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Abstract We consider a class of optimization problems for sparse signal reconstruc-
tion which arise in the field of compressed sensing (CS). A plethora of approaches and
solvers exist for such problems, for example GPSR, FPC_AS, SPGL1, NestA, �1_�s,
PDCO to mention a few. CS applications lead to very well conditioned optimization
problems and therefore can be solved easily by simple first-order methods. Interior
point methods (IPMs) rely on the Newton method hence they use the second-order
information. They have numerous advantageous features and one clear drawback:
being the second-order approach they need to solve linear equations and this oper-
ation has (in the general dense case) an O(n3) computational complexity. Attempts
have been made to specialize IPMs to sparse reconstruction problems and they have
led to interesting developments implemented in �1_�s and PDCO softwares. We go
a few steps further. First, we use the matrix-free IPM, an approach which redesigns
IPM to avoid the need to explicitly formulate (and store) the Newton equation sys-
tems. Secondly, we exploit the special features of the signal processing matrices within
the matrix-free IPM. Two such features are of particular interest: an excellent con-
ditioning of these matrices and the ability to perform inexpensive (low complexity)
matrix–vector multiplications with them. Computational experience with large scale
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one-dimensional signals confirms that the new approach is efficient and offers an
attractive alternative to other state-of-the-art solvers.

Keywords Matrix-free interior point · Preconditioned conjugate gradient ·
Compressed sensing · Compressive sampling · �1-regularization
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1 Introduction

We are concerned with the solution of the underdetermined system, m < n, of linear
equations

Ax = b̂, (1)

where A ∈ R
m×n, x ∈ R

n, b̂ ∈ R
m . In particular, we are interested in the solution

x with the smallest possible number of nonzero elements, otherwise known as the
sparsest solution x̂ . Such problems arise in the fields of Statistics [32] and Signal
processing [9].

The sparsest solution x̂ of system (1) can be found by solving the following problem:

min
x∈Rn

‖x‖0

s.t.: Ax = b̂,
(2)

where ‖x‖0 = {# of nonzero entries in x} and “s.t.” stands for “subject to”. The use
of zero-norm makes the problem combinatorial and untractable in practice. Recent
advances in the field of CS show that in certain situations [9] exact recovery of the
sparsest solution x̂ of (1) can be achieved with an overwhelming probability by solving
the following Basis Pursuit [14] problem:

BP: min
x∈Rn

‖x‖1

s.t.: Ax = b̂,
(3)

where ‖x‖1 = ∑n
i=1 |xi |. The problem (3) has a major advantage over (2). Unlike

the zero-norm objective in (2), the �1-norm objective in (3) can be reformulated as a
linear function and therefore the problem (3) may be recast as a linear problem and
becomes computationally tractable. Having a linear reformulation of (3), standard
efficient optimization methods can be used to recover the sparsest solution x̂ .

In real-life applications the right hand side of (1) is often corrupted with noise and
(1) is replaced with:

Ax = b = b̂ + e, (4)

where e ∈ R
m denotes the error: we assume it has a normal distribution ei ∼

N (0, σ 2) ∀i = 1, 2, . . . ,m. For the noisy case (4) the sparsest solution x̂ can be
found by solving one of the following problems:
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Matrix-free interior point method 3

BPDN : minx∈Rn τ‖x‖1 + ‖Ax − b‖2
2 (5a)

LASSO: minx∈Rn ‖Ax − b‖2
s.t.: ‖x‖1 ≤ ε1

(5b)

BPε2 : minx∈Rn ‖x‖1
s.t.: ‖Ax − b‖2 ≤ ε2

(5c)

where τ, ε1 and ε2 are positive scalars that regulate the sparsity and the upper bound
on the noise error, respectively. Problem (5a) is the well-known Basis Pursuit Denois-
ing introduced in [14], problem (5b) is the Least Absolute Shrinkage and Selection
Operator (LASSO) used frequently in the field of computational statistics [32]. It can
be shown using Theorem 27.4 from [34] that the problems in (5) are equivalent for
specific values of scalars τ, ε1 and ε2.

Practical problems have large dimensions and off-the-shelf approaches such as the
simplex method or the (standard) IPM are often impractical. However, matrices A
that appear in CS problems display several attractive features which may be exploited
within an optimization algorithm. This has created an interest in developing specialized
approaches to solving such problems.

There have been various first-order methods developed for the solution of (3) and
(5). Let us mention the ones known to be the most efficient.

– Gradient Projection Sparse Reconstruction GPSR [20] defines new variables u, v ∈
R

n such that
|xi | = ui + vi ∀ i = 1, 2, . . . , n, (6)

where ui = max(xi , 0) and vi = max(−xi , 0). Then linearization of the �1-norm
is performed

‖x‖1 = 1T
n u + 1T

n v, (7)

with u, v ≥ 0 and 1n ∈ R
n being a column vector of all ones. Using the above lin-

earization technique, GPSR solves the following constrained smooth reformulation
of problem (5a)

min
z∈R2n

τ1T
2nz + 1

2
‖FTz − b‖2

2

s.t.: z ≥ 0,
(8)

where z = [u ; v] ∈ R
2n, FT = [A − A] ∈ R

m×2n . Once optimal values of
variables u and v are found the solution x of the initial problem is retrieved by
computing

x = u − v.

The price for the linearization is that comparing to the initial BPDN problem (5a)
the dimension of the problem is doubled and 2n new non-negativity constraints are
added. At each step of the algorithm a line search is performed along the negative
gradient direction and the new iterate is projected to the feasible set defined by the
imposed constraints z ≥ 0.
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– Fixed Point Continuation Active Set FPC_AS [39] solves problem (5a). FPC_AS
is a two stage algorithm. At the first stage a shrinkage scheme is employed which
aims to spot quickly the nonzero components of the sparse representation. Then the
second stage is enabled to solve a smooth version of (5a) limited to the indexes of
nonzero components found by the first stage of the algorithm.

– Spectral Projected Gradient SPGL1 [4] solves any of the problems (3), (5b) and
(5c). The SPGL1 is a spectral projection gradient algorithm which iteratively solves
(5b) for some values of ε1, each approximate solution of (5b) is used to build a root-
finding problem, which is equivalent to (5c), and is solved by employing a Newton
method.

– NestA [3] solves problem (5c) by using a variant of the Nesterov’s smoothing
gradient algorithm [33], which has been proved to have the optimal bound O(1/ε)
on the number of iterations, where ε is the required accuracy.

Independently there have been several attempts to design suitable IPM implementa-
tions. The most efficient among them, which can also handle large scale CS problems,
are listed below.

– �1_�s algorithm [29] solves a constrained smooth reformulation of problem (5a)
which allows a straightforward preconditioning of the Newton equation system that
is solved with a conjugate gradient method.

– PDCO algorithm [36] solves regularized constrained smooth reformulations of
problems (3) and (5a). The Newton equation system is solved by applying an Least
Squares QR factorization (LSQR) method.

Both �1_�s and PDCO have been demonstrated to be robust in comparison with other
IPM implementations. However, they are not as accurate and as fast as state-of-the-art
first-order methods.

In this paper we present a primal–dual feasible IPM specialized to CS problems.
Primal–dual because it iterates simultaneously on primal and dual variables of a smooth
reformulation of problem (5a) and feasible because the smooth reformulation of (5a)
consists only of conic constraints which are always satisfied. Primal–dual methods
have been shown to have the best theoretical convergence properties [30] among var-
ious IPMs, but they also enjoy the best practical convergence [24,40]. Here we give a
brief introduction of the structure of primal–dual IPM methods and we discuss impor-
tant modifications that result in the proposed approach. The actual implementation
used in this paper is given in Sect. 5.1.

Primal–dual methods rely on Newton method to calculate primal–dual directions
at each iteration. Newton method for primal–dual IPMs finds roots for linearized
Karush–Kuhn–Tucker (KKT) systems or their reduced versions known as augmented
and normal equations systems. These systems arise as first-order optimality conditions
of log-barrier primal–dual pairs. The linearized KKT systems, referred as Newton
linear systems, can be solved in two ways,

– by employing a direct linear solver, or
– by using an iterative solver, such as Krylov subspace methods [28].

The first option delivers a very robust primal–dual IPM where exact Newton direc-
tions are calculated. Despite its robustness this approach has the potential drawback
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Matrix-free interior point method 5

of being computationally expensive. Especially in the case when the Newton linear
system does not have an exploitable sparsity pattern and the computational effort per
iteration reaches O(n3).

The second option involves the use of approximate Newton directions. Although
this might slightly increase the number of IPM iterations [26,31], one hopes that the
decreased computational effort per iteration should offset such a disadvantage. The
performance of iterative methods depends on the spectral properties of the Newton
linear system [28] and benefit from the use of appropriate preconditioning techniques
which cluster the eigenvalues of the Newton linear system. If the Newton linear system
is ill-conditioned and no low-cost preconditioner is applicable, then a direct approach
might be more efficient. To conclude, a criterion to select between the two approaches
of solving the Newton linear systems should take into account

1. the sparsity pattern of the systems,
2. the existence of a computationally inexpensive preconditioner,
3. the memory requirements of storing problem’s data,
4. the existence of fast matrix–vector product implementations with the matrix of the

linear system to be solved.

In this paper, we focus on the situation where there is no particular sparsity pattern,
the memory requirements can be high but conditions 2 and 4 are satisfied. For this
reason, a preconditioned conjugate gradient method is more attractive than a direct
method. Indeed, in the approach proposed in this paper, at each step of the primal–dual
IPM the preconditioned conjugate gradient method is applied to compute an approx-
imate Newton direction. Since we rely on an iterative method for linear algebra, the
proposed primal–dual IPM is matrix-free [25], i.e. the explicit problem formulation is
avoided and the measurement matrix A is used only as an operator to produce results
of matrix–vector products Ax and AT y. Although matrices A used in CS can be com-
pletely dense, i.e. Gaussian, partial Fourier, partial Discrete Cosine Transform (DCT),
partial Discrete Sine Transform (DST), Haar wavelets etc, they do have interesting
(exploitable) features. Arguments 3 and 4 are satisfied because for many measure-
ment matrices that appear in sparse signal reconstruction problems there are super-fast
algorithms (e.g. O(n) or O(n log n) complexity) for multiplication by a vector. For
example, for Fourier, DCT and DST matrices there exists the FFTW implementation
(“Fastest Fourier Transform in the West”) [22] with complexity O(n log n), for Haar
wavelet and Noiselet matrices there exist algorithms of complexity O(n), see [1] and
[15], respectively. Finally, to satisfy argument 2 we propose a preconditioner efficient
on certain problems that is based on the fact that sub-matrices of A with a given num-
ber of columns are uniformly well-conditioned (this is called the Restricted Isometry
Property, see the discussion in Sect. 2).

