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Abstract In this paper, we present a cooperative primal-dual method to solve the
uncapacitated facility location problem exactly. It consists of a primal process, which
performs a variation of a known and effective tabu search procedure, and a dual process,
which performs a lagrangian branch-and-bound search. Both processes cooperate by
exchanging information which helps them find the optimal solution. Further contribu-
tions include new techniques for improving the evaluation of the branch-and-bound
nodes: decision-variable bound tightening rules applied at each node, and a subgradient
caching strategy to improve the bundle method applied at each node.

Mathematics Subject Classification 90B80 - 90C56 - 90C57

1 Introduction

The uncapacitated facility location problem is a well-known combinatorial optimiza-
tion problem, also known as the warehouse location problem and as the simple plant
location problem. The problem consists in choosing among n locations where plants
can be built to service m customers. Building a plant at alocationi € {1, ..., n}incurs
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200 M. Posta et al.

a fixed opening cost ¢;, and servicing a customer j € {1, ..., m} from this location
incurs a service cost s;;. The objective is to minimize the total cost:

n m
min  f(x), withf(x):Zcixi+Zmin{sij:xi=1,ie{1,...,n}}.
i=1 j=1

xe(0,1)"

Note that all solutions in {0, 1}" are feasible except for 0. The problem can be formu-
lated as a 0—1 mixed integer programming problem. This requires the introduction of a
vector of auxiliary variables y € [0, 1]"" in which each component y;; represents the
servicing of customer j by location i. The following model is the so-called ‘strong’
formulation, denoted by (P):

n m n
min Zcixi—f—ZZszili (P)
i=1

j=1i=1

n
s.to ZYUZL IL<j=<m, (1)
i=1
0<y, <X, l<i<nl<j<m, 2)
x € {0, 1}". (3)

Note that this model has at least one optimal solution in which y is integer. Note also
that vectors are represented by symbols in boldface font while scalars are in normal
font, a convention which we shall adhere to throughout this paper.

Many different approaches to solving the UFLP have been studied over the years
to the extent that a comprehensive overview of the literature falls beyond the scope of
this paper. We refer the reader to [9,24,26] for relevant survey articles. More recent
publications include approximation algorithms [7,12,29,30], lagrangian relaxation
[2,27], metaheuristics [10,14,18,19,21,22,25,31,35,36], etc.

Most recent methods for solving the UFLP exactly are centered on the dual ascent
methods proposed by Erlenkotter [11] and by Bilde and Krarup [5]. The DualLoc
method of Erlenkotter, subsequently improved by Korkel [23] and recently by Letch-
ford and Miller [28], is a branch-and-bound method in which a lower bound at each
node is evaluated by a dual ascent heuristic. Being a linear program, the dual can also
be solved by general-purpose solvers such as CPLEX or Gurobi, or by other special-
ized methods [8]. It seems however that dual ascent heuristics have been preferred,
possibly because the exact resolution of such (often large) linear programs was not
found to be cost-effective from a computational point of view. A study of the optimality
gap of the dual ascent heuristic can be found in [32].

A different method which was proposed recently for solving the UFLP exactly
is the semi-lagrangian approach of Beltran-Royo et al. [4], originally developed for
solving the k-median problem [3]. Other methods include the primal-dual method
proposed by Galvao and Raggi [13], which combines a primal procedure to find a
good solution and a dual procedure to close the optimality gap. The heuristic proposed
by Hansen et al. [19] can be adapted to solve the UFLP exactly. On a related note,
Goldengorin et al. [16, 17] propose some preprocessing rules to improve branch-and-
bound search methods applied to the UFLP. These rules analyze the relationships
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between the opening costs ¢ and the service costs s to try to determine the optimal
state of each location. However, many of the more difficult instances in the Uf1Lib
collection are purposely designed to have a contrived cost structure on which few
deductions can be made. General purpose MIP solvers such as CPLEX or Gurobi
struggle to solve these instances, in many cases spending a very long time just to
evaluate the root node. Indeed, the constraints (2) make the linear relaxation of (P)
difficult to solve using simplex algorithms because of degeneracy issues. There are
also mn of them, and for many instances in Uf 1Lib we have n = m = 1000. It is
possible to aggregate these constraints into z;{l:l Yij < mx; foralli € {1,...,n},
but the bound induced by the corresponding linear relaxation is too weak to be of any
practical use, even when strengthened with cuts.

We propose a new method for solving (P) exactly, in which a metaheuristic and a
branch-and-bound procedure cooperate to reduce the optimality gap. In this respect,
this is somewhat similar to the work of Galvao and Raggi [13], however our method is
cooperative: the metaheuristic and the branch-and-bound procedure exchange infor-
mation such that they perform better than they would in isolation. Information is
exchanged by message-passing between two processes. Each message has a sender, a
receiver, a send date, a type and maybe some additional data. Each process sends and
receives messages asynchronously at certain specific moments during their execution,
and if at any of these moments there are several incoming messages of the same type,
then all but the most recent are discarded. Similar approaches have been proposed
before, a recent example is the work of Muter et al. [33] on solving the set-covering
problem, but to our knowledge this paper introduces the first cooperative approach
specifically for solving the UFLP exactly.

Section 2 describes the primal process, which improves an upper bound by search-
ing for solutions through a metaheuristic. Section 3 describes the dual process, which
improves a lower bound by enumerating a branch-and-bound search tree, using lower
bounds derived from the lagrangian relaxation obtained by dualizing constraints
(1). Contrary to most work in the literature which use dual-ascent heuristics (e.g.,
DualLoc), we use a bundle method to optimize the corresponding lagrangian dual.
Additional contributions of this paper include new strategies for partitioning (P), as
well as a subgradient caching technique to improve the performance of bundle method
in the context of our branch-and-bound procedure.

Section 4 concludes this paper by presenting our computational results. Our method
is very effective on almost all UFLP instances in Uf1L1ib, and solved many to opti-
mality for the first time. These new optimal values can be found in the appendix, along
with several implementation details which do not enrich this paper.

2 Primal process

The purpose of the primal process is to find good solutions for (P). Specifically, we use
a variant of the tabu search procedure proposed by Michel and Van Hentenryck [31]
which we shall now briefly describe. This local search method explores the 10PT
neighborhood of a given solution X € {0, 1}"*. This neighborhood is defined as the set
of solutions obtained by flipping one component of X: either opening a closed location,
or closing an open location.
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We let X' denote the neighbor of X obtained by flipping its i-th component. For
all components i € {1,...,n}, we let §; denote the transition cost f x) — f(X)
associated with moving from X to X'. Michel and Van Hentenryck [31] show how
to update the vector of transition costs § in O (m logn) time after each move in the
10PT neighborhood (see also Sun [36]). They argue that this efficient evaluation
of the neighborhood is the main reason why their local search scheme performs as
well as it does. The basic idea is to maintain t he open locations in a heap for each
customer j € {l,...,m}, ordered in increasing supply costs s;;: when opening a
closed location add this location inside each heap, and when closing an open location
remove this location from each heap.

Our tabu search procedure is a variant of that presented in [31]. Our main modifi-
cation is that it allows some solution components to be fixed to their current values
by having a tabu status with infinite tenure. Tabu status is stored in an array 7 of
dimension n, where each component can take any value in N U {oo} specifying the
iteration at which the tabu status expires.

At each iteration, the search performs a 1IOPT-move on a location w € {1, ..., n}
selected as follows. The location w is the one decreasing the objective function the
most. Furthermore the move should not be tabu or it should satisfy the aspiration
criterion. If no such move exists, then we perform a diversification by selecting w at
random among all non-tabu locations. If none of these exist, then we select w at random
among all non-fixed locations. If none of these exist either, then there is nothing left
to do and we end the search.

We modify the tabu status t,, according to the current tenure variable tenure,
which indicates the number of subsequent iterations during which X, cannot change.
The value of tenure, initially set to 10, remains within the interval [2, 10]. During
the search it is decreased by 1 following each improving move (if tenure > 2) and
it is increased by 1 following each non-improving move (if tenure < 10).

Before performing the next iteration, the primal process performs its communica-
tion duties, dealing with incoming messages and sending outgoing messages to the
dual process. Although this tabu search procedure works well enough for finding good
solutions [31] on its own, communication with the dual process nonetheless allows us
(among other things) to fix some solution components to their optimal values, thereby
narrowing the search space. The following list specifies the kinds of messages our
primal process sends and receives:

— Outgoing:
— send the incumbent solution XPrimal
— send a request for a guiding solution.
— Incoming:
— receive a solution X
— receive an improving partial solution P,
— receive a guiding solution X.

dual
9

Let x°*1m2L be the best solution known by the primal process. Whenever X is such
that f(X) < f(XPT1™21) the primal process sets X°* ™21 to X and sends it to the dual
process as soon as possible. The dual process likewise maintains its own incumbent
solution X921 which like x°*M21 g a 0-1 n-vector. As we shall see further on, the
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dual process may improve X%4#! through its own efforts. In this case, the dual process
sends X%21 to the primal process, which will update XP**™2! if (as is likely) it is
improved upon.

