L %001 (6¢) parddy
%TTO HSTO §TST 000 01 %S00 %BLET TOO S9 L7101 0T0+ vI'0 %ILT8 %8908 ¢€LOI CTI'0 %6V'E8 %8EE8 %00I %001 (ye1)1do iy

4! Cl (891 Jo) paajos
DbLTO HOTO 'yt 100 01 %€00 %09C T00 6°S T'LIe 86+ 610 %S9I8 %1008 67ee LI'0O %69T8 %eLE8 %0O0I %001 (891) o8e10Ay

0 0 1/0 000 1 0 0 100 T LTo0T 000t 10 19L1 690§ ¥°L661 1’0 19L1 690S 6081 0SIS gNN-¥sq1z
0 0 170 ¥0°0 I 0 0 €00 I %fur 0070+ 1T 8I¥'€C 88¥'LT wfur 1'C 8IY'ET 88Y'LT 08T'LY ILYIS preydda
0 0 170 000 I 0 0 000 ¢ 0T 000+ 00 8CI 181 1T 00 8¢l 181 1474 8LE gwda
0 0 1/0 000 I 0 0 000 I 00 000+ 00 (4! (431! 00 00 6Cl a8l Yee 8LE [wda
0 0 1/0 200 ! 0 0 0L0 LT 89T¥T 000+ 191 998 L6TOT OTIYT €SI 9S9°8€ L6TOT 6£6'Sy SSL'ST L Teoun
0 0 170 00 I 0 0 SI'0 € 9¥reT 000+ 10l ¥LS'SI 9vP'ST ¥'S¥6T TOl ¥LS'ST 9¥P'ST 90L'ST SSO°0€E Tumndin
0 0 170 000 I 0 0 000 I T¢Oll 000+ 10 L 001 80011 1o CL 0roI1 0SL 0801 0e-¢In

SSUOD[A POXI] [BIOYA[OS QWIL S[[BD JMS PoXL owll S[[D) QWILS %V dT dWILd SSuo) SIEA QWILS QWILJ SSUo) SIEA SSUOD SIEA

syuouodwo)) Suyyms + joowoq Surajosaid paoueapy Surajosaid orseg [euiSuQ Qdoue)suf

panunuod ¢ Jqe],

pringer

As

Progress in presolving for mixed integer programming 397

calls, the time spent in the presolver, and the number of variables fixed by dominating
columns (fixed) and stuffing (stuff). Finally, for the components presolver, we list the
number of calls, the time, the number of components solved, and the total number of
components detected as well as the number of fixed variables and deleted constraints.
Whenever one variant dominates the other in one criterion significantly, we print the
dominating value in bold for the instance.

At the bottom of the table, we present aggregated results. We list the average
percentage of variables and constraints remaining after presolving, the average root
LP dual bound increase, and the shifted geometric mean of the presolving and solving
time (instances hitting the time limit account for 7200s). We use a shift of 10s for
the solving time and 0.01 s for the presolving time. For the presolvers, we show the
average number of presolving calls, the shifted geometric mean of the time spent in
the presolver, again with a shift of 0.01, the average number of components solved
and detected, and the average percentages of variables and constraints fixed or deleted
by the presolvers. Underneath we print the number of solved instances for the two
different presolving settings and a line which lists the same averages, but computed
for only the subset of instances solved to optimality by both variants. Moreover, for
the MMM test set, we print two rows with averages restricted to the instances where
the advanced presolving found additional reductions (“applied”) and did not find any
reductions (“not appl.”), together with the number of instances in the corresponding
sets. These lines are only printed for the MMM test set because the advanced presolving
finds additional reductions for all supply chain management instances.

