
Math. Prog. Comp. (2013) 5:57–73
DOI 10.1007/s12532-012-0048-x

FULL LENGTH PAPER

Implementation of a unimodularity test

Matthias Walter · Klaus Truemper

Received: 11 July 2011 / Accepted: 17 April 2012 / Published online: 3 November 2012
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012

Abstract This paper describes implementation and computational results of a poly-
nomial test of total unimodularity. The test is a simplified version of a prior method.
The program also decides two related unimodularity properties. The software is avail-
able free of charge in source code form under the Boost Software License.

Keywords Unimodularity · Total unimodularity · Polynomial test

Mathematics Subject Classification 05-04 combinatorics - explicit machine
computation and programming

1 Introduction

This paper describes the implementation of a simplified version of the polynomial
test [17] for total unimodularity. The program also decides absence/presence of two
related types of unimodularity. The computer program is available free of charge in
source code from two sites [14] under the Boost Software License [3]. Computational
effectiveness is demonstrated for nontrivial test instances.

We begin with a well-known definition. An integer matrix A is totally unimodular
(t.u.) if every square submatrix D of A has det D = 0 or ±1. This property was

M. Walter
Institute of Mathematical Optimization,
University of Magdeburg “Otto von Guericke”, 39106 Magdeburg, Germany
e-mail: matthias.walter@ovgu.de

K. Truemper (B)
Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75083, USA
e-mail: klaus@utdallas.edu

123

58 M. Walter, K. Truemper

introduced by [10] with slightly different terminology. The reference establishes a key
result for t.u. matrices: The inequality Ax ≤ b has all basic solutions integer for all
integer vectors b if and only if A is t.u.

Several other concepts are closely related to total unimodularity; see, for example,
[11,15,16,20]. Here, we cover the following two properties. An integer matrix A is
unimodular if for every column basis C of A, the maximal square submatrices Ci of
C satisfy gcdi det Ci = 1. In the special case of unimodularity where each Ci has
det Ci = 0 or ±1, the matrix A is strongly unimodular. Analogously to the key result
for t.u. matrices, the equation Ax = b has all basic solutions integer for all integer
vectors b if and only if A is unimodular. The next theorem is taken from [15].

Theorem 1 Let A be an integer matrix.

1. A is unimodular if and only if, for an arbitrarily selected column basis matrix C
of A, gcdi det Ci = 1 and the solution X of C X = A is t.u.

2. A is strongly unimodular if and only if both A and its transpose At are unimodular.

The question whether a given column basis C of an integer matrix A satisfies
gcdi det Ci = 1 can be efficiently answered via the Smith Normal Form of [13].
Thus, testing for any of the above properties is readily reduced to testing for total
unimodularity. The software carries out the same reductions. We skip implementation
details and focus on the test of total unimodularity.

Let A be a given integer matrix and B be the binary matrix derived from A by
converting each −1 to 1. Define I to be the identity of appropriate order. It is well
known that the following four steps decide absence/presence of total unimodularity.

In the first step, a trivial check verifies that all nonzeros of A are 1 or −1. Clearly, A
is not t.u. if the matrix fails this test. In the second step, it is checked whether the binary
matroid M(B) represented by the matrix [I |B] has the property of regularity defined
by [21]. For our purposes, it is convenient to declare M(B) to be regular if B can be
signed to become t.u. Testing for regularity of M(B) is the most difficult step. If the
answer is negative, then A cannot be t.u. So assume that M(B) is regular. In the third
step, suitable signing of the 1s of B converts that matrix to a t.u. matrix A′. This step is
based on the uniqueness of such signing, up to scaling, proved by [4]. The process is
quite straightforward. The uniqueness result of [4] is once more employed in the fourth
step, where it is checked whether A′ can by column and row scaling be converted to
A. This test is very easy. The matrix A is t.u. if and only if such scaling is possible.