A guiding solution x € {0, 1}" is used to perturb t such that a move involving any
location i € {1, ..., n} such that X; = x; becomes tabu. As a consequence, X moves
closer to x during the next iterations. This is similar in spirit to path-relinking [15].

An improving partial solution p € {0, 1, x}" defines a solution subspace which is
known to contain all solutions cheaper than %421 and hence X°**™2! upon synchro-
nization. In other words, given any solution x € {0, 1}", if there exists i € {1, ..., n}
for which p; € {0, 1} and such that x; # p;, then we know that f(x) > f(xPrimaly,
We shall see further down how the dual process generates p at any given time by
identifying common elements in all the remaining unfathomed leaves of the branch-
and-bound search tree. In any case, having such a partial solution allows us to restrict
the search space by fixing the corresponding components of X, and consequently this
speeds up the tabu search procedure.

Algorithm 1 summarizes our primal process. In the following section, we present
our dual process.

3 Dual process

Our dual process computes and improves a lower bound for (P) by enumerating a
lagrangian branch-and-bound search tree. In other words, the problem (P) is recur-
sively partitioned into subproblems, and for each of these subproblems we compute
a lower bound by optimizing a lagrangian dual. Recall that a lagrangian dual func-
tion maps a vector of lagrangian multipliers to the optimal value of the lagrangian
relaxation parameterized by these multipliers.

This section is organized into subsections as follows. In Sect. 3.1 we specify the
subproblems into which we recursively partition (P) and we explain how we compute
a lower bound for them, given any vector of multipliers. In Sect. 3.2 we present our
branch-and-bound procedure and the dual process. In Sect. 3.4 we explain how we
search for a vector of multipliers inducing a good lower bound for a given node.

3.1 Subproblems and lagrangian relaxation

In general, a branch-and-bound method consists in expanding a search tree by sepa-
rating open leaf nodes into subnodes. This is typically done by selecting a particular
0-1 variable which is unfixed in the open node, then fixing it to 0 in one subnode and
to 1 in the other. In our method we apply this to the location variables x;, however we
also separate on the number of open locations, i.e. by limiting the value of >/, x;
within an interval [n, 7], with 1 < n < n < n. For this reason, we shall consider
subproblems of (P) defined by the following parameters:

— apartial solution vector p € {0, 1, *}" specifying some locations which are forced
to be open or closed,

— two integers n and 7 specifying the minimum and maximum number of open
locations.
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Algorithm 1 - Primal process:

0. Initialize the tabu search procedure with any solution X € {0, 1}"* of cost Z = f(X), and compute
the corresponding transition cost vector 8. Initialize the incumbent solution XP¥imal X the iter-
ation counter nmoves < 1, the tabu status array 7 < (0,0, ..., 0), and the tabu tenure duration
tenure <« 10. Initialize the counter elapsed <« 0.

1. Select w using the following index sets:

O={ief{l,....,n}:1; < o0}
& ={i elozr,- < nmoves}

P=fiel':§; <0)U{i eI°:§; < FEPrimaly _ r(x))

(a) if 1% is nonempty, then select w at random in argmin{é; : i € 12},
(b) elseif I Lig nonempty, then select w at random in / l,
(c) elseif 10is nonempty, then select w at random in 10,
(d) else end the search because all components of X are fixed.
2. If 8y < 0, then decrement tenure by 1 if tenure > 2, else increment tenure by 1 if tenure <
10. Update T, < nmoves + tenure.
3. Perform the move:
(a) flip the w-th component of X,
(b) update § accordingly in O (m logn) time,
(c) increment nmoves and elapsedby 1,
@) if f(x) < f(iprimal), then update gprimal . ¥ reset elapsed < 0, and send the new
gorimal (o the dual process.
4. Do asynchronously and in no particular order:
— If elapsed has reached a predefined threshold, then reset elapsed <« 0 and send a request to
the dual process for a guiding solution.
— Upon reception of a solution X321 of cost f(xIual) < f(gprimaly.
(a) setxPrimal . gdual qerx o xdual gpd rebuild §,

(b) foralli € {1,...,n}for which 7; < oo, set 7; < 0.
— Upon reception of an improving partial solution p € {0, 1, *}"*, for all i € {1, ..., n} for which
p; =0orl:

(a) setT; < 00,

(b) if X; # p;. then flip the i-th component of X, update 8, and increment nmoves by 1.
Upon reception of a guiding solution x, foralli € {1, ..., n} for which 7; < co and x; = X;, set
T; < nmoves + tenure.
5. Return to step 1.

We let SP(p, n, n) denote the subproblem formulated as follows:

n m n
min Y exi+ D> sijyy (SP(p,n.m)
i=1

j=1i=1
n
S.tO zyljzl’ ] S]Sm’ (1)
i=1
0<y; <x, l1<i<n,1<j<m, (2)
x € {0, 1}", (3
Xi:pi’ lflfnv pie{osl}a (4)
n
n< X <7 ®)

i=1
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We compute lower bounds for such subproblems using the lagrangian relaxation
obtained by dualizing the m constraints (1). We let LR(p, n,n, u) denote the
lagrangian relaxation of SP(p, n, n) using the vector of multipliers ¢ € R, and
let ¢ (p, n, n, k) denote the lagrangian dual at p:

n m n m n
¢(p,n, n, ) = min Zcixi + Zzsijyij + Zﬂj (1 - zyij)
i=1 j=1i=1 j=I i=1

s.to (2—15);

To eliminate the decision variables y from the formulation, we introduce a vector of
reduced costs ¢* defined as follows for all i € {1, ..., n}:

m
E;‘ =c¢; +Zmin{0, Sij —[Lj}.
j=I

This yields the following formulation for LR(p, n, 11, p):

m n
¢, n.7,p) =D pj+ min > x
Jj=1 i=1

n

S0 <Y X <7, ®)
i=1

X; = P;» l<i<n, p {01}, &

x € {0, 1}". 3)

If LR(p, n,n, p) has no feasible solution, then for the sake of consistency we let
¢(p.n,n, 1) = oo.

Since ¢ (p, n, nn, p) is a lower bound on the optimal value of SP(p, n, n) for all
1 € R™, we are interested in searching for

.~ arg max ¢(p,n,n, k).
peRm

There exist several methods for this purpose, we shall discuss this matter further in
Sect. 3.4. We now show how to efficiently evaluate ¢.

Evaluating a lagrangian dual function ¢ (p, n, 71, -) for a particular vector of mul-
tipliers u € R™ consists in searching for an optimal solution x of the corresponding
lagrangian relaxation LR(p, n, i, p). We do this in three stages:

1. we compute the reduced costs ¢¥;

2. we try to generate an optimal partition I7(p,n, 7, p) = (F', L', L*, L, F0) of
the set of locations, i.e. FTUL'UL*ULOU FO ={1,...,n});

3. if successful, we generate x using I1(p, n, i, p) and c¥.
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We generate the location sets F Ut L*, L9 and FY as follows. The set F! contains
the locations fixed open, i.e. F! is the set of all locations i € {1, ..., n} for which
p; = 1. Likewise, F° contains the locations fixed closed. Now consider constraint
(5), and notice that it cannot be satisfied if |F'| > 7 or if n — |F°| < n. In this
case LR(p, n, n, p) is infeasible, we fail to generate the partition I1(p, n, n, p), and
¢(p, n,m, p) = oo. Otherwise, note thatif | F!| < n, then in order to satisfy constraint
(5) at least n — | F''| additional unfixed locations must be open. Let L! be this set,
the optimal decision is for L' to contain the unfixed locations which are the least
expensive in terms of ¢*. Likewise, if n — | F 0| < 7, then at least 7 — n + | F°| unfixed
locations must be closed. Let L? be this set, the optimal decision is for L° to contain
the unfixed locations which are the most expensive in terms of ¢#. Let L* be the set of
locationsin {1, ..., n}notin F Lt L%or FO. The optimal decision for each location
i € L* is to be open or closed if E;L is negative or positive, respectively.

The optimal value of a lagrangian relaxation L R(p, n, n, ) which is feasible, i.e.
ifand only if n < n — |F°| and |F'| <7, is

m
¢p.n )= pi+ > &+ > min{0,e}.
j=1

ieFluL! i€eL*

We can use the reduced costs and the optimal partition to identify an optimal solution
X:

1 ifi e FTUL!,
0 ifi e LU FO,
Viefl,....n}, x;,=11 ifi € L* and ¢! <0,
0 ifi € L*and ¢! > 0,
0

or 1 otherwise.

