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Abstract We present an exact rational solver for mixed-integer linear programming
that avoids the numerical inaccuracies inherent in the floating-point computations
used by existing software. This allows the solver to be used for establishing theo-
retical results and in applications where correct solutions are critical due to legal
and financial consequences. Our solver is a hybrid symbolic/numeric implementa-
tion of LP-based branch-and-bound, using numerically-safe methods for all binding
computations in the search tree. Computing provably accurate solutions by dynam-
ically choosing the fastest of several safe dual bounding methods depending on the
structure of the instance, our exact solver is only moderately slower than an inexact
floating-point branch-and-bound solver. The software is incorporated into the SCIP
optimization framework, using the exact LP solver QSopt_ex and the GMP arithmetic
library. Computational results are presented for a suite of test instances taken from
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the Miplib and Mittelmann libraries and for a new collection of numerically difficult
instances.

Keywords Mixed integer programming · Branch-and-bound · Exact computation
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1 Introduction

Mixed-integer programming (MIP) is a powerful and flexible tool for modeling and
solving decision problems. Software based on these ideas is utilized in many applica-
tion areas. Despite their widespread use, few available software packages provide any
guarantee of correct answers or certification of results. Possible inaccuracy is caused
by the use of floating-point (FP) numbers [25]. FP-calculations necessitate the use of
built-in tolerances for testing feasibility and optimality, and can lead to calculation
errors in the solution of linear-programming (LP) relaxations, in the methods used
for creating cutting planes to improve these relaxations and in pre-solving routines
applied to strengthen models.

Due to a number of reasons, for many industrial MIP applications near optimal
solutions are sufficient. Cplex [26], for example, terminates if the relative gap between
upper and lower bound is less then 0.001 (relative MIP optimality tolerance). Moreover,
when data describing a problem arises from imprecise sources, exact feasibility is
usually not necessary. Nonetheless, accuracy is important in many settings. Direct
examples arise in the use of MIP models to establish fundamental theoretical results and
in subroutines for the construction of provably accurate cutting planes. Furthermore,
industrial customers of MIP software request modules for exact solutions in critical
applications. Such settings include the following.

– Chip design verification in the VLSI design process [2].
– Compiler optimization, including instruction scheduling [45].
– Combinatorial auctions [19], where serious legal and financial consequences can

result from incorrect solutions.

Chip design verification and compiler optimization are applications where demonstrat-
ing that a particular MIP instance has no feasible solutions is equivalent to verifying the
correctness of a proposed point. For pure feasibility problems such as these, accurate
answers are extremely important.

The article describing the latest version of the mixed-integer programming library,
Miplib 2010, discusses the limitations of finite-precision arithmetic in the context
of mixed-integer programming [29]. Problem instances were collected from a wide
range of applications and a number of the instances were classified as numerically
unstable. We now report some computational behavior observed on these instances
after they were passed to different solvers using a variety of parameter settings. When
called to solve the instance transportmoment, under default parameter settings,
SCIP 2.1 [2,3,46] (using the SoPlex 1.6 [47] LP solver) reports to have found an
optimal solution, while Cplex 12.3 claims that the instance is infeasible or unbounded.
However, if presolving and cutting planes are disabled, SCIP claims the problem to be
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unbounded, (but warns of an error in the proof of unboundedness), and Cplex reports
finite primal and dual bounds. Another example from Miplib 2010 is the instance
ns2122603 which at the printing of the paper [29] was incorrectly thought to be
infeasible, the answer returned by Cplex 12.2 (and 12.3); after disabling presolving
in Cplex, a feasible solution can quickly be identified.

Other examples of numerically difficult MIPs occur in the chip design verification
instances collected by Tobias Achterberg [2]. There are a total of 98 instances, which
are publicly available for download [1]. These instances model property checking
on simple arithmetic logical units (ALU). Proving infeasibility of an alu instance
certifies the correctness of the unit, whereas a feasible solution gives a counter example
to the correctness of the design. Although the instances are pure IPs defined by integral
data, incorrect conclusions are reached on some of them. For example, the instance
alu10_7, when calling SCIP 2.1 or Cplex 12.3 with default settings or with cutting
planes and presolving disabled, we get the three different solution values 83, 84, 91.
However, none of these values are correct as, by construction, the instance is known
to be infeasible. The solutions returned by the solvers only violate the constraints by a
small amount and satisfy the relative tolerance thresholds used to measure feasibility,
so they are accepted as valid solutions and returned to the user. Further numerically
difficult instances are presented in Sect. 6.

Software libraries such as the GNU Multiple Precision Arithmetic Library (GMP)
[24] offer routines for infinite-precision rational arithmetic; in contrast to the com-
monly used finite-precision arithmetic systems, GMP dynamically allocates as much
memory as is necessary to exactly represent numbers and is limited only by the avail-
able system memory. We use the terms symbolic or exact when referring to this type of
exact computation over the rational numbers; we use the terms numeric or approximate
when referring to the use of inexact finite-precision and floating-point computation.
One straightforward strategy to solve MIPs exactly would be to implement the standard
solution procedures entirely in exact arithmetic. Unfortunately, it has been observed
that optimization software relying exclusively on exact arithmetic can be prohibitively
slow [8]. This motivates the development of more sophisticated algorithms to compute
exact solutions. Significant progress has been made recently toward computationally
solving LP models exactly over the rational numbers using hybrid symbolic/numeric
methods [8,20,22,27,30], including the release of the software QSopt_ex [7]. Exact
MIP has seen less computational progress, but significant first steps have been taken.
An article by Neumaier and Shcherbina [35] describes methods for safe MIP com-
putation, including strategies for generating safe LP bounds, infeasibility certificates,
and cutting planes. Their methods include directed rounding and interval arithmetic
with FP-numbers to avoid incorrect results.

This article introduces a hybrid branch-and-bound approach for solving MIPs
exactly over the rational numbers. It can be extended to a branch-and-cut algorithm
with primal heuristics and presolving; but the focus of this article is on the development
of the basic branch-and-bound approach. Section 2 describes how exact rational and
safe-FP computation can be coupled together, providing a fast and general framework
for exact computation. Section 3 discusses several methods for computing valid LP
bounds, a critical component of the hybrid approach. It describes an exact branch-
and-bound implementation within SCIP and includes detailed computational results
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on a range of test libraries comparing different dual bounding strategies. In Sect. 4, the
implementation is further improved by incorporating sophisticated branching rules.
The resulting exact solver is compared against a floating-point solver restricted to pure
branch-and-bound and observed to be only moderately slower. In Sect. 5, it is used
to test the accuracy of current floating-point MIP solvers and in Sect. 6 it is applied
to a test set of numerically difficult instances. As our focus has been exclusively on
the branch-and-bound procedure, the exact solver is still not directly competitive with
the full version of SCIP. However, it is realistic to think that the future inclusion of
additional MIP machinery such as cutting planes, presolving, and primal heuristics
into this exact framework could lead to a full featured exact MIP solver that is not
prohibitively slower than its inexact counterparts.

2 Hybrid rational/safe floating-point approach

Two ideas for exact MIP proposed in the literature, and tested to some extent, are the
pure rational approach [8] and the safe-FP approach [17,35]. Both utilize LP-based
branch-and-bound. The difference lies in how they ensure the computed results are
correct.

In the pure rational approach, correctness is achieved by storing the input data as
rational numbers, by performing all arithmetic operations over the rational numbers,
and by applying an exact LP solver [22] in the dual bounding step. This approach is
especially interesting because it can handle a broad class of problems: MIP instances
described by rational data. However, replacing all FP-operations by rational compu-
tation increases running times significantly. For example, while the exact LP solver
QSopt_ex avoids many unnecessary rational computations and is efficient on average,
Applegate et al. [8] observed a greater slowdown when testing an exact MIP solver
that relied on rational arithmetic and called QSopt_ex for each node LP computation
(see also Sect. 3.1).

In order to limit the degradation in running time, the idea of the safe-FP approach is
to continue to use FP-numbers as much as possible, particularly within the LP solver.
However, extra work is necessary to ensure correct decisions in the branch-and-bound
algorithm. Correctness of certain computations can be ensured by controlling the
rounding mode for FP-operations. Valid dual bounds can often be obtained by post-
processing approximate LP solutions; this type of safe dual bounding technique has
been successfully implemented in Concorde [6] for the traveling salesman problem.
A generalization of the method for MIPs is described in [35]. Furthermore, the idea
of manipulating the rounding mode can be applied to cutting-plane separation. In
[17], this idea was used to generate numerically safe Gomory mixed-integer cuts.
Nevertheless, whether the safe-FP approach leads to acceptable running times for
general MIPs has not been investigated. Although the safe-FP version of branch-and-
bound has great advantages in speed over the pure rational approach, it has several
disadvantages. Everything, including input data and primal solutions, is stored as FP-
numbers. Therefore, correct results can only be ensured for MIP instances that are given
by FP-representable data and that have a FP-representable optimal solution if they are
feasible. Some rationally defined problems can be scaled to have FP-representable
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data. However, this is not always possible due to the limited representation of floating-
point numbers, and the resulting large coefficients can lead to numerical difficulties.
The applicability is even further limited as the safe dual bounding method discussed
in [35] requires, in general, lower and upper bounds on all variables. Weakness in the
safely generated bound values may also increase the number of nodes processed by
the branch-and-bound solver. Additionally, due to numerical difficulties, some branch-
and-bound nodes may only be processable by an exact LP solver.