The objective of our developments is to design an IPM which preserves the main
advantage of IPM, that is, it converges in merely a few iterations, and removes the
main drawback of IPM, that is, avoids expensive computations of the Newton direction.
Ideally, we would like to solve the CS problems in O(log n) IPM iterations and keep
the cost of a single IPM iteration as low as possible and not exceeding O(n log n).

The paper is organized as follows. In Sect. 2 we discuss the particular features
of CS matrices that are exploited in our approach. In Sect. 3 we reformulate sparse
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recovery optimization problems (3) and (5a) to make them suitable for matrix-free
IPM. Section 4 concerns finding approximate Newton directions required at each step
of the IPM. We calculate the normal equations system formulation of the above stated
problem and analyze its properties. We propose an efficient preconditioner that can
be used in the preconditioned conjugate gradient method. We prove that under certain
conditions (that are satisfied in practice) eigenvalues of the preconditioned matrix are
well clustered around 1. In Sect. 5 we compare the proposed matrix-free IPM with
other state-of-the-art first and second-order solvers.

2 Properties of compressed sensing matrices

Matrices which appear in sparse reconstruction problems originate from different bases
in which signals are represented. What they all have in common are the conditions
that guarantee recoverability of the sparsest solution of (1) by means of the �1-norm
minimization (3). The restricted isometry property (RIP) [13] is one of such conditions
which shows how efficiently a measurement matrix captures information about sparse
signals.

Definition 1 The restricted isometry constant δk of a matrix A ∈ R
m×n is defined as

the smallest δk such that

(1 − δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2 (9)

for all at most k-sparse x ∈ R
n .

In words, for small δk , statement (9) requires that all column sub-matrices of A
with at most k columns are well-conditioned. Informally, A is said to satisfy the RIP
if δk is small for a reasonably large k. The next theorem due to [21] establishes the
relation between the RIP property and the sparse recovery.

Theorem 1 Every k-sparse vector x ∈ R
n satisfying Ax = b̂ is the unique solution

of (3) if

δ2k <
3

4 + √
6

≈ 0.4652.

The restricted isometry property also implies stable recovery by �1-norm minimiza-
tion for vectors that can be well approximated by sparse ones, and it further implies
robustness under noise on the measurements [13].

RIP is a very restrictive condition that depends on the size of the measurement
matrix A. Clearly, the more columns n matrix A has (the larger the size of the vector
x to recover) the larger δk in (9) is (the harder it is to guarantee sparse recovery). On
the other hand, number of rows m of A is the number of measurements taken and,
hence, the RIP constant δk decreases with m. Currently known measurement matrices
satisfying RIP with small number of measurements fall into two categories [35]: (i)
random matrices with i.i.d. sub-Gaussian variables, e.g., normalized i.i.d. Gaussian
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Matrix-free interior point method 7

Table 1 List of measurement
matrices that have been proven
to satisfy RIP

m × n Measurement matrix RIP regime References

Gaussian m ≥ Ck log n [2,35]

Partial Fourier m ≥ Ck log4 n [35]

or Bernoulli matrices; (ii) random partial bounded orthogonal matrices obtained by
choosing m rows uniformly at random from a normalized n × n Fourier or Walsh–
Hadamard transform matrices. Number of measurements required to satisfy the RIP
property for both classes of matrices is given in the Table 1.

Although it follows from Table 1 that Gaussian matrices are optimal for sparse
recovery, they have limited use in practice because many applications impose struc-
ture on the matrix. Furthermore, recovery algorithms are significantly more efficient
when the matrix admits a fast matrix–vector product. Due to the two former practical
reasons, and since we are dealing with large-scale CS applications we limit ourselves
to applications with measurement matrices A that

– are not stored explicitly,
– admit a low-cost matrix–vector product with A (e.g. O(n log n) or O(n)).

An important broad class of CS matrices comes from random sampling in bounded
orthonormal systems. Partial Fourier matrix mentioned earlier is just one example
of this type. Other examples are matrices related to systems of real trigonometric
polynomials (partial discrete cosine (DCT) and discrete sine (DST) matrices), Haar
wavelets and noiselets. Quite often in applications a signal is sparse with respect to a
basis different from the one in which measurements are made. Then it is said that a
measurement/sparsity pair is given [9]. Assume that a vector z is sparse with respect to
the basis of columns of a unitary matrix� (sparsity matrix), i.e. z = �x for a k-sparse
vector x . Further, assume that z is sampled with respect to the basis of columns of a
unitary matrix� (measurement matrix): y = Rm�

Tz, where Rm is a random sampling
operator which satisfies Rm RT

m = I . Hence, matrix A in (1) is equal to Rm�
T� and

its rows are orthonormal:
AAT = Im . (10)

The recoverability property of matrix A depends on the value of the so-called mutual
coherence μ(�,�) of the measurement/sparsity pair (see [16]):

μ(�,�) = √
n max

i, j
| 〈φi , ψ j

〉 |, (11)

where φi , ψi are the i th columns of matrices �,�, respectively. Coherence simply
measures the largest correlation between any two elements of � and �. Next theo-
rem due to [12] shows that the smaller the value of mutual coherence the better the
recoverability property of matrix A.

Theorem 2 Fix z ∈ R
n and suppose that the coefficient sequence x of z in the unitary

n × n basis � is k-sparse. Select m measurements in the unitary n × n� domain
uniformly at random. Then if
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8 K. Fountoulakis et al.

m ≥ Ckμ(�,�)2 log(n/p) and m ≥ C ′ log2(n/p) (12)

for some positive constants C,C ′, then with overwhelming probability exceeding 1− p,
the vector x is the unique solution to the �1-minimization problem (3) with A =
Rm�

T�, where Rm RT
m = I and A has orthonormal rows (10).

Let us note that condition (12) differs from those given in Table 1. Conditions in
Table 1 ensure that once the random matrix is chosen, then with high probability all
sparse signals can be recovered (uniform recovery). Although, (12) only guarantees
that each fixed sparse signal can be recovered with high probability using a random
draw of the matrix (nonuniform recovery).

To conclude, CS matrices have many useful properties that must be taken into
account in the development of an efficient matrix-free IPM solver. In the current paper
we make use only of the most general of them that are satisfied by every CS matrix.
First, we weaken a little bit the condition of orthonormality (10) to include random
matrices such as Gaussian and Bernoulli:

– P1: Rows of matrix A are close to orthonormal, i.e. there exists a small δ such that

‖AAT − Im‖2 ≤ δ. (13)

Restricted isometry property (9) on the contrary assumes that columns of A are
normalized. So, our interpretation of the RIP property that will be used throughout the
paper is as follows.

– P2: Every k columns of A with k � m are almost orthogonal and have similar
norms, i.e. for every matrix B composed of arbitrary k columns of A

∥
∥
∥

n

m
BT B − Ik

∥
∥
∥

2
≤ δk . (14)

By treating property P2 as the chosen RIP, the bound for the RIP constant in Theorem
1 which relies on RIP in (9) will change. The following theorem is a modified version
of Theorem 1 when property P2 is used as a RIP.

Theorem 3 Every k-sparse vector x ∈ R
n satisfying Ax = b̂ is the unique solution

of (3) if

δ2k <
3 m

n

1 + 3 m
n + √

6
,

where δ2k is the minimum constant such that property P2 holds for every 2k columns
of matrix A, denoted by matrix B in P2.

Proof Let x ∈ R
n have k nonzero components and B in P2 be any k column submatrix

of A. Then from P2 it follows that

m

n
(1 − δk)‖x‖2

2 ≤ ‖Ax‖2
2 ≤ m

n
(1 + δk)‖x‖2

2. (15)
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Matrix-free interior point method 9

Table 2 Upper bounds of
sufficient conditions in
Theorem 3 for sparsity level
2 ≤ k ≤ 8

Bold indicates the weakest
sufficient condition

Case 2 Case 3 Case 4

k = 2
3 m

n
1+3 m

n +2
√

2

4 m
n

1+4 m
n +3

√
2

2 m
n

1+2 m
n +

√
5
3

k = 3
3 m

n
1+3 m

n +√
6

4 m
n

1+4 m
n +3

√
3
2

2 m
n

1+2 m
n + 1

2

√
7

k = 4
3 m

n

1+3 m
n +

√
22
3

4 m
n

1+4 m
n +2

√
3

2 m
n

1+2 m
n +

√
5
3

k = 5
3 m

n

1+3 m
n +

√
13
2

4 m
n

1+4 m
n + 1

2

√
57

2 m
n

1+2 m
n + 1

2

√
13
2

k = 6
3 m

n
1+3 m

n +√
6

4 m
n

1+4 m
n +

√
66
5

2 m
n

1+2 m
n +

√
5
3

k = 7
3 m

n

1+3 m
n +2

√
5
3

4 m
n

1+4 m
n + 5√

2

2 m
n

1+2 m
n +3

√
2
11

k = 8
3 m

n

1+3 m
n +2

√
11
7

4 m
n

1+4 m
n +2

√
3

2 m
n

1+2 m
n +

√
5
3

Proposition 2 in [21] gives bounds for δ2k by using the RIP in (9). In our case, we
replaced the RIP in (9) with (15). Therefore, the four modified conditions for δ2k

in Proposition 2 in [21] which guarantee that every k-sparse vector x ∈ R
n which

satisfies Ax = b̂ is the unique solution of (3), take the following forms:

1) δ2k <
1

2

m

n
when k = 1

2) δ2k <
3 m

n

(1 + 3
m

n
+ √

(6k − 2r)/(k − 1))
when k = 3ω + r and 1 ≤ r ≤ 3

3) δ2k <
4 m

n

(1 + 4
m

n
+ √

(12k − 3r)/(k − 1))
when k = 4ω + r and 1 ≤ r ≤ 4

4) δ2k <
2 m

n

(1 + 2
m

n
+ √

1 + k/(8ω + �8r/5
)
when k = 5ω + r and 1 ≤ r ≤ 5,

where ω = 0, 1, . . . is an integer variable. Table 2 shows with bold font which
condition of the above four is the weakest for 2 ≤ s ≤ 8. This table is equivalent
of the table in proof of Theorem 1 in [21]. However, in [21] the table has exact values,
where our Table 2 has functions depending on the ratio m/n instead. Using the same
arguments as in proof of Theorem 1 in [21] and Table 2 we conclude that every k-sparse
vector x ∈ R

n satisfying Ax = b̂ is the unique solution of (3) if

δ2k <
3 m

n

1 + 3 m
n + √

6
.