Proposition 1 The lagrangian relaxation LR(p, n,n, p) can be solved in O(mn)
time.

Proof To begin with, the computation of the reduced costs ¢ requires O (mn) time,
and the generation of the sets F' Oand F! requires O (n) time. Next, the generation of L!
requires us to select a certain number of the cheapest locationsin {1, ..., n}\(FCUF!).
This can be done using an appropriate selection algorithm such as quickselect
which requires O(n) time. We generate L° in a similar fashion, and generate L* in
O (n) time also. Finally, we generate X simply by enumerating the elements in these
sets and hence the whole resolution is done in O (mn) time. O

We now use the concepts introduced in this subsection to present our dual process.

3.2 Branch-and-bound procedure and dual process

Throughout the search, the dual process maintains a incumbent solution X% as well

as a global upper bound 79U3! = f£(x%421), Initially, X%“! is undefined and 793!
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is set to oo. The dual process then performs a preprocessing phase before solving the
problem (P) by branch-and-bound. The preprocessing phase consists in computing,
for all ranks k € {1, ..., n}, alower bound £; on the cost of any solution of (P) with
k open locations:

n
vx € {0, 1}, Zx,- =k = £ < f(x).
i=1
These lower bounds are subsequently used in the following manner during the
resolution of (P). Note that

vx € {0, 1}, f(x) <7Vl — (Zx,-) efke{l,... .n}: 4 <z},
i=1

During the resolution of (P) we therefore discard all solutions whose number of open
locations is not in the interval

[min{k e {1,....,n}: & <79} max {k € {I,...,n}: & < z%}].
In practice, given good enough bounds £ and 742!
justify the extra effort required for computing £.
Before giving an overview of the dual process, we begin this subsection by
specifying our Branch-and-bound procedure. We shall see that it is applied
both to compute £ during the preprocessing phase as well as to solve (P)
afterwards.

, this interval is small enough to

3.2.1 Branch-and-bound

The Branch-and-bound procedure described here performs a lagrangian branch-
and-bound search on (P), updating x%! and 7“2l whenever it finds a cheaper
solution. At all times, our Branch-and-bound procedure maintains an open node
queue Q storing all the open leaf nodes of the search tree. Any node of the search
tree is represented by a 4-tuple (p, n, 17, it): the subproblem corresponding to this
node is SP(p, n, n) and a lower bound for this node is ¢ (p, n, 7z, it). Let * be the
n-dimensional vector of x-components. We compute

=root ~

n arg max ¢ (%, 1,n, u)

peRm
using a bundle method as explained in Sect. 3.4, and initialize the open node queue
Q with (%, 1, n, 1”°°"). This 4-tuple corresponds to the root node of the search tree.
The Branch-and-bound procedure then iteratively expands the search tree until
all leaf nodes have been closed, i.e. until Q = @.

At the beginning of each iteration of Branch-and-bound, we select a
node (p,n,n, i) € Q according to a predefined strategy NodeSelect. For
example, our implementation applies one of the following two node selection
strategies:
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— LFS, which selects the node with the lowest lower bound in Q (lowest-first search,
also known as best-first search),
— DF'S, which selects the node most recently added into Q (depth-first search).

Note that since LFS always selects the node with the smallest lower bound, i.e.
(p, n,n, t) € Q which minimizes ¢, this lower bound is then also a global lower
bound for (P).

We then improve this lower bound by updating g with a bundle method such
that

iU~ arg max ¢(p,n,n, ).
peR™

In the case where the lower bound does not exceed the upper bound 79921 we try to

separate this node into subnodes by applying a given branching procedure Branch.
We define a branching procedure Branch as a procedure which, when applied to a
4-tuple (p, n, 7, ) returns either nothing or two 3-tuples (p’, n’, n’) and (p”, n”, n’")
which satisfy the following property: for all solutions x feasible for S P (p, n, n) and
cheaper than 79421 x must be feasible either for SP (p/, n’, ') or for SP(p”, n”, n").
If (p/,n', 7, i) < 7%92L, then we insert the subnode (p’, n’, 7, it) into the open
node queue Q, and likewise for (p”, n”, 7", it).

The final step of our Branch-and-bound iteration consists in communicating
with the primal process and possibly replacing X%42! to decrease 743! = f(x9ual),
Letus list all types of messages which our dual process may send and receive (mirroring

the list in Sect. 2) before discussing how to handle them:

— incoming:
— receive a solution xPrimal,
— receive a request for a guiding solution.
— outgoing:
— send the solution X
— send the improving partial solution p,
— send the guiding solution X.

dual
9

The first step is to try replacing X321 by a cheaper solution. Consider x, the optimal
solution of LR(p, n, 7, t): if f(x) < z9"2L, then we replace X¥9®! with x and 742!
with f(x). Likewise, if we have received a solution X°*1™21 from the primal process
and if f(xPTimal) < zual then we replace X321 with x°7+™al and z79ual with
f(xPriraly Note that an improved upper bound 73421 may allow us to fathom some
open nodes in Q.

Next, we occasionally update the improving partial solution p and send it to the
primal process if it has changed. The improving partial solution (a notion already
introduced in Sect. 2) is a partial solution p € {0, 1, x}"* which satisfies the following
foralli € {1,...,n}:

I_)i =1 - V(f)9évﬁvﬂ) S Qa l\ii = la
i,n, ) € Q, p; =0.

p;=0 = V(p,
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Uncapacitated facility location problem 209

Since the effort required to compute an improving partial solution p with a minimum
number of x-components scales with the size of O, the frequency of the updates of p
must not be too high (this is set by a predefined parameter).

Finally, if a request for a guiding solution was received from the primal process,
then we send X as a guiding solution. If the open node queue Q is now empty, then we
end the search, otherwise we perform the next iteration of the Branch-and-bound
procedure.

We specify the whole Branch-and-bound procedure in Algorithm 2. The pro-
cedure takes two callback procedures as arguments: NodeSelect which selects a
node in the open node queue, and a branching procedure Branch.

Algorithm 2 - Branch-and-bound(NodeSelect, Branch):
0. Initialization - Search for

~root
po% ~arg max ¢(x, 1,n, p),
gueRm

then initialize the open node queue Q with the 4-tuple (%, 1, n, i),
1. Selection - Apply NodeSelect(Q) to select a 4-tuple (p, 1, 77, t) in Q. Remove it from Q.
2. Evaluation - Update f such that:

i~ arg JE?‘R’% o(p,n, 1, k).

3. Separation -

(@) Ifp(p,n, 7, t) > 79921 then go straight to step 4.

(b) Apply Branch(p, n, 7, jt) to try to generate two 3-tuples (p’, n’, ') and (p”, n”, n").

(¢) If successful and if ¢(p/,n’, 7, ) < z92L  then insert (p/,n’,7’) into Q. Do the same for
(p//’ ﬂ”, ).

4. Upper bound update and communication - .

(a) Letx be the optimal solution of LR(p, n, 77, jt). If we have received a new solution XP¥ ™21 from
the primal process, then let X = argmin{ f(x), f(XPTimaly} else let x = x. If f(x) < zual
then:

i. Setxdual  yandzdval — f(x).
ii. If k3@l — x then send the new best solution X342% to the primal process.
ii. Forall (p, 7,7, it) € Q:if ¢ (P, i1, 7, ft) > 2991 then remove (p, 1, 7, ji) from Q.

(b) Occasionally, do the following:

i. Initialize p < .

ii. Foralli € {l,...,n}:if forall (p, 1, 7, ft) € Q we have p; = 0, then set p; < 0,
iii. Foralli € {1,...,n}:if for all (p, 11, 7, ft) € Q we have p; = 1, then set p; < 1.
iv. Send the improving partial solution p to the primal process.

(c) Upon reception of a request for a guiding solution, send X to the primal process as a guiding
solution.

(d) If Q is nonempty, then go back to step 1.

3.2.2 Dual process overview

At the beginning of this subsection we mentioned that the dual process begins by
performing a preprocessing phase to generate a vector £ € R” which satisfies
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vx € {0, 1}", in =k = £ < f(x).

i=1

For this purpose, we initialize £y <« oo for all k € {l1,...,n}, and apply
Branch-and-bound using an appropriate branching procedure which will dic-
tate how the nodes are subdivided in step 3b of Algorithm 2. This particular branching
procedure is denoted by BrP and is specified recursively in Algorithm 3. Its input is
a 4-tuple (p, n, n, ) specifying a node to be split, and its final output is either noth-
ing or two 3-tuples specifying the subnodes. By defining this branching procedure
recursively, we may effectively tighten the constraint (5) in each of the two result-
ing subproblems, which we hope improves the search overall. Since this procedure
branches on the number of open locations »_"_, X;, by applying it we separate (P)
into subproblems SP (%, n,n) with 1 <n <n <n.

