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exploits the block-bandedness similarly to an interior-point method. Still, the proposed
method features warmstarting capabilities of active-set methods. We give details for
an efficient implementation, including tailored numerical linear algebra, step size
computation, parallelization, and infeasibility handling. We prove convergence of
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1 Introduction

A large class of practical algorithms for the solution of dynamic optimization problems,
as they appear for example in optimal control and dynamic parameter estimation,
is based on sequential quadratic programming (SQP) [8,9,12,28]. Particularly for
their online variants, model predictive control (MPC) and moving horizon estimation
(MHE), fast solution of the arising quadratic programming (QP) subproblems is crucial
[12,28,38], exploiting all problem-inherent structure.

In a generic form the QP subproblems arising in this class of methods can be
formulated as follows:

min
x,u

N−1∑

k=0

(
1

2

[
xk
uk

]� [
Qk Sk
S�k Rk

] [
xk
uk

]
+

[
qk
rk

]� [
xk
uk

])
+ 1

2
x�N QN xN + q�N xN (1a)

s.t. xk+1 = Akxk + Bkuk + ck ∀k ∈ SN (1b)

dk ≤ Dk

[
xk
uk

]
≤ dk ∀k ∈ S. (1c)

Discretized state variables are denoted by xk ∈ R
nx , while control variables are

denoted by uk ∈ R
nu for each discretization stage k ∈ S := {0, . . . , N } and k ∈

SN , respectively. In general we use subscripts to indicate exclusions from a set, e.g.,
Si, j := S\{i, j}. For notational simplicity, we hide time-constant parameters in the
state vector. The stages are coupled over the discretized time horizon of length N by
constraints (1b), while constraints (1c) arise from nd discretized path constraints. The
objective (1a) is often a quadratic approximation to the Lagrangian of the original
control or estimation problem. We assume throughout this paper that (1a) is strictly
convex, i.e.,

[
Qk Sk

S�k Rk

]
� 0 and QN � 0.

In a typical SQP scheme for dynamic optimization, QP (1) is solved repeatedly, each
time with updated (relinearized) data, until a termination criterion is met. While the QP
data changes, one often assumes that the active-set, i.e., those equations in (1c) that are
satisfied tightly with equality, is similar from one iteration to the next, particularly in
later iterations. In the large class of MPC and MHE algorithms that feature linear time-
invariant dynamic systems, QP (1) is solved repeatedly for different initial conditions,
i.e., only few entries of the vector data of the QP change.

QP (1) is very sparse for long time horizons N . The exploitation of these char-
acteristic, predetermined sparsity patterns in combination with an exploitation of the
problem similarity for algorithm warmstarting is one of the central challenges for effi-
ciency of QP solvers in dynamic optimization. A large variety of attempts has been
made to address these two requirements and we will briefly highlight several of these
classes in the following.

The block-banded structure exhibited by (1) is typically exploited well by tailored
interior-point (e.g., [13,32,37]) and first-order methods similar to Nesterov’s fast-
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gradient method [34] (e.g., [4,39]). However, a well-known drawback of these methods
is their limited wamstarting capability to exploit the knowledge of similarity between
the solutions of subsequently solved QPs.

Tailored active-set-methods like [14,15], on the other hand, can exploit this sim-
ilarity for higher efficiency, but typically do not benefit from the problem-inherent
sparsity as much as interior-point methods, as they, on the average, require signifi-
cantly more iterations, each of which is dominated by the solution of a rather large
linear system. One popular approach to overcome this bottleneck is to make use of
a so-called condensing routine to express overparameterized state variables in terms
of the control inputs and thus reduce the vector of optimization variables to only
the control inputs [26,30]. In general, this condensing step needs to be performed at
every sampling time, with a typically quadratic or cubic runtime complexity in the
horizon length (depending on the chosen implementation, cf. [2,3,20]). Furthermore,
the initial factorization of the dense QP Hessian is of similar runtime complexity in
the horizon length, see [27]. The active-set strategy suggested in [26] can exploit the
sparsity structure, but is most useful when only few active-set changes occur between
the iterations, since each change requires a new sparse matrix factorization.

In this paper, we follow up on the idea of a different QP algorithm that was presented
for linear MPC problems in [16]. This approach aims at combining the benefits in terms
of structure exploitation of interior-point methods with the wamstarting capabilities
of active-set methods, and comes at only a linear runtime complexity in the horizon
length. Based on ideas from [10] and [31], the stage coupling constraints (1b) induced
by the MPC structure are dualized and the resulting QP is solved in a two level
approach, using a non-smooth/semismooth Newton method in the multipliers of the
stage coupling constraints on the higher level, and a primal active-set method in the
decoupled parametric QPs of each stage on the lower level. Note that in contrast to
classical active-set methods, this approach permits several active-set changes at the
cost of one block-banded matrix factorization. We refer to this procedure as a dual
Newton strategy. More details on the method are given in Sect. 2.

While in [16] only a limited prototype Matlab implementation was described, this
work extends the algorithm to a more general problem class and gives details on an
efficient implementation of the method. We further provide a theoretical foundation to
the algorithm and prove convergence. We discuss parallelization aspects of the method
and present a novel algorithm for the solution of the structured Newton system, that
results in an parallel runtime complexity of the dual Newton strategy of O(log N ) per
iteration. Most importantly, we present qpDUNES, an open-source, plain C implemen-
tation of the DUal NEwton Stategy. This software comes with interfaces for C/C++
and Matlab. We compare runtimes of qpDUNES to state of the art structure-exploiting
QP solvers for dynamic optimization problems based on three challenging benchmark
control problems.

This paper bases in parts on the conference proceedings paper [19]. In contrast
to [19], however, we provide significant additional details in this paper, such as in-depth
algorithmic and theoretical investigations, implementation details, and benchmark
results from linear MPC.
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2 Method description

For clarity of presentation we group the optimization variables of dynamic optimiza-
tion QP problems, the system states xk ∈ R

nx and the control inputs uk ∈ R
nu ,

into the stage variables zk = [
x�k u�k

]� ∈ R
nz for each stage k ∈ SN , and

zN =
[
xN 0

]� ∈ R
nz for the terminal stage. Here, we define nz := nx + nu . Problem

(1) then reduces to

min
z

N∑

k=0

(
1

2
z�k Hkzk + g�k zk

)
(P1)

s.t. Ek+1zk+1 = Ckzk + ck ∀ k ∈ SN (P2)

dk ≤ Dkzk ≤ dk ∀ k ∈ S, (P3)

which is the problem that we consider here. The cost function on each stage con-
sists of a positive definite second-order term 0 ≺ Hk ∈ R

nz×nz and a first-order
term gk ∈ R

nz for each k ∈ S. Note that therefore primal solutions (if existent) are
unique. Two subsequent stages k ∈ S and k + 1 ∈ S are coupled by first-order terms
Ck, Ek+1 ∈ R

nx×nz and a constant term ck . We assume that all Ck have full row rank,
i.e., rank(Ck) = nx , ∀ k ∈ SN , and that all Ek have the special structure Ek =

[
I 0

]
,

where I ∈ R
nx×nx is an identity matrix and 0 is a zero matrix of appropriate dimen-

sions. Vectors dk, dk ∈ R
nd , and a matrix Dk ∈ R

nd×nz of full row rank denote affine
stage constraints.

Unless stated otherwise, we assume in the following that a feasible solution

z∗ := [
z∗0
�, . . . , z∗N

�]� of (P) exists that fulfills the linear independence constraint
qualification (LICQ). Section 5 discusses the consequences resulting from infeasibility
of (P) and how it can be detected.

2.1 Dual decomposition

We decouple the QP stages by dualizing constraints (P2). By introducing the vector
of Lagrange multipliers

λ := [
λ�1 λ�2 · · · λ�N

]� ∈ R
Nnx , (3)

we can express (P1) and (P2) by the partial Lagrangian function

L(z, λ) :=
N∑

k=0

(
1

2
z�k Hkzk + g�k zk

)
+

N−1∑

k=0

λ�k+1 (−Ek+1zk+1 + Ckzk + ck)

=
N∑

k=0

(
1

2
z�k Hkzk + g�k zk +

[
λk

λk+1

]� [−Ek

Ck

]
zk + λ�k+1ck

)
,
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where we define zero matrices E0 = CN = 0 ∈ R
nx×nz and redundant multipliers

λ0 = λN+1 := 0 ∈ R
nx only for notational convenience in this context (note that they

are not among the optimization variables of the dual problem defined below).
By Lagrangian duality, the solution of (P) can be computed as

max
λ

min
z

N∑

k=0

(
1

2
z�k Hkzk + g�k zk +

[
λk

λk+1

]� [−Ek

Ck

]
zk + λ�k+1ck

)

s.t. dk ≤ Dkzk ≤ dk ∀k = 0, . . . , N .

Because this Problem is separable in the stage variables zk , minimization and sum-
mation can be interchanged, and a solution to (P) can be obtained by solving

max
λ

f ∗(λ) := max
λ

N∑

k=0

f ∗k (λ), (D)

where

f ∗k (λ) := min
zk

1

2
z�k Hkzk +

(
g�k +

[
λk

λk+1

]� [−Ek

Ck

])
zk + λ�k+1ck

s.t. dk ≤ Dkzk ≤ dk . (QPk)

We refer to (QPk) as the kth stage QP. Note that each (QPk) depends on at most
two block components of the vector of dual optimization variables λ defined in (3).

Remark 1 Since λ only enters in the objective of each (QPk), feasibility of (QPk), and
thus existence of f ∗k (λ) is independent of the choice of λ ∈ R

Nnx . In particular, since
the constraints of (QPk) are a subset of (P3), feasibility of (P) implies feasibility of
(QPk).

Remark 2 Each f ∗k (λ) implicitly defines a vector z∗k (λ), the solution of (QPk).

2.2 Characterization of the dual function

It was shown in [16] (based on results from [5,17,45]) that f ∗(λ) is concave, piecewise
quadratic, and once continuously differentiable. We establish the relevant findings in
the following.

Definition 1 For a stage k ∈ S, the optimal active-set at λ is given by

A∗k(z∗k (λ)) :=
{

1 ≤ i ≤ nd | Di
k · z∗k (λ) = dik ∨ Di

k · z∗k (λ) = d
i
k

}
,

i.e., the set of row indices of the constraints of (QPk) that are satisfied as an equality.

Here, Di
k refers to the i th row of Dk , and dik and d

i
k refer to the i th entry of the vector.
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Definition 1 naturally extends to a definition of the active-set in the full space of
primal variables by A∗(z∗(λ)) := A∗0(z∗0(λ))× · · · ×A∗N (z∗N (λ)). The finite number
of disjoint active-sets further induces a subdivision of the dual λ space.

Definition 2 Each active-set defines a region A ⊆ R
Nnx in the dual λ space. For a

representative λ( j) ∈ R
Nnx we have

A( j) :=
{
λ ∈ R

Nnx | A∗(z∗(λ)) = A∗(z∗(λ( j)))
}

.

By choosing representatives of pairwise distinct regions we can define an arbitrary,
but fixed order that allows us to uniquely identify each region A( j).

The name region is anticipatory, but it will become clear from Corollary 2 that the
sets A( j) indeed are connected. The number of regions nr clearly is finite, as there is
only a finite number of distinct active-sets. From Remark 1 we can conclude that each
λ ∈ R

Nnx is contained in a region A( j), and thus

⋃

1≤ j≤nr
A( j) = R

Nnx .

Remark 3 Two distinct regions A( j1) and A( j2) do not need to be disjoint. Values of
λ that lead to weakly active stage constraints at z∗(λ) are contained in two or more
regions. These values of λ form the seams of the regions.

Next, we substantiate Remark 2 by characterizing the nature of the dependency of
z∗k on the dual variables λ in the stage problems (QPk).