References

1. Aardal, K., Bixby, R.E., Hurkens, C.A.J., Lenstra, A.K., Smeltink, J.W.: Market split and basis reduc-
tion: towards a solution of the Cornuéjols—Dawande instances. INFORMS J. Comput. 12(3), 192-202
(2000)
Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universitit Berlin (2007)
Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1-41 (2009)
Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 1-12 (2006)
Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71, 221-245
(1995)
Atamtiirk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Conflict graphs in solving integer programming
problems. Eur. J. Oper. Res. 121(1), 40-55 (2000)
7. Atamtiirk, A., Savelsbergh, M.W.P.: Integer-programming software systems. Ann. Oper. Res. 140,
67-124 (2005)
8. Babayev, D.A., Mardanov, S.S.: Reducing the number of variables in integer and linear programming
problems. Comput. Optim. Appl. 3(2), 99-109 (1994)
9. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer programming
library: MIPLIB 3.0. Optima 58, 12-15 (1998)
10. Bixby, R.E., Rothberg, E.: Progress in computational mixed integer programming-a look back from
the other side of the tipping point. Ann. Oper. Res. 149, 37-41 (2007)
11. Bixby, R.E., Wagner, D.K.: A note on detecting simple redundancies in linear systems. Oper. Res. Lett.
6(1), 15-17 (1987)
12. Borndorfer, R.: Aspects of set packing, partitioning, and covering. PhD thesis, Technische Universitit
Berlin (1998)
13. Brearley, A.L., Mitra, G., Williams, H.P.: Analysis of mathematical programming problems prior to
applying the simplex algorithm. Math. Program. 8, 54-83 (1975)

wnokwn

o

@ Springer

398 G. Gamrath et al.

14. Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear programming problems.
Oper. Res. 31(5), 803-834 (1983)

15. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266-277 (1957)

16. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.L.: Sorting and selection in posets. In:
SODA ’09: Proceedings of the Nineteenth Annual ACM—SIAM Symposium on Discrete Algorithms,
pp. 392-401. Society for Industrial and Applied Mathematics, Philadelphia (2009)

17. Fiigenschuh, A., Martin, A.: Computational integer programming and cutting planes. In: Aardal, K.,
Nembhauser, G.L., Weismantel, R. (eds.) Discrete Optimization. Handbooks in Operations Research
and Management Science, vol. 12, chap. 2, pp. 69-122. Elsevier, Amsterdam (2005)

18. Guignard, M., Spielberg, K.: Logical reduction methods in zero-one programming: minimal preferred
variables. Oper. Res. 29(1), 49-74 (1981)

19. Hoffman, K.L., Padberg, M.: Improving LP-representations of zero-one linear programs for branch-
and-cut. ORSA J. Comput. 3(2), 121-134 (1991)

20. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM
16(6), 372-378 (1973)

21. Johnson, E.L., Suhl, U.H.: Experiments in integer programming. Discrete Appl. Math. 2(1), 39-55
(1980)

22. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G.,
Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Stefty, D.E., Wolter,
K.: MIPLIB 2010. Math. Program. Comput. 3(2), 103-163 (2011)

23. Mahajan, A.: Presolving mixed-integer linear programs. In: Cochran, J.J., Cox, L.A., Keskinocak,
P., Kharoufeh, J.P., Smith, J.C. (eds) Wiley Encyclopedia of Operations Research and Management
Science, pp. 4141-4149. Wiley, New York (2011)

24. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

25. Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming problems.
ORSA J. Comput. 6, 445-454 (1994)

26. Suhl, U., Szymanski, R.: Supernode processing of mixed-integer models. Comput. Optim. Appl. 3(4),
317-331 (1994)

27. Williams, H.P.: A reduction procedure for linear and integer programming models. In: Redundancy
in Mathematical Programming. Lecture Notes in Economics and Mathematical Systems, vol. 206,
pp. 87-107. Springer, Berlin (1983)

28. Williams, H.P.: The elimination of integer variables. J. Oper. Res. Soc. 43(5), 387-393 (1992)

29. Wolsey, L.A.: Integer Programming. Wiley, New York (1998)

30. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Technische Uni-
versitit Berlin (1996)

31. Zhu, N., Broughan, K.: A note on reducing the number of variables in integer programming problems.
Comput. Optim. Appl. 8(3), 263-272 (1997)

@ Springer

	Progress in presolving for mixed integer programming
	Abstract
	1 Introduction
	2 Notation and basics
	3 Stuffing singleton columns
	4 Dominating columns
	4.1 Dominance relation
	4.2 Predictive bound analysis
	4.3 Utilize conflict information for binary variables
	4.4 Finding a dominance relation

	5 Connected components
	6 Computational results
	7 Conclusions
	Acknowledgments
	Appendix A: Detailed computational results
	References