To summarize, the pure rational approach is always applicable but introduces a
large overhead in running time while the safe-FP approach is more efficient but of
limited applicability.

Since we want to solve MIPs that are given by rational data efficiently and exactly we
have developed a version of branch-and-bound that attempts to combine the advantages
of the pure rational and safe-FP approaches, and to compensate for their individual
weaknesses. The idea is to work with two branch-and-bound procedures. The main
procedure implements the rational approach. Its result is surely correct and will be
issued to the user. The other one serves as a slave procedure, where the faster safe-
FP approach is applied. To achieve reasonable running time, whenever possible the
expensive rational computation of the main procedure will be skipped and certain
decisions from the faster safe-FP procedure will be substituted. In particular, safe dual
bound computations in the slave procedure can often replace exact LP solves in the
main procedure. The rational procedure provides the exact problem data, allows for
the storage of exact primal solutions, and makes exact LP solves possible whenever
needed.

The complete procedure is given in Algorithm 1. The set of FP-representable num-
bers is denoted by M; lower and upper approximations of x ∈ Q are denoted x ∈ M

and x ∈ M, respectively. We now explain the details of the algorithm.
The slave procedure, which utilizes the safe-FP approach, works on a MIP instance

with FP-representable data. It is set up in Step 1 of the algorithm. If the input data are
already FP-representable, both procedures solve the same MIP instance, i.e., ˜P := P
and c̃ := c in Step 1. Otherwise, an approximation of the MIP with P ≈ ˜P , c ≈ c̃
or a relaxation with P ⊆ ˜P , c = c̃ is constructed; called FP-approximation and
FP-relaxation, respectively. The choice depends on the dual bounding method applied
in the slave procedure (see Sect. 3).

On the implementation side, we maintain only a single branch-and-bound tree. At
the root node of this common tree, we store the LP relaxations of both procedures:
max{cT x : x ∈ L P} with L P := {x ∈ R

n : Ax ≤ b} and max{̃cT x : x ∈ ˜L P}
with ˜L P := {x ∈ R

n : ˜Ax ≤ ˜b}. In addition, for each node, we know the branching
constraint that was added to create the subproblem in both procedures. Branching on
variables, performed in Step 8, introduces the same bounds for both procedures.

The use of primal and dual bounds to discard subproblems (see Steps 5, 6, and 7) is a
central component of the branch-and-bound algorithm. In particular, in the exact MIP
setting, the efficiency highly depends on the strength of the dual bounds and the time
spent generating them (Step 5). The starting point of this step is an approximate solution
of the LP relaxation of the MIP. It is obtained in the slave procedure by an LP solver
that works on FP-numbers and allows rounding errors; referred to as inexact LP solver.
Depending on the result, we check whether the exact LP relaxation is also infeasible
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Algorithm 1 Hybrid branch-and-bound for exact rational MIP

Input: (MIP) max{cT x : x ∈ P} with P :={x ∈ R
n : Ax ≤b, xi ∈Z for all i ∈ I }, A∈Q

m×n , b ∈ Q
m ,

c∈Q
n , and I ⊆ {1, . . . , n}.

Output: Exact optimal solution x� of MIP with objective value c� or conclusion that MIP is
infeasible (c� = −∞).

1. FP-problem Store (FP-MIP) max{̃cT x : x ∈ ˜P} with ˜P := {x ∈ R
n : ˜Ax ≤ ˜b,

xi ∈ Z for all i ∈ I }, ˜A ∈ M
m×n , ˜b ∈ M

m , and c̃ ∈ M
n .

2. Init Set L := {(P, ˜P)}, L := −∞, xMIP to be empty, and cMIP := −∞.
3. Abort If L = ∅, stop and return xMIP and cMIP.
4. Node selection Choose (Pj , ˜Pj ) ∈ L and set L := L\{(Pj , ˜Pj )}.
5. Dual bound Solve LP relaxation max{̃cT x : x ∈ ˜L P j } approximately.

(a) If ˜L P j is claimed to be empty, safely check if L Pj is empty.
i. If L Pj is empty, set c� := −∞.

ii. If L Pj is not empty, solve LP relaxation max{cT x : x ∈ L Pj } exactly.
Let x� be an exact optimal LP solution and c� its objective value.

(b) If ˜L P j is claimed not to be empty, let x� be approximate optimal LP solution and compute a safe

dual bound c� with max{cT x : x ∈ L Pj } ≤ c�.

6. Bounding If c� ≤ L , goto Step 3.
7. Primal bound

(a) If x� is approximate LP solution and claimed to be feasible for FP-MIP, solve LP relaxation
max{cT x : x ∈ L Pj } exactly. If L Pj is in fact empty, goto Step 3. Otherwise, let x� be an exact
optimal LP solution and c� its objective value.

(b) If x� is exact LP solution and truly feasible for MIP:
i. If c� > cMIP, set xMIP := x�, cMIP := c�, and L := c�.

ii. Goto Step 3.
8. Branching Choose index i ∈ I with x�

i /∈ Z.
(a) Split Pj in Q1 := Pj ∩ {x : xi ≤ 	x�

i 
}, Q2 := Pj ∩ {x : xi ≥ �x�
i }.

(b) Split ˜Pj in ˜Q1 := ˜Pj ∩ {x : xi ≤ 	x�
i 
}, ˜Q2 := ˜Pj ∩ {x : xi ≥ �x�

i } .
Set L := L ∪ {(Q1, ˜Q1), (Q2, ˜Q2)} and goto Step 3.

or we compute a safe dual bound by post-processing the approximate LP solution.
Different techniques are discussed in Sect. 3 and are computationally evaluated in
Sect. 3.6.

Dual and primal bounds are stored as FP-numbers and the bounding in Step 6
is performed without tolerances; a computed bound that is not FP-representable is
relaxed in order to be safe. For the primal (lower) bound L , this means L < cMIP if the
objective value cMIP of the incumbent solution xMIP is not in M.

Algorithm 1 identifies primal solutions by checking LP solutions for integrality.
This check, performed in Step 7, depends on whether the LP was already solved
exactly at the current node. If so, we test, without tolerances, the integrality of the
rational LP solution. Otherwise, we decide if it is worth solving the LP exactly. We
deem it worthy if the approximate LP solution is nearly integral. In this case, we solve
the LP exactly, using the corresponding basis to warm start the LP solver (hopefully
with few pivots and no need to increase the precision) and perform the exact integrality
test on the rational LP solution. In order to correctly report the optimal solution found
at the end of Step 3, the incumbent solution (that is, the best feasible MIP solution
found thus far) and its objective value are stored as rational numbers.
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3 Safe dual bound generation

This section describes several methods for computing valid LP dual bounds in Step 5
of Algorithm 1. The overall speed of the MIP solver will be influenced by several
aspects of the dual bounding strategy; how generally applicable the method is, how
quickly the bounds can be computed and how strong the bounds are.

3.1 Exact LP solutions

The most straightforward way to compute valid LP bounds is to solve each node
LP relaxation exactly. This strategy is always applicable and produces the tightest
possible bound. The fastest exact rational LP solver currently available is QSopt_ex
[7]. The strategy used by this solver can be summarized as follows: the basis returned
by a double-precision LP solver is tested for optimality/feasibility by symbolically
computing the corresponding basic solution, if it is suboptimal or infeasible then
additional simplex pivots are performed with an increased level of precision and this
process is repeated until the optimal basis is identified. When possible, the extended
precision pivots are warm started with the previously identified LP basis. This method
is considerably faster than using rational arithmetic exclusively; it was observed to be
only two to five times slower than inexact LP solvers on average over a large test set [8].

In most cases, the double-precision LP run already produced an optimal basis, so the
overhead mainly came from computing and verifying the exact rational basic solution.
For some instances, this dominates the overall solution time. The costs associated with
solving each basis systems exactly may be especially noticeable in the MIP setting.
Within a branch-and-bound framework the dual simplex algorithm can be warm started
with the final basis computed at the parent node, usually resulting in a small number
of dual simplex pivots.

If the basis determined by the double-precision subroutines of QSopt_ex is not
optimal, the additional increased precision simplex pivots and additional exact basic
solution computations significantly increase the solution time. It is important to note
that the solution time of the exact LP solver is influenced not only by the dimension,
density, structure, etc., of the LP, but also by the number of bits required to encode
the data and solution.

3.2 Basis verification

This strategy avoids the extended precision simplex pivoting that can occur when
solving each node LP exactly, but sometimes results in more nodes being processed.

Any exactly feasible dual solution provides a valid dual bound, even if it is not opti-
mal. Therefore, instead of solving each node LP exactly, valid dual bounds can be deter-
mined by symbolically computing only the dual solution from a numerically obtained
LP basis. If the obtained dual solution is feasible, its objective value gives a valid
bound. If it is infeasible, then instead of performing the extra steps required to iden-
tify the exact optimal solution, an infinite dual bound is returned. However, if a finite
bound was computed at the node’s parent, this bound can be inherited, strengthening
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an infinite dual bound from basis verification. Within the branch-and-bound algorithm,
infinite or weak dual bounds can lead to more branching, but due to the fixing of vari-
ables, branching often remediates numerical problems in the LP relaxations down in
the tree.