This completes the proof. ��
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Fig. 1 Comparison on the bounds of δ2k constants from Theorems 1 and 3

Comparing the two bounds of the RIP constants in Theorems 1 and 3 we observe
that the former is smaller, see Fig. 1. For the purpose of the proposed preconditioner,
discussed in Sect. 4, the smaller bound on δ2k in Theorem 3 results in tighter bounds
of the spectral properties of the preconditioned systems. The former is an advantage of
property P2 against RIP in (9), used in Theorem 3. However, property P2 and Theorem
3 result in a limitation of the maximum number of sparsity k for which problem
(3) guarantees an exact recovery of the sparsest solution of Ax = b̂. Fortunately,
both results in Theorems 1 and 3 are rather pessimistic. It has been shown in [7]
that RIP conditions of the form (9) and their scaled versions (P2) or (15) provide
worst case scenarios of δ2k and consequently of the sparsity level k such that problem
(3) guarantees exact sparse recovery. To support the former argument, we refer the
reader to [18], where it is shown that for Gaussian measurement matrices the average
maximum sparsity level k that is guaranteed to be reconstructable by (3) is much greater
than the one shown in Theorems 1 and 3. Moreover, it has been shown empirically
in [18] that approximately the same result holds for various types of measurement
matrices A, i.e. partial Fourier, partial Hadamard, Bernoulli etc. In Sect. 5.8 it is shown
that the proposed algorithm satisfies approximately the average maximum sparsity k
shown in [18]. Therefore, we conclude that by replacing RIP (9) with property P2:

– improved bounds on the spectral properties of the preconditioned systems in Sect.
4 are obtained,

– a better approximation of matrix BT B with a scaled diagonal ρ I by choosing
appropriate constant ρ is possible and

– the empirical average reconstruction properties as shown in Sect. 5.8 are maintained.
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Matrix-free interior point method 11

3 Primal–Dual problems in matrix-free IPM

Non-smooth Basis Pursuit (3) and Basis Pursuit Denoising (5a) optimization problems
can be reformulated into equivalent linear and convex quadratic problems, respectively.
This is achieved via linearization of the non-smooth �1-norm in the objective function.

After reformulating the BPDN problem (5a) to (8) as proposed in [20] for GPSR
algorithm, we solve the latter using a primal–dual IPM. The reader interested in the
theory of primal–dual IPMs is referred to the book of Wright [40]. Aspects of practical
implementation have been addressed in a recent survey [24]. A description of the
primal–dual IPM used in this paper is given in Sect. 5.1. For the primal problem (8)
of interest the dual is

Dual Sep.: max
z,s∈R2n

−1

2
zTFFTz

s.t.: c + FFTz − s = 0
z, s ≥ 0

(16)

where c =
[
τ1n − ATb
τ1n + ATb

]

∈ R
2n .

At each step of the primal–dual IPM applied to the primal–dual pair (8) and (16)
the corresponding Newton direction (
z,
s) is computed by solving the following
system of linear equations:

[
FFT −I2n

S Z

]

×
[

z

s

]

=
[

fz

fs

]

, (17)

where S and Z are diagonal matrices with vectors s and z on the diagonal, respectively,
I2n denotes an identity matrix of dimension 2n and

fz = s − c − FFTz, fs = σμe − Z S12n, (18)

μ = zTs/(2n) is the barrier term of the IPM and 0 ≤ σ ≤ 1 the centering parameter.
In the matrix-free framework the dual variables 
s in (17) are eliminated to get:

(Θ−1 + FFT)Δz = fz + Z−1 fs, (19a)

Δs = Z−1 fs −Θ−1
z. (19b)

where Θ = S−1 Z ∈ R
2n×2n . The reduced Newton system (19a), also known as

normal equations, is solved by an appropriate preconditioned iterative method for
which only matrix–vector product with the constraint matrix F is allowed. Thus, the
matrix-free IPM approach has two major components:

– iterative solver for the normal equations,
– special-purpose preconditioner that exploits matrix structure.

The next section addresses these two issues.
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12 K. Fountoulakis et al.

4 Preconditioned conjugate gradient method

The system (19a) has a symmetric positive definite matrix and the conjugate gradient
(CG) method can be employed to solve it in a matrix-free regime. However, the con-
vergence of the CG method can be too slow when a matrix is ill-conditioned and/or
its eigenvalues are not clustered. In this section we discuss an efficient spectrally-
equivalent diagonal matrix preconditioner for (19a). In particular, we give theoretical
and practical justification of our approach to fast iterative solution of the system.

The proposed preconditioner for the system of equations (19a) is based on the
exploitation of general properties of CS matrices and the behavior of the Θ matrix in
(19a) close to optimality. Let us recall that in the notation of primal–dual pair (8)–
(16), variable s ∈ R

2n is a Lagrange multiplier associated with the non-negativity
constraint z ≥ 0. Hence, at optimality s j z j = 0 ∀ j = 1, 2, . . . , 2n. IPMs force the
convergence to the optimal solution by perturbing this condition s j z j = μ∀ j , where
μ is the barrier term of the IPM, and gradually reducing the perturbation μ to zero.
At optimality indices j ∈ {1, 2, . . . , 2n} are split into two disjoint sets:

B = { j | z j → z∗
j > 0, s j → s∗

j = 0}
and

N = { j | z j → z∗
j = 0, s j → s∗

j > 0}
(20)

that determine the activity of constraints. This partitioning has highly undesirable
consequences for the diagonal scaling matrixΘ = S−1 Z . Indeed, whenμ approaches
zero, for indices j ∈ B, Θ j goes to infinity and for indices j ∈ N , Θ j goes to zero.

Recall that z = [u ; v], where u and v are the positive and negative components of
vector x [see (6)], respectively. For sparse signals there are merely k (k � 2n) nonzero
components in the optimal solution. The positive ones will contribute a nonzero ele-
ment in u and the negative ones will contribute a nonzero element in v. At optimality
the cardinality of set B is k. Hence, at later iterations of an IPM

Θi � 1 ∀ i ∈ B, card B = k,
Θi � 1 ∀ i ∈ N , card N = 2n − k.

(21)

Let us now return to the question of preconditioning of the system of equations
(19a). Its matrix is

H = Θ−1 + FFT. (22)

The behavior of matrix Θ near optimality is described by (21). It is clear that matrix
Θ−1 has many large entries and only few small entries well before the IPM reaches
the optimal solution. Let us introduce a number C � 1 that separates entries of Θ−1

of different magnitudes:
#(Θ−1

j < C) = l. (23)

Here l is just the number of small entries in Θ−1 and may be different from the
sparsity k of the optimal solution. In the regime l < m, the second term FFT, whose
rank is exactly m, works as a low-rank perturbation for the matrixΘ−1 in (22). Since,
in Frobenius norm the first term Θ−1 dominates the second term FFT, we propose
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to replace FFT in the preconditioner by a simple approximant. First, let us write
system’s matrix of (19a) in the block form by using the facts that Θ = diag(Θu,Θv)

and FT = [A − A]:

H =
[
Θ−1

u
Θ−1
v

]

+
[

AT A −AT A
−AT A AT A

]

. (24)

Our preconditioner is based on the approximation of AT A by the closest (in Frobenius
norm) scaled identity matrix ρ In, ρ = m/n:

P =
[
Θ−1

u + ρ In −ρ In

−ρ In Θ−1
v + ρ In

]

. (25)

To simplify the analysis of the preconditioner, we first consider the case of n × n
matrices H and P rather than block 2n × 2n ones as defined by (24) and (25). The
following lemma establishes spectral properties of the preconditioned matrix P−1 H
in the non-block case.

Lemma 1 Define matrix H as

H = Θ−1 + AT A,

where Θ = diag(Θ1,Θ2, . . . , Θn)—diagonal n × n matrix with Θ j > 0, and A—
m × n matrix with m ≤ n/2. Let C be any positive constant and l be defined as in
(23), #(Θ−1

j < C) = l. Additionally, let A satisfy property P2 for k = l with some
constant δl . If matrix A has orthonormal rows (10), then the eigenvalues of matrix H
preconditioned by matrix P:

P = Θ−1 + ρ In, ρ = m/n

are clustered around 1, i.e.

|λ− 1| ≤ δl + 1

4

(3 − ρ)2

ρδlC
∀ λ ∈ spec(P−1 H), (26)

If matrix A has nearly orthonormal rows, i.e. satisfies P1 defined on page 8, then

|λ− 1| ≤ δl + 1

4

(1 + δ − ρ + 2
√

1 + δ)2

ρδlC
∀ λ ∈ spec(P−1 H),

where δ has been defined in P1.

Proof Let C be any positive constant, then the following two disjoint sets of indices
can be defined:

BC = { j ∈ {1, 2, . . . , n} : Θ−1
j < C}, NC = {1, 2, . . . , n}\BC
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14 K. Fountoulakis et al.

Let B and N be matrices of columns of A with indices from BC and NC , respectively.
Without loss of generality we can assume that BC are the first l indices, then

A = [B N ], B ∈ R
m×l , N ∈ R

m×(n−l).