Algorithm 3 - BrP(p, n, n, iL):

casen =n
set £, < ¢(p,n, 7, i) and return ¢;

case (p, n, n, ) > 79Ul
return BrP(p,n + 1,71, ju);
case ¢ (p. 7. 7, ) = z3ual
return BrP(p,n,n — 1, i);
case otherwise

return (p, 1, Lﬂ;ﬁj) and (p, L#J +1,7n).

Note that this branching procedure requires several evaluations of ¢. In general
this is done in O(mn) time, however we shall see in Sect. 3.3 that it is possible
to compute I1(p,n + 1,7, i) and ¢(p,n + 1,7, p) in O(n) time by reusing ok,
I1(p,n,n, n) and ¢(p, n,n, u). The same can also be done for (p,n,n — 1, it).
When Branch-and-bound terminates, we set £; < z99%2! forall k € {1, ..., n}
for which £; = oo. In this manner, for all k € {1, ..., n}, £; is a lower bound on the
solutions of (P) with k open locations, i.e. on the solutions of SP (%, k, k).

Having completed preprocessing, we solve (P) by applying Branch-and-bound
using another recursive branching procedure BrS, which we specify in Algorithm 4.
In this case, recursion allows us to tighten constraint (4) as well as (5) in the resulting
subproblems. For all p € {0, 1, %}" and forall k € {1, ..., n}, we define p+k and p_k
as follows. For alli € {1, ..., n},

Tk 1 ifk=i, & 0 ifk=i,
P, = . P, = ..
! p; otherwise. p; otherwise.
In a sense, for alli € {1, ..., n} such that p; = *, the value |éf_"| is a measure of

the impact of the decision to branch on the unfixed location i, and BrS chooses to
branch on the unfixed location with the smallest impact. Like BrS, this procedure is
recursive and seemingly requires many O (mn) evaluations of ¢ which in fact can be
performed in O (n). We explain how in the following subsection.
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Algorithm 4 - BrS(p, n, n, jL):

case p € {0, 1}
return ¢,

case £y > 79 or ¢ (p, 1, n, o) > 79va1
return BrsS(p,n+ 1,1, in);

case &; > 7L or ¢(p, 71,70, 1) > Z
return BrS(p, n,n — 1, ii);

case Ik € {1,....n}, pp =% b, 07 ) >3
return BrS(p~ ", n,n, 0);

case Ik € {1,..., n), pr =% ¢ K n7 k) >z
return Brs(p"'k, n,n, j);

case otherwise ~
selectk:argmin{léll.t\:p[:*,ie{l ..... n}},

k

dual

return (p*, n, 7) and (p=%, n. 7).

3.3 Reoptimization

Given any vector g € R™, suppose that we have evaluated ¢ (p, n, 77, p) and that this
value is not co. We thus also have the reduced costs ¢* as well as an optimal partition
Inp,n,n,pn) = (F Lpl p* 19 F 0). The following proposition and its corollary
specify how to reuse these to compute ¢ (p, n+k, n, u) and ¢ (p, n,n—k, p) in O (n)
time, for all k > 0. Without loss of generality, suppose that the values in ¢” are all
different.

Proposition 2 For all k > 0, ifn + k > min{n, n — |FO|} then
$(P.n+k,n, pn) = o0,
else ifn +k < |F'| then

O, n+ka,p = F' 8L L° FY),
o(p.n+kn,n)=a¢(p,n,n,p,

else, let L be the set of the k least expensive locations in L* in terms of ¢*, we have

Op,n+ka,p=F L L' UL LN\L, L° F%,
¢(P.n+k 7 p) =@ n. 7w+ > max{0,&}.

iel

Proof If n+k > n, then by definition of S P (p, n+k, i), this subproblem is infeasible,
hence ¢ (p,n + k,n, u) = oo. Likewise, if n +k > n — |F0|, then there exists no
x € {0, 1}" which can satisfy both n + k < Z?Zl x; andx; =Oforalli € {1,...,n}
for which p; = 0, i.e. foralli € F°.

Suppose henceforth that n + k < min{n, n — |F0|}, and let [T1(p,n + k,n, n) =
(F'Y, LY L, L0, F'9). We know that F’! = F! and F° = F° because both these
sets are induced solely by p.
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If n +k < |F'|, then all x € {0, 1} which satisfy x; = 1 forall i € F! also
satisfy n + k < >, x;, consequently L' and L' are empty by definition of these
sets. Likewise, L' = L0 and L"* = L*, hence IT(p,n + k,n, u) = I[I(p,n,n, p)
and ¢(p,n+k,n, p) =¢(p,n,n, p.

Suppose now that n + k > |F1|. The set L'* consists of the n + k — | F'| unfixed
locations which are least expensive in terms of ¢/, and we know that this is a subset
of L' U L* because

min{7m,n — |F°)} =n — |L°U FO| = |F'| + L' + |L¥|,
hence L'' = L' U L and L'™* = L*\ L. Consequently,

p.n+kmpw= > &+ > minfo,&},

ieF''uL" iel’*
_ i - - " . "
= Z ¢t —}—Zci +me{0,ci}—2mm{0,ci ,
ieFlUL! iel ieL* iel
=¢(p.n, 7, w) + > max {0,&}.
iel

Corollary 1 Forall k > 0, ifn — k < max{n, |F'|} then
¢(p’ﬂvﬁ_kv "L) = 00,
else ifn — (n — k) < |FO| then

oOp,na—kp =(F' L' L* ¢ F%,
o, n,n—k,u)=a¢(p,n,n,p),

else, let L be the set of the k most expensive locations in L* in terms of ¢*, we have

mp.nn—kp) =EF L' L*\L, L°UL, F°),
¢(pa Qvﬁ_ k7 "L) = (b(P, n, ﬁ? ”‘) - Zmll’l {0’ él’L} °

iel

The next propositions show how to reoptimize LR(p™,n,7, u) for all k €
{1,...,n} for which p, = =, i.e. for all k € (L1 UL*uU LO). For this purpose
we need to identify the following locations:

il:argmax{éf’“:ieLl}, iX =argmax {¢! :i e L*},

it =argmin{c! :i e L*}, i% = argmin {éfL ti € LO}.
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Each proposition also has a corollary stating a symmetric result for p—*

Proposition 3 Forallk € L',

o™, nn,p = (F'Uk), Lk}, L*, L, F%),
o, 7, 0) = o, 0,7, 1.

Proof LetIT(p** n,m,p) = (F'', L'", L™, L7, F’O). Since pT* differs from p only
in its k-th component, for which we have p; = % and pt* = 1, it follows that
F'' = F'U{k} and that F"® = FO. Recall that by definition, if |[F''| > nthen L' = @
else L'! contains the n — | F'!| cheapest unfixed locations in terms of ¢*. Consequently,
we have L' = L'\{k}, and by using a similar reasoning we also have L'® = L°,
hence L™ = L* Note that F'' UL = F'UL! hence p(pt*,n,n,p) =
¢(p,n,n, p).

Corollary 2 Forallk € L°,

O

o naw=F LY, LY, L0k}, FOU {k}),
d)(p_k’ Q,I’l, "L) = ¢(p’ n, ﬁv ”’)

Proposition 4 Forall k € L*, if L' is empty then

o™ na,w = (F'U k), 0, L*\{k}, L, FO),
(. n. 7, p) = p(p,n. 7, p) + max {0, &},

else

It na p = (F' Uk, LGl @\ u (i), L2 F9),
d® .7 w) = @, 0, 71, ) + max {0, } — max 0,24 ]
Proof Let I (p**, n,m, u) = (F'', L', L"*, L, F"0). As intheproofofProposition

3, we have F/l = F1 U{k}, L® = L° and F/0 FO.If L' is empty, then |F'| > n
and therefore L'! is empty also, hence:

o nmwy= > &+ D minfo,c},

ieFlULN ielL™
_ h " . ¥ ~ "
= Z ¢ +Zci —I—me{O,ci}—me{O,ci}
ieFlUL! iel ieL* ici
= 7 M
- ¢(p1 n,n, Il,) + zmax {O, Cl. } .
ieL

If L' is not empty, then L'! must contains one location less than L', which therefore
must bez Consequently, € L'™* and
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e nmp) = Z éfL + Z min {O, Ef},
IEFIUKIULINIL)  ie@n\kDULiL)
_ NPy Y
= 2 dHeg-q
ieFlUL!
+ > min {0, &} — min {0, &} + min {0, |,
ieL* -

= ¢(p, n, n, k) + max {O, é,’:} — max {0, E;LI } .