3.3 Primal-bound-shift

Valid bounds can also be produced by correcting approximate dual solutions to be
exactly feasible. A special case occurs when all primal variables have finite upper
and lower bounds. The following technique was employed by Applegate et al. in
the Concorde software package [6] and is described more generally for MIPs by
Neumaier and Shcherbina [35]. Consider a primal problem of the form max{cT x :
Ax ≤ b, 0 ≤ x ≤ u} with dual min{bT y + uT z : AT y + z ≥ c, y, z ≥ 0}.
The dual variables z, which correspond to the primal variable bounds, appear as non-
negative slack variables in the dual constraints; they can be used to correct any errors
existing in an approximate dual solution. Given an approximate dual solution (ỹ, z̃),
an exactly feasible dual solution (ŷ, ẑ) is constructed by setting ŷi := max{0, ỹi } and
ẑi := max{0, (c− AT ŷ)i }. This gives the valid dual bound bT ŷ+uT ẑ. This bound can
be computed using floating-point arithmetic with safe directed rounding to avoid the
symbolic computation of the dual feasible solution, but note that this requires the slave
procedure to work on an FP-relaxation of the original problem (Step 1 of Algorithm 1).

The simplicity of computing this bound means that it is an excellent choice when
applicable. However, if some primal variable bounds are large or missing it may
produce weak or infinite bounds, depending on the feasibility of (ỹ, z̃).

3.4 Project-and-shift

Correcting an approximate dual solution to be exactly feasible in the absence of
primal variable bounds is still possible. Consider a primal problem of the form
max{cT x : Ax ≤ b} with dual min{bT y : AT y = c, y ≥ 0}. An approximate
dual solution ỹ can be corrected to be feasible by projecting it into the affine hull of
the dual feasible region and then shifting it to satisfy all of the non-negativity con-
straints, while maintaining feasibility of the equality constraints. These operations
could involve significant computation if performed on a single LP. However, under
some assumptions explained below, the most time consuming computations need only
be performed once, at the root node of the branch-and-bound tree, and reused for each
node bound computation.

To efficiently reuse information through the tree we assume that AT has full row
rank, and that none of the dual variables are implied to be zero. In this case, an LU
factorization of a full rank subset of columns S of AT is computed, this can be reused
at every subsequent node of the branch-and-bound tree to compute projections. Also,
a point y∗ satisfying AT y = c, y ≥ 0 and yi > 0 ∀ i ∈ S is computed at the root
node, and will remain dual feasible at all nodes in the branch-and-bound tree. If the
root node dual problem is as above, the dual problem at any node can be represented as
min{b′T y + b′′T z : AT y + A′′T z = c, y, z ≥ 0} where b′T ≤ bT and the additional
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dual variables z correspond to newly introduced primal variable bounds or cutting
planes.

An approximately feasible node dual solution (ỹ, z̃) ≥ 0 can be corrected to be
exactly feasible by performing the following two steps. First, the violation of the
constraints is calculated exactly as r := c − AT ỹ − A′′T z̃ and a correction vector
w satisfying AT w = r is computed in exact arithmetic using the pre-computed LU
factorization; adding w to the approximate solution projects it to satisfy the equality
constraints of the problem exactly. This solution (ỹ + w, z̃) might violate the non-
negativity constraints, but can only have negative components in the set S. Second,
a convex combination of this projected point and y∗ is computed as (ŷ, ẑ) := (1 −
λ)(ỹ + w, z̃) + λ(y∗, 0), such that (ŷ, ẑ) ≥ 0. The resulting point (ŷ, ẑ) is then
exactly feasible since it is a convex combination of two points satisfying all of the
equality constraints and gives a valid dual bound b′T ŷ + b′′T ẑ.

Thus, the root node computations involve solving an auxiliary LP exactly to obtain
the point y∗ and symbolically LU factoring a matrix; the cost of each node bound
computation is dominated by performing a back-solve of a pre-computed symbolic
LU factorization, which is often faster than solving a node LP exactly. This method
is more generally applicable than the primal-bound-shift method, but relies on some
conditions that are met by most, but not all, of the problems in our test set. Namely,
it is assumed that AT has full row rank and that no dual variables are implied to be
zero. A detailed description and computational study of this algorithm can be found
in [43]. A related method is also described by Althaus and Dumitriu [5].

3.5 Combinations and beyond

The ideal dual bounding method is generally applicable, produces tight bounds, and
computes them quickly. Each of the four methods described so far represents some
trade-off between these conflicting characteristics. The exact LP method is always
applicable and produces the tightest possible bound, but is computationally expen-
sive. The primal-bound-shift method computes valid bounds very quickly, but relies
on problem structure that may not always be present. The basis verification and project-
and-shift methods provide compromises in between, with respect to speed and gener-
ality. The relative performance of these dual bounding methods highly depends on the
(sub)problem structure, which may change throughout the tree. Therefore, a strategy
that combines and switches between the bounding techniques is the best choice for an
exact MIP solver intended to efficiently solve a broad class of problems.

In Sect. 3.6, we will evaluate the performance of each dual bounding method pre-
sented here and analyze in what situations which technique works best. In a final step,
we then study different strategies to automatically decide how to compute safe dual
bounds for a given MIP instance. The central idea of the automatic selection strategy is
to apply fast primal-bound-shift as often as possible and if necessary employ another
method depending on the problem structure. In this connection, we will address the
question of whether this decision should be static or dynamic.

In the first version (“Auto”), Algorithm 1 decides on the method dynamically in
Step 5. At each node primal-bound-shift is applied, and in case it produces an infi-
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nite bound one of the other methods is applied. The drawbacks are that it allows for
unnecessary computations and that it requires an FP-relaxation for the slave procedure
in order to support primal-bound-shift. Alternatively, we can guess whether primal-
bound-shift will work (“Auto-Static”). Meaning the dual bounding method is selected
depending on the problem structure at the beginning of Algorithm 1, in Step 1, and
remains fixed throughout the tree. This allows us to work with FP-approximations
whenever we do not select primal-bound-shift. As we will see in the following sec-
tion, dynamically choosing the dual bounding method at each node achieves superior
performance.

After establishing that the dynamic choice of the bounding method is a good strat-
egy, we consider additional ideas, giving two different variants of the “Auto” set-
ting. First, in the “Auto” setting, safe dual bounds are computed at every branch-and-
bound node. We will analyze (“Auto-Limited”), whether it is better to compute them
only at those nodes where it is required, i.e., if the unsafe dual bound coming from the
approximate LP solution would lead to pruning (using tolerances for the comparison
with the primal bound). Pruning decisions are critical for the correctness of the final
result and have to be safely verified, whereas correct dual bounds are not required for
subproblems which will be further processed by branching.

Second, we experiment with interleaving our selection strategy “Auto” with exact
LP solves (“Auto-Ileaved”). A safe dual bound obtained by primal-bound-shift can
be weaker than the exact LP bound. Sometimes this difference slows down the solu-
tion process unnecessarily strong because the solver keeps branching in subtrees that
would have been cut off by the exact LP bound. To eliminate some of these cases,
we compute the exact LP bound whenever the safe bound from primal-bound-shift is
very close to cutting off the node, but not close enough. More precisely, if the bound
is within a tolerance smaller than or equal to the primal bound, but not without the
tolerance. The hope is that the exact LP bound is slightly stronger and then cuts off
the node. Computational results and additional discussion about these ideas are given
in Sect. 3.6.3.

3.6 Computational study

In this section, we investigate the performance of our exact MIP framework employ-
ing the different safe dual bounding techniques discussed above: primal-bound-shift
(“BoundShift”), project-and-shift (“ProjectShift”), basis verification (“VerifyBasis”),
and exact LP solutions (“ExactLP”). We will first look at each method at the root
node, to study their behavior when applied to a single LP, then examine them within
the branch-and-bound algorithm. At the end, we discuss and test strategies to auto-
matically switch between the most promising bounding techniques.

As explained in Sect. 3.3, we have to create an FP-relaxation of the original prob-
lem in Step 1 of Algorithm 1 when we want to apply primal-bound-shift, whereas
we can use an FP-approximation for the other bounding methods. The discussed
algorithms were implemented into the branch-and-bound algorithm provided by the
MIP framework SCIP 1.2.0.8 [2,3,46], using best bound search with plunging for
node selection and first fractional variable branching. All additional features of SCIP,
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like cutting planes, presolving, and primal heuristics, were disabled. For comparison,
we also consider the corresponding inexact version of SCIP, i.e., the pure branch-and-
bound algorithm with the same node selection strategy and branching rule as in the
exact setting (“Inexact”). To solve LPs approximately and exactly we call Cplex 12.2
[26] and QSopt_ex 2.5.5 [7], respectively. Rational computations are based on the
GMP library 4.3.1 [24]. In the following, we will refer to the above version numbers
of the software packages if not otherwise stated. All benchmark runs were conducted
on 2.5 GHz Intel Xeon E5420 CPUs with 4 cores and 16 GB RAM each. To maintain
accurate results only one computation was run at the same time. We imposed a time
limit of 24 h and a memory limit of 13 GB. The timings used to measure computation
times are always rounded up to one second if they are smaller. We used the same set-up
for the experiments in Sect. 4, 5, and 6.

Our test set contains all instances of the Miplib 3.0 [10] and Miplib 2003 [4]
libraries and from the Mittelmann collections [33] that can be solved within 2 h by
the inexact branch-and-bound version of SCIP (“Inexact”). This gives a test suite of
57 MIP instances (see Table 2), which we call easy test set. Note that we also analyzed
the performance on the remaining, harder, instances of the libraries. The conclusions
drawn here, on the smaller suite, were confirmed by these results. At the root node,
the individual dual bounding methods were applicable for a similar percentage of
instances and also computed bounds of good quality. The overall slowdown factor
of the exact solver (“Auto-Ileaved” versus “Inexact”) can be expected to be in the
same order as for the easy test set. We drew this conclusion by looking at the num-
ber of branch-and-bound nodes which both solvers had processed when they hit a
certain time limit (but had not solved the instance to optimality). On the easy test
set, as we will see later, the exact and the inexact solver require a similar number
of branch-and-bound nodes to solve an instance to optimality. This is because the
considered benchmarking libraries contain mainly instances that do not cause seri-
ous numerical difficulties, and therefore, we expect the number of nodes processed
within the time limit to be a good indicator of how much slower the exact code
will be.