As far as we know, every prior polynomial algorithm for testing matroid regularity
uses the regular matroid decomposition of [12]. Indeed, implicit in the cited reference is
already one such scheme, provided the proofs are implemented in suitable algorithmic
steps. Of the prior methods [2,5,17], the scheme of [17] has lowest order, which for
a binary m × n matrix is O((m + n)3). We use the latter method as basis for the
implementation. We say “as basis” since, for a first attempt, full implementation of
all features of [17] was rather daunting. Hence, we opted for a simplified version that
avoids complex operations but still is in the spirit of the method. The next section
summarizes that implementation while pointing out differences to [17]. Section 3
introduces two naïve enumerative tests for comparison purposes. Section 4 describes
computational results for nontrivial test instances. Section 5 contains technical details
of the implementation.

123

Unimodularity test 59

2 Summary of implementation

This section describes the implementation and compares it with the method of [17]. For
an abbreviated terminology, implemented method refers to the method implemented
to-date, while original method is the scheme of the cited reference.

We strive for an intuitive discussion so that salient ideas emerge and a clutter of
technical details is avoided. The reader not familiar with matroid theory may want to
rely on the introductory discussion of binary, graphic, and regular matroids of [19]
before proceeding.

We first review key concepts for testing matroid regularity. For details, see
[12,19].

2.1 Key concepts

We begin with some definitions regarding matrix notation. Let A be a matrix whose
rows (resp. columns) are indexed by a set Z (resp. Y). For any subsets Z ′ ⊆ Z and
Y ′ ⊆ Y , the submatrix of A indexed by Z ′ and Y ′ is denoted by AZ ′,Y ′ . If Z ′ is a
singleton set, say consisting of an element z, then we use just z instead of {z} in the
above notation. A singleton set containing an element y of Y is handled analogously.
In particular, Az,y is the entry of A indexed by z and y. The abbreviated notation is not
ambiguous since we always employ upper-case letters for sets and lower-case letters
for elements of sets.

For a binary matrix [I |B], let X and Y index the columns of the submatrices I and
B, respectively. The matroid M(B) has X ∪ Y as groundset. For X ′ ⊆ X and Y ′ ⊆ Y ,
the subset X ′ ∪ Y ′ of X ∪ Y is independent in the matroid if the column submatrix of
[I |B] indexed by X ′ ∪Y ′ has linearly independent columns. We avoid explicit display
of the matrix I by indexing the rows of B by X , in addition to the column index set
Y . Then X ′ ∪ Y ′ is independent in M(B) if and only if the submatrix B ′ = BX\X ′,Y ′
has independent columns.

We consider two matrices equal if they become numerically the same under suitable
row and column permutations. The indices of rows and columns are ignored in the
comparison. It is convenient that we apply matroid terminology for M(B) to B as well.
Thus, B is regular if M(B) has that property, that is, if B can be signed to become a
t.u. matrix.

For x ∈ X and y ∈ Y , a pivot on a nonzero entry Bx,y of the matrix [I |B] is the
customary set of elementary row operations. In the reduced notation where I is not
explicitly listed, the pivot converts B to a matrix B ′ that agrees numerically with B
except for the entries B ′

i, j where i �= x , j �= y, and Bx, j = Bi,y = 1. The matrix B ′
has the same index sets as B except that the indices x and y have traded places. The
matrix B is regular if and only if this holds for B ′.

M(B) and B are graphic if there exists an undirected graph G with edges indexed
by the elements of X ∪ Y such that the edge sets of subgraphs of G without any
cycle are precisely the independent sets of M(B). Note that each zero column of B
corresponds to a loop of G. M(B) and B are cographic if the transpose of B, denoted
by Bt , is graphic. M(B) and B are planar if B is graphic and cographic.

123

60 M. Walter, K. Truemper

A graphic B is regular. Since B can be signed to become t.u. if and only if this is so
for Bt , a cographic B is regular as well. There exist very fast algorithms for deciding
whether B is graphic [1,7].

Define BG(B) to be the bipartite graph with node set X ∪ Y where an undirected
edge joins nodes x ∈ X and y ∈ Y if Bx,y = 1. Declare the matrix B to be connected
if the graph BG(B) is connected. Define the length of B, denoted by s(B), to be the
number of rows plus the number of columns of B. We allow matrices to have no rows
or columns. The rank of any such matrix is 0.