Corollary 3 Forall k € L*, if L® is empty then

O na,p = F LY LA\ {k), 0, FOU k),
gb(p_k,g, n,pn) =¢(p,n,n, k) — min {O, Eg} ,

else

o  nmaw = FL L L\ (k) Uiy, L), FOU kD,

@ .7 1) = $(p.n, 7, p) — min {0, &} + min 0.2 |

Proposition 5 Forall k € L, if L' and L* are both empty then
¢(p+k9 n, n, I'L) = 00,
else if L' is nonempty and L* is empty then
O™ na p = (FT UK, LI\ {10, O\k) U Gil), FO),
o, 7, 1) =G 17, 0 +E T,
else if L' is empty and L* is nonempty then

o™, n,m, w) = (F'U k), 8, L*\(i%}, (LO\{k}D) U {i% ), FO),

6@ 0,7 w) = (.0, 7 ) + & —min {0, ],

S

else

o, nn,p = (FY Ukl L\GL), L\ ) U il), (LK) U k), FO),

S 7 w) = G, 7, ) + & —max [0,& | — min fo.& .
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Proof If L' = L* = @, then |{i € {1,...,n} : p, = 1} = |F'| = 7 and thus
SP(p*t*, n,m) is infeasible and ¢ (p**, n, 77, w) = co. Suppose henceforth that L' U
L* # @, andlet [T(p**, n, 7, w) = (F'', L'V, L"*, L', F'°). Again, as in the proof of
Proposition 3, we have F'! = F! U {k} and F/O F0 Also, k € L° implies that L°
is not empty and hence |F°| + |L°| = n — 7.

In the case where L! # and L* = @, we have |F'|+|L!| = n = n. Consequently
L’! must contain one location less than L!, this location therefore being i i, and L
must remain the same size as L, hence L’O (LO\ k}) U {z 1.

In the case where L' = @and L* = ), we have |F'| > n and thus L! is also empty.
Consequently L% must remain the same size as L, hence L0 = (LO\{k}) U {ix}.

In the final case where both L! and L* are nonempty, we have |F'| + |L'| = n.
Similarly as in both previous cases, L’ must contain one location less than L!
and hence L' = Ll\{ii}, and L' must remain the same size as L°. Note that

él’ﬁ = max;cy* c < é'.ul , hence L = (LO\{k}) U {i*}. We deduce the values of

o (pT*, n, 7, p) like in the proof of Proposition 4. O

Corollary 4 Forallk € L', if L* and L° are both empty then
p(p*.n.7, p) = oo,
else if L* is empty and L° is nonempty then

o~  n7w = (F', (L&) UL, 8, LOG2), FOU (k).
¢ T ) =GP0 T p) — &+ T

else if L* is nonempty and L° is empty then

O nm,p = F' (LK) UL, L%}, 0, FO U {k)),
o * n.m )=, n.m, p) — ' + max {o,é{‘i},

else

I nm pw = F' (LK) UL}, @\GED U %), LG, FOU kD,
¢>(p ,n, 1) = ¢, n,n, [L)—éf»‘-i-min {0, éfﬁ}—i—max {0, E:LE}

3.4 Bundle method

In this subsection we describe how we adapt a bundle method to optimize the lagrangian
dual of any subproblem SP(p,n,n) withp € {0, 1,*}*,1 <n <n <n:

L ~ arg max ¢ (p,n,n, K,
pneR™
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Recall that such subproblems correspond to nodes evaluated by the Branch-and-
bound procedure, and that the optimization of the lagrangian duals takes place in
steps 0 and 2 of Algorithm 2.

There exist many different methods to compute f: the simplex method, dual-ascent
heuristics [11], the volume algorithm [1], simple subgradient search, Nesterov’s algo-
rithm [34], etc. However, our preliminary experiments have indicated that bundle meth-
ods works well for this problem. Indeed, on the one hand, optimizing ¢ (p, n, 71, -)
exactly with the simplex method is too difficult in practice for all but the easiest
and smallest instances of the UFLP, and in any case we are not interested in exact
optimization per se. On the other hand, subgradient search methods might not cap-
ture enough information about ¢ (p, n, 7, -) during the optimization process to be as
effective as the bundle method, as suggested by some preliminary experiments with
a bundle method using very small bundle size limits. Bundle methods therefore seem
like a good compromise between two extremes. After giving a brief summary of the
bundle method, we shall explain how we adapted it to solve our problem. A detailed
description of bundle and trust-region methods in general lies beyond the scope of this
paper, see, e.g., [20] for a detailed treatment on the subject.

3.4.1 Overview

The bundle method is a trust-region method which optimizes a lagrangian dual function
iteratively until a termination criterion is met. Ateach iteration ¢, a trial point u,(’ ) e R™
is determined. In the case of the first iteration (i.e. t = 0), the trial point depends on
where we are in the dual process:

— during preprocessing, in step 0 of Algorithm 2: this is the very first application of
the bundle method, and the initial trial point is the result of a dual-ascent heuristic
such as Dualloc;

— during the resolution of (P), in step 0 of Algorithm 2: the initial trial point is £*°°F,
the best vector of multipliers for the root node (computed during preprocessing);

— otherwise, i.e. in step 2 of Algorithm 2: the initial trial point is i, the best vector
of multipliers for the parent node.

At any subsequent iteration ¢ > 0, u(*) is determined by optimizing a model approxi-
mating ¢ (p, n, 7, -).

Next, ¢ (p, n, n, u(’)) is evaluated, and this value and a subgradient are used to
update the model of the dual. A new iteration is then performed, unless either a
convergence criterion, or a predefined iteration limit, or a bound limit is reached, in
which case we update the best multipliers:

fu < argmax ¢(p, n. 7, p ).

The convergence criterion is satisfied when the bundle method determines that its
model of the dual ¢ (p, n, 11, -) provides a good enough approximation of the dual in
the neighborhood of an optimal vector of multipliers. The bound limit is reached when
the current trial point ") satisfies ¢ (p, n, 7, u*) > 7, where 7 is an upper bound on
the optimal value of (P).
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The model of the lagrangian dual is specified using a bundle B, defined by a set of
vector-scalar pairs (o, €) such that the vector 0 € R and the scalar € € R define a
first-order outer approximation of ¢ (p, n, 11, -), i.e.

m
VueR", ¢(p.nap) <D ojm;+e.
j=1

At each iteration ¢, the bundle B [and hence, the model of ¢ (p, n, i, -)] is updated
using a pair (6¥), ) generated as follows. First, we determine an optimal solution
x® of the lagrangian relaxation LR (p, n, 71, t)). Assuming that it exists, let

m n

— ® ()
Z(t) =¢(p,£,l’l, ’1’([)) ZZILJ +Zci Ki .
j=1 i=1

To determine a subgradient 6 ¥ € R™, we specify a vector y) associated with the
optimal solution x of LR(p, n, 7, u"):

0 ifg}’) =0ors; — ;L(;) >0,

Vie{l....on)Vjell..om) ¥y =11 if x{ = lands;; — u}’ <0,

Oor1 otherwise.

For all suitable y®, the vector in R” with components (1 ->", yg.)) ~for all
= R
j €{l,...,m}is a subgradient of ¢ (p, n, 7, -). We let

GEI)Z1—“1’e{l,...,n}:gy):l,sij <M§Z)}

, Vief{l,...,m}.

and
m
E(I) — Z(t) _ Zay)ﬂy)_
j=I

The function ¢ (p, n, 71, -) is concave, thus ¢(p, n, 7, ) < Z;flzl o’;.t)/,l,j + €D for
all p € R™. We therefore update the bundle 3 using the pair (¢, €®) specifying a
first-order outer approximation of ¢ (p, n, 7, -) at 9.

3.4.2 Subgradient cache
Recall that the subproblems of the form S P (p, n, n) are associated with the nodes in
a branch-and-bound search tree, therefore if a bundle method is to be performed at

each node, then it stands to reason that some lagrangian dual functions may be very
similar to one another. In particular, one (o, €) pair generated during the optimization
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of one dual function may also specify a valid first-order outer approximation function
of another dual function. For this reason, our method maintains a cache C in which
(0, €) pairs are stored as soon as they are generated. Thus, before optimizing any dual
function ¢ (p, 1, 1, -), our method retrieves some suitable pairs from C to populate the
current bundle (which is otherwise empty), thus improving the model and hopefully
also the quality of the trial points. Note that although there exist other ways of re-using
the subgradient information generated during the application of the bundle method,
ours is simple, effective, and requires only a limited amount of memory. We now
introduce the result which tells us if and how a pair is suitable.

Proposition 6 Suppose that X is an optimal solution of any lagrangian relaxation
LR(p',n', 7', n), and let (o, €) be the corresponding pair which defines a first-order
outer approximation of ¢(p',n’, ', -). This pair defines a first-order outer approx-
imation of any other function ¢(p”,n",n", -) if X is also an optimal solution of
LR(p//, Q//, ﬁ//, ’L).