Lemma 1 Let (QPk) be feasible. Then, the optimal solution of (QPk), z
∗
k (λ), is a

piecewise affine and continuous function in λ. In particular, the dependency is affine
on each region A( j), 1 ≤ j ≤ nr .

Proof (cf. [16, Lemma 2]; [45]) For stage Lagrange multipliers μk ∈ R
2nd the

solution of (P) is given by (see, e.g., [18])

⎡

⎢⎢⎣

Hk −D∗k
� D

∗
k
�

−D∗k
D
∗
k

⎤

⎥⎥⎦

[
z∗k
μ∗k

]
=

⎡

⎢⎢⎢⎣

−
(
gk +

[−Ek

Ck

]� [
λk

λk+1

])

d∗k
−d∗k

⎤

⎥⎥⎥⎦ , (4)

where D∗k , d∗k and D
∗
k , d

∗
k consist of the rows of Dk , dk , and dk that correspond to

the constraints that are active (i.e., fulfilled with equality) at the lower or, respectively,
the upper bound in the solution z∗k , and μ∗k is the vector of consistent dimension that
contains the corresponding multipliers. The remaining stage multiplier entries are 0 in
the solution of (P). As λ enters affinely only on the right-hand side, it is clear that for
identical active-sets it holds that z∗k depends affinely on λ. Continuity has been shown
in [17]. ��
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Corollary 2 Each region A( j), 1 ≤ j ≤ nr , of the dual space is convex and polyhe-
dral.

Proof Each stage problem (QPk) is constrained by affine constraints. For a given
representative λ( j) the set Fk := {zk ∈ R

nz | Ak(zk) = A∗k(z∗k (λ( j)))} is therefore
convex and polyhedral. From Lemma 1 we have that z∗k is affine in λ for a certain
(fixed) active-set. A region A( j) is therefore the intersection of N + 1 (i.e., a finite
number) preimages of convex sets, and therefore convex. ��

Lemma 1 is the basis for the following exhaustive characterization of the dual
function f ∗(λ), which we take from [16] without proof.

Lemma 3 ([16, Lemma 3]) If all stage QPs (QPk) are feasible, then the dual function
f ∗(λ) exists and is described by a concave, continuously differentiable, and piecewise
quadratic spline in λ space.

Remark 4 In particular f ∗(λ) is quadratic on each region A( j).

2.3 Solution by a (non-smooth) Newton method

Because (D) is an unconstrained problem and f ∗(λ) is a piecewise-quadratic spline
we employ a non-smooth Newton method, as originally proposed in [31], and also
used in [16]. The dual iterates are updated via the iteration

λi+1 := λi + αΔλ (5)

(the Newton iterates λi are not to be confused with the region representatives λ( j)

from Sect. 2.2) for an initial guess λ0 and a suitably chosen step size α until f ∗(λi ) is
stationary. The step direction Δλ is computed from

M(λi )Δλ = G(λi ), (6)

where M(λi ) := − ∂2 f ∗
∂λ2 (λi ) and G(λi ) := ∂ f ∗

∂λ
(λi ). By Remarks 3 and 4, M(λ) is

unique everywhere but on the seams of f ∗(λ) (a null set), so almost everywhere. On
the seams we assume that pointwise an arbitrary, but fixed second derivative from the
finite number of possible choices is used, thus ensuring general well-definedness of
M(λ). As we will see later on, the specific choice of M(λ) on the seams is not crucial
for the convergence of the method. In Sect. 3.3 we show that the choice of M(λ) on
the seams is done implicitly and automatically by the degeneracy handling mechanism
of the stage subproblem solver. We give more details on how the Newton system is
set up in Sects. 3.2 and 3.3.

Clearly, stationarity of f ∗(λ) is equivalent to optimality of (D). Observe that by
definition of (D), z∗(λi ) (i.e., the canonical concatenation of all z∗k (λi )) is always
optimal and (P3) are always fulfilled in the spirit of an active-set method. Lemma 4
will show that feasibility of (P2) is identical with stationarity of f ∗(λ).

The complete QP solution method is given in Algorithm 1, where we denote the
Lagrange multipliers of the stage constraints (P3) by μk ∈ R

2nd for each stage k ∈ S.
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Algorithm 1: Dual Newton strategy

Input: Initial guess λ0, termination criteria nmaxIt, ελ
Output: Optimal solution (z∗, λ∗, μ∗)

1 for i = 0 : (nmaxIt − 1) do
2 Solve all QPk (λ

i ) to obtain [z∗k (λi ), μ∗k (λi )]
3 Set up gradient G(λi )

4 if
∥∥∥G(λi )

∥∥∥ ≤ ελ then

5 return [z∗k (λi ), λi , μ∗k (λi )]
6 Set up Newton matrix M(λi )

7 Solve Newton system (6)
8 Compute appropriate step size α

9 Update current iterate λi+1 := λi + αΔλ

Note that the parametric solution of the stage problems (QPk) for the current iterate
λi in Step 2, and, as we will see in Sect. 3, also the setup of G(λi ) and M(λi ) in Steps
3 and 6 permit an independent, concurrent execution on all stages (see also Sect. 6).

We discuss details of the respective steps in Sect. 3 and give a convergence proof
for the algorithm in Sect. 4.

2.4 Characterization of the dual Newton iterations

A full QP solution by Algorithm 1 could be visualized as in Fig. 1. Each cell corre-
sponds to a region A( j) in λ-space, for which the primal active-set is constant. Starting
from an initial guess λ0, a Newton direction is computed from Eq. (6), leading to λ1

FS.
Using a globalization strategy (see Sect. 3.6), a suitable step rescaling is found, lead-
ing to λ1

ᾱ . In contrast to classical active-set methods, multiple active-set changes are
possible in one iteration. For future reference we also indicate a minimum guaranteed
step, which (in the regular case) leads at least to λ1

αmin
in the neighboring region. In the

second iteration of this illustration, λ2
FS already provides sufficient progress, thus no

globalization needs to be applied. In the following iteration λ∗ is found. We prove in
Lemma 8 that a one-step terminal convergence is guaranteed, once the correct region
is identified.

3 Algorithmic details of the dual Newton strategy

The dynamic optimization origin induces a specific structure in Problem (D), that we
strive to exploit as explained in the following section.

3.1 Solution of decoupled parametric stage QPs

On each stage k ∈ S we have to repeatedly solve a QP of size (nz, nd) that only
changes in the first-order term (and the negligible constant term) with the current
guess of λ. We rephrase problem (QPk) as
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Fig. 1 Steps of the dual Newton strategy in the λ-space

min
zk

1

2
z�k Hkzk + mk(λ)�zk + pk(λ)

s.t. dk ≤ Dkzk ≤ dk,

with

mk(λ) := gk − E�k λk + C�k λk+1 , (7)

pk(λ) := c�k λk+1 , . (8)

In general, Hk and Dk are dense. Such QPs can be solved efficiently (see [7,14]),
for example by employing the online active set strategy, which is implemented in the
open-source QP solver qpOASES [15].

In the special, yet practically relevant case where Hk is a diagonal matrix and Dk is
an identity matrix (i.e., only bounds on states and controls exist) the optimal solution
z∗k can conveniently be computed by component-wise “clipping” of the unconstrained
solution as it was presented in [16]:

z∗k = max(dk, min(H−1
k mk, dk)). (9)

3.2 Structure of the Newton system

The right-hand-side vector G : RNnx → R
Nnx of the Newton system (6) is easily seen

to only depend on two neighboring stages in each block λk . It holds that
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G(λ) =
(

∂ f ∗

∂λ
(λ)

)�
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ f ∗0
∂λ1

� + ∂ f ∗1
∂λ1

�

∂ f ∗1
∂λ2

� + ∂ f ∗2
∂λ2

�

...

∂ f ∗N−1
∂λN

� + ∂ f ∗N
∂λN

�

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(λ). (10)

The left-hand side Newton matrixM : RNnx → R
Nnx×Nnx has a block tri-diagonal

structure, because only neighboring multipliers λk, λk+1 can have a joint contribution
to f ∗. At a fixed λ

M(λ) = −∂2 f ∗

∂λ2 (λ) =

⎡

⎢⎢⎢⎣

W1 U1

U�1 W2
. . .

. . .
. . . UN−1

U�N−1 WN

⎤

⎥⎥⎥⎦ (λ), (11)

where the diagonal and off-diagonal block components are given by

Wk(λ) := −∂2 f ∗

∂λ2
k

(λ) and Uk(λ) := − ∂2 f ∗

∂λkλk+1
(λ). (12)

3.3 Gradient and Hessian computation

Lemma 4 (cf. [6, App.C]) Let all (QPk) be feasible. Then the derivative of f ∗k with
respect to λ exists and its nonzero entries are given by

[
∂ f ∗k
∂λk

∂ f ∗k
∂λk+1

]
= z∗k

�
[−Ek

Ck

]�
+

[
0
ck

]�
. (13)

Proof The derivative
∂ f ∗k
∂λ

exists by Lemma 3. From (7) and (8) we observe that only

λk and λk+1 enter in (QPk), and therefore the only nonzero blocks of
∂ f ∗k
∂λ

are given by
∂ f ∗k
∂λ̆

, where we use λ̆ := [
λk λk+1

]
to denote the projection of λ onto the respective

relevant entries. We derive a closed form for these values by regarding the stage QP
Lagrangian

Lk(zk, μk; λ) := 1

2
z�k Hkzk + mk(λ)�zk + pk(λ)+ μ�k

[
Dkzk − dk
dk − Dkzk

]
.

Since Hk � 0 and (QPk) is feasible by assumption, it holds that (QPk) has a (finite)
optimal primal and dual solution (z∗k , μ∗k), and, by Danskin’s Theorem [11], we can
interchange optimization and derivation in the sense that
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∂ f ∗k
∂λ̆

= ∂

∂λ̆
Lk(z

∗
k , μ

∗
k ; λ)

holds. We then have

∂ f ∗k
∂λ̆

= ∂Lk(z∗k , μ∗k ; λ)

∂λ̆
+ ∂Lk(z∗k , μ∗k ; λ)

∂z∗k
× ∂z∗k

∂λ̆
+ ∂Lk(z∗k , μ∗k ; λ)

∂μ∗k
× ∂μ∗k

∂λ̆

= ∂Lk(z∗k , μ∗k ; λ)

∂λ̆
+ ∂Lk(z∗k , μ∗k ; λ)

∂z∗k
× ∂z∗k

∂λ̆
+

[
Dkzk − dk
dk − Dkzk

]�
× ∂μ∗k

∂λ̆

=
(
z∗k
�

[−Ek

Ck

]�
+

[
0
ck

]�)
+ 0× ∂z∗k

∂λ̆
+ 0,

where the second and the third term vanish because of stationarity and the comple-
mentarity requirement of the optimal stage solution (z∗k , μ∗k). ��
Remark 5 We can see from Lemma 4 that ‖G(λ) ‖ is indeed a measure for both
stationarity of f ∗(λ) and infeasibility of (P2), as claimed in Sect. 2.3.

The second derivative of f ∗ can be computed as follows:

Lemma 5 Let Z∗k ∈ R
nz×(nz−nact), k ∈ S (where nact denotes the number of

active constraints, which depends on z∗k (λ)) be a basis matrix for the nullspace
of the matrix of active constraint rows of (QPk), D

∗
k , which depends by z∗k on λ.

P∗k := Z∗k (Z∗k
�Hk Z∗k )

−1
Z∗k
� ∈ R

nz×nz denote the elimination matrix for this null-
space. Then M(λ) is given by

M(λ) = CPC�,

where P := diag(
[
P∗0 P∗1 · · · P∗N

]
) and

C :=

⎡

⎢⎢⎣

C0 −E1
C1 −E2

. . .
. . .

CN−1 −EN

⎤

⎥⎥⎦ ∈ R
Nnx×(N+1)nz .