Let λ be an eigenvalue of the preconditioned matrix P−1 H corresponding to an
eigenvector v = [vBC ; vNC ] of norm one, then

P−1 Hv = λv ⇐⇒ (H − P)v = τ Pv, τ = λ− 1, (27)

or, in the block form,

[
BT B − ρ Il BT N

N T B N T N − ρ In−l

][
vBC

vNC

]

= τ

⎡

⎣
Θ−1

BC
+ ρ Il 0

0 Θ
−1
NC

+ ρ In−l

⎤

⎦
[
vBC

vNC

]

(28)
Obviously, eigenvalues of P−1 H are all real, hence τ is also real. Multiplication of
(28) by [vBC ; vNC ]T from the left gives

τ
[
vT
BC

(
Θ−1

BC
+ ρ Il

)
vBC + vT

NC

(
Θ−1

NC
+ ρ In−l

)
vNC

]

= vT
BC

(
BT B − ρ Il

)
vBC + vT

NC

(
N T N − ρ In−l

)
vNC + 2vT

BC
BT NvNC . (29)

Let us denote ‖vBC ‖2
2 by α, then ‖vNC ‖2

2 = 1 − α since v = [vBC ; vNC ] has unit
norm. Bounding left hand side of (29) from below is trivial:

∣
∣
∣τ

[
vT
BC

(
Θ−1

BC
+ ρ Il

)
vBC + vT

NC

(
Θ−1

NC
+ ρ In−l

)
vNC

]∣
∣
∣ ≥ |τ |

(
ρα + C(1 − α)

)
.

(30)
Next, let us bound right hand side of (29) from above. We will distinguish two

cases, orthonormal and nearly orthonormal rows of matrix A. First, we study the
case of nearly orthonormal rows of matrix A. For this purpose we will use the SVD
decompositions of matrices B and N :

B = UB�B V T
B , �B =

[
diag(σ1, σ2, . . . , σl)

Om−l×l

]

and

N = UN�N V T
N , �N = [

diag(ς1, ς2, . . . , ςm) Om×(n−m−l)
]
.

Restricted isometry property P2 implies that

σ 2
1 ≤ ρ(1 + δl), σ 2

l ≥ ρ(1 − δl).

First, notice that ∣
∣
∣vT

BC

(
BT B − ρ Il

)
vBC

∣
∣
∣ ≤ ρδlα. (31)
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Using property P1 we have

‖AAT − Im‖2 ≤ δ ⇐⇒
‖AAT‖2 ≤ 1 + δ ⇐⇒

‖BBT + NNT‖2 ≤ 1 + δ �⇒
‖NNT‖2 ≤ 1 + δ ⇐⇒

ς2
1 ≤ 1 + δ. (32)

Next, using (32) obtain

‖N T N − ρ In−l‖2 ≤ max{ρ, 1 + δ − ρ} = 1 + δ − ρ, (ρ = m/n ≤ 0.5)

and, hence, ∣
∣
∣vT

NC

(
N T N − ρ In−l

)
vNC

∣
∣
∣ ≤

(
1 + δ − ρ

)(
1 − α

)
. (33)

Finally,

‖BT N‖2 ≤ ‖B‖2‖N‖2 ≤ σ1ς1 = √
1 + δ

√
ρ(1 + δl) <

√
(1 + δ)

because our assumptions m ≤ n/2 and δl < 1 imply σ 2
i ≤ σ 2

1 ≤ ρ(1 + δl) < 1. We
conclude that ∣

∣
∣2vT

BC
BT NvNC

∣
∣
∣ < 2

√
1 + δ

√
α(1 − α). (34)

Bounds (33) and (34) are sharp and can be used to obtain very tight estimate on τ
but we do not need them that sharp to obtain a sufficiently good estimate. So, we will
release them a little bit to simplify the analysis:

∣
∣
∣vT

NC

(
N T N − ρ In−l

)
vNC

∣
∣
∣ ≤ (1 + δ − ρ)(1 − α) ≤ (1 + δ − ρ)

√
1 − α,

∣
∣
∣2vT

BC
BT NvNC

∣
∣
∣ < 2

√
1 + δ

√
α(1 − α) ≤ 2

√
1 + δ

√
1 − α.

(35)

Using (30), (31) and (35) we finally get

|τ | ≤ ρδlα + (1 + δ − ρ + 2
√

1 + δ)
√

1 − α

ρα + C(1 − α)
≤ δl(1 + ε). (36)

Let us denote ξ = (1 + δ − ρ + 2
√

1 + δ) and show that ε is small for large values
of C . Indeed (36) implies that

ξ
√

1 − α ≤ δl

(
C + Cε − ρε

)
(1 − α)+ ρδlε.
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16 K. Fountoulakis et al.

It can be checked by simple calculus, that
√

x ≤ C1x + C2 on [0, 1] whenever
C1 ≥ 1/(4C2). In our case this implies

δl

ξ

(
C + Cε − ρε

)
≥ ξ

4ρδlε
.

The largest solution of the quadratic equation in ε

4ρδ2
l

ξ2 ε
(

C + Cε − ρε
)

= 1

is

ε+ = 1

2
· C

C − ρ

(√

1 + ξ2

ρδ2
l C

· C − ρ

C
− 1

)

≤ ξ2

4ρδ2
l C
.

Hence, it is sufficient to take any ε ≥ ξ2/(4ρδ2
l C) to satisfy the inequality (36):

|τ | ≤ δl + ξ2

4ρδlC
= δl + 1

4

(1 + δ − ρ + 2
√

1 + δ)2

ρδlC
. (37)

This completes the proof for matrix A which satisfies property P1. For the case of
orthonormal rows of matrix A, i.e. AAT = Im simply set δ = 0 in property P1 to get

|τ | ≤ δl + 1

4

(3 − ρ)2

ρδlC
. (38)

This completes the proof. ��
For the result of the theorem to be useful we obviously need the bound in the right-

hand side of inequalities in (37) and (38) to be sufficiently smaller than one. Let us take
a closer look at the terms forming this bound. We are free to choose any value for the
constant C we want, the larger the better. However, according to (23), l increases with
the increase in C and, consequently, the restricted isometry constant δl also increases.
Inequalities (37) and (38) hold for any value of C , hence we can replace it with

|τ | ≤ min
C

(

δl + 1

4

(1 + δ − ρ + 2
√

1 + δ)2

ρδlC

)

(39)

and

|τ | ≤ min
C

(

δl + 1

4

(3 − ρ)2

ρδlC

)

(40)

and choose constant C that delivers the minimum.
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Matrix-free interior point method 17

For number of measurements m just a fraction ρ = 1/4 of the length n of the
unknown signal, it is natural to assume the restricted isometry constant δ2l to be< 1/4
(see Theorem 3), hence, according to [6], δ2l < 1/4, implies δl < 1/4. Therefore,
to have |τ | ≤ 17/20 we need C = 20(0.75 + δ + 2

√
1 + δ)2/3 in (23). For nearly

orthonormal rows of matrix A we can assume that δ ≤ 1, which gives us C ≈ 139.74
and certainly holds near optimality in the IPM. For orthonormal rows of matrix A we
have δ = 0, hence, C ≈ 50.41.

The bounds in (37) and (38) are rather pessimistic. Computational experience sug-
gests that eigenvalues of the preconditioned matrix get well clustered around 1 as long
as l = #(Θ−1

j < 1) is such that the RIP constant δl < 1. For example, for the discrete

cosine (DCT) matrix with n = 210 and m = 28 the corresponding l ≤ 74 (this number
is obtained in a series of random tests).

Now we are ready to state the spectral properties of the preconditioned matrix
P−1 H for the system of equations (19a). We leave the theorem without a proof as it
a straightforward corollary of Lemma 1.

Theorem 4 Let H and P be block matrices defined in (24) and (25), respectively.
Then the preconditioned matrix P−1 H has

1. the eigenvalue 1 of multiplicity n;
2. remaining n eigenvalues defined in Lemma 1 with Θ = Θu +Θv .

Theorem 4 establishes the clustering of eigenvalues of P−1 H around 1. Hence,
iterative method such as conjugate gradient applied to the system of equations (19a)
is expected to converge in just a few iterations if the preconditioner P in (25) is used.
The previous theoretical results are also confirmed in practical experiments. Figure
3 demonstrates clustering of eigenvalues λ(H) and λ(P−1 H) in the case that the A
matrix in H (24) is a Discrete Cosine Transform (DCT) matrix with normalized rows,
AAT = I . The parameters for the size of the problem are set to m = 210, n = 212

and the sparsity level is fixed to k = 51. In the left sub-Fig. 2a the clustering of
the eigenvalues λ(H) is shown. Every vertical line presents the spreading of λ(H)
at a particular CG call as the matrix-free IPM progresses. One can observe that the
clustering worsens as the matrix-free IPM approaches optimality. On the contrary,
eigenvalues of the preconditioned matrices P−1 H show the opposite behavior. In
particular, as the matrix-free IPM progresses eigenvalues λ(P−1 H) start to cluster
around one. The latter is depicted with the vertical columns in the right sub-Fig. 2b.

5 Computational experience

We illustrate our developments by comparing the matrix-free IPM’s efficiency with
those of the state-of-the-art first-order methods, FPC_AS and SPGL1 and with two
other interior point based solvers, �1_�s and PDCO. The experiments are made on
Sparco test suite [5].