The easy test set will also be used in Sects. 4 and 5 for studying different branching
rules and checking the accuracy of the inexact version of SCIP, respectively. In Sect. 6,
we will analyze our exact solver on numerically more difficult instances.

3.6.1 Root node performance

We start by evaluating the root node behavior of the dual bounding methods. Our
performance measures are: time overhead and bound quality. The performance profile,
see [21], in Fig. 1 visualizes the relative overhead times for the safe dual bounding
methods. For each of them, it plots the number of instances for which the safe dual
bounding step was performed within a given factor of the bounding time of the fastest
method. Table 1 presents the geometric mean of these additional safe dual bounding
times in seconds (“DB”) and states the number of instances for which a certain dual
bound quality was achieved.

This quality is given by the relative difference between the computed safe dual
bound c� and the exact LP value c�� := max{cT x : x ∈ L Pj }. However, we actually
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Fig. 1 Comparison of safe dual bounding times “DB” at root node on easy test set

Table 1 Safe dual bounding at root node on easy test set: relative difference to “ExactLP” dual bound and
additional computation time “DB” in geometric mean

Setting Zero S M L ∞ DB (s)

BoundShift 13 26 2 0 16 1.0

ProjectShift 19 31 5 0 2 2.8

VerifyBasis 57 0 0 0 0 1.3

ExactLP 57 – – – – 1.4

Auto 20 35 2 0 0 1.3

Auto-Static 21 34 2 0 0 1.3

Auto-Ileaved 20 35 2 0 0 1.3

compare the FP-representable upper approximations of both values, as used in Algo-
rithm 1, and define the relative difference as d := (c� − c��)/ max{1, |c�|, |c��|}. The
corresponding columns in Table 1 are: “Zero” difference for d = 0, “S(mall)” differ-
ence for d ∈ (0, 10−9], “M(edium)” difference for d ∈ (10−9, 10−3], and “L(arge)”
difference for d ∈ (10−3,∞). Column “∞” counts the worst case behavior, i.e.,
infinite dual bounds.

We observe that basis verification has a similar behavior as exact LP for the root
node. Still, as we will see in the next section, it gives an improvement over the exact
LP solver when expensive basis repair steps are required to find the exact LP solution
at certain branch-and-bound nodes.

As expected, primal-bound-shift is the fastest method. However, it produces infinite
dual bounds on 16 instances in contrast to only two fails1 for project-and-shift and

1 Project-and-shift fails to produce finite bounds on two instances, swath1 and swath2. The conditions
necessary for its applicability within the tree (see Sect. 3.4) were not satisfied by these instances.
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no fails for basis verification. This is, the bases obtained by Cplex are often dual
feasible and even optimal and project-and-shift meets its requirements most of the
time. Still, the finite bounds provided by primal-bound-shift are of very good quality;
most of them fall into the “Zero” and “S(mall)” categories. Thus, when primal-bound-
shift works we expect to obtain strong bounds and whenever it fails we assume basis
verification or project-and-shift to be applicable.

Where basis verification is in most cases only up to 10 times slower than primal-
bound-shift, project-and-shift is up to 100 times slower at the root node because of
the expensive initial set-up step. In the next section, we will see that the overhead
incurred by the set-up step of project-and-shift often pays off when it is applied within
the entire branch-and-bound tree.

3.6.2 Overall performance

We will now analyze the effect of the dual bound methods on the overall performance
of the exact MIP solver and compare it with the inexact branch-and-bound version of
SCIP (“Inexact”). Table 3 reports the number of instances that were solved within the
imposed limits (Column “slv”), for each setting. On 37 instances all settings succeeded.
For this group, we present in Table 3, the number of branch-and-bound nodes “Nodes”,
the solution time “Time” in seconds, and the additional time spent in the safe dual
bounding step “DB” in seconds, all in geometric mean for each method. In addition,
Fig. 2 gives a performance profile comparing the solution times. For a setting where
an instance had a timeout, it is reported with an infinite ratio to the fastest setting.
Thus, the intersection points at the right border of the graphic reflect the “slv” column.
“Nodes” and “Time” for the individual instances are reported in Table 2. When a
dual bounding method leads to a solving time that is within 5 % of the fastest run,
the “Time” entry is put in bold. Details for the inexact run can be found in Table 5
(“Inexact-Firstfrac”). Note that in the next section, “Inexact” will be referred to as
“Inexact-Firstfrac” in order to emphasis the applied branching rule.

The observations made for the root node carry forward to the application in the
branch-and-bound algorithm. Primal-bound-shift leads to the fastest node processing.
Basis verification has a slightly better performance than solving LPs exactly. However,
basis verification is often outperformed by project-and-shift.

Concerning the quality of the safe dual bounds, project-and-shift, basis verifi-
cation, and exact LP solves perform equally well, which is reflected in a similar
(e.g., bell3a, misc07, and rentacar), or even identical (e.g., acc-0, nug08,
and vpm1), number of branch-and-bound nodes, see Table 2. Minor node count
variations between these exact versions can be explained by slightly different safe
dual bounds leading to different node selection decisions. This can, for example,
change the point in time when nodes can be cut off due to a new primal solution.
It also explains why weaker dual bounds occasionally result in lower overall node
counts (e.g., “VerifyBasis” can solve neos21 using fewer nodes than “ExactLP”).
On the instances, where no bounds on the variables are missing, i.e., where primal-
bound-shift will always work, the node count is often even similar for all four
dual bounding methods. However, the variation is slightly more significant for
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Table 3 Summary of overall performance with first fractional variable branching on easy test set

Setting slv Geometric mean for instances solved by all settings (37)

Nodes Time (s) DB (s)

Inexact 57 18,030 59.4 –

BoundShift 43 24,994 110.4 13.9

ProjectShift 49 18,206 369.3 238.1

VerifyBasis 51 18,078 461.8 329.8

ExactLP 51 18,076 550.7 419.0

Auto 54 18,276 92.6 17.5

Auto-Static 53 18,276 100.2 19.8

Auto-Ileaved 55 18,226 91.4 18.4

Auto-Limited 48 22,035 89.9 12.0

“slv” number of instances solved, “DB” safe dual bounding time

primal-bound-shift, because an FP-relaxation of the original problem is set up in
Step 1 of Algorithm 1 instead of an FP-approximation; relative to the others, this
may produce different approximate LP solutions. Sometimes this even leads to fewer
nodes for primal-bound-shift (e.g., rgn). Table 2 also gives an example (khb05250)
for an instance where primal-bound-shift works even though bounds are missing on
some variables; these bounds were not required in the correction step.

Concerning the overall solution time, we observe that, when applicable, primal-
bound-shift computes valid dual bounds with very little overhead. For the instances it
solved we usually experience a slow-down of at most 2, relative to the inexact branch-
and-bound solver. The few large slow-down factors of up to 10 can be explained by
a node increase due to a small number of missing variable bounds and by expensive
exact LP calls for computing primal bounds. The one extreme slow-down factor comes
from rentacar, which is solved by pure enumeration; primal-bound-shift produces
infinite bounds at all nodes. However, due to its limited applicability it solved only 43
instances within the imposed limits.

In contrast, project-and-shift solves 49 instances. The dual bound quality was strong
enough such that instances could be solved without requiring a significant increase
in the number of nodes processed, relative to the “ExactLP” strategy. In the previous
section we observed a large overhead required at the root node by this method, making
it impractical for computing valid bounds on a single LP; however, we observe that
amortized over the entire branch-and-bound tree, the resulting solution time is com-
petitive. In mean, it is only 6 times slower than the inexact code. In this fashion, most
of the instances were solved within 20 times the time used by the inexact code.

If we compare project-and-shift with basis verification (Table 2; Fig. 2) we see a
similar and often better performance for project-and-shift. Still, on some instances
basis verification works better. For example, it solves two more instances of our
test set. To figure out when we should choose basis verification instead of project-
and-shift, i.e., when (the setup step of) project-and-shift is too expensive, we tested
different, easy to compute, problem characteristics. Since the setup costs of project-
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Fig. 2 Comparison of overall solving times “Time” on easy test set. Branching rule is first fractional variable
branching

and-shift are dominated by an exact LP solve and a symbolic LU factorization (see
Sect. 3.4), we tested criteria in connection with the constraint matrix: dimension
of the matrix, ratio between number of rows and columns, percentage of nearly
parallel rows (sometimes introduced to build an FP-relaxation), number of non-
zeros, percentage of integral non-zeros, ratio between largest and smallest absolute
value. Another idea was to estimate whether project-and-shift will be called often
enough such that the setup step pays off. Here, we looked at the percentage of
variables with missing bounds. The best results were obtained with the number of
non-zeros in the constraint matrix. In the automatic dual bound selection strate-
gies, discussed below, we prefer project-and-shift as long as the matrix has at most
10,000 non-zeros.