Proof We compute the Hessian blocks in (11) explicitly. Differentiating (13) once
more with respect to λ, we obtain

∂2 f ∗

∂λkλk+1
= ∂

∂λk

(
∂ f ∗k

∂λk+1
+ ∂ f ∗k+1

∂λk+1

)
= ∂z∗k

∂λk
C�k −

∂z∗k+1

∂λk︸ ︷︷ ︸
=0

E�k+1

and
∂2 f ∗

∂λkλk
= ∂

∂λk

(
∂ f ∗k−1

∂λk
+ ∂ f ∗k

∂λk

)
= ∂z∗k−1

∂λk
C�k−1 −

∂z∗k
∂λk

E�k .
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Within a fixed active-set the optimal solution of (QPk) at λ is given by (see, e.g., [35])

z∗k (λ) = −P∗k
−1mk(λ) = −P∗k

−1
(
gk + E�k λk + C�k λk+1

)
.

Accordingly, the Hessian blocks (cf. Eq. (12)) are computed as

Uk = −Ek P
∗
k C

�
k (14)

and

Wk = Ck−1P
∗
k−1C

�
k−1 + Ek P

∗
k E

�
k , (15)

which concludes the proof. ��

Remark 6 From Lemma 5 we can see in detail why M(λ) is naturally well-defined
almost everywhere. Only cases where λ leads to weakly active constraints in some
(QPk), we observe ambiguity of Z∗k and need to resort to a point-wise arbitrary but
fixed specification of Z∗k for well-definedness of M(λ). In practice, this ambiguity is
naturally resolved by the degeneracy handling mechanism of the stage QP solver; it
will in particular become clear from Theorem 9 that the convergence of the algorithm
is not affected by the specific choice of Z∗k .

Remark 7 Under the assumption of LICQ, a nullspace basis matrix Z∗k can be con-

structed as Z∗k :=
[−B−1N

I

]
by partitioning the matrix of active constraint rows in

the solution z∗k (λ), D∗k =:
[
B N

] ∈ R
nact×nz , into an invertible matrix B ∈ R

nact×nact

(without loss of generality the first nact columns by reordering) and a nact× (nz−nact)

matrix N (see [23,35] for details).

Remark 8 It is important to note that P∗k can be obtained relatively cheaply from a
null-space QP solver like qpOASES [15] that directly provides Z∗k and a Cholesky
factor R for R�R = Z∗k

�Hk Z∗k ; see [14]. For the special case of diagonal Hessian
matrices Hk = diag(h1

k, . . . , h
nz
k ) and simple bounds, the projection P∗k is simply a

diagonal matrix with either 1/hik or 0 entries depending on whether the corresponding
variable bound is inactive or active. The calculation of the Hessian blocks can then be
accelerated even further using diadic products as proposed in [16].

Remark 9 From the construction of M in Lemma 5 we can see that the dual New-
ton strategy is, in principle, also capable of dealing with certain indefinite problems
of the form (P), as long as the reduced Hessian blocks Z∗k

�Hk Z∗k remain positive
(semi-)definite for all k ∈ S. This could, for example, be the case when equality stage
constraints eliminate the negative definite directions from the stage Hessians. Basic
requirement for this work is of course the stage QP solvers’ support of such indefinite
QPs.
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3.4 Solution of the Newton system and regularization

By Lemma 3, M(λ) is positive semidefinite, because f ∗(λ) is concave. The block-
tridiagonal structure of the M(λ), cf. Eq. (11), can be exploited for the efficient
solution of the Newton system (6). Observing that a lower triangular factor L of
M(λ) = LL� possesses the same structural zero-blocks below the diagonal, we
suggest to employ a banded Cholesky decomposition. This factorization differs from
a regular Cholesky decomposition (see, e.g., [35]) by skipping all redundant blocks
left and below the subdiagonal block U�k of each block column k, thus reducing
the computational complexity from O(N 3n3

x ) to O(Nn3
x ) floating point operations

(FLOPs).
In the case of jointly redundant active constraints in several (QPk) via the stage cou-

pling constraints (P2), M(λ) may become rank-deficient [31] and the Newton system
(6) ill-posed. We propose to overcome this by applying regularization. In our dual
Newton software package qpDUNES both a Levenberg-Marquadt-type regularization
and an “on-the-fly” regularization are available. On detection of singularity during
the initial banded Cholesky factorization, the Levenberg-Marquadt approach replaces
M(λi ) in (6) by

M̃(λi ) :=M(λi )+ γ · I (16)

where γ ∈ R
+ is a (small) constant regularization parameter. The “on-the-fly” regu-

larization changes those diagonal elements for which the crucial division step in the
Cholesky decomposition cannot be performed due to singularity (similarly to the mod-
ified Cholesky factorization described in [35], which is based on [22]). We note that
the “on-the-fly” regularization ensures positive definiteness of the resulting M̃(λi )

(because it has a unique Cholesky decomposition) and avoids the need of restarting
the factorization, but may be numerically less stable.

the latter only regularizes those diagonal elements for which the crucial division
step in the Cholesky decomposition cannot be performed due to singularity (similarly
to the modified Cholesky factorization described in [35], which is based on [22]).
While the former one uses

3.5 A reverse Cholesky factorization for improved stability

In the context of MPC, one expects rather many active constraints in the beginning of
the control horizon and few to none towards the end of the horizon in many applications.
This may, for example, be a result of the chosen objective being of tracking nature
or of the rejection of a perturbation of the controlled process which enters at the
first stage. We aim to exploit this knowledge by applying a Cholesky factorization to
M (we omit the λ-dependency in this section for notational convenience) in reverse
order, i.e., starting from the last row/column, as detailed in Algorithm 2. Instead of a
factorization M = LL�, we obtain a Cholesky-like factorization M = RR� that
is equally well suited for an efficient solution of the Newton system (6). To see this,
observe that Algorithm 2 is equivalent to a standard Cholesky factorization applied to
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Algorithm 2: Structure-exploiting reverse Cholesky factorization
Input: Newton Hessian matrix M
Output: Cholesky-like factor R for M = RR�

1 for k = N : 1 do /* go by block columns */
2 for j = k · nx : (k − 1) · nx + 1 do /* go by columns */
3 w =M j j

4 l̄ = min(N · nx , (k + 1) · nx ) /* end of row fill in */

5 for l = j + 1 : l̄ do /* subtract row tail */
6 w = w −R2

jl

7 R j j =
√

w

8 ī = max(1, (k − 2) · nx + 1) /* end of column fill in */

9 for i = j − 1 : ī do /* write rest of column */
10 w =Mi j
11 if i > (k − 1) · nx then /* end of row fill in */
12 l̄ = min(N · nx , (k + 1) · nx )
13 else
14 l̄ = min(N · nx , k · nx )
15 for l = j + 1 : l̄ do /* subtract row tail */
16 w = w −R jl ·Ril

17 Ri j = w/R j j

M̂ := JMJ � after a full row and column permutation through J :=
[

1
. .

.

1

]
. The

advantage of applying this reverse Cholesky factorization in the dual Newton strategy
is twofold. First, observe that a diagonal block Wk only changes from one Newton
iteration to the next if the active-set on stage k or stage k − 1 changes, and an off-
diagonal block Uk only changes if the active-set on stage k changes (in particular note
that M only needs to be recomputed in blocks with active-set changes). As Algorithm
2 only uses data from the last k block rows (and columns) in block iteration k, it is
sufficient to restart the factorization from the block row that corresponds to the last
active-set change. Furthermore, we can also expect better numerical properties of R,
as the principal submatrix corresponding to stages without active state constraints is
positive definite (recall that rank-deficiency of M can only arise from a redundancy in
active stage constraints over several stages) and of similar conditioning as the original
problem; a significant worsening of the conditioning can only appear in block-rows
with active stage constraints, which, in a typical MPC setting, tend to appear rather
on the earlier than on the later stages, and thus enter later in Algorithm 2 compared to
the standard Cholesky factorization.

To formalize this, we identify the reverse Cholesky factorization with the discrete
time Riccati recursion in the following. Let us regard the (possibly regularized) New-
ton Hessian M � 0 in block form as defined in (11). Then, the reverse Cholesky
factorization (Algorithm 2) is easily seen to be given by the recursion

Xk−1 = Wk−1 −Uk−1 × X−1
k ×U�k−1

XN = WN ,
(17)
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where the Cholesky factor R in block form is given by

R =

⎡

⎢⎢⎢⎣

R1,1 R1,2

R2,2
. . .
. . . RN−1,N

RN ,N

⎤

⎥⎥⎥⎦

with upper triangular blocks Rk,k given implicitly (but uniquely) by Xk =:
Rk,kR�k,k ∀ k ∈ S0 and dense blocks Rk,k+1 = Uk × Rk+1,k+1 ∀ k ∈ S0,N . Note
that in this context the subscripts Rk,k refer to the block entries of R rather than to
the individual entries (as used in Algorithm 2). We refer to Xk as Cholesky iterates in
the following.

For linear time-invariant systems without active constraints it follows from Lemma
5 that

Wk = CH−1C� + EH−1E�

Uk = −EH−1C�

for k ∈ S0,N , where (analogously to QPs (1) and (P)) C =
[
A B

]
are the dynamics,

E = [
I 0

]
is the state selection matrix, and H =

[
Q S�
S R

]
is the objective Hessian. Due

to a possibly different choice of the Hessian on the last interval (H ≡ P),

WN = CH−1C� + P−1. (18)

Theorem 6 If P is the solution to the discrete time algebraic Riccati equation

P = Q + A�PA− (S + A�PB)
(
R + B�PB

)−1
(S� + B�PA),

then the Cholesky iterates X are constant, i.e., recursion (17) is stationary. In partic-
ular, Xk := P−1 + CH−1C� = WN ∀ k ∈ S0.

Proof See Appendix.

This proof is easily seen to also extend to the linear time-varying case without active
constraints, where we have (cf. Lemma 5):

Wk = Ck−1H
−1
k−1C

�
k−1 + EkH

−1
k E�k ∀k ∈ S0,N

Uk = −EkH
−1
k C�k ∀k ∈ S0,N

WN = CN−1H
−1
N−1C

�
N + H−1

N ,

with Ck =
[
Ak Bk

]
, ∀ k ∈ SN , Ek =

[
I 0

]
, ∀ k ∈ SN , Hk =

[
Qk S�k
Sk Rk

]
, ∀ k ∈ SN ,

and HN = QN .
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Corollary 7 Let Wk, k ∈ S0 and Uk, k ∈ S0,N be computed from an linear time-
varying system without (active) state constraints. Then, the Cholesky iterates Xk, k ∈
S0 from the Cholesky recursion (17) can be identified with the discrete time time-
varying algebraic Riccati recursion

PN = QN (19a)

Pk−1 = Qk−1 + A�k−1Pk Ak−1 − (Sk−1 + A�k−1Pk Bk−1)
(
Rk−1 + B�k−1Pk Bk−1

)−1

× (S�k−1 + B�k−1Pk Ak−1) (19b)

via Xk = P−1
k + Ck−1H

−1
k−1C

�
k−1 ∀ k ∈ S0.