We use the FPC_AS CG version of FPC_AS algorithm, where “CG” stands for the
conjugate gradient method. The FPC_AS CG has been shown in [39] to be consider-
ably faster than other versions of FPC and FPC_AS software packages. The FPC_AS
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Fig. 2 Clustering of the eigenvalues for the matrices H and P−1 H as the matrix-free IPM approaches
optimality. The matrix A in H (24) is a DCT matrix with normalized rows. The parameters of the problem
set to m = 210, n = 212 and k = 51. Twenty systems for the matrices H and P−1 H are solved in total

CG solves problem (5a). The code of FPC_AS CG package can be found at http://
www.caam.rice.edu/~optimization/L1/FPC_AS/. We use the SPGL1_bp version of
SPGL1 software package for noiseless signals and the SPGL1_bpdn version for noisy
signals, where “bp” stands for basis pursuit and “bpdn” for basis pursuit denoising,
respectively. The SPGL1_bp solves problem (3) and the “bpdn” version solves prob-
lem (5c). The code of SPGL1 package can be found at http://www.cs.ubc.ca/labs/scl/
spgl1. Those versions of the FPC_AS and SPGL1 software packages were found to be
faster and more accurate than other first-order methods mentioned in Sect. 5.2. There-
fore, GPSR and NestA solvers are excluded from the comparison. The �1_�s solver
implements problem (5a), it can be found at http://www.stanford.edu/~boyd/l1_ls/.
The PDCO solver is used through the file SolveFasBP.m of SparseLab software pack-
age. The PDCO solver can be found at http://www.stanford.edu/group/SOL/software/
pdco.html and the SparseLab software package at http://sparselab.stanford.edu/. The
PDCO solver implements problems (3) and (5a).

In addition, three more experiments are performed. The first one tests the robustness
of solvers matrix-free IPM, SPGL1_bpdn, FPC_AS CG and �1_�s , on problems of
Sparco test suite, given a fixed level of noise. The second, replaces the core of matrix-
free IPM, which is the preconditioned CG with a direct solver and shows how the CPU
time required for reconstruction scales for each case. The third, demonstrates that the
empirical phase transition properties of matrix-free IPM fit the theoretical average
phase transition properties shown in [18].

All solvers used in this section, including the matrix-free IPM are MATLAB
implementations. All experiments were performed using MATLAB version R2012b
(8.0.0.783) 64-bit on a Dual 8 Core Intel Xeon (Sandybridge) running Redhat Enter-
prise Linux in 64-bit mode. Finally, the RICE Wavelet toolbox, included in Sparco test
suite, was compiled using gcc compiler version 4.4.620120305 (Red Hat 4.4.6-4). The
matrix-free IPM, the data files and the MATLAB scripts used to generate the results
in this section can be downloaded from http://www.maths.ed.ac.uk/ERGO/mfipmcs/.
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Table 3 Symbols and abbreviations used in tables and figures in Sect. 5 “Computational Experience”

m, n, k Number of rows and columns of the matrix A and the number of nonzero elements
in the optimal sparsest signal representation

x̂ Optimal sparse representation

xW xWi = xi if i ∈ W ,

otherwise xWi = 0, where W := {i = 1, 2, . . . , n | x̂i �= 0}
r.e(xW ) Relative error ‖xW − x̂‖2/‖x̂‖2

res(xW ) Residual ‖AxW − b‖2, where b should be replaced with b̂
in case of noiseless signals

n1d(xW ) Distance from the optimal value of �1-norm,
∣
∣
∣‖xW ‖1 − ‖x̂‖1

∣
∣
∣

obj(xW ) Objective value of BPDN problem, τ‖xW ‖1 + ‖AxW − b‖2
2

nMat Total number of matrix vector products Ax and AT y

Before proceeding to the following subsections it would be convenient for the reader
to be familiarized with symbols and abbreviations used in the subsequent figures and
comparison tables explained in Table 3.

5.1 Single centrality corrector primal–dual matrix-free IPM

The implementation used in this paper is a single-corrector primal–dual IPM [23]. The
original version proposed in [23] makes use of multiple centrality correctors, however,
after computational experimentation it was observed that a single corrector was enough
for the fast convergence of the IPM in few iterations. In a standard multiple-corrector
variant at every iteration multiple centrality corrector directions are calculated, which
are combined with a predictor direction in order to produce the final primal–dual
direction [23]. To compute the corrector and predictor directions one needs to solve
multiple linear systems (19) where only the right hand side varies. In case that a direct
solver is used to solve the linear systems, the extra cost of solving several equations
instead of one is negligible, because the dominating cost is the decomposition of the
matrix (Θ−1+FFT). However, this is not the case when iterative method (PCG) is used
to solve systems (19). In particular, the cost of calculating every term in composite
direction is approximately the same. In order to avoid the high cost of computing
extra corrector directions at every iteration in our single-corrector matrix-free IPM we
slightly bias the predictor direction to point to the central path and perform corrector
directions only when necessary. Like a long-step variant of primal–dual IPM [40] this
guarantees that at every iteration the objective function is decreased rapidly while
the algorithm maintains the small distance to the central path. As proposed in [23],
the criterion to decide whether a corrector direction is calculated is the value of the
primal and dual step sizes. When many biased predictor directions are performed
the primal–dual iterates tend to approach the boundary of the feasible region. This
results in small step sizes of the subsequent iterations. When this happens a strong
re-centering corrector is employed which pushes the next iteration to the vicinity of
central path such that next step sizes are more likely to have large values. Ideally, the
values of the step sizes of the primal and dual directions should be bounded away
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20 K. Fountoulakis et al.

from zero while global convergence of the method is guaranteed. This would allow
fast practical convergence of matrix-free IPM, which translates into few iterations.
Indeed, one can observe from the computational experience reported in Sect. 5.7 that
10 to 20 iterations of the matrix-free IPM is enough for convergence. This behaviour
has been observed also in all computational experiments discussed in Sect. 5.5. We
make our software available to the research community so that the interested reader
can reproduce any numerical experiments from this paper. The pseudo-code of the
implemented single-corrector primal–dual matrix-free IPM follows.

Single-Corrector Primal–Dual Matrix-Free IPM

1: Input Choose z0, s0 > 0, 0 < σ1 < σ2 < σ3 ≤ 1 and 0 < α̃ < ᾱ < 1. For k = 1, 2, . . . generate zk+1

from zk and sk+1 from sk according to the iteration:

2: while Duality Gap of (8) and (16) ≥ ε do

3: if k �= 1 and (αk−1
P ≤ ᾱ or αk−1

D ≤ ᾱ) then
4: σ = σ2
5: else
6: σ = σ1
7: end if

(* predictor step *)

8: solve (19) using PCG with σ and zk , sk in (18) to obtain (
z̄k ,
s̄k )
choose primal and dual step sizes αk

P , α
k
D in [0, 1] as the largest values of αP , αD such that

zk (αk
P ) = zk + αP
z̄k > 0

sk (αk
D) = sk + αD
s̄k > 0

(* corrector step *)

9: if αk
P ≤ α̃ or αk

D ≤ α̃ then

10: solve (19) using PCG with σ = σ3 and zk (αk
P ), sk (αk

D) in (18) to obtain (
z̃k ,
s̃k )

set (
zk ,
sk ) = (
z̃k ,
s̃k ) + (
z̄k ,
s̄k )
choose primal and dual step sizes αk

P , α
k
D in [0, 1] as the largest values of αP , αD such that

zk (αk
P ) = zk + αP
zk > 0

sk (αk
D) = sk + αD
sk > 0

11: end if

12: set (zk+1, sk+1)=(zk (αk
P ), sk (αk

D))
13: end while

The input parameters σ1, σ2 are user-defined and control the centering bias of the
predictor directions, while σ3 parameter controls the strong centering in the corrector
directions. For all experiments they have been set to σ1 = 0.1, σ2 = 0.5 and σ3 = 0.8.
The input parameters ᾱ and α̃ are user-defined, ᾱ controls whether σ1 or σ2 will be used
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as a centering parameter for the predictor directions and α̃ controls the frequency of
the corrector updates. For all experiments they have been set to ᾱ = 0.5 and α̃ = 0.1.

5.2 Benchmarks

In order to have a base of comparison we choose to show the efficiency of the matrix-
free IPM on already existing benchmarks, which have been used by several researchers
including [4,39]. Experiments are performed on 18 real valued sparse reconstruction
problems, see Table 4, from the Sparco collection [5]. In total, Sparco collection
consists of 26 problems, out of which 6 are complex valued and 20 real valued. For
the experiments in this section, the complex valued problems with IDs 1, 4, 8, 501–
503, are ignored since the matrix-free IPM manipulates only real data. Moreover, 2
out of the 20 real valued problems, with IDs 703 and 901, are also ignored because
of their difficulty to be generated on any machine in a stand-alone approach, since,
they require external packages such as CurveLab [8] and FFTW [22]. For problems
in Table 4 with IDs 401–403, 601–603, 701 and 702, the optimal representation x̂ is
not given by Sparco toolbox. Therefore, the SPGL1_bp solver is used to obtain x̂ with
required high accuracy. In particular to obtain x̂ , the parameters of SPGL1_bp are set
to

bpTol = 1.0e−15, optTol = 1.0e−15, decTol = 20, 000. (41)

Table 4 18 out of 20 real valued problems of Sparco collection

Problem ID m, n Operator ‖x̂‖1

[16,17] blocksig 2 1,024, 1,024 wavelet 4.5e+02

[16,17] blkheavi 9 128, 128 heaviside 4.1e+01

[16,17] blknheavi 10 1,024, 1,024 normal. heaviside 9.8e+02

[20] blurrycam 701 65,536, 65,536 blurring, wavelet 1.0e+04

[20] blurspike 702 16,384, 16,384 blurring 3.4e+02

cosspike 3 1,024, 2,048 DCT 2.2e+02

gausspike 11 256, 1,024 Gausian ens. 2.4e+01

gcosspike 5 300, 2,048 Gausian ens., DCT 1.8e+02

[27] jitter 902 200, 1,000 DCT 1.7e+00

[10] p3poly 6 600, 2,048 Gausian ens., wavelet 1.7e+03

[11] sgnspike 7 600, 2,560 Gaussian ens. 2.0e+01

[19] spiketrn 903 1,024, 1,024 1D convolution 1.3e+01

[37] soccer1 601 3,200, 4,096 binary, wavelet 4.2e+02

[37] soccer2 602 3,200, 4,096 binary, Haar wavelet 7.4e+02

srcsep1 401 29,166, 57,344 windowed DCT 1.0e+03

srcsep2 402 29,166, 86,016 windowed DCT 7.7e+03

srcsep3 403 196,608, 196,608 blurring, wavelet 1.0e+03

[20] yinyang 603 1,024, 4,096 wavelet 2.6e+02
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where bpTol controls the tolerance for identifying a basis pursuit solution, optTol
controls the optimality tolerance and decTol controls the frequency of Newton updates.
Some of the components of the obtained solution from the SPGL1_bp might be nearly
but not exactly zero, hence, as nonzero components are considered the ones in the
set nnz(x) := {k = 1, 2, . . . , n | ∑k

i=1 |x̄i | ≤ 0.999‖x‖1}, where x̄ is the vector x
sorted in decreasing order of absolute values of its components. Then we set x̂i = xi

if i ∈ W otherwise x̂i = 0, where W := {i = 1, 2, . . . , n | i ∈ nnz(x)}.
Noise is introduced to the noiseless measurements b̂ using the following command

in MATLAB:
b = awgn(b̂,SNR, ‘measured’), (42)

The function awgn is a MATLAB function from Communications Systems Toolbox
which adds white Gaussian noise to signal b̂. The SNR is the signal to noise ratio, mea-
sured in dB. The ‘measured’ option specifies that the power of the signal is calculated
first before the addition of the noise.