Proof Since o is generated using only ¢” and x, and since x is optimal for
LR(p",n",n", n) as well as for LR(p/, n’, 7', ), then:

_ ¢ (p”,@”,ﬁ”, IL) — ¢ (p/,_’,_’, M,) _ Z;n l”’] +Z:1 I—IL
— o is a subgradient of ¢ (p”, n”, n”, -) as well as of ¢ (p’, n’, _’, ).

This last function is concave, therefore for all & € R™:
m
B T R) = i+ (6 Zom, ,
j=1

d)(p//’n// —/ o~ ZO']ILJ +e.

m}

Remark 1 Suppose that p”, n” and n” are such that SP(p”, n”,n") is a subproblem
of SP(p/, n’, ). In this special case, x only needs to be feasible for SP(p”, n”,n"),
because it is then also optimal for LR(p”, n”, 7", w).

We therefore specify the cache C as containing key-value pairs of the form
(x,p’.n', ), (o, €)).Priortooptimizing adual function ¢ (p”, n”, 7", -), we update
the bundle using (o, €) pairs obtained by traversing C for keys Wthh match the fol-
lowing conditions:

/ " n ==/ -/
-n'=n" <3 x =0’ <7, and
f

oralli € {1,...,n}:either x; = p; or p/ = %, and either p;’ = p; or p; = .
When properly implemented, these tests can be performed quickly enough for the
cache to be of practical use.

Consider now the problem of populating such a cache C. The straightforward way to
do so is as follows: at each iteration ¢ of the bundle method applied to any dual function
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@ (p.n, 7, -), simply add the key-value pair ((x\"), p, n, 1), (0, €®)). However, we
can instead try to improve this key in terms of increasing the likelihood of subsequently
reusing (o, €™). For this purpose we generate a vector p in the following manner,
using the partition I71(p, n, 7, u(’)) = (Fl, LY, L* LY, FO) as well as the reduced
costs &’ computed during the evaluation of ¢ (p, n, 77, p"). Let

~ (1) (1)
Flz{ieFl:Vke(L*ULO), & 55,’:'},

~ ) )
Fo=lier vkea'ury, & =e"},

we initialize p <— pand set p; <— x foralli € F'UFO.

Proposition 7 This partial solution p is such that X\ is also an optimal solution of
LR, n, 7, u).

Proof The locations in F! form a subset of F! and are not more expensive (in terms
of é"“)) than any location in L* or LY, therefore there exists an optimal partition
O, n,a,p?) = F"', LY L* L F9 such that F' c L''. Likewise, there also
exists L0 such that F0 ¢ L0, Consequently, F'UL'" = FIUL!, FOuL® = FOuL®
and L'™* = L*. o

Corollary 5 ¢(p,n. 71, u V) = ¢(p,n. 71, ).

This result ensures that (o), €®) is also a first-order outer approximation of
¢(P,n,7m, -) at . By associating the key (x\), p, n, n) instead of (x*, p, n, 7)
with the pair (a(’ ) el )) in C, we increase its potential for reuse.

A proper implementation of such a cache is crucial to ensure good performance.
Details are provided in the Appendix.

4 Computational results

We begin this section by outlining how our implementation executes the primal
and dual processes concurrently. Following this, we present our test parameters and
methodology, and then we present our results. The complete source code, in C, can
be freely obtained from the authors.

4.1 Concurrency

Recall that the primal and dual processes both consist of a loop: in the primal process
one iteration corresponds to one 1OPT move, and in the dual process one iteration
corresponds to one branch-and-bound node. Although it could be, our implementation
is not concurrent. The main reason behind this choice is that concurrency induces
significant variance in execution times, as we found out during preliminary tests.!

1 Naturally, in a practical setting, this argument may be completely irrelevant. Furthermore, our method
may benefit from having more than just one primal process. We can easily imagine that better results may be
achieved by running several different primal heuristics concurrently in addition to our tabu search procedure.
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Instead of being concurrent, our implementation performs iterations of the primal and
dual processes sequentially and alternately. The dual and primal iterations are not
performed in equal proportions: at the beginning of the search 100 primal iterations
are performed for every dual iteration, and this ratio progressively inverts itself until
100 dual iterations are performed for every primal iteration. The inversion speed is
set by a predefined parameter, and in our implementation the default setting is such
that a few thousand primal iterations should have been performed before the steady
state of 100 dual per 1 primal iterations is reached. This policy seems to work well
for reducing overall CPU time for all instances. Indeed the primal process is much
more likely to find an improving solution at the beginning of the search than later on,
and vice-versa for the dual process. Additionally, the dual process also benefits from
having a good upper bound early in the search.

4.2 Parameters

The machines which we used for our tests are identical workstations equipped with
Intel 17-2600 CPUs clocked at 3.4 GHz. We have tested our implementation on all
instances in Uf1L1ib, with a maximum execution time limit set at 2 h of CPU time. To
date, the Uf 1L.ib collection consists of the following instance sets: Bi 1de-Krarup;
Chessboard; Euclidian; Finite projective planes (k = 11,k =
17); Galvdo-Raggi; Kdrkel-Ghosh (symmetric and asymmetric, n = m €
{250, 500, 750}); Barahona-Chudak; Gap (a, b, c); M*; Beasley (ak.a.
ORLIB); Perfect codes; Uniform. Most of these instances are such that
n = m = 100, but in the largest case (some instances in Barahona-Chudak)
we have n = m = 3000. Part of the motivation behind applying our method on so
many instances stems from how few results on the exact resolution of the UFLP have
been published in the last decade.

We performed some preliminary experiments to determine good maximal bundle
size settings, and we noticed that execution times seem to be little affected by this
parameter. Without going into the details, it appears that for comparatively small
(n = m = 100) and easy Uf1Lib instances, a maximal bundle size between 20 and
50 is best. However since we hope to solve the larger and more difficult instances,
we set this parameter to 100 for all of our tests. We use the following bundle method
iteration limits: iter_limit_initial = 2000 for the very first application of
the bundle method during the dual process; iter_limit_other =120 for all the
subsequent applications. Other search parameters are set as follows: the improving
partial solution p is updated after every 250 consecutive iterations of the dual process,
or whenever the best-known solution is updated; likewise, the primal process sends
requests for guiding solutions after 250 consecutive primal process iterations with no
improvement of the best-known solution. Again, these settings are not very sensitive.

4.3 Tests

Our first series of tests aims to illustrate the effectiveness of our branching rules and of
maintaining a cache C. We performed these tests on the 30 instances in Gap-a, which
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Fig. 1 Preprocessing and branching settings

are the easier instances in Gap. The instances in this set are such that n = m = 100,
and they are characterized by their large duality gap, inducing suitably large search
trees for our tests to be meaningful. Because we are not measuring anything related to
the primal process, in our tests we disable the primal process and initialize the upper
bound 79421 with the optimal value of the corresponding instance. As a consequence,
when solving any one instance, the search trees obtained at the end of the dual process
should in theory be identical to one another whichever node selection strategy is
used (LFS or DFS). In practice, many components of our implementation are not
numerically stable and hence results differ a little. In fact the mean difference in the
number of nodes of the search trees obtained by solving with DF'S and with LFS is
5.4 %, with a standard deviation of 3.3 %.

Figure 1 illustrates the profile curves corresponding to solving with DFS and the
following settings:

‘~cache’ without cache,

‘+cache’ with cache, limited to 1,024 elements,

‘~branch’ without preprocessing, and only considering the first and last cases
in the branching procedures BrP and BrS (i.e. cases ‘n = n’, ‘p € {0, 1}"* and
‘otherwise’),

‘+branch’ with preprocessing, with BrP and BrS as specified in Algorithms 3
and 4.

Observe that ‘+branch’ is always worthwhile when used in conjunction with
‘+cache’, despite the extra computational effort involved. In fact, performance with-
out the cache is still improved when solving the more difficult instances. For this
reason, we use ‘+branch’ in all of our subsequent tests.
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Fig. 2 Cache settings

Figure 2 illustrates the profile curves corresponding to solving with DFS (unless
otherwise specified) with the associated maximal cache size. For example, the curve
‘1024’ corresponds to the results using DF'S and |C| < 1024. Notice that the cache
does not improve performance when used in conjunction with LF'S, unlike with DFS.
This is not surprising because in large branch-and-bound trees, the nodes consecutively
selected by LF'S often bear little relation to one another and too few elements of the
cache are reused for it to be worthwhile. Conversely, the nodes consecutively selected
by DFS are often closely related. Otherwise, we can see that the use of a cache in
conjunction with DFS improves performance provided that the cache remains small
enough.