Proof See Appendix. ��

3.6 Choice of the Newton step size

The piecewise quadratic nature of f ∗(λ) implies that a globalization strategy is needed
for the algorithms to converge reliably. For computational efficiency close to the solu-
tion, where we assume the quadratic model of the dual function f ∗(λ) to be accurate,
we propose a line search technique to find an (approximate) solution to

αi := arg max
0≤α≤1

f ∗(λi + αΔλi ). (20)

In contrast to general nonsmooth optimization, an exact line search is possible
at reasonable cost in our context. In particular, f ∗(λi + αΔλ) is a one-dimensional
piecewise quadratic function along the search direction Δλ. An exact quadratic model
in search direction can be built up by evaluating each f ∗k (λi + α jΔλ), k ∈ S at each
value of α j ∈ [0, 1] that corresponds to an active-set change on this stage. Alongside,
slope information in search direction can be obtained by

∂ f ∗k (λi + α j Δλ)

∂α
= ∂ f ∗k

∂λ
(λi + α j Δλ) ·Δλ

= z∗k (λi + α jΔλ)�
(
Ck
�Δλk+1 − Ek

�Δλk

)
+ ck

�Δλk+1,

cf. Eq. (13). As the second derivate is constant within each region, it can be cheaply
and accurately computed as the difference quotient of the slope at the left and the
right side of the intersection of each region with the search direction Δλ. Note that
a parametric active-set strategy like qpOASES traverses the required points z∗k (λi +
α j Δλ) for values of α j corresponding to an active-set change on stage k naturally
while computing z∗k (λi + Δλ) for the full step Δλ (cf. [14]). When employing the
clipping operation (9) for the solution of the stage problems (QPk), the points of active-
set changes along the search direction can analogously be determined by a simple ratio
test.
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With the piecewise quadratic model in search direction built up on each stage
k ∈ S, the dual objective value can be cheaply evaluated at each α j , where an active-
set change occurs on any stage k ∈ S. Taking the maximum over all these values (e.g.,
by performing a bisection search) identifies, in conjunction with the slope information,
the region containing the maximum dual function value in search direction, and the
optimal α∗ can be found as the maximum of the one-dimensional quadratic model of
this region.

Alternatively, also heuristic backtracking-based search strategies seem appropriate
in this context. Particularly the fact that the gradient evaluation G(λ) comes almost at
the same cost as a function evaluation f ∗(λ) can be exploited within the line search.

A search strategy that seemed to perform particularly well in practice was a com-
bination of a fast backtracking line search, allowing to quickly detect very small step
sizes, with a bisection interval search for refinement.

While we make use of a backtracking line search to quickly decrease the maximum
step size αmax, the minimum step size αmin is given by the minimum scaling of the
search direction that leads to an active-set change on any stage. While this is intuitively
clear, as each region with a constant active-set is quadratic and Newton’s method takes
a step towards the minimum of a local quadratic function approximation, we give a
formal proof for this in the following section, in the context of convergence (Lemma
8). This guaranteed minimum step size is indicated through λiαmin

in Fig. 1.

Remark 10 We obtain all α-values at which active-set changes occur at no extra cost
when employing an online active-set strategy to solve each (QPk). Therefore, taking
the minimum over all these α-values over all stages k ∈ S provides us with a lower
bound for αmin. If the solution to (QPk) is computed by Eq. (9), points of active-set
changes can still be obtained cheaply by comparing the unconstrained to the clipped
solution in each component.

4 Finite convergence of the algorithm

Convergence of non-smooth Newton methods has been proven before for functions
with similar properties [21,31,36]. In the following we show convergence in the
specific setting present in this paper; this allows us to present a shorter, more straightfor-
ward proof following the generic proof concept for descent methods. We furthermore
require these details to establish the theory an infeasibility detection mechanism in
Sect. 5, which according to our knowledge is novel to QP solvers based on nonsmooth
Newton methods.

A bit of notation is needed throughout this and the following section. By M(λ) we
refer to the Hessian matrix of (D), as defined in Eqs. (11–12). The possibly regularized
version of M(λ) used in the solution step of the Newton system (6) is denoted by
M̃(λ). We omit the dependency on λ occasionally for notational convenience when
it is clear from the context. The active-set of stage constraints at λ is denoted by
A∗(z∗(λ)).

We start with a rather obvious result, that nonetheless is crucial for the practical
performance of the Dual Newton Strategy.
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Lemma 8 (Local one-step convergence) Let (P) be feasible. Let λi be the current
dual iterate in Algorithm 1. Let M(λi ) be positive definite, i.e., no regularization is
needed during Step 7 in Algorithm 1, and letΔλ be the solution of the Newton equation
(6). Then, if A∗(z∗(λi )) = A∗(z∗(λi + Δλ)), it holds that λi+1 := λi + Δλ solves
Problem (D). In particular it holds that

arg max
0≤α≤1

f ∗(λi + α Δλ) = 1. (21)

Proof By Lemma 3 f ∗ is piecewise quadratic in λ. By the construction in Lemma
5 we know that M(λi ) is constant within each region A(λi ), since the active-set is
fixed. By its definition, the Newton step Δλ points to the maximum of the quadratic
function characterizing A(λi ). By concavity of f ∗ it follows that λi + Δλ has to be
the maximum of f ∗ and thus solves (D). The claim (21) follows immediately. ��

Lemma 8 is applied twofold in the dual Newton strategy. First, it allows us to make
our line search smarter by only considering step sizes that lead to at least one active-set
change (or full steps) as mentioned above in Sect. 3.6. Second, it shows that once the
correct region of the solution is identified we have a one-step convergence to the exact
solution (up to numerical accuracy), cf. Sect. 2.4. Next, we show global convergence.

Theorem 9 (Global convergence) Let (P) be feasible. Let λ0 ∈ R
Nnx and let λi ∈

R
Nnx be defined recursively by λi+1 := λi + αiΔλi , where Δλi is the (possibly

regularized) solution to Eq. (6), and αi is the solution to Eq. (20). Then the sequence
{λi }i∈N0 ⊂ R

Nnx converges to the unique maximum λ̂ with G(λ̂) = 0.

Proof The sequence {λi }i∈N0 induces a sequence { f i := f ∗(λi )}i∈N0 ⊆ R. By defini-
tion of the exact line search (20) it holds that f i+1 ≥ f i , i.e., { f i }i∈N0 is monotonically
increasing. Since (P) is feasible, f ∗(λ) is a bounded, concave function by Lemma 3
and duality theory. By the Bolzano-Weierstrass Theorem { f i }i∈N0 thus converges to
an accumulation point f̂ .

Due to monotonicity of { f i }i∈N0 it holds that {λi }i∈N0 is contained in the superlevel
set

F :=
{
λ ∈ R

Nnx | f ∗(λ) ≥ f ∗(λ0)
}

,

which is compact since f ∗(λ) is a bounded concave function. A convergent subse-
quence {λi (1)} ⊆ {λi }i∈N0 therefore has to exist and its limit λ̂ fulfills f ∗(λ̂) = f̂

because of the induced monotonicity of f ∗(λi (1)
).

What remains to show is that λ̂ indeed maximizes f ∗(λ), i.e., G(λ̂) = 0. Assume
contrarily G(λ̂) �= 0. Because M̃(λi ) is strictly positive definite and uniformly

bounded away from 0 in norm, it holds that Δ̂λ = M̃(λ̂)
−1G(λ̂) �= 0 (cf. Eq. (6)) is an

ascent direction. Then α̂ > 0 holds for the solution of Eq. (20), and by C1-continuity
of f ∗(λ) we can conclude that there is a δ > 0 with

f ∗(λ̂+ α̂Δ̂λ) ≥ f ∗(λ̂)+ δ.
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Since {λi (1)} converges to λ̂, an index ī ∈ N exists, such that for all i (1) ≥ ī we
have Δλi

(1)
sufficiently close to Δ̂λ and λi

(1)
close enough to λ̂ such that

f ∗(λi (1) + αi (1)

Δλi
(1)

) ≥ f ∗(λi (1) + α̂Δλi
(1)

) ≥ f ∗(λ̂)+ δ/2,

where the first inequality holds by the maximum property of the line search in each
iteration, and the second one holds by continuity of f ∗(λ). This, however, would
be a contradiction to λ̂ being an accumulation point of a monotonically increasing
sequence, so G(λ̂) = 0, and our claim holds. ��
Lemma 10 Let z∗(λ∗) be a feasible solution for (P), that fulfills the LICQ. Then
M(λ∗) is strictly positive definite.

Proof From Lemma 5 we have that M(λ∗) = C P(λ∗) C�, where

P(λ∗) = Z∗ (Z∗�HZ∗)−1 Z∗�

with Z∗ := block diag(Z∗0 , Z∗1 , . . . , Z∗N ) and H := block diag(H0, H1, . . . , HN ). As
in Lemma 5, each Z∗k , k ∈ S denotes a basis matrix for the active constraints in the
solution of (QPk), in this context the solution given the subproblem parameter λ∗.
Consider now

λ�M(λ∗)λ = λ�CZ∗(Z∗�HZ∗)−1Z∗�C�λ. (22)

Since H is positive definite and Z∗, being a block diagonal composition of basis
matrices, has full row rank, we have Z∗�HZ∗ � 0, and thus (Z∗�HZ∗)−1 � 0.
Using Eq. (22), this implies λ�M(λ∗)λ ≥ 0.

Assume λ�M(λ∗)λ = 0. Since (Z∗�HZ∗)−1 � 0 it must hold that λ�CZ∗ = 0.
The columns of Z∗ however are linearly independent and span the nullspace of the

active stage constraints, i.e., every vector from the nullspace of Z∗ can be expressed
by a linear combination of active stage constraints. If now λ�C lies in the nullspace
of the active stage constraints this means there is a linear combination of active stage
constraints that represents λ�C, which is a linear combination of the stage coupling
equality constraints. Since LICQ holds we can conclude that λ = 0, and thusM(λ∗) �
0 holds. ��
Corollary 11 (Finite termination of Algorithm 1) Let z∗(λ∗) be a feasible solu-
tion for (P) that fulfills the LICQ. Let λ0, λ1, . . . be computed from Algorithm 1 (in
exact arithmetic). Then {λi }i∈N0 becomes stationary after finitely many iterations, i.e.,∃ ī : λi = λ∗ ∀ i ≥ ī .

Proof From Lemma 1 we know that z∗k (λ) depends continuously on λ. If no stage
constraints of (QPk) are weakly active in λ∗, then λ∗ lies in the strict interior of a
region A∗ (with M(λ) constant on A∗) in the dual λ space. According to Theorem 9
there is a finite iteration index ī with λī ∈ A∗. Due to Lemma 10 we have that M(λ)

is non-singular on A∗, and Lemma 8 guarantees convergence in the next iteration.
If there are weakly active constraints in λ∗ (i.e., λ∗ lies on the boundary between

several, but a finite number of, nonempty regions A( j1), . . . , A( jn) in Fig. 1), then due
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to C1 continuity of f , each quadratic function defining f on A( ji ), i ∈ {1, . . . , n}
needs to have its maximum in λ∗. We can define a ball Bε(λ

∗) of fixed radius ε > 0
around λ∗ with the property that for every λ ∈ Bε(λ

∗) the dual function f on a region
A( ji ) containing λ is again defined by a quadratic function having its maximum in λ∗.
By the identical argument as before we can conclude finite termination of algorithm
1 with Theorem 9, Lemmas 10 and 8. ��

5 Infeasibility handling

If the primal problem (P) is infeasible, two possible consequences for the dual problem

(D) arise. If a stage k and a selection of stage constraints {dik ≤ Di
kzk ≤ d

i
k}i∈Ik ,

Ik ⊆ {1, ..., nd} exists that cannot be satisfied by any zk ∈ R
nz , then and only then

the dual problem (D) is infeasible as well, as no choice of λ will render (QPk) feasible
(see also Remark 1).

In the following, we describes the behavior of the algorithm when all problems
(QPk) are feasible, and yet (P) is infeasible.

Lemma 12 Let all (QPk) be feasible. If (P) is infeasible, the dual function f ∗(λ) is
unbounded and there exists (at least) one region in λ space, ∅ �= Ainf ⊆ R

Nnx , with
constant Minf on Ainf and

(i) Minf singular, i.e., ∃ λ �= 0 : Minfλ = 0,
(ii) ∀ f̄ ∈ R ∃ λ̂ ∈ Ainf : f ∗(λ̂) > f̄ ,

(iii) for all A( j), defined by a representative λ( j), withM(λ( j)) � 0 it holds

∃ λ̂ ∈ Ainf ∀ λ̄ ∈ A( j) : f ∗(λ̂) > f ∗(λ̄).