5.3 Equivalence of BPε2 and BPDN

It has already being stated in Sect. 1 that problems BPε2 in (5c) and BPDN in (5a)
are equivalent given particular parameters ε2 and τ . In this paper the tested solvers
implement problem BPε2 , i.e. SPGL1_bpdn, or problem BPDN, i.e. matrix-free IPM,
FPC_AS CG, �1_�s and PDCO. In order to perform a fair comparison among these
solvers it has to be made certain that all codes solve equivalent problems. Otherwise,
different optimal solutions will be obtained, therefore, a straightforward and clear
comparison would be impossible. Unfortunately, exact values of ε2 and τ which make
problems BPε2 and BPDN equivalent are not known a priori, except for the case of
orthogonal matrix A. However, given ε2 an approximate τ can be computed such that
an approximate equivalence holds.

According to [4] given ε2 the parameter τ which makes problems BPε2 and BPDN
equivalent, is the optimal Lagrange multiplier of the dual problem of BPε2 . Since,
SPGL1_bpdn outputs both the primal iterates and the optimal Lagrange multiplier of
BPε2 , it can be used to approximately find τ . Having such a parameter τ the BPDN
solvers, matrix-free IPM, FPC_AS CG �1_�s , PDCO and the BPε2 solver SPGL1_bpdn
can be legitimately compared.

Moreover, in order to be able to compare the quality of the reconstructed repre-
sentations for each solver when solving equivalent problems, the optimal sparsest
representation for a particular level of noise needs to be known in advance. This is
definitely not the case when noise is added manually by the user to a noiseless signal
b̂ using (42). Due to manual corruption of signal b̂, the energy of the added noise
ε2 = ‖e‖2 is known in advance. Hence, solving BPε2 will give the optimal sparsest
representation for this particular level of noise, ε2. This solution is obtained by first
calling SPGL1_bpdn solver to solve BPε2 by setting ε2 = ‖e‖2 with required high
accuracy, see (41). During this process the approximate τ which makes problems BPε2

and BPDN equivalent is obtained from SPGL1_bpdn as has been described before.
Hence, it is concluded that approximate τ and optimal sparse representations can be
calculated such that a fair comparison can be conducted.
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Finally, for noiseless signals b̂, the problem is easier. Problems BP (3) and BPDN
(5a) are almost equivalent for sufficiently small τ , i.e. 1.0e−10. However, such a
small τ can make the �1-norm in BPDN numerically negligible, see Figure 6.2 in [4]
for numerical examples. For the former reason, if such a case is observed for BPDN
solvers, parameter τ is set experimentally to a larger value, their values are given in
Table 6.

5.4 Termination criteria and parameter tuning

Termination of the compared solvers is forced when a solution of similar quality to
the one of matrix-free IPM is obtained. In order to do so, the termination criteria of
the compared solvers are changed. In particular, SPGL1 solver is terminated when the
following criteria are satisfied

n1d(xk
W ) ≤ n1d(xm

W ), r.e(xk
W ) ≤ r.e(xm

W ), res = (xk
W ) ≤ res(xm

W ),

where xk
W is the projected representation at the kth iteration of SPGL1 and xm

W is the
projected representation obtained by matrix-free IPM. Solvers FPC_AS, �1_�s and
PDCO are terminated when the following conditions are satisfied

obj (xk
W ) ≤ obj (xm

W ), r.e(xk
W ) ≤ r.e(xm

W ).

Using these criteria for the compared solvers it is made certain that the reconstructed
representations have approximately the same �1-norm, �2-norm of residual AxW − b
and number of non zero elements in xW . The differentiation of the termination criteria
for solver SPGL1 is done because SPGL1 solves problem BPε2 , unlike all other codes
which solve the BPDN problem. Hence, it is more natural and fair for SPGL1 to be
compared with other solvers using termination criteria in SPGL1 way.

Occasionally, certain solvers required too many matrix–vector products without
achieving a solution of similar quality to the one delivered by the matrix-free IPM. In
this case the solvers were terminated when nMat > 40,000.

Regarding the parameter tuning of the compared solvers, all their parameters are
set to their default values. For the matrix-free IPM the following parameters need to
be set.

– tol: Relative duality gap of primal–dual pair (8) and (16). For noisy problems, this
parameter varies between 1.0e−6 and 1.0e−10. For noiseless problems it varies
between 1.0e−7 and 1.0e−14.

– maxiters: Maximum number of iterations. For all problems this parameter is set to
100.

– tolpcg: Tolerance of preconditioned CG method. For noisy problems this parameter
varies between 1.0e−1 and 1.0e−2 and for noiseless ones it varies between 1.0e−1
and 1.0e−6.

– mxiterpcg: Maximum number of iterations of preconditioned CG method. For all
problems this parameter is set to 200.
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Since a large number of experiments has been performed, the exact parameter
tuning of matrix-free IPM is not given here. However, it can be found in the MATLAB
scripts which reproduce the results in this section, see http://www.maths.ed.ac.uk/
ERGO/mfipmcs/.

Finally, the parameters ε2 and τ in problems (5c) and (5a), respectively, for noisy
problems are set as described in Sect. 5.3 for ε2 = ‖e‖2. For noiseless problems τ is
set to arbitrarily small values given in Table 6.

5.5 Comparison

In this section we present computational results obtained for the Sparco collection
problems discussed in the Benchmarks section. Both noisy and noiseless measure-
ments are considered. Noise is added to measurements using (42) by fixing the
SNR = 60 dB. A comparison among the previously mentioned solvers is made in
terms of the quality of reconstruction and computational effort. The results of experi-
ments are shown in Table 5. The first column in Table 5 shows the IDs of the Sparco
problems. For each ID the first and second sub-rows give results for noisy and noiseless
measurements, respectively. The second column reports the �1-norm of the projected
reconstructed representation for matrix-free IPM. The third column shows the relative
error r.e, see Table 3, of the projected reconstructed representation that was achieved
by matrix-free IPM. The forth column shows the �2-norm of the residual, denoted by
res in Table 3, for matrix-free IPM. The rest of the table shows the number of matrix–
vector products, nMat, that were needed by each solver to reconstruct a solution of
similar quality to the one of matrix-free IPM. In cases when number of matrix–vector
products required by a solver exceeded 40,000, the solver was terminated with a failure
status. To be precise, it is a failure to converge to a solution similar to the one obtained
by matrix-free IPM. Problems for which the matrix-free IPM converged with the low-
est number of matrix–vector products among all solvers compared are denoted in bold.
In Table 6 are shown the regularization parameters τ for noiseless signals that were
used for BPDN for solvers matrix-free IPM, FPC_AS, �1_�s and PDCO. Finally, for
noiseless signals the version SPGL1_bp of SPGL1 solver is called.

One can observe in Table 5 that the matrix-free IPM was the fastest solver in 11
out of 36 noisy and noiseless problems, while it was the second fastest for another 14
problems, denoted by italic font. It is important to be mentioned that the performance
of the compared solvers crucially depends on the condition number of matrices build
of subsets of columns of matrix A with cardinality κ , less than m, i.e. full-rank sub-
matrices of A. Unfortunately, it is a computationally demanding task to check the
condition number of every full-rank sub-matrix for the problems shown in Table 4.
Nevertheless, by experimenting with a few sub-matrices one can get a picture of how
well-conditioned sub-matrices of A might be.

Based on the previous criterion we observed that on problems that the matrix-
free IPM was first or second, matrix A had relatively ill-conditioned sub-matrices, at
least for the ones that we experimented with. The previous implies that the proposed
preconditioner was not as efficient as predicted in Sect. 4. However, the ill-conditioning
also adversely affected the performance of SPGL1 and FPC_AS, as shown in Table 5.
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Table 5 Results for noisy and noiseless Sparco problems