Only one instance,markshare1_1, could not be solved within the imposed limits
by any of the four exact versions. In contrast to the other instances, the node count for
markshare1_1 significantly increases with the exact solvers, see Tables 2 and 5.
The reason is that in the course of the branch-and-bound processes some of the nearly
integral approximate LP solutions do not correspond to integral exact LP solutions,
which causes many additional branchings; in particular, this holds for the final primal
solution found by the inexact solver.

3.6.3 Combinations

We already gave some remarks concerning a strategy that automatically chooses a dual
bounding method. Another important observation for this purpose is that replacing
FP-approximations by FP-relaxations does not affect the performance much: on our
test set, running project-and-shift on an FP-relaxation gave similar results to running
it on an FP-approximation. Therefore, we decided to always set up an FP-relaxation
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in Step 1 of Algorithm 1. This way, we are allowed to apply primal-bound-shift at any
node we want to.

The automatic decision process used in the “Auto” run works as follows. At every
node, we first test whether primal-bound-shift produces a finite bound. If not, we
choose project-and-shift or basis verification depending on the constraint matrix as
explained above. The root node results for the combined versions are presented in
Table 1 and Fig. 1; the overall performance results can be found in Table 3 and
Fig. 2. Note that we excluded “Auto-Limited” from Table 1 as it never computed
safe finite bounds at the root node and that we only included the best auto setting
in the performance profiles as their graphs look very similar. Detailed results for the
inexact run and the best auto setting are given in Table 5. Notice that in this table
for reasons of clarity, “Inexact” and “Auto-Ileaved” are called “Inexact-Firstfrac” and
“Exact-Firstfrac”, respectively.

The experiments show that “Auto” combines the advantages of all dual bounding
methods. We can solve all 43 instances that primal-bound-shift solved as well as 11
additional ones by automatically switching to other dual bounding methods at the
nodes. In Sect. 3.5, we discussed three possible improvements for the automatic dual
bound selection procedure. The first one, to only guess whether primal-bound-shift
will work, is implemented in the test run “Auto-Static”. The guess is static, i.e., does
not change throughout the tree; we skip primal-bound-shift if more than 20% of the
problem variables have lower or upper bounds with absolute value larger than 106.
Comparing both automatic settings shows that it is no problem to actually test at
each node whether primal-bound-shift works, and it even leads to a slightly improved
performance.

The second idea was to interleave the strategy with exact LP calls (“Auto-Ileaved”).
This strategy tries to avoid situations when branching is applied repeatedly on nodes
that could be safely cut off if their LPs were solved exactly, but not if a weaker bound
was computed. Examples are nodes where the exact LP dual bound is equal to the
best known primal bound. This situation does not occur on many instances in our
test set, but when it does, the interleaving strategy is helpful. We solve one more
instance (30:70:4_5:0_95:100) to optimality without introducing a significant
time overhead on the other instances.

The third extension was to only compute bounds safely at nodes where the (unsafe)
bound coming from the approximate dual solution would lead to cutting off the node.
Looking at the overall behavior for the corresponding test run, “Auto-Limited”, it is not
clear whether this is a good idea in general. It solved fewer instances than the other
automatic settings and processed more nodes. On harder instances the node count at
timeout was higher than the other methods, i.e., the node processing is much faster
on average. However, we cannot draw strong conclusions about the quality of this
approach on harder instances, as in this setting the exact primal-dual-gap does not
improve steadily. Moreover, one advantage of computing safe dual bounds at more
nodes of the branch-and-bound tree is that these safe bounds are inherited by a node’s
children. Therefore, if safe bounds were computed previously, the discovery of an
improved primal bound may allow immediate pruning of many unprocessed nodes.
In a similar situation, the setting “Auto-Limited” may incur extra cost computing safe
bounds at each of these nodes individually.
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4 Branching rules

So far we have introduced a branch-and-bound algorithm for solving MIPs exactly
and developed an advanced strategy for computing the dual bounds safely in this
framework (“Auto-Ileaved”, which we refer to as “Exact-Firstfrac” in the following).
Here we will improve the branching step of the current implementation. Choosing
which variable to branch on is crucial for MIP solvers. The experiments in [2] (using
SCIP version 0.90f) showed that replacing the default branching rule in SCIP by
other less sophisticated ones increases the running time by a factor of up to 4. For
comparison, disabling cutting plane separation doubles the solution time.

The inexact version of SCIP supports various branching rules. We tested the follow-
ing ones in the exact MIP setting, listing them in increasing order of their performance
in the inexact full version of SCIP as evaluated by Achterberg [2].

– “Exact-Leastinf”: Least infeasible branching
– “Exact-Firstfrac”: First fractional branching
– “Exact-Mostinf”: Most infeasible branching
– “Exact-Fullstrong”: Full strong branching
– “Exact-Pseudocost”: Pseudocost branching
– “Exact-Reliability”: Reliability branching

Least infeasible and most infeasible branching consider the fractional parts of the
integer variables in the LP solution. By solving the LP relaxation of the potential
subproblems for all branching candidates, full strong branching chooses the vari-
able which leads to the best dual bound improvement. Pseudocost branching tries to
estimate this improvement by analyzing the dual bound gains achieved by previous
branchings. Reliability branching uses strong branching only on variables with unreli-
able pseudocosts, i.e., with a limited branching history. First fractional branching, the
rule used so far in our implementation, simply decides to branch on the first integer
variable (w.r.t. variable index) with fractional LP solution value. SCIP applies this
scheme when no special branching rule is implemented. It was not tested in [2], but
the performance is in the range of most infeasible and least infeasible branching.

When selecting the branching variable in the exact MIP setting, exact branching
score calculation is not required to obtain a correct solution. In particular, the strong
branching LPs do not need to be solved exactly. The only restriction is that all other
conclusions drawn from strong branching LPs are ignored; they are not safe anymore if
the LPs are only solved by an inexact LP solver. These additional conclusions include
prunable subproblem detection (if we find a branching candidate for which both strong
branching LPs are infeasible), domain reduction (of all variables for which one of the
strong branching LPs is infeasible), and dual bound improvement (the weaker objective
function value of the two strong branching LP solutions of a variable provides a valid
dual bound for the current subtree).

For full strong branching, this significantly reduces its potential. Table 4 summa-
rizes, alongside others, the results for running the inexact branch-and-bound algorithm
of SCIP without additional conclusions from strong branching LP solutions (“Inexact-
Fullstrong”) and with them (“Inexact-Fullstrong+”). Supporting this step, as done in
standard floating-point MIP solvers, speeds up the branch-and-bound process by a
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Table 4 Summary of performance for different branching rules on easy test set

Setting slv Geometric mean for instances solved by all settings (47)

Nodes Time (s) DB (s)

Exact-Leastinf 49 48,211 324.3 84.7

Exact-Firstfrac 55 27,306 193.2 56.7

Exact-Fullstrong 55 3,146 168.2 12.9

Exact-Mostinf 54 11,935 98.4 34.5

Exact-Pseudocost 56 6,745 53.4 20.0

Exact-Reliability 56 3,394 43.8 13.0

Inexact-Firstfrac 57 26,686 77.0 –

Inexact-Reliability 57 3,458 19.8 –

Inexact-Reliability+ 57 2,611 21.5 –

Inexact-Fullstrong 57 2,941 104.6 –

Inexact-Fullstrong+ 57 789 58.6 –

Exact solver uses “Auto-Ileaved” for safe dual bounding
“slv” number of instances solved, “DB” safe dual bounding time

factor of 1.8. The node count is reduced by a factor of 3.7. So the positive impact
of full strong branching is not only due to good branching decisions based on addi-
tional LP solves; to a certain extent it is also achieved by drawing further conclusions
from these strong branching LPs, which includes variable fixings, domain reductions
and node cutoffs. Regarding the node count improvement, one should keep in mind
that if full strong branching “creates” subproblems and detects them to be prunable,
they are not counted as branch-and-bound nodes. Performing the same experiment
with reliability branching, i.e., if strong branching is only used in case of unreliable
pseudocosts, we observe that the additional conclusions have only a very small impact
(“Inexact-Reliablity” versus “Inexact-Reliablity+” in Table 4).

For the exact MIP setting, the impact of each tested branching rule is summarized in
Table 4. The ranking is similar to what was experienced for the floating-point version
of SCIP in [2]; except for full strong branching which performs in our tests worse
than most infeasible branching for the reasons explained above. The best results were
obtained with reliability branching.

Tables 4 and 5 compare the performance of first fractional branching and reliabil-
ity branching in the inexact branch-and-bound version of SCIP (“Inexact-Firstfrac”
versus “Inexact-Reliablity”) and in the exact version (“Exact-Firstfrac” versus “Exact-
Reliability”). In both settings, the impact of reliability branching is of the same range.
In mean, the running time with this rule improves by a factor of 3.9 for the inex-
act and 4.4 for the exact code. In addition, Fig. 3 visualizes the changes in running
time and in the number of branch-and-bound nodes between the inexact and the exact
code when both apply reliability branching. The performance degradation is similar
to what was experienced with first fractional branching in the previous section (see
Fig. 2; Table 3). In geometric mean, the exact version is only 2.2 times slower than the
inexact one. However, with reliability branching the branch-and-bound tree diverges
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Fig. 3 Comparison of best exact solver and inexact counterpart on easy test set. a Performance profile for
solving time “Time”. b Performance profile for branch-and-bound nodes “Nodes”

more between the inexact and the exact solver; in Table 5 we observe that the node
count differs more with reliability branching than with first fractional branching. In
the extreme, both solvers need the same number of branch-and-bound nodes with
first fractional branching, while having different node counts with reliability branch-
ing (e.g., air05, egout, and vpm1). The reason is that the sophisticated strategy
of reliability branching is more sensitive to small changes, for example, in the dual
bounds and the number of LP iterations (see [2] for details on the reliability branching
algorithm). To summarize, the exact code benefits from better branching rules in the
same way as the inexact one.