Proof Since all (QPk) are feasible, f ∗(λ) exists and (D) is feasible. Thus, (D) has to
be unbounded by duality theory.

Let λ( j) ∈ A( j) for any A( j). The mapping λ→ f ∗(λ) is onto an interval that con-
tains the half-open interval [ f ∗(λ( j)),+∞) since f ∗(λ) is continuous and unbounded.
Since there is only a finite number of regions by Definition 2, property (ii) holds.

Assume now (i) is violated, i.e., ∃ A( j) with M(·) � 0 on A( j) and ∀ f̄ ∈ R ∃ λ ∈
A( j) : f ∗(λ) > f̄ . Since M(·) � 0 is constant on A( j) we have that f ∗(λ) is strictly,
and even strongly concave on A( j). Therefore ∃ f̄ < ∞ with f ∗(λ) ≤ f̄ ∀ λ ∈ A( j),
a contradiction. Therefore (i) holds.

In particular f ∗(λ) is bounded (from above) on each A( j) with M(·) � 0. Since
there is only a finite number of regions, property (ii) implies (iii). ��

Lemma 12 tells us that unboundedness of the dual objective function value can only
occur in regions with singular Newton Hessian matrix M(·). We further characterize
these unbounded regions in the following.

Definition 3 (Infinite ray) For Δλ �= 0 we call a pair (λ̄,Δλ) an infinite ray, if there
is a region Ainf ⊆ R

Nnx represented by λ̄ ∈ Ainf such that the ray is
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1. contained in the region: λ̄+ δ ·Δλ ∈ Ainf ∀ δ > 0,
2. in the nullspace of the region’s Hessian: M(λ̄)Δλ = 0,
3. an ascent direction: G(λ̄)�Δλ > 0.

Clearly every region containing an infinite ray is an unbounded region in the sense of
Lemma 12. We additionally have the following characterizations.

Remark 11 Because Δλ lies in the nullspace of the negated dual Hessian M(·), the
dual gradient G(·) along a ray (λ̄,Δλ) is constant.

Lemma 13 Let (λ̄,Δλ) be an infinite ray contained in Ainf . For every λ̃ ∈ Ainf it
holds λ̃+ γ ·Δλ ∈ Ainf ∀γ > 0, i.e., (λ̃,Δλ) is an infinite ray as well.

Proof Since Ainf is convex by Lemma 2 and both λ̃ ∈ Ainf and λ̄+ γ ·Δλ ∈ Ainf for
each choice of γ > 0, it holds

β · λ̃+ (1− β) · (λ̄+ γ ·Δλ) ∈ Ainf ∀β ∈ [0, 1]. (23)

From Lemma 2 we also have that Ainf is polyhedral and therefore closed in R
Nnx ,

where R := R∪{−∞,+∞}. Thus, the limit of (23) for γ →∞ is contained in Ainf ,
and the claim holds. ��

Lemma 13 is interesting because it tells us that Ainf has a cone- or beam-like
shape. This will play a role in the following, when we characterize certificates for an
unbounded dual problem.

Definition 4 (Ridge) Let (λ‡,Δλ‡) be an infinite ray with Δλ‡ �= 0. We call
(λ‡,Δλ‡) a ridge if it holds Δλ‡ = γ · G(λ‡) for a γ > 0, i.e., if Δλ‡ is aligned
with the gradient of the dual function f ∗ along the ray it is defining.

Theorem 14 Let all (QPk) be feasible. If (P) is infeasible, then a ridge (λ‡,Δλ‡)

exists.

Proof From Lemma 12 we know that a non-empty region Ainf exists. We further
know that f ∗(λ) is an unbounded concave quadratic function on Ainf . An infinite ray
(λ̄,Δλ) in the sense of Definition 3 therefore has to exist in Ainf .

From Lemma 13 we have that in this case (λ̃,Δλ) is an infinite ray as well for every
λ̃ ∈ Ainf .

Let Ainf∪ := Ainf,1 ∪ Ainf,2 ∪ . . . ∪ Ainf,n be the union of all unbounded regions
in the sense of Lemma 12. Since f ∗(λ) is concave, Ainf∪ is connected. For the same
reason it also holds that the superlevel set

Āinf∪ := {λ ∈ Ainf∪ | f ∗(λ) ≥ f̄ } (24)

is convex if we choose f̄ ∈ R sufficiently large. Since f ∗(λ) is continuous and
unbounded on Āinf∪ , it holds that Āinf∪ is (Nnx )-dimensional, i.e., full-dimensional;
otherwise a directional vector e ∈ R

Nnx would exist with λ̃ ∈ int( Āinf∪ ), i.e., f ∗(λ̃) >

f̄ and f ∗(λ̃+ ε · e) < f̄ ∀ ε > 0, a violation of continuity.
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Assume for the moment that every region Ainf, j only contains one infinite ray (up to
translation and scaling). Consider the nonempty intersection of Āinf∪ with a (Nnx−1)-
dimensional Hyperplane F ⊂ R

Nnx . If F∩ Āinf∪ does not contain a singular ray, f ∗(λ)

has to be bounded on F ∩ Āinf∪ , as f ∗(λ) is composed from only a finite number of
concave quadratic functions. In particular f ∗(λ) attains a maximum λ̂ somewhere in
the intersection.

This maximum λ̂ is characterized by the fact that the dual gradientG(λ̂) is orthogonal
to F if λ̂ ∈ int(F ∩ Āinf∪ ). Since the dual λ space is (Nnx )-dimensional G(λ̂)/‖G(λ̂)‖
is uniquely defined by F and vice versa. Recall that (λ̂,Δλ) is an infinite ray in every
λ̂ ∈ Āinf∪ for one fixed Δλ as shown above. Since G(λ) is continuous, varying (i.e.,
“rotating”) F eventually has to yield a λ̂ with G(λ̂) = γΔλ for some γ > 0.

If now there is a region Ainf
j with more than one infinite ray (i.e., the directional

vectors Δλ of the infinite rays span a space of dimensionality k > 1) the same argument
can be applied, but with a (Nnx −k)-dimensional Hyperplane F ⊂ R

Nnx . In this case
G(λ̂) is not uniquely defined anymore, but lies in the normal space of F . By the same
argument as above there has to be an F whose normal space coincides with the space
spanned by the directional vectors Δλ of the infinite rays of Ainf

j , and thus again there

is an infinite ray (λ̂,Δλ) coinciding with the gradient G(λ̂) at its base point λ̂. ��
Remark 12 Let (λ‡,G(λ‡)) ⊆ A‡ ⊆ Āinf∪ be a ridge. Clearly, M(λ‡) is rank deficient
(and constant on A‡) and thus regularized with δ I � 0 by Algorithm 1. By Theorem
14 and Definitions 3 and 4 it holds M(λ‡)G(λ‡) = 0 and we have

G(λ‡) = 1

δ
δ G(λ‡)+ 1

δ
M(λ‡)G(λ‡)︸ ︷︷ ︸

=0

= 1

δ
(M(λ‡)+ δ I︸ ︷︷ ︸

�0

)G(λ‡)

⇔ M̃(λ‡)−1G(λ‡) = 1

δ
G(λ‡)

⇔ Δλ‡ = 1

δ
G(λ‡),

i.e., Algorithm 1 only performs gradient steps and thus remains on the ridge. Therefore
we can see a ridge as the analogon to a fixed point in the case where the dual function
f ∗(λ) is unbounded.

Lemma 15 (Minimality of the ridge gradient) Let (λ‡,Δλ‡) be a ridge. Then

‖G(λ‡)‖2 ≤ ‖G(λ)‖2 (25)

for all λ ∈ R
Nnx . Furthermore, inequality (25) is strict except for those λ that lie on a

ridge, i.e., for which there is a ridge (λ̄,Δλ) such that λ = λ̄+ γΔλ for a γ ≥ 0. In
particular the ridge (λ‡,Δλ‡) ⊆ A‡ is unique up to scaling of Δλ‡ and translations
from the nullspace of M(λ‡).

Proof Let λ ∈ R
Nnx and let (λ‡,Δλ‡) be a ridge. Due to concavity of f ∗(·) we have

(G(λ)− G(λ‡))�(λ‡ − λ) ≥ 0. Since the G(·) is constant along the ridge, (λ‡,Δλ‡)
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and Δλ‡ and G(λ‡) only differ by a positve scalar factor, and also

(G(λ)− G(λ‡))� 1

γ
(λ‡ + γ G(λ‡)− λ) ≥ 0

for all γ > 0. Since concavity of f ∗(·) clearly also holds on the extended domain

R
Nnx , where R = R ∪ {−∞,+∞}, we have (G(λ)− G(λ‡))�G(λ‡) ≥ 0 in the limit

for γ →∞. This is equivalent to

‖G(λ‡)‖2
2 = G(λ‡)�G(λ‡) ≤ G(λ)�G(λ‡) ≤ ‖G(λ)‖2 · ‖G(λ‡)‖2,

where the last inequality is the Cauchy-Schwarz inequality. Thus (25) holds.
For the proof of the second part of the Lemma, we note that the Cauchy-Schwarz

inequality is strict unless G(λ) is a positive multiple of G(λ‡), so ‖G(λ)‖2 = ‖G(λ‡)‖2
implies G(λ) = G(λ‡). Let us therefore consider an arbitrary λ ∈ R

Nnx with G(λ) =
G(λ‡). Due to concavity we have

f ∗(β λ+ (1− β) λ‡) ≤ f ∗(λ)+ G(λ)�(β λ+ (1− β) λ‡ − λ)

= f ∗(λ)+ (1− β) · G(λ)�(λ‡ − λ) (26)

for β ∈ [ 0 , 1 ], and analogously

f ∗(β λ+ (1− β) λ‡) ≤ f ∗(λ‡)− β · G(λ‡)�(λ‡ − λ). (27)

We can multiply (26) by β and (27) by (1 − β), add both inequalities up and, using
G(λ) = G(λ‡), obtain

f ∗(β λ+ (1− β) λ‡) ≤ β f ∗(λ)+ (1− β) f ∗(λ‡).

By concavity of f ∗(·) also the converse inequality holds and we have

f ∗(β λ+ (1− β) λ‡) = β f ∗(λ)+ (1− β) f ∗(λ‡), (28)

i.e., linearity of f ∗(·) on the interval between λ and λ‡. Once more since G(·) is
constant along the ridge (λ‡,Δλ‡), (28) holds analogously for all λ̃‡ := λ‡ + γ Δλ‡

in place of λ‡, i.e., f ∗ is linear on the interval [ λ , λ‡ + γ Δλ‡ ] for all choices of
γ > 0. Since the space of linear functions fromR

Nnx toR is closed, linearity also holds
in the limit for γ →∞, which is the half-open interval {λ+ γ ·Δλ‡ | γ ∈ [ 0 ,∞ )}.
Since G(λ) = G(λ‡) (which itself is a positive multiple of Δλ‡) we therefore have
that (λ,G(λ)) is itself a ridge, which is moreover parallel to (λ‡,Δλ‡).

Since f ∗(·) is specifically linear on [ λ , λ‡ ], (λ,G(λ)) differs from (λ‡,Δλ‡) only
by a shift that lies in the nullspace of M(λ‡) as we claimed above. ��
Theorem 16 (Convergence to an infinite ray) If (P) is infeasible, then exactly one of
the two following statements is true:
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1. (QPk) is infeasible for at least one k ∈ S;
2. Algorithm 1 converges to an infinite ray (i.e., the distance of the iterates to the

half-open set characterized by the ray vanishes) if the regularization parameter δ

is chosen sufficiently large.