ID ‖x‖1 r.e res nMat

mfIPM �1_�s PDCO FPC_AS SPGL1

2 4.5e+02 5.3e−04 8.2e−02 61 726 6,611 9 40,000

4.5e+02 1.0e−11 8.4e−10 65 644 40,011 40,002 21

3 2.2e+02 9.9e−04 1.3e−01 195 446 5,115 119 70

2.2e+02 1.8e−08 1.8e−06 387 1,540 40,005 192 146

5 1.8e+02 3.0e−03 2.3e−01 1,367 5,042 28,369 630 510

1.8e+02 2.4e−05 1.8e−03 6,239 20,758 41,479 636 40,000

6 1.7e+03 2.2e−02 1.7e+01 2,507 2,838 42,125 720 40,000

1.7e+03 4.6e−02 3.6e+01 7,193 40,011 18,685 573 40,000

7 2.0e+01 5.4e−04 2.3e−03 165 452 955 78 63

2.0e+01 5.6e−07 1.1e−06 259 952 709 78 87

9 4.1e+01 1.0e−03 1.7e−01 377 574 579 446 8,855

4.1e+01 5.2e−12 1.6e−10 661 3,860 7,113 40,002 40,000

10 9.0e+02 9.3e−02 3.3e+00 2,431 11,421 1,043 40,001 40,000

9.8e+02 1.0e−09 8.9e−08 4,519 8,192 42,647 40,001 40,000

11 2.4e+01 1.4e−03 1.3e−01 767 2,186 3,291 217 143

2.4e+01 6.8e−05 5.2e−03 1,241 4,542 4,299 219 189

401 1.0e+03 8.9e−02 1.2e−01 2,747 42,622 61,327 40,076 882

1.0e+03 7.7e−02 9.7e−02 3,193 43,512 48,511 40,076 814

402 1.0e+03 1.0e−01 1.9e−01 4,393 46,458 44,169 40,078 517

1.0e+03 8.1e−02 2.0e−01 4,991 49,122 43,845 40,078 617

403 7.6e+03 1.2e−02 7.1e−01 2,841 6,136 40,495 2,305 699

7.7e+03 4.1e−03 9.2e−02 6,031 43,278 69,913 40,046 932

601 3.3e+02 6.1e−02 5.7e+01 1,179 14,684 40,153 40,080 40,000

4.0e+02 3.9e−02 4.8e+00 4,409 9,664 43,369 40,076 1,116

602 5.9e+02 1.0e−01 4.8e+01 1,199 17,097 40,631 40,023 898

6.4e+02 1.1e−01 3.2e+00 4,669 22,392 42,139 40,043 40,000

603 2.6e+02 4.1e−03 4.2e−02 1,777 40,693 50,369 40,002 443

2.5e+02 4.6e−02 5.9e−01 3,545 2,350 40,181 338 95

701 9.1e+03 4.6e−02 1.5e−01 1,217 33,160 91,147 40,044 1,658

1.0e+04 2.4e−07 4.1e−03 1,907 4,722 49,093 40,001 40,000

702 3.4e+02 4.8e−03 3.4e−03 711 1,600 5,525 40,001 40,000

3.4e+02 6.4e−08 2.4e−03 1,913 3,030 49,009 40,037 12,388

902 1.7e+00 5.3e−04 5.2e−04 143 498 237 40 49

1.7e+00 2.0e−06 9.6e−07 239 675 279 42 59

903 1.3e+01 2.4e−03 1.4e−01 3,105 8,466 4,775 8,237 6,735

1.3e+01 3.5e−06 1.9e−04 4,163 25,128 30,979 33,529 40,000

Bold indicates the winner, italics indicates the second best
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Table 6 Regularization
parameters τ for problem BPDN
and noiseless measurements b̂
for the experiments reported in
Table 5

τ Problems

1.0e−10 2, 9, 10, 701, 702

1.0e−08 401, 402, 603

1.0e−07 3, 7, 902

1.0e−05 903

1.0e−04 5, 403, 601, 602

1.0e−03 6

1.0e−02 11

On the contrary, on problems that matrix A seemed to have well-conditioned sub-
matrices, the preconditioner was very efficient, which resulted in a very fast matrix-
free IPM. However, SPGL1 and FPC_AS were faster. For example, see problems with
IDs 2, 3, 7 and 902.

5.6 Robustness to noise

In this subsection we compare the matrix-free IPM with SPGL1, FPC_AS CG, �1_�s ,
in terms of their reconstruction capabilities for different levels of noise. The results
collected in Table 5 and analysed in Sect. 5.5 reveal that PDCO and �1_�s demonstrate
comparable efficiency but the latter is usually faster. Therefore, solver PDCO will not
be used in our further experiment.

For this experiment, the level of noise is varied from SNR = 10 dB to SNR = 120
dB with a step of 10 dB. The quality of reconstruction for all solvers is measured using
the amplitude criterion [38]

amp(xW ) =
√

1
n ‖xW − x̂‖2

2
√

1
m ‖e‖2

2

.

The main purpose of using the amp criterion, instead of r.e, is that the former amplifies
the r.e, the nominator of amp, as ‖e‖2 → 0. Hence, less accurate representations will
be emphasized.

As in Sect. 5.5 when the optimal representation x̂ of BP is unknown it is calculated
approximately using solver SPGL1_bp with required high accuracy (41). In order to
have a fair comparison it is necessary to know at least approximately the parameter τ
which makes problems BPε2 and BPDN equivalent and moreover, the optimal sparse
representation of BPε2 for ε2 = ‖e‖2. The former issues are solved as described in
Sect. 5.3.

To compare the solvers the following criterion is defined

rampd(xW ) = max(amp(x∗
W )− amp(xs

W ), 0)

amp(xs
W )

, (43)

where rampd stands for relative amplitude difference, x∗
W is the reconstructed pro-

jected representation by solvers matrix-free IPM, FPC_AS CG, �1_�s , and xs
W is the
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Table 7 Average quality reconstruction results over SNR from 10–120 dB for solvers matrix-free IPM,
FPC_AS and �1_�s on Sparco problems in Table 4

ID Avg. rampd for SNR from 10–120 dB Avg. rampd for SNR from 10–60 dB

mfIPM FPC_AS �1_�s mfIPM FPC_AS �1_�s

2 6.1e−09 2.5e−10 0.0e+00 2.8e−13 2.6e−13 0.0e+00

3 1.3e−04 8.7e−05 0.0e+00 4.0e−09 6.4e−14 0.0e+00

5 5.1e−06 5.0e−07 1.7e−01 7.1e−11 9.8e−07 0.0e+00

6 1.2e−07 2.4e−10 1.1e+00 2.5e−07 4.8e−10 0.0e+00

7 1.5e−02 5.7e−08 0.0e+00 4.3e−06 3.5e−15 0.0e+00

9 1.1e−08 1.1e−01 4.9e−06 2.1e−08 2.1e−01 1.0e−08

10 7.3e−04 1.6e−01 0.0e+00 1.5e−03 2.5e−01 0.0e+00

11 4.2e−05 1.8e−05 0.0e+00 1.4e−10 3.7e−12 0.0e+00

401 8.6e+00 1.2e+01 8.5e+00 1.8e−01 1.9e−01 1.7e−01

402 8.0e+00 2.2e+01 8.0e+00 2.0e−01 1.9e+01 2.1e−01

403 1.9e+00 3.8e+00 1.2e+00 8.1e−03 6.4e−12 1.4e−02

601 3.8e+05 4.0e+03 1.5e+01 4.8e−11 8.1e+03 1.9e−01

602 1.6e+00 2.9e+03 7.4e+00 1.1e−10 5.7e+03 1.3e−01

603 8.1e−01 6.7e+00 7.7e−01 2.2e−08 3.7e−01 1.8e−03

701 6.4e−08 1.9e+00 3.2e−03 0.0e+00 3.8e+00 6.4e−03

702 7.9e−02 2.5e+01 6.2e−03 0.0e+00 5.1e+01 1.3e−03

902 9.1e−02 9.7e−09 0.0e+00 2.1e−07 1.3e−08 0.0e+00

903 1.5e−04 3.8e+00 1.5e−04 1.0e−11 7.5e+00 0.0e+00

reconstructed projected representation of solver SPGL1_bpdn. Notice that if rampd
equals zero, then the representation x∗

W is of better quality than xs
W , otherwise the

inverse is true.
In Table 7 is shown the average value of rampd over all SNR for each solver.

The first column of Table 7 reports the ID of every Sparco problem. From the sec-
ond to the forth column the average rampd over all SNR for each solver is shown.
The last three columns report the average rampd for SNRs from 10 to 60 dB for
each solver. Notice in Table 7 that matrix-free IPM for problems with IDs 2–11 and
701–903 was consistently recovering a high quality solution. For problems with IDs
401–603 for SNR > 60 dB all BPDN solvers, matrix-free IPM, FPC_AS CG and
�1_�s , were unable to reconstruct an adequate representation and this is in contrast
to SPGL1. A similar observation has been reported in [4]. In this work the authors
mentioned that this issue of BPDN solvers might be due to very small regularisation
parameter τ , obtained from SPGL1 solver as the energy of noise is decreased. In this
case, the regularization effect of the �1-norm starts to be negligible and the solvers
face considerable numerical difficulties. However, in our experiments we observed
for these problems that not always the τ parameter was small and additionally, there
were other problems were τ was even smaller but successful reconstruction was pos-
sible. Therefore, we conclude that this failure of BPDN solvers might be problem
dependent.
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5.7 Preconditioned conjugate gradient method against direct linear solver

In this subsection we replace PCG in steps 8 and 10 of matrix-free IPM with a direct
linear solver. It has been mentioned in Sect. 1 that direct linear solvers are efficient
when the system to be solved is sufficiently sparse. However, for CS the systems (19)
to be solved are completely dense due to density of matrix A. For this reason, large
scale problems are not storable in a moderate computer with 8 GB of random access
memory. Even worse, matrix A might be an algorithmic operator, i.e. DCT, therefore,
direct solvers cannot be employed. Hence, direct linear solvers for CS inside an IPM are
only applicable when the measurement matrix A is explicitly available, i.e. Gaussian
matrix, and only for small scale problems, i.e. n = 212 or smaller. In addition to the
former disadvantages of a direct solver for CS problems, its computational complexity
for systems (19) will be of order O(n3). This is a well known result, for completely
dense linear systems. Therefore, it is expected that for very small instances the two
approaches might require similar CPU time to converge, while as dimensions grow
the CPU time of the IPM version with the direct linear solver will increase rapidly.
Indeed, this is confirmed by Fig. 3a.

Despite the higher computational effort required by direct solvers for CS problems,
such an approach will produce exact Newton directions, hence, one would expect that
IPM iterations will be the minimum possible. Surprisingly, in Fig. 3b we show, that
matrix-free IPM with PCG requires as few iterations as its IPM version with a direct
linear solver. Indeed, recent analysis of [26] indicates that allowing the use of inexact
Newton directions in an IPM does not adversely affect the worst-case complexity
result of this method.