4.4 Solving UflLib

For purposes of comparison, we solve all instances with the Gurobi solver (version
5.0.1) in single-threaded mode, and summarize the execution time results in Table 1.
The columns ‘min’, ‘median’, ‘max’ list the execution time of the easiest, median and
hardest instance in each set, respectively. The column ‘mean’ lists the mean execution
time for the instances in each set which were solved before reaching the time limit,
and the column ‘std.dev.’ lists the corresponding standard deviation. Timeouts are
represented by a dash (recall that the time limit is 2 CPU-hours), all other times are
in minutes and seconds, rounded up.

Finally, we apply our method on all instances in Uf 1Lib with the following two
settings:
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Table 1 Solving with Gurobi

Instances Solved Min Median Max Mean Std.dev.
Barahona-Chudak 15/18 57 8’557 - 17°20” 28’317
Beasley 17/17 17 17 117 17 3”
Bilde-Krarup 220/220 17 27 157 47 4
Chessboard 30/30 17 17 17 1” 17
Euclidian 30/30 17 17 17 1” 1”
FPP k=11 30/30 3” 147 23” 127 8”
FPP k=17 30/30 56” 2°28” 7217 3187 2°18”
Gap-a 30/30 58” 3'18” 23°4” 515~ 537
Gap-b 30/30 1°25” 8°36” 33°46” 10°29” 8°00”
Gap-c 2/30 19°56” - - 60’14” 56°59”
Galvao-Raggi 50/50 17 17 17 17 17
KG-250 5/30 30°36” - - 55°45” 1802~
KG-500 0/30 - - - - -
KG-750 0/30 - - - - -

M* 16/22 3” 8°32” - 14’517 28°43”
Perfect Codes 30/30 1” 17 17 17 17
Uniform 30/30 3” 147 1’397 167 177

1. DFS and a cache with less than 128 elements,
2. LFS and no cache.

Tables 2 and 3 summarize the respective execution time results for each instance
set. Figure 3 illustrates the corresponding profile curves for the instance sets whose
hardest instance required at least one minute: Barahona-Chudak, Finite
projective planes, Gap, Kobrkel-Ghosh and M*.

First, note that the only instance set for which our method does not work well is
Barahona-Chudak. These are large instances, for which

n =m € {500, 1000, 1500, 2000, 2500, 3000}.

We noticed that the tabu search procedure does not always work very well, and that
our branch-and-bound approach often fails to partition (P) adequately. Conversely,
the Gurobi solver solved 15 out of 18 instances within 2 h, and even more dramatically,
the semi-lagrangian approach of Beltran-Royo et al. [4] was able to solve 16 out of
these 18 instances to optimality in a matter of seconds. Likewise, the primal-dual
approach of Hansen et al. [19] also works very well on instances of this type.
Nonetheless, our method works well for all other instances in Uf1Lib and can
solve many instances which until now were beyond the capabilites of other general
or specialized solvers. We can see that several instance sets are better solved by one
setting than by the other. This is especially the case for the Finite projective
planes instances, for which ‘DFS with |C| < 128’ performs very badly, in stark
contrast to ‘LFS’. Looking more closely we noticed that these poor results were

@ Springer



224 M. Posta et al.

Table 2 Solving with DFS and |[C| < 128

Instances Solved Min Median Max Mean Std.dev.
Barahona-Chudak 6/18 17 - - 15°07” 25’427
Beasley 17/17 17 17 17 17 17
Bilde-Krarup 220/220 17 17 3 17 17
Chessboard 30/30 17 17 127 17 3”
Euclidian 30/30 17 17 17 17 17
FPP k=11 30/30 17 7’ 3°59” 35~ 1°05”
FPP k=17 28/30 27 10°22” - 22°02” 30117
Gap-a 30/30 31” 5°05” 20°09” 727 5'39”
Gap-b 30/30 3137 11°49” 35°02” 12’437 7°29”
Gap-c 30/30 70°13” 83’60~ 117°15” 86°38” 9°25”
Galvao-Raggi 50/50 17 17 17 17 17
KG-250 27/30 3 12°28” - 24°39” 35°45”
KG-500 7/30 44’317 - - 70°08” 22°10”
KG-750 0/30 - - - - -

M* 22/22 17 17 40’50~ 1’577 8°30”
Perfect Codes 32/32 17 17 17 17 17
Uniform 30/30 17 3” 177 37 4

Table 3 Solving with LFS and no cache

Instances Solved Min Median Max Mean Std.dev.
Barahona-Chudak 8/18 17 - - 3°60” 4’377
Beasley 17/17 17 17 17 17 17
Bilde-Krarup 220/220 17 17 3” 17 17
Chessboard 30/30 17 17 17 17 17
Euclidian 30/30 17 17 17 17 17
FPP k=11 30/30 17 17 17 17 17
FPP k=17 30/30 17 2”7 27 27 17
Gap-a 30/30 157 1’577 25°46” 401~ 6°35”
Gap-b 30/30 39” 7°10” 307227 10°24” 9°20”
Gap-c 24/30 7247 115°08” - 107°39” 21°26”
Galvao-Raggi 50/50 17 17 17 1”7 17
KG-250 27/30 6” 14°36” - 25°52” 34°40”
KG-500 3/30 71°07” - - 74’317 3°25”
KG-750 0/30 - - - - -

M* 22/22 17 27 109°29” 5157 22°46”
Perfect Codes 32/32 17 17 17 17 17
Uniform 30/30 17 4 23” 5”7 5”7
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Fig. 3 Profile curves for Uf1Lib

correlated to a very poor incumbent solution. Therefore it follows that the tabu search
procedure in the primal process remains stuck in a local optimality trap very early in the
search. It is therefore up to the dual process to send information to the primal process to
enable it to escape from its trap. Evidently this does occur with LF S node selection, but
not with DFS. We performed another series of tests on the Finite projective
planes instances using LFS node selection but with the primal process disabled.
We found that the dual process was able to find the optimal solution on its own in a
matter of seconds, but not as quickly as in the original ‘LFS’ tests. This illustrates the
pertinence of the cooperative aspect of our approach.

Note that in the case of the Gap instance set, the easier instances in the a and b
subsets are better solved with ‘LFS’ while the opposite is true of the harder instances
in the c subset. On the other hand, the ‘DF S with |C| < 128’ setting performs better for
M* and K6rkel-Ghosh. The instances in these sets have not yet all been solved to
optimality, unlike all other sets in Uf 1Lib. Until now, only about half of those in M*
had known optima, yet our method solves all instances but the largest one to optimality
in less that a minute on a modern computer, and the largest one in less than an hour. Our
method solves all instances in M* and a good proportion of those in Kdrkel-Ghosh
to optimality. Also, to the best of our knowledge, only 2 of the 90 instances in
Kdrkel-Ghosh had known optima [4], yet our method was able to find 28 more.

Table 4 illustrates our results for the instances of the Kérkel-Ghosh set which
we were able to solve to optimality. To the best of our knowledge, most of these were
unknown until now. Table 5 illustrates our results for the M* set, which we were able
to solve to optimality in its entirety in less than an hour. The column ‘#nodes’ lists
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Table 4 Optimal values for the Korkel-Ghosh instance set

Instance Opt Time #Nodes #Lag.eval. #Moves
ga250a-2 257502 5’207 69,950 4,352,212 10,829
ga250a-4 257987 116’04 1,555,510 96,300,841 96,301
ga250b-1 276296 24°21” 452,946 22,557,355 23,118
2a250b-2 275141 4°50” 87,894 4,467,390 10,092
2a250b-3 276093 13’077 249,354 12,146,379 16,655
ga250b-4 276332 17°27” 324,970 15,686,289 18,916
ga250b-5 276404 15°05” 286,054 13,942,841 17,883
ga250c-1 334135 6” 2,510 80,553 966
ga250c-2 330728 3” 1,220 39,043 639
2a250c-3 333662 57 2,106 67,897 878
ga250c-4 332423 47 1,426 45,501 697
2a250¢c-5 333538 6” 2,602 82,561 976
ga500c-1 621360 44°31” 175,544 5,673,939 9,331
2a500c-2 621464 8823~ 328,682 10,324,601 12,499
2a500c-3 621428 101°56” 383,096 11,840,896 13,299
2a500c-4 621754 88217 312,472 9,600,336 11,919
gs250a-1 257964 51°127 617,345 38,626,708 38,627
gs250a-2 257573 17°01” 199,171 12,187,024 18,473
gs250a-3 257626 95’327 1,245,908 717,751,785 77,752
gs250a-4 257961 72°06” 964,562 59,278,305 59,279
gs250a-5 257896 101°45” 1,332,652 82,664,426 82,665
2s250b-1 276761 89°30” 1,659,142 82,929,645 82,930
2s250b-2 275675 11’497 224,214 10,927,163 15,774
gs250b-3 275710 14’407 276,632 13,602,650 17,729
gs250b-4 276114 5’147 97,728 4,799,499 10,325
gs250b-5 275916 9°29” 173,536 8,815,952 14,381
gs250c-1 332935 47 1,750 54,895 772
gs250c-2 334630 8” 3,476 110,912 1,152
2s250c-3 333000 6” 2,320 73,653 915
2s250c-4 333158 47 1,568 49,979 739
2s250c-5 334635 137 5,362 172,336 1,474
2s500c-1 620041 46°58” 185,670 5,850,888 9,368
2s500c-2 620434 46°40” 187,538 5,865,590 9,348
2s500c-4 620437 74’107 300,514 9,343,075 11,822

the number of nodes in the search tree for each instance, and the column ‘#lag.eval.’
lists the number of times a lagrangian relaxation was solved as per Sect. 3.1. The
column ‘#moves’ lists the number of 10PT moves performed by the primal process.
As before, all times are rounded up.
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Table S Optimal values for the M* instance set