Proof Let (P) be infeasible. Because of the special time coupling structure of (P) either
there exists a minimal infeasible set (a selection of constraints of minimal size that
cannot be fulfilled at the same time) that is contained in the set of local stage constraints
of one (QPk), or all minimal infeasible sets consist of local stage constraints (P3) of
several stages k1 < k2 < · · · < kn and the corresponding time coupling constraints
between k1 and kn (a subset of constraints (P2)). In the former case Statement 1 holds,
and infeasibility is detected by the stage QP solver on first execution. In the latter case
we have that the partial dual function f ∗(λ) exists and can be evaluated. In particular
f ∗(λ) is unbounded by Lemma 12. In the remainder of the proof we show that in this
case Algorithm 1 indeed converges to an infinite ray.

As we have seen in the proof of Theorem 9 the iterates λi of Algorithm 1 defined
by Eqs. (5), (6), and (20) induce a monotonically increasing sequence { f ∗(λi )}i∈N0 .
We claim that { f ∗(λi )}i∈N0 does not converge if f ∗(λ) is unbounded.

Assume to the contrary that { f ∗(λi )}i∈N0 converges. Clearly G(λ) does not vanish
since G(λ) = 0 would imply the existence of a feasible solution of (P) by Remark 5.
By Lemma 15 we further know the existence of a

0 < Gmin := min
λ∈RNnx

‖G(λ)‖. (29)

If now { f ∗(λi )}i∈N0 converges, clearly the updates αi ·M̃(λi )
−1G(λi ), have to vanish.

Since there are only finitely many different M̃(·) � 0 and G(·) is bounded away from
0 by Eq. (29) this implies that

αi = arg max
0≤α≤1

f ∗(λi + αΔλ) ,

with Δλ = M̃(λi )
−1G(λi ), cf. Eq. (20), has to drop to 0.

At each iteration i three cases for αi could appear:

(i) αi = 1;

(ii) αi = 0. We have G(λi ) �= 0 and M̃(λi ) � 0, so M̃(λi )
−1G(λi ) is an ascent

direction. By C1-continuity of f ∗(·) an ascent is possible and thus αi �= 0 ∀ i ∈
N0;

(iii) 0 < αi < 1. Then by maximality αi fulfills G(λi + αiΔλ)�Δλ = G(λi +
αiΔλ)�M̃(λi )

−1G(λi ) = 0. Regard φ(α) := G(λi + αΔλ)�M̃(λi )
−1G(λi ) as

a function in α. Clearly φ(0) = G(λi )�M̃(λi )
−1G(λi ) is bounded away from

0, since there are only finitely many different M̃(·) � 0 and G(·) is bounded
away from 0 by Eq. (29). Further φ(α) is continuous and its derivative φ′(α) =
−Δλ�M(λi+αΔλ)Δλ is bounded from below (for a fixedΔλ), again since there
are only finitely many different M̃(·); note that the ascent direction Δλ cannot
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grow to infinity for i → ∞ since f ∗(λ) is concave and f ∗(λi ) is increasing.
Therefore αi has to be bounded away from 0 by a problem-data specific constant
that is independent from the iteration index i .

Since also αi does not converge to 0 we have a contradiction, and our claim that
{ f ∗(λi )}i∈N0 diverges (even monotonically) holds true. In particular every fixed func-
tion value f̄ will be exceeded and for every suitably large f̄ the iterates of Algorithm
1 will remain in Āinf∪ (as defined in Eq. (24)) after a finite number of iterations.

In the remainder of the proof we first show local and subsequently global attrac-
tiveness of a ridge in the sense of Theorem 14.

Let A‡ denote the region that contains a ridge (λ‡,G(λ‡)). For two subsequent
iterates both contained in A‡ (characterized by a constant Newton matrix M) we have
the exact linear model

G(λi+1) = G(λi + αiM̃−1G(λi ))

= G(λi )− αiMM̃−1G(λi ). (30)

The cone-like quadratic shape of A‡ (cf. Lemma 13) implies that each subsequent
iterate λi+1 is contained in A‡ if λi ∈ A‡. The linear expansion of the gradi-

ent (30), becomes G(λi+1) =
(
I −MM̃−1

)
G(λi ). Clearly I − MM̃−1 =

I −
(
M̃− δ I

)
M̃−1 = δ M̃−1 is positive definite. On the other hand MM̃−1 =

I − δ M̃−1 is positive semidefinite, so ‖G(λi+1)‖ ≤ ‖G(λi )‖.
Whenever MM̃−1G(λi ) �= 0 we have δ G(λi )�M̃−1MM̃−1G(λi ) > 0 for any

δ > 0. This can be easily verified, e.g., by using the fact that 0 �M =: B B� has a
(not necessarily full rank) symmetric factorization. Assuming MM̃−1G(λi ) �= 0 it
then holds1

δ G(λi )�M̃−1MM̃−1G(λi ) > 0

⇔ G(λi )�
(
I −MM̃−1

)
MM̃−1G(λi ) > 0

⇔ G(λi )�MM̃−1G(λi )− G(λi )�M̃−1MMM̃−1G(λi ) > 0

⇒ 2 · G(λi )�MM̃−1G(λi )− G(λi )�M̃−1MMM̃−1G(λi ) > 0.

This implies that

‖G(λi+1)‖2 = G(λi )�
(
I −MM̃−1

)� (
I −MM̃−1

)
G(λi )

= ‖G(λi )‖2 − 2 · G(λi )�MM̃−1G(λi )

+ G(λi )�M̃−1MMM̃−1G(λi )

< ‖G(λi )‖2

1 We make use of the symmetry and positive semidefiniteness of MM̃−1 = I − δ M̃−1.
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for all iterates with MM̃−1G(λi ) �= 0, and together with (30) we can conclude that
the sequence of gradients converges to a limit G∗ that fulfills

MM̃−1G∗ = 0

⇔
(
M̃− δ I

)
M̃−1G∗ = 0

⇔ δ M̃−1G∗ = G∗,

the ridge property. Recall that by Lemma 15 the ridge is unique.
It remains to show that the iterates λi of Algorithm (1) also converge globally to

A‡. To see this, we consider the auxiliary function

f̃ (λ) := f ∗(λ)− G(λ‡)�λ.

This function is clearly piecewise quadratic and convex, just like f ∗, and its second
derivative equals the second derivative of f ∗, while the first derivative of f̃ is given

by ∂ f̃
∂λ
= G(λ)� −G(λ‡)�. It is furthermore bounded, since due to concavity we have

for every λ ∈ R
Nnx

f̃ (λ) ≤ f̃ (λ‡)+ (G(λ‡)− G(λ‡))�(λ− λ‡) = f̃ (λ‡).

The iterates λi of Algorithm (1) are increasing in f̃ if and only if the step directions

M̃(λi )
−1G(λi ) are always ascent directions, i.e., if

αi (G(λi )− G(λ‡))�M̃(λi )
−1G(λi ) > 0

holds. We have shown above that αi is bounded away from 0 by an iteration-
independent constant and therefore we equivalently have the condition

δ G(λi )�M̃(λi )
−1G(λi ) > δ G(λ‡)�M̃(λi )

−1G(λi ), (31)

where δ is the regularization parameter in Algorithm 1. Since δ M̃(λi )
−1

is positive
definite, each of its finitely many distinct values δ M̃−1

( j) defines a scalar product that

induces a norm on R
Nnx . Applying the Cauchy-Schwarz inequality to (31) we have

that the iterates λi are increasing iff

‖G(λi )‖2
δM̃−1

( j)
> ‖G(λ‡)‖

δM̃−1
( j)
· ‖G(λi )‖

δM̃−1
( j)

⇔ ‖G(λi )‖
δM̃−1

( j)
> ‖G(λ‡)‖

δM̃−1
( j)

. (32)

While λi is not contained in a ridge, we have ‖G(λi )‖2 > ‖G(λ‡)‖2 from Lemma
15; furthermore I − δ M̃−1

( j) = I − δ (M( j) + δ I )−1 vanishes for sufficiently large

choices of δ, fulfilling (32) and thus showing that the iterates λi are also ascending
in the auxiliary function f̃ . Since f̃ is bounded, we can conclude that the region
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A‡, containing a ridge, is eventually reached, thus concluding the proof of global
convergence. ��

Theorem 16 can be used algorithmically to detect infeasibility of (P). If any (QPk)

is infeasible, it will be detected by the stage QP solver (either qpOASES, or during
the clipping operation) on the first execution and (P) is then immediately known to
be infeasible. Otherwise, in the case of infeasibility through the coupling constraints,
we know by Theorem 16 that the iterates of Algorithm 1 will eventually converge
to a ridge. Here, we could gradually increase the regularization parameter δ, if the
iterates remain in regions with singular Hessians. A check whether G(λi ) is in the
nullspace of M(λi ) (i.e., M(λi )G(λi ) ≈ 0) every few (regularized) iterations without
an active-set change, combined with a check whether any active-set change occurs at
all in the Newton direction will eventually conclude infeasibility as stated by Theorem
16. Note that the check for active-set changes in the Newton direction can cheaply be
performed both in qpOASES and the clipping QP solver by simply considering the
signs in the ratio test of the active and inactive constraints, cf. Sect. 3.6. Additionally,
practical infeasibility can be concluded, when the objective function value exceeds a
certain large threshold (caused by an explosion of the norm of the iterates λi ).

Remark 13 In practice, the dual iterates λi in Algorithm 1 were indeed always
observed to grow very fast and reach a ridge quickly in infeasible problems because
of the initially small regularization.

We note that the theoretical result of Theorem 16 is somewhat unsatisfactory, since
it requires a modification of the regularization parameter δ (or even to only do gradient
steps in regions with a singular Hessian). We initially aimed at proving Theorem 16 for
generic regularized Newton steps, i.e., independent of δ. Despite some considerable
effort, we could not derive a formal argument that links condition (32) with Lemma
15, since the ordering relations in the Euclidian norm on the one hand and the norm
induced by δ M̃−1

( j) on the other thand might be different. Still, we are confident that also
regularized Newton updates in general, independent of the choice of δ, are increasing
in f̃ on a global scale (though not necessarily monotonically), and thus formulate the
following conjecture.

Conjecture 17 Theorem 16 holds independently for all choices of the regularization
parameter δ > 0.

6 Concurrency in the dual Newton strategy

One important advantage of the Dual Newton Strategy is that, as opposed to con-
ventional active-set or interior-point methods, it is an easily parallelizable algorithm.
Analyzing Algorithm 1 in this respect, we observe that all stage QPs can be solved
concurrently in N + 1 threads in Step 2. Next, each block of the dual gradient G(λ)

only depends on the solution of two neighboring stage QPs (cf. Eq. 10), and therefore
the setup can be done concurrently in N threads (Step 3). Also in the setup of the sym-
metric Newton matrix M , Step 6, each diagonal block only depends on the solution of
two adjacent stage QP solutions, while each off-diagonal block only depends on the
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solution of one stage QP; therefore the workload of the setup of M can be distributed
on N threads almost equally. During the line search procedure in Step 8 of Algorithm
1, the expensive steps in each iteration consist of solving all stage QPs for the new step
size guess and computing the corresponding gradient, both of which can be spread
over N + 1 threads with almost equal workload.

Therefore, so far all steps of significant workload can be run fully in parallel in
each major iteration of Algorithm 1, except for the solution of the structured linear
system, Step 7. In a sequential implementation, solving the system based on a structure-
exploiting reverse Cholesky factorization as proposed in Sect. 3.5 seems most efficient.
This algorithm, however, is completely serial on the higher level and therefore cannot
be expected to scale well with the number of available computing threads on modern
and forthcoming multi-core CPU architectures.

We therefore propose a parallelizable solution algorithm for the structured Newton
system in Sect. 6.1, as an alternative to Algorithm 2. The overall cost of this algorithm
is roughly twice as high in number of FLOPs as Algorithm 2, but it comes at a parallel
complexity of only O(log N ) on N threads; therefore, the overall time complexity
of one iteration of the dual Newton strategy comes down to only O(log N ) FLOPs,
compared to O(N 3) in active-set methods, and O(N ) in common tailored interior-
point method.