If B has zero or unit vector rows or columns, or has duplicate rows or columns,
then recursive deletion of zero/unit vectors and of duplicates except for representatives,
reduces B to a simple matrix B ′. The matrix B is regular if and only if this is so for
B ′. If B ′ has no rows or columns, then B is regular. For the definitions to follow, we
assume that B is simple.

If matrix B has block structure, say with blocks Bi , i = 1, 2, . . . , then B is a 1-sum
of the blocks Bi , and B is regular if and only if each of the blocks Bi has that property.
The implemented method detects blocks via BG(B). For the remaining discussion
of this section, we assume that the simple B has no such block structure, which is
equivalent to assuming that B is connected.

Suppose B has the form

Fig. 1 Separation of B

A2

B =

A1

D

Y1 Y2

X1

X2

E

Define k = rank(D) + rank(E) + 1. If the lengths of A1 and A2 satisfy s(A1) ≥ k
and s(A2) ≥ k, then B has a k-separation. If either s(A1) = k − 1 and s(A2) ≥ k, or
s(A1) ≥ k and s(A2) = k − 1, then B has a deficient k-separation. If, for some l ≥ k,
s(A1) ≥ l and s(A2) ≥ l, then B has a (k|l)-separation.

If the submatrix E of B is nonzero, then by pivots in E we can always obtain a
matrix B ′ with the same type of separation where E ′ = 0 and rank(D′) = k − 1. In
the discussion below, we assume that B itself is of that form.

In the case of a 2-separation, the submatrix D of Fig. 1 has rank equal to 1, and B
has the following form.

123

Unimodularity test 61

Fig. 2 2-Sum case Y1
y

A2

B =

A1

Y2

x

X1

X2

0

0

1
all
1s

If in addition both A1 and A2 have at least one entry, then B is a 2-sum with the
following component matrices B1 and B2.

Fig. 3 2-Sum components

A2B2 =

y Y2
x

X2
1
0

Y1
y

B1 = A1

x

X1

0 1 1

1

Let B be the submatrix Bx,y of B in Fig. 2. The same submatrix occurs in B1 and B2

of Fig. 3. That submatrix has rank equal to 1. It is called the connecting submatrix of
the 2-sum decomposition. When B1 and B2 are overlaid such that the two connecting
submatrices are identified, then straightforward computations produce the matrix B
of Fig. 2; see Chap. 8 of [19]. The matrix B of Fig. 2 is regular if and only if this is so
for B1 and B2.

Continuing the discussion of matrix features, suppose that B is connected, simple,
and has no 2-sum decomposition. Such a matrix is called 3-connected. Assume that
a 3-connected B has a (3|l)-separation where l ≥ 4. It is not difficult to prove that
pivots can produce in B the following structure for the submatrices A1, A2, and D,
where D has the same rank as D, that is, 2.

Fig. 4 3-Sum case

1
1

Y1

A2
DD1

D12 D2

B =

A1

Y2

Y1
Y2

X1

X2

X1

X2

0

01 1

123

62 M. Walter, K. Truemper

Then B is a 3-sum with the following component matrices B1 and B2.

Fig. 5 3-Sum components

1 1

1

Y1

DD1

B1 =
A1

Y2

Y1

X1

X2

X1
0

0
1

1

1

A2
D

D2

Y1 Y2

Y2

B2 =

X1

X2
X2

0
1
1

0

For B of Fig. 4, define B to be the submatrix BX1∪X2,Y 1∪Y 2
. The same submatrix

occurs in B1 and B2 of Fig. 5. Evidently, B is a 3 × 3 matrix, so D is a 2 × 2 matrix.
Since D has rank equal to 2, it must be an identity matrix or have exactly three 1s. The
matrix B is the connecting submatrix of the 3-sum decomposition. It is easy to check
that B is graphic. The corresponding graph is the wheel W3 with three spokes. When
B1 and B2 are overlaid such that the two connecting submatrices are identified, then,
analogously to the 2-sum case, straightforward computations produce the matrix B of
Fig. 4.