Instance Opt Time #Nodes #Lag.eval. #Moves
MO1 1305.95 17 68 2,880 139
MO2 1432.36 17 58 3,088 149
MO3 1516.77 17 92 3,774 165
MO4 144224 17 26 1,296 85
MO5 1408.77 17 62 2,690 134
MP1 2686.48 17 142 6,231 227
MP2 2904.86 17 168 6,605 232
MP3 2623.71 1” 52 2,264 120
MP4 2938.75 17 232 9,688 296
MP5 2932.33 17 362 15,348 393
MQl1 4091.01 17 108 4,436 182
MQ2 4028.33 1” 180 7,338 249
MQ3 4275.43 17 106 4,256 177
MQ4 4235.15 17 138 5,608 211
MQ5 4080.74 37 608 25,728 537
MR1 2608.15 10” 890 38,963 692
MR2 2654.73 3” 280 9,187 275
MR3 2788.25 12”7 1,582 48,423 714
MR4 2756.04 157 1,744 61,719 855
MR5 2505.05 117 1,142 44,873 732
MS1 5283.76 527 1,090 37,352 635
MT1 10069.80 407507 20,094 663,007 3,080

5 Concluding remarks

In this paper, we presented a cooperative method to solve (P) exactly, in which a
primal process and a dual process exchange information to improve the search. The
primal process performs a variation of the tabu search procedure proposed by Michel
et al. [31], and the dual process performs a lagrangian branch-and-bound search. We
selected this particular metaheuristic for its simplicity and its good overall perfor-
mance, however any other metaheuristic can be used instead.

Our main contributions lie in the dual process. Partitionning (P) into subproblems
S P(p, n, n) allows us to apply sophisticated branching strategies. Our branching rules
rely on results for quickly reoptimizing lagrangian relaxations with modified parame-
ters p, n or i, and hence require relatively little computational effort. Note that the
branch-and-bound method presented in this paper could be supplemented with the
preprocessing and branching rules presented by Goldengorin et al. [16,17].

Furthermore, we introduced a subgradient caching technique which helps improve
performance of the bundle method, which we apply to compute a lower bound at each
node. The subgradients are stored in the cache as soon as they are generated during the
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application of the bundle method, and may be retrieved to initialize the bundle at the
beginning of a subsequent application. We introduced results to improve the potential
for reuse of a subgradient within the specific context of the UFLP, but these possi-
bly could be extended to lagrangian branch-and-bound methods for other problems.
Maintaining a subgradient cache may not be the ideal way of reusing information
obtained during the optimization of the lagrangian dual, but this technique has certain
practical advantages: it requires constant time and space, it is conceptually simple (and
hence, easy to implement), its behavior is easy to control and it works well enough in
conjunction with a depth-first node selection strategy.

Note also that by computing the lower bound at each node using a bundle method
allows us a certain level of control on the computational effort expended at each node,
which more or less directly translates into bound quality. This is in contrast to the
dual-ascent heuristic of DualLoc, and also to integer programming solvers such as
CPLEX or Gurobi which apply the dual simplex algorithm to completion.

Finally, we presented extensive computational results. Our method performs well
for a wide variety of problem instances, several of which having been solved to opti-
mality for the first time.
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Appendix A: Cache implementation details

An efficient implementation of C is crucial to its performance. In our implementation,
C is a FIFO queue whose maximal size is a predefined parameter. Consequently,
an insertion of a new element into a full C is preceded by the removal of its oldest
element. When inserting a new element into C, our implementation does not examine
the contents of C to detect if it is already present, but instead it tests its presence
using a counting Bloom filter. A Bloom filter is a data structure originally proposed
by Bloom [6] which allows testing efficiently whether a set contains an element (with
occasional false positives, but no false negatives). A counting Bloom filter is a variant
defined using any vector § of positive integers and a set H of different hash functions
h € H which each map any element possibly in C to an index of f:

— if an element e is added into C, then increment B, by 1 forall 7z € H,
— therefore an element e is certainly not in C if there exists # € H for which

By =0,
— if an element e is removed from C, then decrement B,(,) by 1 forall h € H.

Bloom filters are efficient in time and in space even for very large sets. By hard-coding
the maximum size of C to 2'® — 1 elements, we implemented 8 as an array of 16-bit
unsigned integers. In our implementation, the dimension of this array is in the low
hundred thousands, and |H| = 7. As a consequence, the probability of false positives
when testing whether e € C is less than 1%.
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When trying to insert a new element e into C, the following steps are performed:

L. If By > Oforall h € H, then e is probably already in C: go to step 4.

2. If C is full, then remove the oldest element ¢ in C and decrement B, by 1 for
allh e H.

3. Insert e into C and increment B, by 1 forallh € H.

4. Done.

The counting Bloom filter thus ensures the unicity of the elements in C.

Appendix B: Bundle method iteration limits

Recall that the elements stored in C are key-value pairs specifying first-order outer
approximations of lagrangian dual functions, and the purpose of C is to provide valid
approximations to populate the bundle. Recall also that in our method we apply a
bundle method during the evaluation of each node (p, , i, it) selected in Q by the
Branch-and-bound procedure, and that the initial trial point u(?) is set to i, i.e.
the best vector of multipliers found for the parent node. Once our implementation
has identified a subset S of valid (o, €) pairs present in C, it does not immediately
update the bundle with all pairs in S. We have found it more convenient to update the
bundle using at most b pairs in S, with b being the maximum bundle size minus 1. This
seemingly arbitrary choice was partly due to certain limitations of [B]TT (the bundle
method implementation which we use), however it seems to be effective. In the case
where the valid subset size exceeds this number, we update the bundle with the b pairs
in S selected as follows: let u(o) be the initial trial point of the bundle method, we select
(0, €) € S minimizing the value ZT:] nOo j + €. In this manner, we select the most
accurate first-order outer approximations, the value Z;f;l [L(O) oj+e—¢p(p,n,n, ;1,(0))
being the error at u(?) of the approximation defined by (o, €).

Recall that in our implementation, a hard limit on the number of iterations
to be performed by an application of the bundle method is set. This is either
iter_limit_initial for the very first application (at the beginning of which
the cache is empty), or iter_limit_other for the others. In all applications other
than the first, we use iter_limit_other - min{b, |S|} as the actual iteration
limit. In this manner, and provided that iter_limit_other > b, the intensity of
the search for the optimal multiplier is inversely proportional to the size of the initial
bundle, and hence indirectly to the quality of the model of the lagrangian dual.

Appendix C: Fast floating point arithmetic

A large part of the computational effort is expended in the following computations
within the bundle method:

— computing reduced costs c¥,

— generating a subgradient ¢ ¥,

— computing >, [L;-O)U j+e.
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While the theoretical complexity of these operations cannot be reduced, in practice
we can speed these up by performing as many of them as possible in the SSE registers
which are now standard on x86 processors. Consider the computation of the reduced
costs given g € R™:

m
Vief{l,....n}, & « c,~+Zmin{O,s,~j —uj}.
j=1

The sum of the minima can be performed in the SSE registers several minima at a time.
Similarly, the computation of 27:1 ;Lg-o)a j + € for all suitable (o, €) pairs identified
at the beginning of a bundle method consists mainly of a dot product. This operation
can be performed by the BLAS function ddot, and recent implementations of BLAS
will perform several products simultaneously.

The generation of the subgradient o ") was specified earlier as follows:

)

. () . o) . (1)
Vjief{l,...,m}, o <—1—Hle{1,...,n}.§i —l,s,]<u,j}

but can be rewritten using the following vectors vie {0, 1y, ie{l,...,n}:

n
ameﬂJW”D—E:ﬂ
=1

1=
x=1
®
j 9
0 otherwise.

(1 ifs
withVi € {1,....n},¥j € (I....m}, v, =} "% =F

Using SSE registers, we can compute several components of a vector v/ simultane-
ously.
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