In addition to standard branching strategies, one that aims at making the fast safe
dual bounding method primal-bound-shift (see Sect. 3.3) work more often would be
interesting. If a missing bound constraint is necessary to repair the approximate dual
solution by primal-bound-shift, the method will fail and we apply one of the more
expensive dual bounding methods at this branch-and-bound node. Branching on such
variables would introduce a missing bound in one of the created subproblems and this
way could increase the chance of primal-bound-shift to be applicable in this subtree.
On the easy test set, 29 of the 57 instances contain variables with infinite lower or
upper bounds. They are marked by a “×” in Table 5. However, examining the problem
characteristics we noticed that all missing bounds were on continuous variables only.
That is, we are not able to introduce the required bounds through branching decisions;
branching is only performed on integer variables. On numerically difficult instances,
considered in the next section, we observed a similar situation. In Table 11, 28 out of
50 instances had infinite bounds, but only in a few cases this involved integer variables
(dfn6_load, dfn6fp_load, dfn6f_cost, and dfn6fp_cost).

5 How accurate are current MIP solvers?

On the easy test set, with reliability branching, we are able to solve all but one instances
exactly (markshare1_1). Thus, having exact objective function values for nearly
all instances at hand, we now want to analyze how accurate the floating-point version
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of SCIP is. In the inexact setting, errors in the branch-and-bound process can be
introduced at several different places: while reading in the instance, in the bounding
step and in the feasibility test (because of the FP-arithmetic and the consequent usage of
tolerances), and because of inaccurate LP solutions. See [29,42] for further discussion
regarding possible sources and types of errors that might be encountered.

We considered our best exact branch-and-bound version (“Exact-Reliability”) and
its inexact counterpart (“Inexact-Reliablity”) and present in Table 6 the “Difference”
between the objective function values returned by the exact and the inexact run
(“Exact Objval” 2 and “Approx Objval”).

We mark cases where an instance was not solved to optimality within the limits
(see Table 5) by a “—” and also use “—” in the “Difference” column then. Otherwise,
the exact absolute difference is computed. If it is non-zero, the closest FP-number is
displayed.

For the majority of the instances, the objective values are identical. On 12 instances,
the inexact branch-and-bound solver reports results that differ from the exact objec-
tive values, but the differences are not significant. This indicates that no dramatic
mistakes were made by the FP branch-and-bound solver. But this is not surprising as
the instances come from standard MIP libraries, for which numerical troubles are very
seldom.

Only markshare1_1, which we were not able to solve, is numerically less stable.
As explained in Sect. 3.6.2, in contrast to the other instances, the node count for
markshare1_1 significantly increased with the exact solver. The reason is that in
the course of the branch-and-bound process some of the nearly integral approximate
LP solutions do not correspond to integral exact LP solutions (best primal bound found
within the imposed limits is 235/398953428.), which causes additional branchings.
On all other easy instances, this did not happen.

Notice that this experiment also shows that all studies on the easy test set were fair.
We did not compare solution times for instances where the inexact code terminates
quickly, but computes a result that is far from correct. The picture is more diverse on
numerically more difficult instances as considered in the next section.

6 Numerically difficult MIP instances

In the last section, we showed that the exact branch-and-bound code was able to solve
the problems in our easy test set within a reasonable factor of the time required by the
inexact branch-and-bound solver. Here we will analyze its behavior on numerically
difficult instances.

6.1 Selecting the test set

Before going any further we must ask: what does it mean for a MIP to be numeri-
cally difficult? It would be nice if there were some clear, well defined properties that

2 Of course, even with a very carful implementation and extensive testing, a certain risk of an implementation
error remains (also in the underlying exact LP solver and the software package for rational arithmetic). So,
the exact objective values reported here come with no warranty.
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Table 6 Comparison of exact and approximate objective function values on easy test set
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Table 6 continued

If absolute difference (computed exactly) between “Exact Objval” and “Approx Objval” is non-zero, closest
FP number is displayed in “Difference”

would predict which instances could be solved easily using floating-point computa-
tion, and which instances would succumb to numerical issues in the solution process.
Unfortunately, this question does not have a simple answer.

We first focus our attention to linear programming where a number of authors have
studied the related idea of condition measures [13,16,36,39,40]. LPs are considered
ill-conditioned if small modifications in the problem data can have a large effect on the
solution; in particular, if they lead to changes in the optimal objective value, changes in
primal or dual feasibility, or changes in the structure of the final LP basis. Connections
have been made between LP condition measures and the complexity of solving them
[14,15,41,44]; ill-conditioned LPs may require higher precision arithmetic or more
interior point iterations. Computational studies have also investigated these ideas [12,
37]. However, LP condition numbers are not always a good predictor that LP instances
will or will not be solvable by floating-point software packages. For example, in [37],
71 % of the Netlib LP instances [9,23] were observed to have infinite condition
measures, 19 % after pre-processing. However, in [27], double-precision LP solvers
were used to identify the optimal basis for all Netlib LP instances; this could be seen as
an indication that, in some practical sense, these instances are not numerically difficult.
Conversely, one could easily construct well conditioned LPs that are unsolvable by
double-precision based software by, e.g., scaling the data to contain entries too large
or small to be represented by a double-precision number.

Turning our attention back to MIPs, to the best of our knowledge no study has
defined or discussed the notion of a condition measure. When switching from contin-
uous to discrete variables arbitrarily small changes in the data defining an instance is
more likely to alter the feasibility or optimality. As the nature of our study is com-
putational we will prefer a test set that is numerically difficult in the practical sense
– meaning it is composed of instances on which software packages available today
compute incorrect or conflicting results or exhibit evidence of incorrect computations
within the solution process.
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Starting from a total of over 600 instances taken from the unstable test set of
the Miplib 2010 library [29], the Cor@l MIP collection [32,31], instances that were
submitted to the NEOS server [18,34] to be solved exactly, and instances from projects
at ZIB, we collected a test suite of 50 instances, which we will call the numerically
difficult test set. Table 7 states the origin and a short description of the chosen instances.
Furthermore, Table 8 shows the statistics that were relevant for the selection of these
instances; met criteria are put in bold.

We now describe the empirically motivated criteria which we have used to classify
instances as numerically difficult. They are based directly on the behavior of floating-
point MIP solvers applied to the instances.

One attempt to identify numerical issues during the solving process was recently,
with version 12.2, introduced in Cplex. It considers the condition number of the opti-
mal LP bases at the branch-and-bound nodes and classifies them as stable, suspicious,
unstable, and ill-posed (see [29] for more details). Even though this measure is highly
dependent on the solution process and may not help to identify numerically unstable
instances, we found it reasonable to take it as one criterion for the selection of our
test set. In Table 8, the first block of columns, “psusp”, “punstab”, and “pillpo”, states
the relative frequency of the sampled bad condition number categories. We used set
mip strategy kappastats 2, i.e., computed LP condition numbers for every
subproblem. Furthermore, Cplex weights these three groups into one estimate for the
probability of numerical difficulties. It is called attention level (column “AL”). Since
the estimate depends on the solution process, we run the solver with five different
parameter settings: default settings, presolving disabled, cuts disabled, primal heuris-
tics disabled, and all three components disabled. The statistics in Table 8 refer to the
worst (largest) values observed among the runs (time limit of 2 h), and we display
only non-zero values.

Our second indicator of numerical issues is, whether the input data contain values
of very different magnitude. The columns “rcoef”, “rrhs”, and “robj” state the ratio
between the largest and the smallest absolute non-zero entry in the coefficient matrix,
the right hand side vector, and the objective function vector, respectively. Largest and
smallest values are taken from the log files of Cplex.

As a third point, we checked for inconsistent results returned by different
MIP solvers on various parameter settings. We run SCIP 2.0.2 and Cplex (with
mipkappa computation, and without) and in both solvers, applied the five set-
tings mentioned above. Columns “db” and “pb” report the maximum dual bound
and the minimum primal bound returned at termination among all runs. Notice that
all instances have minimization form. In case of infeasibility detection, we work with
primal and dual bounds of 1020 and display “Infeas” in Table 8. We selected instances
that meet one of the following criteria

– Unstable LPs: “AL” ≥ 0.1, “psusp” ≥ 0.5, “punstab” ≥ 0.3, or “pillpo” ≥ 0.1

– Wide input data range: “rcoef” ≥ 1010, “rrhs” ≥ 1010, or “robj” ≥ 1010

– Inconsistent results: (“db” − “pb”)/ max{|“db”|, |“pb”|, 1} > 10−6.
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Table 7 Descriptions and references for numerically difficult test set

Example Originator and description

alu10_1, alu10_5, alu10_7, alu10_8, alu10_9,
alu16_1, alu16_2, alu16_5, alu10_7, alu16_8,
alu16_9

T. Achterberg [1,2]
Arithmetic logical unit (ALU) property
checking instances. Feasible solutions corre-
spond to counter-examples of given proper-
ties, infeasibility verifies correctness of prop-
erty. The first number in each instance name
is the number of input bits in the ALU. The
second number indicates the property being
checked. Properties 1–8 are valid, and prop-
erty 9 is invalid

bernd2 T. Koch
Wideband Code Division Multiple Access
(W-CDMA) base station assignment problem

cnr_dual_mip1, cnr_heur_mip1, ilp_sh5, ilp_sh6,
prodplan1, prodplan2, opti_157_0, p4, x01