The matrix B of Fig. 4 is regular if and only if this is so for B1 and B2 of Fig. 5. The
above 2-sums and 3-sums decompositions can be found by the matroid intersection
algorithm of [6] plus some pivots.

Finally, there is a regular matroid on 10 elements called R10. There are only two
matrices that represent R10. They are B10.1 and B10.2 below.

Fig. 6 Matrices B10.1 and
B10.2 for R10

B10.1 = B10.2 =

1 0 0 1 1
1 1 0 0 1
0 1 1 0 1

00 11 1
1 1 1 1 1

1 1 0 0 1
1 1 1 0 0
0 1 1 1 0

00 11 1
1 0 0 1 1

R10 is the smallest regular matroid that is not graphic and not cographic. It is simple,
connected, and does not have a 2- or 3-sum decomposition.

In slightly different form and distributed among a number of references, the con-
cepts and ideas stated above were known prior to 1978. But that knowledge was not
sufficient to establish a polynomial testing algorithm for regularity. That situation
changed in 1978 when Seymour [12] constructed the decomposition theorem for the
regular matroids, which supports efficient testing of regularity. Indeed, the cited ref-
erence implicitly already contains such a scheme, provided certain nonconstructive
proofs are replaced by constructive ones involving polynomial subroutines. A simpli-
fied version of the theorem that suffices for present purposes is stated next.

Theorem 2 For any regular matrix, at least one of the statements (i)–(vi) applies.

(i) B is graphic or cographic.
(ii) B has a zero or unit vector row or column, or has duplicate rows or columns.

(iii) B is simple and a 1-sum.
(iv) B is simple, connected, and a 2-sum.

123

Unimodularity test 63

(v) B is 3-connected and, after suitable pivots, has the form of a 3-sum that corre-
sponds to a (3|6)-separation. Let B with row index set X and column index set Y
be any 3-connected nongraphic and noncographic submatrix of B. Then there is
a (3|6)-separation of B, say defined by index sets X1, X2, Y1, and Y2, such that
X1 ∩ X, X2 ∩ X, Y1 ∩ Y , and Y2 ∩ Y define a (3|6)-separation of B.

(vi) B is equal to B10.1 or B10.2 of Fig. 6.

Theorem 2 supports the following polynomial algorithm for testing regularity.
Given a matrix B, check with one of the methods of [1,7] whether B or Bt is graphic.
If this is so, B has been proved to be regular. Otherwise, reduce B to a simple matrix
and check if it has a 1-, 2-, or 3-sum decomposition, in that order, using the graph
BG(B) for the 1-sum case and the matroid intersection algorithm of [6] for the 2- and
3-sum cases. If a decomposition is detected, carry out the decomposition and apply
the algorithm recursively to the components. Otherwise, check if B is equal to one
of the matrices B10.1 and B10.1 of Fig. 6. If this is the case, B is regular. Otherwise,
declare B to be nonregular.

References [2,5] describe sophisticated versions of the above approach, with bound
O((m + n)4.5)(log(m + n))0.5) for [2] and O((m + n)5) for [5]. A lower complexity
can be achieved when the tests of graphicness and the search for decompositions are
intertwined, and when the latter search is carried out by a certain induced decompo-
sition scheme instead of the matroid intersection algorithm [6]. This is done in [17],
producing a test with bound O((m + n)3). The next section gives insight into that
algorithm, which according to the convention introduced earlier is called the original
method. In the description below, the emphasis is on providing intuitive insight into the
method instead of a mathematically precise specification, which is included in [17].

2.2 Original method

The method initializes a set B with a matrix B0 that is to be tested for regularity. The
method removes (resp. adds) matrices from (resp. to) B until B becomes empty or
nonregularity of some matrix in B has been proved. In the former (resp. latter) case, B
has been proved to be regular (resp. not regular). For some matrices of B, additional
information is recorded. Details are covered in the description of the method.