In the experiments reported in Fig. 3a, b matrix A is Gaussian, the sparsity pattern
of the optimal representation x̂ is chosen at random, while the nonzero components
follow a standard normal distribution. The noiseless measurements are produced by
b̂ = Ax̂ . The size of problem n, is varied from 25 to 212 with a step of times 2, the
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Fig. 3 Scaling of CPU time and number of iterations as the size of problem n grows for matrix-free IPM
and an IPM in which the PCG is replaced with a direct solver
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measurements m are varied from 23 to 210 with a step of times 2 and the sparsity level
k is set to �m/20�. Finally, the τ parameter in BPDN problem (5a) is set to τ =1.0e−3.
To solve the linear systems we use the mldivide function of MATLAB, which in
case of symmetric real matrices with positive diagonal, i.e. (19), performs Cholesky
factorisation. For details of the mldivide function we refer the reader to http://www.
mathworks.co.uk/help/matlab/math/systems-of-linear-equations.html.

5.8 Average phase transition

Recently, it has been shown in [18] that for any problem instance (A, b), where A is
Gaussian, there is a maximum ratio ν̄ρ = k/m given ρ = m/n that below of it the
problems (3) or (5a) guarantee on average reconstruction of the optimal sparse repre-
sentation. The previous has been introduced as the notion of average phase transition
for Gaussian matrices. Moreover, it has been shown empirically that other measure-
ment matrices such as partial Fourier, partial Hadamard, Bernoulli etc, have the same
average phase transition properties. Ideally, an efficient �1-regularization solver should
have empirical average phase transition at the same level ν̄ρ .

In this section we show that the empirical phase transition properties of matrix-
free IPM fit the average Gaussian phase transition properties by reproducing a similar
experiment as that in Section 2 of [18]. Let us now explain the experiment. The
parameter n is fixed to n = 1,000. The measurements m are varied from m = 100
to m = 900 with a step of 100. For each of the nine measurements m the sparsity of
the optimal representation is varied from k = 1 to k = m with a step of one and for
each k, 100 trials are conducted. The sensing matrix A is chosen by taking randomly
m rows from an n × n normalized discrete cosine transform matrix. Each nonzero
coefficient of the sparse representation is set to ±1 with equal probability, while the
sparsity pattern is chosen at random. All the generated problems are solved using
the matrix-free IPM solver, the reconstruction is considered successful when r.e ≤
1.0e−5. For each ratio νρ we compute the success ratio p(νρ) = S/100, where S is the
number of trials for which the r.e ≤ 1.0e−5. It has been demonstrated empirically in
[18] that for any problem instance (A, b), where A is a partial DCT matrix a solver with
average phase transition properties has max{νρ | p(νρ) ≥ 0.5} ≈ ν̄ρ . The previous
means that the empirical average phase transition for 50 % success rate overlaps with
the theoretical average phase transition for Gaussian matrices. In Fig. 4, we plot the
empirical phase transition for 50 % success rate of matrix-free IPM and the theoretical
average phase transition. The two curves overlap.

6 Conclusions

We propose and implement a computationally inexpensive matrix-free primal–dual
interior point method, based on [25] and [23], for the �1- regularized problems arising
in the field of Compressed Sensing. At every iteration of the proposed primal–dual inte-
rior point method the direction is obtained by solving the linear system (19a) using the
conjugate gradient method. Unfortunately, the matrices Θ−1 + FFT in these systems
tend to be ill-conditioned as the algorithm converges, hence, the conjugate gradient
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Fig. 4 Empirical phase transition for matrix-free IPM. The solid curve denotes the theoretically optimal
phase transition. The dashed curve denotes the empirical phase transition for 50 % success rate of matrix-free
IPM

method might get slow. To remedy this ill-conditioning we propose a low-cost precon-
ditioner for the conjugate gradient method. The proposed preconditioning technique
exploits features of Compressed Sensing matrices as well as interior point methods.
Its efficiency is justified theoretically and confirmed in numerical experiments.

Computational experience presented in this paper shows that although the Com-
pressed Sensing research community seems to favor first-order methods, a specialized
(matrix-free) interior point method is very competitive and offers a viable alternative.

References

1. Ahmed, N., Rao, K.R.: Orthogonal transforms for digital signal processing. Springer, Berlin (1975)
2. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property

for random matrices. Constr. Approx. 28(3), 253–263 (2008)
3. Becker, S., Bobin, J., Candés, E.J.: Nesta: a fast and accurate first-order method for sparse recovery.

SIAM J. Imaging Sci. 4(1), 1–39 (2011)
4. Van Den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J.

Sci. Comput. 31(2), 890–912 (2008)
5. Van Den Berg, E., Friedlander, M.P., Hennenfent, G., Herrman, F.J., Saab, R., Yılmaz, Ö.: Sparco: a

testing framework for sparse reconstruction. ACM Trans. Math. Softw. 35(4), 1–16 (2009)
6. Blanchard, J.D., Cartis, C., Tanner, J.: Decay properties of restricted isometry constants. Comput.

Optim. Appl. 16(7), 572–575 (2009)
7. Blanchard, J.D., Cartis, C., Tanner, J.: Compressed sensing: how sharp is the restricted isometry

property? SIAM Rev. 53(1), 105–125 (2011)
8. Candés, E., Demanet, L., Donoho, D., Ying, L.: Curvelab. http://www.curvelet.org/software.html
9. Candés, E.J.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians

(2006)

123

http://www.curvelet.org/software.html


Matrix-free interior point method 31

10. Candés, E.J., Romberg, J.: Practical signal recovery from random projections. In: Proceedings of the
SPIE Conference on Wavelet Applications in Signal and Image Processing XI, 5914 (2004)

11. Candés, E.J., Romberg, J.: �1-magic. Technical Report, Caltech. http://users.ece.gatech.edu/justin/
l1magic/ (2007)

12. Candés, E.J., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl. 23(3),
969–985 (2007)

13. Candés, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measure-
ments. Comm. Pure Appl. Math. 59(8), 1207–1223 (2006)

14. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci.
Comput. 20(1), 33–61 (1998)

15. Coifman, R., Geshwind, F., Meyer, Y.: Noiselets. Appl. Comput. Harmon. Anal. 10(1), 27–44 (2001)
16. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf.

Theory 47(7), 2845–2862 (2001)
17. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–

455 (1994)
18. Donoho, D.L., Tanner, J.: Precise undersampling theorems. Proc. IEEE 98(6), 913–924 (2010)
19. Dossal, C., Mallat, S.: Sparse spike deconvolution with minimum scale. Proc. Signal Process. Adapt.

Sparse Struct. Represent. 81(3), 123–126 (1994)
20. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: applica-

tion to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597
(2007)

21. Foucart, S.: A note on guaranteed sparse recovery via 1-minimization. Appl. Comput. Harmon. Anal.
29(1), 97–103 (2010)

22. Frigo, M., Johnston, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231
(2005)

23. Gondzio, J.: Multiple centrality corrections in a primal–dual method for linear programming. Comput.
Optim. Appl. 6, 137–156 (1996)

24. Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218(3), 587–601 (2012)
25. Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl. 51(2), 457–480 (2012)
26. Gondzio, J.: Convergence analysis of an inexact feasible interior point method for convex quadratic

programming. SIAM J. Optim. 23(3), 1510–1527 (2013)
27. Hennenfent, G., Herrmann, F.J.: Random sampling: new insights into the reconstruction of coarsely-

sampled wavefields. In: SEG International Exposition and 77th Annual Meeting (2007)
28. Kelley, C.T.: Iterative methods for linear and nonlinear equations, volume 16 of Frontiers in Applied

Mathematics. SIAM, Philadelphia (1995)
29. Kim, S.-J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale

�1-regularized least squares. IEEE J. Sel. Top. Signal Process. 1(4), 606–617 (2007)
30. Kojima, M., Megiddo, N., Mizuno, S.: A primal-dual infeasible-interior-point algorithm for linear

programming. Math. Progr. 61, 263–280 (1993)
31. Lu, Z., Monteiro, R.D.S., O’Neal, J.W.: An iterative solver-based infeasible primal–dual path-following

algorithm for convex quadratic programming. SIAM J. Optim. 17, 287–310 (2006)
32. Miller, A.J.: Subset selection in regression. Chapmain & Hall/CRC, London (2002)
33. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)
34. Rockafellar, R.T.: Convex analysis, Princeton landmarks in mathematics and physics. Princeton Uni-

versity Press, USA (1970)
35. Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements.

Commun. Pure Appl. Math. 61(8), 1025–1045 (2008)
36. Saunders, M., Kim, B.: PDCO: Primal-dual interior method for convex objectives. Technical Report,

Stanford University. http://www.stanford.edu/group/SOL/software/pdco.html (2002)
37. Takhar, D., Laska, J.N., Wakin, M., Duarte, M., Baron, D., Sarvotham, S., Kelly, K. K., Baraniuk, R.G.:

A new camera architecture based on optical-domain compression. In: Proceedings of the IS&T/SPIE
Symposium on Electronic Imaging: Computational, Imaging, 6065 (2006)

38. Thomson, A.: Compressive single-pixel imaging. In: Proceedings of the 2nd IMA Conference on
Mathematics in Defence, Defence Academy, Shrivenham, UK (2011)

39. Wen, Z., Yin, W., Goldfarb, D., Zhang, Y.: A fast algorithm for sparse reconstruction based on
shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput. 32(4), 1809–1831 (2010)

40. Wright, S.J.: Primal–dual interior-point methods. SIAM, Philadelphia (1997)

123

http://users.ece.gatech.edu/justin/l1magic/
http://users.ece.gatech.edu/justin/l1magic/
http://www.stanford.edu/group/SOL/software/pdco.html

	Matrix-free interior point method for compressed sensing problems
	Abstract
	1 Introduction
	2 Properties of compressed sensing matrices
	3 Primal--Dual problems in matrix-free IPM
	4 Preconditioned conjugate gradient method
	5 Computational experience
	5.1 Single centrality corrector primal--dual matrix-free IPM
	5.2 Benchmarks
	5.3 Equivalence of BPε2 and BPDN
	5.4 Termination criteria and parameter tuning
	5.5 Comparison
	5.6 Robustness to noise
	5.7 Preconditioned conjugate gradient method against direct linear solver
	5.8 Average phase transition

	6 Conclusions
	References