Zuse Institute Berlin (ZIB)
Instances from research projects at ZIB

dfn6_load, dfn6fp_load, dfn6f_cost, dfn6fp_cost T. Koch [11]
Access planning for German National
Research and Education Network

neumshcherb A. Neumaier, O. Shcherbina [35]
Small numerically difficult instance given as
example in [35]

norm-aim Pseudo-Boolean Competition 2010 [38]
Short for
normalized-aim-200-1_6-yes1-3
Instance from pseudo-Boolean competition at
the SAT 2010 conference

npmv07, ns2017839, ran14x18.disj-8, sp98ir Miplib 2010 [29]
Instances from the Miplib 2010 library

neos-1053591, neos-1062641, neos-1367061,
neos-1603965, neos-522351, neos-619167,
neos-799716, neos-839838

Cor@l [31]
Instances from the Cor@l test library

ns1629327, ns1770598, ns1859355,
ns1866531, ns1900685, ns1925218,
ns2080781

H. Mittelmann [18,34]
Instances submitted to QSopt_ex [7] through
the NEOS server

tkat3K, tkat3T, tkat3TV, tkatTV5 T. Koch [28]
Facility location problems from Telekom
Austria

6.2 Computational study

We will discuss three topics on the numerically difficult instances: the error-proneness
of the inexact solver, the performance of the exact solver, and the relevance of branch-
ing decisions based on exact LP solutions. The last point will be addressed in the next
section on possible improvements.
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For this purpose, we evaluated the results and performance of our best exact branch-
and-bound version of SCIP (“Exact-Reliability” with reliability branching and dual
bounding strategy: automatic selection interleaved by exact LP calls) and its inexact
counterpart (“Inexact-Reliablity”). The set-up of the experiment is the same as for
the easy test set, described in Sect. 3.6; in particular, we use a time limit of 24 h
and a memory limit of 13 GB. Note that during the test set selection, very hard
instances for which both solvers failed to terminate within the imposed limits were
removed.

First, we check how often the inexact run produced wrong results. Like Table 6
for the easy instances, Table 9 presents the absolute “Difference” between the objec-
tive function values returned by the exact and the inexact run (“Exact Objval” and
“Approx Objval”). Since bernd2 and ns1770598 have very long exact objective
function values, we only print the number of digits of their numerators and denom-
inators. Again, we mark cases where a solver did not terminate at optimality within
the limits (see Table 11 discussed later) by a “—”. For non-zero values, we report in
column “Difference” the closest FP-number.

We can compare the results for 26 instances, on the others, one of the solvers did not
terminate within the limits. For half of them, the returned objective values were differ-
ent, where for five instances (alu10_1, bernd2, dfn6fp_cost, ns1866531,
and opti_157_0) this difference was significant. Furthermore, it is known that
except for alu10_9 and alu16_9 all of the alu instances in our test set are infea-
sible, meaning the inexact run fails on at least five more instances.

Now we evaluate the performance. On the easy test set, the exact solver was only
moderately slower than the inexact one and could solve all but one instance within
the limits. In geometric mean, the solution time doubled, where most instances were
only up to 20 times slower and the largest slowdown factor was 40. The node count in
geometric mean was similar in the exact and the inexact branch-and-bound runs. Here,
the picture is more diverse. Table 11 presents the solution times and the node count for
the individual instances; they are split into four subsets depending on the accuracies
of the inexact solver (zero, small, significant (> 10−6), or unknown “Difference” in
Table 9). The results are summarized in Table 10 and visualized in Fig. 4. They have
the same layout as the tables and plots in Sect. 3.6.

First of all, on 9 instances, we actually benefit from taking care of the numerics.
There were 4 instances (alu16_5, cnr_dual_mip1, p4, and x01) that were
solved within the limits by the exact solver, but not by the inexact one, and 5 instances
(norm-aim, neos-839838, sp98ir, tkat3T, and tkat3TV) that were solved
by both versions, but where the exact solver was faster; the speed factors vary between
1.5 and 15.

We now analyze the other 41 instances, where the exact code is slower than the
inexact one. Notice that, by definition of the numerically difficult test set (it contains
only instances which one of the solvers can process within the imposed limits), the
inexact code terminates on all these instances. We first observe that the exact code can
solve only 21 instances, a much smaller portion than on the easy test set. Here, the
degradation factors for the time are in most cases only up to 20 as well; but we also
observe larger factors of up to 300 (alu10_1, neos-1053591, and ns1629327).
However, for alu10_1 the inexact solver returned a wrong answer. Examining the
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Table 9 Comparison of exact and approximate objective function values on numerically difficult test set

ytilbaileR-tcaxenIytilbaileR-tcaxE
ecnereffiDlavjbOxorppAlavjbOtcaxEelpmaxE

alu10 1 Infeas 8.50000000000000e+01 ∞
alu10 5 Infeas Infeas
alu10 7 —10+e06320774000003.8—
alu10 8 —10+e17408091000004.8—
alu10 9 —10+e16577091000004.8—
alu16 1 —10+e00000000000001.9—
alu16 2 Infeas Infeas
alu16 5 ——saefnI
alu16 7 —10+e00000000000009.7—
alu16 8 —10+e13780000000009.7—
alu16 9 —10+e00000000000009.7—
bernd2 (int of 2147 digits)/(int of 2141 digits) 1.12090603170608e+05 1.00086584527058e+03
cnr dual mip1 119607156586463627/2000000000 ——
cnr heur mip1 —70+e59399798753089.5—
dfn6 load —00+e00234852248347.3—
dfn6fp load —00+e33272975639539.6—
dfn6f cost 1000 1.00000000000000e+03
dfn6fp cost 5000065343183/5000000000 1.00001080799110e+03 2.26064550000000e-03
ilp sh5 1428 1.42800000000000e+03
ilp sh6 1412 1.41200000000277e+03 2.77000000000000e-09
neumshcherb -2 -2.00000000186265e+00 1.86265000000000e-09
norm-aim 200 2.00000000000000e+02
npmv07 —11+e41545521890840.1—

30+e00000004419266.3-0521/3468754-1953501-soen
neos-1062641 —00+e00000000000000.0—
neos-1367061 783011406612429/25000000 3.13204562644972e+07 4.00000000000000e-08
neos-1603965 —80+e55926676344291.6—

40+e00006117701987.1000052/9729672744153225-soen
neos-619167 —00+e35813892862976.1—
neos-799716 —60+e30296166076239.4—

80+e05946317175660.100002/9927243413312838938-soen
ns1629327 -109803191329325384099/10000000000000000000 -1.09803191329325e+01 3.84099000000000e-14
ns1770598 (int of 1190 digits)/(int of 1184 digits) 2.59682092873858e+04 3.20057499299592e-08
ns1859355 17656324

3137728817544965354640796968772247963283039222284232036674193433465271403875/

21942301712174354766184393675200873279121480678532356015802745213826986332082

011659

8.04670564893240e+00 9.28049536228506e-12

ns1866531 10 9.50234212056133e-07 9.99999904976579e+00
ns1900685 3453 3.45300000000000e+03
ns1925218 —60+e78214797682868.6—
ns2080781 —00+e00000000000000.0—
ns2017839 —31+e12223694940307.7—
opti 157 0 Infeas 8.59313300000015e+03 ∞
p4 ——saefnI
x01 ——saefnI
prodplan1 —70+e97193371658754.5-—
prodplan2 -185497557187228867655290921686042318951/

774845425502612687685652190000000

-2.39399435141407e+05 2.99563575827916e-10

ran14x18.disj-8 —30+e36635899999117.3—
sp98ir 1098383952/5 2.19676790400000e+08
tkat3K 47728181/10 4.77281810000000e+06
tkat3T 22259567/4 5.56489175000000e+06

0000000000000.260+e89999946893883.802/379767761VT3takt 0e-08
70+e00005224467118.204/96750742115VTtakt

If absolute difference (computed exactly) between “Exact Objval” and “Approx Objval” is non-zero, closest
FP number is displayed in “Difference”

remaining 20 instances, which were not solved by the exact code within the imposed
limits, we already see that they will include even larger slowdown factors. But some
of the results of the inexact solver will be wrong (for five alu instances this is already
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Table 10 Summary of performance for best exact solver and inexact counterpart on numerically difficult
test set

Setting slv Geometric mean for instances solved by all settings (26)

Nodes Time (s) DB (s)

Inexact-Reliability 46 5,650 93.7 –

Exact-Reliability 30 10,499 368.4 58.8

“slv” number of instances solved, “DB” safe dual bounding time

(a)

5

10

15

20

25

30

35

40

45

50

1 10 100

N
um

be
r

of
in

st
an

ce
s

No. of times slower than fastest

Inexact-Reliablity
Exact-Reliablity

(b)

5

10

15

20

25

30

35

40

45

50

1 10 100

N
um

be
r

of
in

st
an

ce
s

No. of times more nodes than solver with fewest

Inexact-Reliablity
Exact-Reliablity

Fig. 4 Comparison of best exact solver and inexact counterpart on numerically difficult test set. a Perfor-
mance profile for overall solving time “Time”. b Performance profile for branch-and-bound nodes “Nodes”

known for sure, see above), since most of these instances were collected because of
inconsistent results between different solvers and settings.