6.1 A parallel solution algorithm for the Newton system

The core idea behind the algorithm proposed in this section is to exploit the block-
tridiagonal structure of the Newton matrix M in Eq. (6) in a cyclic reduction strategy.
We note that a similar and to some extent more general algorithm has been proposed
in [44] for the parallel solution of a linear system of similar structure, that originated
form a related but slightly different problem. The work [44] contains a deeper analysis
of the applicability and extensions of the cyclic reduction strategy, as well as extensive
numerical comparisons. In the following we only present the central algorithmic idea
in our context and refer to [44] for complementary reading. Note that in contrast to
the setting of [44], we have general applicability, since M is positive definite and
therefore the diagonal minors are invertible.

We consider the Newton system given by

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

D1 U1

U�1 D2 U2

U�2 D3 U3
. . .

. . .
. . .

U�N−2 DN−1 UN−1

U�N−1 DN

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
λ2
λ3
λ4
...

λN−1
λN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

g1
g2
g3
...

gN−1
gN

⎤

⎥⎥⎥⎥⎥⎥⎦
, (33)

where λi ∈ R
nx , i ∈ S0 denote the block components of λ defined in Eq. (3). We

assume the Newton matrix M strictly positive definite (otherwise we regularize). We
can use the 2nd, 4th,. . . equation of (33) to eliminate λ2, λ4, . . . concurrently from
(33). This yields a reduced-size system of equations, which is again block-tridiagonal,
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⎡

⎢⎢⎢⎢⎢⎣

D̄1 Ū1

Ū�1 D̄3 Ū3
. . .

. . .
. . .

ŪN−1

Ū�N−1 D̄N

⎤

⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎢⎣

λ1
λ3
λ5
...

λN−1
λN

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

ḡ1
ḡ3
ḡ5
...

ḡN−1
ḡN

⎤

⎥⎥⎥⎥⎥⎥⎦
,

with block components given by

D̄i := Di −U�i−D
−1
i−Ui− −Ui D

−1
i+U

�
i (34a)

Ūi := −U�i D−1
i+Ui+ (34b)

ḡi := gi −U�i−D
−1
i− gi− −U�i D−1

i+ gi+, (34c)

where i− = i−1, and i+ = i+1. Applying this reduction step recursively, we obtain
a system [ ¯̄D1

¯̄U1¯̄U�1 ¯̄DN

]
·
[

λ1
λN

]
=

[ ¯̄g1¯̄gN
]

after �(log N ) iterations, from which we can eliminate λN , yielding

( ¯̄D1 − ¯̄U1
¯̄D−1
N
¯̄U�1

)
λ1 = ¯̄g1 − ¯̄U1

¯̄D−1
N
¯̄gN , (35)

a dense system of size nx × nx . This system can efficiently be solved by a direct
Cholesky decomposition, followed by two backsolve steps.

With λ1 we can recover λN from

λN = ¯̄D−1
N

( ¯̄gN − ¯̄U�1 λ1

)
, (36)

and in general, we can recover λi from λi− and λi+ by

λi = D−1
i

(
gi −U�i−λi− −Uiλi+

)
, (37)

concurrently in reverse level order of the previous elimination procedure. Here λi−
and λi+ denote the λ-blocks preceding and succeeding λi in the system of equations
remaining in the reduction step that eliminated λi .
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The complete solution algorithm can be summarized as follows:

Algorithm 3: A parallel solution algorithm for Eq. (6)

Input: Newton system given by g(0) = [
g�1 , . . . , g�N

]�
,

D(0) = blockdiag(D1, . . . , DN ), U (0) = blockdiag(U1, . . . ,UN−1)

Output: Solution λ = [
λ�1 , . . . , λ�N

]�
to Equation (6)

1 kmax = !log2(N − 1)"
2 for k = 1 : kmax do /* factor step */
3 for i = 2k−1 : 2k : N − 1 do in parallel
4 i− = i − 2k−1

5 i+ = min(i + 2k, N )

6 compute D(k)
i ,U (k)

i , g(k)
i from Eq. (34) with

D• = D(k−1)• , U• = U (k−1)• , g• = g(k−1)• ∀• ∈ {i, i−, i+}
7 Compute λ1 from Eq. (35) with ¯̄U1 = U (kmax)

1 , ¯̄g1 = g(kmax)
1 ,

¯̄D1 = D(kmax)
1 , ¯̄DN = D(kmax)

N using a Cholesky decomposition
8 Compute λN from Eq. (36) with

¯̄DN = D(kmax)
N , ¯̄gN = g(kmax)

N , ¯̄U1 = U (kmax)
1

9 for k = kmax : −1 : 1 do /* solve step */
10 for i = 2k−1 : 2k : N − 1 do in parallel
11 recover λi using Eq. (37) with

Di = D(k−1)
i , gi = g(k−1)

i , Ui− = U (k−1)
i− , Ui = U (k−1)

i

Remark 14 Obviously the products of the block matrices U• and D−1• in Equations
(34) and (35) are most efficiently computed by a backsolve with a Cholesky factor of
the diagonal blocks of the reduced size system, D•. If the system of Eq. (33) is linearly
dependent, i.e., ifM is rank deficient, the Cholesky factorization of one of these blocks
will fail (otherwise, i.e., if all D• have full rank (35–37) would constitute an linear
injective mapping λ→ G), and we can restart the factorization with a regularized M,
analogously to Sect. 3.4.

Remark 15 We note that Algorithm 3 can also be employed in the factorization step of
tailored interior-point methods, thus obtaining alsoO(log N ) parallel time complexity
versions of this class of methods. This has been established in [29] for a structure-
exploiting variant of Mehrotra’s predictor-corrector scheme [33].

7 Open-source software implementation

The dual Newton strategy has been implemented in the open-source software package
qpDUNES, which is available for download at [1]. It is a plain, self-contained C
code written according to the C90 standard to enlarge compatibility with embedded
hardware platforms. It comes with its own linear algebra module and efficient data
storage formats to better exploit the problem intrinsic structures. Memory allocation
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is performed on a global scale to enable reusability of memory blocks and to enable
switching between dynamic memory allocation for maximum flexibility and static
memory allocation for increased performance and deployment on embedded hardware.
A code generation routine for the linear algebra modules tailored to the structure and
dimensions of a specific problem instance for even higher efficiency is currently under
development. Application of such code generation techniques has lead to significant
performance increases in related areas like interior-point solvers [13,32] and NMPC-
Controllers [24].

Problems can be set up and solved from a C/C++ environment as well as conve-
niently from MATLAB. qpDUNES provides set-up and solve routines (both cold- and
wamstarted) for multi-stage QPs, as well as for linear time-invariant and for linear
time-varying MPC problems in both environments.

At the time of writing qpDUNES only supports box-constrained QPs with diagonal
quadratic terms in the objective function. A version that employs a modified version of
the open-source parametric active-set strategy qpOASES [15] and thus can deal with
general convex multi-stage QPs is only in an experimental state, as for high efficiency,
a deep integration on memory level is crucial.

8 Numerical performance

8.1 Double integrator

The first benchmark example is motivated by the energy optimal control of a cart on a
rail in the context of a Badminton robot [41]. The dynamics of the system boil down
to a simple double integrator with two states, position and velocity, and acceleration
as control input. The optimization problem obtained after discretization is a convex
QP in the form of (P) with

Qk = σ ×
[

1
1

]
, Ak =

[
1 0.01

1

]
, Bk =

[
0

0.01

]
, Dk =

⎡

⎣
1

1
1

⎤

⎦

and

Rk =
[
1
]
, Sk = 0, qk = rk = ck = 0, dk =

[−1.9 −3 −30
]� = −dk

for all stages (either k ∈ S or k ∈ S0). Additionally, we have the initial value constraint
fixing x0 =

[−1 0
]� and two arrival constraints demanding the cart to arrive at posi-

tion 0 at a certain index k̄ and staying there for at least 10 ms (one time discretization
step), giving the robot arm time to hit the shuttlecock. A small regularization term
σ > 0 in this formulation ensures positive definiteness of the matrices Qk .

This benchmark problem is particularly interesting, because it directly shows the
limitations of the dual Newton strategy. Purely energy-minimal operation of the bad-
minton robot would correspond to σ = 0, which results in a non-strictly convex
QPs. To be able to treat this problem with the dual Newton strategy, regularization is
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always required. Despite this drawback, we still believe that the dual Newton strategy
is well suited to this problem, since in almost all practical applications regularization is
beneficial and often even leads to more desirable properties of the obtained solutions.

Additionally to the small regularization parameter (leading to a rather badly condi-
tioned dual function), we choose arrival times close to infeasibility, ensuring that many
state constraints become active in the solution. As discussed in Sect. 3.4, scenarios
with many active state constraints tentatively are particularly challenging for the dual
Newton strategy. Also note in this context that the unconstrained optimum (favoring
no action) lies far outside the feasible region.

We compare the average computation time over the first 20 MPC iterations again
for horizon lengths of N = 50, 100, 150, 200, where the cart is forced to arrive
at the desired position at k̄ = 50. We add random noise to the simulated system
dynamics, and choose σ = 10−4. If the MPC problem was rendered infeasible by the
(precomputed) noise vector, we discard this instance and generate a new noise vector.

We report computation times on a standard desktop PC featuring a 3.4 GHz Intel i7
CPU under a Ubuntu 13.04 Linux for our method qpDUNES in comparison against
FORCES [13], a very recent and highly efficient structure exploiting interior-point
method that uses automatic code generation to create a custom solver tailored for
the dynamics of a MPC problem. We run FORCES with default settings, as we did
not observe any significant performance improvement in other configurations. It was
indicated in [40] that FORCES will outperform even very efficient active-set methods
on prediction horizons of the considered length. It was indicated in [13] that FORCES
also outperforms other tailored interior-point methods rigorously.

For completeness we include a comparison against the popular solvers CPLEX
12.5.1 [25], and Matlab’s quadprog. This is obviously an unfair comparison, since these
two solvers are general-purpose and do not know about the sparsity patterns in advance.
Still we include the results to stress the impact that structure-exploiting algorithms may
have. In CPLEX both active-set methods and interior-point methods are available. We
chose to use CPLEX in automatic mode (with parallelization switched off), as fixing
CPLEX to either method rather lead to a performance decrease than increase. Matlab’s
quadprog was also run in default configuration, using its interior-point solver. We note
that the active-set method was observed to perform orders of magnitude worse than
the interior-point method and is therefore not included in the comparison.

All benchmarks were run from Matlab R2013a, as FORCES is currently only pro-
vided via a mex-interface. CPLEX and quadprog were called as precompiled libraries
for Linux through their default Matlab interface. FORCES was downloaded through
its Matlab interface as a custom solver tailored to the model dynamics. Both FORCES
and qpDUNES were compiled to a .mex file using gcc 4.7.3 with standard code
optimization options.

We perform the MPC simulation 1000 times, with different random noise vectors,
and report averaged computation times in milliseconds in Fig. 2a. We observe that
both customized solvers, qpDUNES and FORCES, perform observably well. Still,
qpDUNES performs yet a factor of 4.9–10.6 better on this benchmark problem than
the runner-up FORCES.

To get a glimpse on worst-case computation times (comparisons that tentatively
favor interior-point methods), we additionally report solution times of a single QP
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Fig. 2 Computation times of the double integrator benchmark. a Cold started benchmark. b Cold started
benchmark
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Fig. 3 Computation times of one cold started QP solution for different primal regularization parameters

without any prior knowledge about the solution (i.e., cold started). We chose horizon
lengths of N = 50, 100, 150, 200 and forced the cart to arrive at the desired position
at k̄ = 45 (almost the minimum time possible).

Even though qpDUNES is not tailored for a single QP solution, it was observed
that qpDUNES outperforms the other considered solvers by a factor of 2.7–3.3 even
on this benchmark scenario, cf. Fig. 2b. The numbers reported are in milliseconds,
and averaged over 1000 identical (cold started) runs.