Why is the performance not as good as on the easy test set? For the numerically
more difficult instances, the exact code has to often process more branch-and-bound
nodes. As explained in Sect. 4, this is to some extend due to reliability branching
being sensitive to small changes in the solving process, but the main reason is that
the inexact solver wrongly cuts off some nodes due to FP-errors. Table 11 presents,
in Columns “NotInfeas”, “NotInt”, and “NotInt-Inf”, how often the exact code would
have made wrong decisions if the result of the inexact LP solver would not have
been safely verified; which indicates wrong decisions in the inexact MIP solver. All
larger slowdown factors come along with mistakes in the inexact solver; except for
dfn6fp_load, ns2017839 and prodplan1, where the degradation is caused by
expensive LP calls.

Column “NotInfeas” states the number of nodes where the inexact LP solver wrongly
claims LP infeasibility at a node, which leads to more branchings in the exact solver
and thus increases the node count. This happens on 9 of the 50 instances, but never
occurred on the easy MIPs.

Column “NotInt” counts the nodes where the floating-point LP solution was integral
within tolerances (i.e., would have been accepted by the inexact solver) but verifying
the primal bound (Step 7 of Algorithm 1) did not allow us to cut off the node. This
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Table 11 Overall performance of best exact solver and inexact counterpart on numerically difficult test set

Example Inexact-Reliability Exact-Reliability

Nodes Time (s) Nodes Time (s) NotInt NotInt-Inf NotInfeas

alu10_5 4,077 3.9 74,183 95.7

alu16_2 59 1.0 63 5.1 4

×dfn6f_cost 23,771 6452.8 320,840 56063.3 384 49

×ilp_sh5 124,213 3433.8 126,235 21547.7

norm-aim 169,635 164.5 5,863 15.9 2

×neos-1053591 88,969 117.4 241,386 8211.0 2,572 1,230

×neos-522351 20,483 35.7 26,369 420.6

×neos-839838 71,119 7235.0 40,867 4365.5

×ns1900685 29,336 4.3 28,438 8.2

sp98ir 78,788 6615.5 12,385 410.9

tkat3K 3,469 16.1 6,131 44.5

tkat3T 13,490 108.4 9,220 83.5

tkatTV5 10,113,175 29585.9 5,947,286 29845.5

×ilp_sh6 16,083 594.6 15,513 1864.4

neumshcherb 5 1.0 5 1.0

×neos-1367061 267 1065.7 745 5356.3

×ns1629327 26,138 26.5 57,051 2772.2 273

ns1770598 11,519 36.9 7,956 53.9

×ns1859355 30,396 65.3 32,936 221.3 298 87

×prodplan2 4 1.0 31 26.0

tkat3TV 16,796 147.9 7,689 72.7

alu10_1 5,859 5.9 1,489,343 1930.5 5,189

×bernd2 13,405 10049.0 23,488 81808.3 178 75

×dfn6fp_cost 16,921 2022.6 71,039 9056.4 53 48

ns1866531 1 1.0 170 13.7 91 64

×opti_157_0 119 4.1 119 8.2 1

alu10_7 2,959 2.5 >87,559,918 >86400.0 ≥1,227 ≥520

alu10_8 40,372 21.1 >75,755,192 >86400.0 ≥941 ≥441

alu10_9 94,144 45.3 >74,933,946 >86400.0 ≥444 ≥428

alu16_1 2,783 4.4 >41,441,026 >86400.0 ≥42,807 ≥496,233 ≥246,605

alu16_5 >171,786,359 >86400.0 101,727 161.9 1,059

alu16_7 3,469 3.6 >4,330,018 >86400.0 ≥294,094 ≥258,965 ≥2,348

alu16_8 1,415,760 980.4 >98,010,563 >86400.0 ≥7,310 ≥717 ≥2,687

alu16_9 829,156 432.6 >16,800,387 >86400.0 ≥410,640 ≥36,361 ≥490

×cnr_dual_mip1 >1,612,128 >86400.0 82,332 11523.5

×cnr_heur_mip1 321,303 38523.2 >935,604 >86400.0

×dfn6_load 2,846 37.1 >136,256 >86400.0 ≥66,286 ≥11,624

×dfn6fp_load 44,538 8211.8 >1,671 >86400.0
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Table 11 continued

Example Inexact-Reliability Exact-Reliability

Nodes Time (s) Nodes Time (s) NotInt NotInt-Inf NotInfeas

×npmv07 46 26.2 >53 >86400.0 ≥19

×neos-1062641 100 1.0 >598,633 >86400.0 ≥299,253

×neos-1603965 1 61.7 >1,872 >86400.0 ≥1,872

×neos-619167 246,133 7909.1 >784,177 >86400.0 ≥38,242

×neos-799716 115 74.6 >6,013 >86400.0 ≥25 ≥3

×ns1925218 886,119 13804.4 >3,699,549 >86400.0 ≥70,065

ns2080781 40 1.0 >2,373,236 >86400.0 ≥211,271 ≥598,285

×ns2017839 32 543.8 >1 >86400.0

×p4 >1,529,624 >86400.0 1 191.8

×x01 >729,677 >86400.0 1 104.4

×prodplan1 100,628 26804.9 >13 >86400.0

ran14x18.disj-8 22,477,620 52701.6 >31,821,206 >86400.0 ≥16,801 ≥9

Detailed results, grouped by accuracy of the inexact solver (zero, small, significant, or unknown “Difference”
in Table 9). “NotInt” plus “NotInt-Inf” (“NotInfeas”) counts nodes where LP relaxation was wrongly claimed
integral (infeasible) by floating-point LP solver; italic font if all integrality claims were wrong. Instances
missing bounds on variables are marked by “×” . Solving times within 5% of the fastest setting are put in
bold

happens on 20 of the 50 instances, in contrast to only one instance for the easy test set
(markshare1_1, where “NotInt” is 256). Note that “NotInt” only considers nodes
where branching on the exact LP solution takes place afterwards. That is, approximate
integral LP solutions for which the corresponding exact LP turns out to be infeasible
(so pruning is legal but the argumentation of the inexact solver is wrong) are not
counted here but in Column “NotInt-Inf”. A rejected approximate primal solution does
not only mean that we can not cut off the current subtree in the exact code, but it may
also affect other parts of the tree because the primal bound in the exact code is weaker
than the, possibly incorrect, bound in an inexact solver. In the extreme case, this leads
to rejecting all approximate solutions found and we are not able to cut off any node
early by bounding; an italic font in Columns “NotInt” and “NotInt-Inf” indicates such
cases. The unsolved alu instances, npmv07, neos-1062641, and ns2080781,
all with extreme degradation factors, are examples for this effect.

6.3 How to tackle numerically difficult instances?

All in all, the exact code is slower on the numerically difficult test set, sometimes
requiring much more time to solve an instance, or even failing to finish within the
imposed limits. However, a direct comparison of the solution times is not always
fair here because the inexact solver frequently, in particular, on instances with huge
differences in the performance, takes advantage of incorrect bounding decisions.

Introducing presolving, cutting planes, and primal heuristics will certainly help to
improve the performance as it normally shrinks the size of the branch-and-bound tree

123



342 W. Cook et al.

and thus reduces the space of the search tree which the inexact solver would incorrectly
ignore, but the exact code has to process.

In addition to the generally increased node count, the time overhead also comes
from the exact LP solves in the safe primal bounding step and the ones for disproving
LP infeasibility of nodes. On the numerically difficult instances, such exact LP solves
are more often experienced or they occur so often that they add up to a large portion
of the running time. Thus, more sophisticated methods for the safe primal feasibility
check are required.

The current solver uses the first fractional variable branching rule when it branches
on the exact LP solution. This type of branching happens in two situations. First, if the
approximate LP solution is nearly integral, but the safe primal bounding step (where
the exact LP is warm started with the basis of the approximate LP solution) does not
allow to prune the node (the computed exact LP solution is not integral). Second, if
the LP relaxation is claimed to be infeasible, but there exists an exact LP solution. Our
fast safe dual bounding methods are useless here, we have to solve this LP exactly to
prove LP feasibility. In contrast to the easy test set, both situations occur frequently on
the numerically difficult test set; numbers were given in Table 11 in Columns “NotInt”
and “NotInfeas”. Furthermore, both situations can easily occur again in the subtrees
created after branching on the exact LP solution. A branching rule that reduces the
risk of such expensive situations for the new subtrees could be helpful for numerically
difficult instances.

7 Conclusion

From the computational results we can make several key observations. Each safe
dual bounding method studied has strengths and weaknesses depending on the prob-
lem structure. Automatically switching between these methods in a smart way solves
more problems than any single dual bounding method on its own. Of the 57 prob-
lems from the easy test set solved within 2 h by the floating-point branch-and-bound
solver, 55 could also be solved exactly within 24 h and the solution time was usually
no more than 20 times slower. This demonstrates that the hybrid methodology can
lead to an efficient exact branch-and-bound solver, not limited to specific classes of
problems.

When turning to numerically more difficult instances, where floating-point solvers
face numerical troubles and even compute incorrect results, we observe some stronger
slowdowns with our current exact solver. However, this mainly happens on instances
where the inexact MIP solver strongly benefits from incorrect bounding decisions.
As a consequence, the bottleneck of the exact solver is a large number of nodes
for which the hybrid rational/safe floating-point approach cannot skip the expensive
rational computations of the main procedure by replacing them with certain decisions
from the faster slave procedure with FP-arithmetic. Examples are wrong infeasibility
detections of the floating-point LP solver and incorrect integrality claims based on the
approximate LP result. In the future, we will investigate techniques to process such
nodes without calling exact LP solvers and how to prevent situations like this from
repeating in subsequent subtrees.
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