In a third comparison, we analyze the effect of different primal regularization para-
meters in the dual Newton strategy. For a horizon length of N = 50, and an arrival
index of k̄ = 45, we compare values for σ between 10−2 and 10−8 (possibly causing
very ill-conditioned dual functions) in Fig. 3. Again, computation times are reported
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Fig. 4 Chain of masses benchmark problem. a Computation time histogram. Peaks from left to right
qpDUNES, FORCES, CPLEX, quadprog. b Average computation times of one QP solution

in milliseconds, and averaged over 1000 identical (cold started) runs. As expected,
we observe that the choice of σ barely has any influence on the performance of the
interior-point methods. The dual Newton strategy in contrast is sensitive to the choice
of σ , and there is a tendency to higher computational demand for smaller primal regu-
larization parameters (i.e., a more ill-conditioned dual problem), as anticipated. Still,
for all considered regularization parameters, qpDUNES outperformed its competitors.

8.2 Chain of masses

The second benchmark example is taken from [42]. MPC is used to control a chain
of six oscillating masses that are connected by springs to each other and to a wall on
each side. We use the same parameters as stated in [42], and thus end up with an MPC
problem of 12 states, 3 control inputs and a prediction horizon of 30 intervals. We
simulate the MPC problem on 100 time steps.

We computed 1000 random noise vectors that perturb the positions of the masses.
We again compare the computation times obtained from qpDUNES with those
obtained from the solvers FORCES, CPLEX, and quadprog.

Figure 4b shows average computation times for one QP solution, and Fig. 4a shows
a histogram of the average iteration times over the different instances. It can be seen
that by merit of the efficient warmstarting, qpDUNES is at least one order of magnitude
faster than the other solvers considered, even in presence of perturbations. We note
that qpDUNES was rarely observed to exceed 4 iterations, while FORCES needed
6–9 iterations in most cases. Since the factorization in qpDUNES can be warmstarted,
and the structure of the band-matrix is similar to the one occurring in interior-point
methods, each iteration in the dual Newton strategy is roughly at most as expensive
as an iteration of an interior-point method. It should be noted that in this benchmark
problem significantly less constraints become active, a fact from which qpDUNES
benefits overproportionally.

8.3 Hanging chain

To comment on the weaknesses of the dual Newton strategy, we consider a third
problem, which has been used for benchmarking in several papers before, see [14,40,
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Fig. 5 Hanging chain scenario. The chain in steady state is depicted in red on the left, while the initial state
is drawn in green on the right (color figure online)

43]. The problem features again a chain of masses, yet in three-dimensional space,
connected by springs, that assumes its steady state very close to a wall, cf. Fig. 5. One
end of the chain is fixed at the origin, while the other one is free and can be controlled
by its velocities in x , y, and z direction. Note that, as in [40], we placed the wall closer
to the equilibrium position than it has been considered in the original setting from
[43]. This means that potentially a large amount of state constraints becomes active in
the solution, and thus we yield a more challenging problem, particularly for the dual
Newton strategy. As in [14] we perform linear MPC based on a linearization in the
steady state, trying to stabilize the problem quickly at its equilibrium. For the detailed
model equations we refer to [43].

We consider a chain of 5 Masses, which results in a system of 33 states (the free
masses’ positions and velocities) and 3 controls (the last masses’ velocities), on a
varying horizon length between 30 and 60 intervals. Noise is added on the velocities
of each mass in each simulation step (adding noise directly on the positions might result
in an infeasible problem very easily because of the closeness between the equilibrium
and the constraining wall). We explicitly note that systems of such a ratio between
state dimensionality and horizon length are not the targeted application domain for the
dual Newton strategy. Still, if we consider average computation times over 50 MPC
iterations, we observe that the dual Newton strategy performs reasonably well, cf. Fig.
6a. Our solver qpDUNES performs a factor of 3.4–5.6 faster in this comparison than
FORCES, the tightest competitor. It is interesting to observe that the computation time
is more or less constant over all considered horizon lengths. This can be explained
by the efficient warmstarting of the factorization in the MPC context, cf. Sect. 3.5.
Moreover, a longer horizon will cause that the equlibrium is reached (first at the end of
the prediction horizon) at an earlier point in the simulation, thus making the multiplier
shift more effective from this point on.
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Fig. 6 The hanging chain benchmark problem. a Average computation times. b Maximum computation
times

In this comparison we did not include CPLEX, as its Barrier method experienced
numerical problems in almost all considered noise scenarios and therefore terminated
early and suboptimally. We were also not able to obtain FORCES code for a problem of
60 or more intervals length with this number of states; note that this is not a numerical
limitation of the solver, but rather a technical limitation of FORCES’ download server,
which generates the code specifically for each problem instance.

Despite all these shortcomings of the comparison, we believe that this very challeng-
ing problem yields some important insights when we consider maximum computation
times in Fig. 6b. Here we observe that FORCES outperforms qpDUNES by a fac-
tor of 2.5–2 on the considered horizon lengths. Because the objective is driving the
optimization variables to points with many state constraints active (about 70 active
constraints in the solution for the N = 50 setting), qpDUNES takes many iterations
that require regularization of the dual Hessian matrix. Overall, qpDUNES needed
about twice as many iterations in the maximum than FORCES; additionally, many
line search iterations were required when the dual Hessian needed to be regularized.

Nonetheless, this comparison also yields some positive news for the dual Newton
strategy. We observed that the high computation times of qpDUNES were exclusively
observed in the first MPC iteration, when qpDUNES was cold-started, and the initial
condition is far away from the equilibrium. When excluding this first iteration from
the comparison, qpDUNES outperformed FORCES again by a factor of 3–6.1 also in
maximum computation times for one MPC iteration. Therefore we are still convinced
that the dual Newton strategy is of practical relevance.

9 Conclusions and outlook

We presented a novel algorithm, the dual Newton strategy, for the solution of convex
quadratic programming problems that arise in optimal control and estimation contexts.
Besides theoretic contributions, we introduced qpDUNES, an open-source implemen-
tation of the dual Newton strategy, that yielded very promising results in comparison
with state of the art solvers on a number of benchmark problems.
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We envisage to utilize qpDUNES as a QP subproblem solver in an SQP procedure
for nonlinear model predictive control in the near future. We further want to extend
the software implementation by several features that were presented in this paper, yet
are still to be implemented in an reliable fashion, like the infeasibility detection (so
far only prototypic), an efficient support for more general QPs and an efficient parallel
implementation.

Besides these short term goals, algorithmic extensions are conceivable. Since the
dual Newton strategy can efficiently be warmstarted, one way to avoid singular Newton
matrices at all would be by relaxing all stage constraints and penalizing their violation
by an adaptive weighted term in the objective. Even further, the dual Newton strategy
could be modified to treat general convex programming problems, using a convex
subproblem solver.
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Appendix

Proof (Theorem 6) The proof is done by calculation. We start from the the Cholesky
recursion property, apply the assumed relation between Cholesky and Riccati iterates,
and transform the expression into the form of the Riccati recursion. We have

Xk−1 = Wk−1 −Uk−1X
−1
k U�k−1

⇔ P−1 + CH−1C� = CH−1C� + EH−1E�

− EH−1C�
(
P−1 + CH−1C�

)−1
CH−1E� ,

and therefore

P−1 = EH−1E� − EH−1C�
(
P−1 + CH−1C�

)−1
CH−1E�. (38)

Using the Schur complement Q̄ = Q − S�R−1S it is well known from elementary
linear algebra that the inverse H−1 can be expressed by

H−1 =
[
Q S�
S R

]−1

=
[

Q̄−1 −Q̄−1S�R−1

−R−1SQ̄−1 R−1 + R−1SQ̄−1S�R−1

]
.

Using this, C = [
A B

]
, and the special structure of E = [

I 0
]
, we first see that the

identities

EH−1E� = Q̄−1,

CH−1E� =
(
A − BR−1S

)
Q̄−1 =: C̄ Q̄−1
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and

CH−1C� =
(
A − BR−1S

)
Q̄−1

(
A� − S�R−1B�

)
+ BR−1B�

= C̄ Q̄−1C̄� + BR−1B�

hold. Thus, (38) can be written as

P−1 = Q̄−1 − Q̄−1C̄�
(
P−1 + BR−1B� + C̄ Q̄−1C̄�

)−1
C̄ Q̄−1 .

Applying the Woodbury matrix identity with Y := P−1 + BR−1B� we can express
the right-hand-side term by

P−1 =
(
Q̄ + C̄�Y−1C̄

)−1
.

Thus

P = Q̄ + C̄�Y−1C̄

= Q − S�R−1S +
(
A� − S�R−1B�

) (
P−1 + BR−1B�

)−1 (
A − BR−1S

)
.

Note that the inverse matrices of Q, R, P and Y exist (and are real-valued), since we
assume that QP (1) is convex. Applying the Woodbury identity once again (however,

in opposite direction) on
(
P−1 + BR−1B�

)−1
, and introducing R̄ := (

R + B�PB
)
,

we get

P = Q − S�R−1S

+
(
A� − S�R−1B�

)(
P − PB

(
R + B�PB

)−1
B�P

)(
A − BR−1S

)

= Q − S�R−1S

+ A�
(
P − PBR̄−1B�P

)
A

− S�R−1B�
(
P − PBR̄−1B�P

)
A

− A�
(
P − PBR̄−1B�P

)
BR−1S

+ S�R−1B�
(
P − PBR̄−1B�P

)
BR−1S. (39)

Using the identity I = R̄ R̄−1 = R̄−1 R̄, we further have

S�R−1B�
(
P − PBR̄−1B�P

)
BR−1S − S�R−1S

= S�R−1B�PBR−1S − S�R−1B�PBR̄−1B�PBR−1S − S�R−1S

123



A parallel quadratic programming method... 327

= S�R−1 R̄ R̄−1B�PBR−1S

− S�R−1B�PBR̄−1B�PBR−1S − S� R̄−1 R̄R−1S

= S�R−1
(
R + B�PB

)
R̄−1B�PBR−1S

− S�R−1B�PBR̄−1B�PBR−1S − S� R̄−1
(
R + B�PB

)
R−1S

= S�R−1RR̄−1B�PBR−1S + S�R−1B�PBR̄−1B�PBR−1S

− S�R−1B�PBR̄−1B�PBR−1S

− S� R̄−1RR−1S − S� R̄−1B�PBR−1S

= −S� R̄−1S

and

− A�
(
P − PBR̄−1B�P

)
BR−1S

= −A�PBR−1S + A�PBR̄−1B�PBR−1S

= −A�PBR̄−1 R̄R−1S + A�PBR̄−1B�PBR−1S

= −A�PBR̄−1
(
R + B�PB

)
R−1S + A�PBR̄−1B�PBR−1S

= −A�PBR̄−1RR−1S − A�PBR̄−1B�PBR−1S + A�PBR̄−1B�PBR−1S

= −A�PBR̄−1S.

Analogously,

−S�R−1B�
(
P − PBR̄−1B�P

)
A = −S� R̄−1B�PA.

Therefore (39) is equivalent to

P = Q − S� R̄−1S

− S� R̄−1B�PA − A�PBR̄−1S + A�
(
P − PBR̄−1B�P

)
A

= Q + A�PA −
(
S� + A�PB

)
R̄−1

(
S + B�PA

)
,

which concludes the proof. ��
Proof (Corollary 7) The proof follows exactly the lines of the proof to Theorem 6,
but keeps the matrix block indices. In particular, one has

P−1
k−1 = Ek−1H

−1
k−1E

�
k−1 − Ek−1H

−1
k−1C

�
k−1

(
P−1
k + Ck−1H

−1
k−1C

�
k−1

)−1

× Ck−1H
−1
k−1E

�
k−1

in place of (38) and transforms it into (19b) using the same matrix identities. ��
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