0. If B is empty, declare the initial matrix B0 to be regular, and stop. Otherwise remove
an arbitrary matrix B from B. If B is known to be 3-connected, go to Step 3.

1. If B is not simple, remove zero and unit vectors and reduce duplicate vectors to
representatives. If B is not connected, carry out a 1-sum decomposition via the
graph BG(B), place the components into B, and go to Step 0.

2. Determine a sequence of nested 3-connected submatrices N 1, . . . , N k for some
k ≥ 1, where (1) N 1 is graphic and the corresponding graph G is the wheel W3, (2)
for each i > 1, N i contains N i−1 as proper submatrix and the lengths of N i and
N i−1 satisfy s(N i) ≤ s(N i−1)+3. We skip detailed discussion of the steps finding
such a sequence. They are described in procedure FIND-B and EXTEND-B of the
original method, except that FIND-B or EXTEND-B assume 3-connectedness of
B and can be trivially modified to detect 2-sum decompositions. Suffice it to say
here that the steps make repeated use of breadth-first-search (BFS) in the graph

123

64 M. Walter, K. Truemper

BG(B) or a closely related graph, and of certain path shortening pivots. If the
modified FIND-B or EXTEND-B detects a 2-sum decomposition, place the com-
ponents of the 2-sum into B and return to Step 0. Otherwise, the last matrix N k

of the sequence of nested 3-connected submatrices is equal to B. Place B into B,
suitably record with it the 3-connected extension sequence, and go to Step 0.

3. If B is not supplied with a sequence of nested 3-connected submatrices, construct
such a sequence as described in Step 2, except that the 2-sum decomposition case
cannot occur. Regardless of the case, each 3-connected submatrix N i triggers addi-
tional testing as described next. Recall that N 1 is graphic, indeed represents the
wheel W3. It is assumed inductively that N i−1 is graphic and possibly planar.

4. If N i−1 is planar, check whether N i is planar. If the answer is negative, check if N i

is graphic or cographic; if B turns out to be cographic, apply the transpose operator
to B and its submatrices. Thus, there are three possible outcomes: N i is planar,
or graphic but not cographic, or not graphic and not cographic. The test is carried
out by TEST-C of the original method. It is very efficient due a key result of [22]
according to which a 3-connected graphic matrix has exactly one corresponding
graph. If N i = B and N i is planar or graphic, then B is regular; go to Step 0.

5. Determine whether any one of certain (3|l)-separations, l ≥ 3, of N i can be
extended to a (3|l ′)-separation of B for l ′ ≥ 4. If that is so, the latter separation is
induced by the former one. The test uses the straightforward subroutine PARTI-
TION of the original method, but nevertheless is rather complicated since it exploits
specific structural information concerning N i−1 and N i . If an induced (3|l ′)-
separation is found, determine the corresponding 3-sum decomposition, place the
components into B, and go to Step 0. In a rather complex process, retain additional
information that concerns the current sequence of nested 3-connected submatrices
and, for special cases, facts about induced decompositions. The retained infor-
mation is used later when the component is removed from B and processed. It is
precisely this carryover of information that makes the relatively low complexity of
the original method possible. If no induced (3|l ′)-separation is found, proceed as
follows depending on the classification of N i of Step 4: (1) If N i is graphic, return to
Step 2 to extend the current sequence of nested 3-connected submatrices. (2) If N i

is not graphic, equal to B, and equal to one of B10.1 or B10.2, then go to Step 0. (3)
Otherwise, N i is not regular; declare that B of the original B is not regular, and stop.

2.3 Implemented method

The main difference between the original and the implemented method is replacement
of the complicated Step 5 by a simpler, enumerating search that looks for induced
(3|4)-separations. The search is started when (1) a 3-connected matrix B not equal
to B10.1 or B10.2 is at hand; (2) a sequence of 3-connected nested N 1, . . . , N k = B
has been found where the length of N 1 satisfies 8 ≤ s(N 1) ≤ 10, and where for
2 ≤ i ≤ k, the lengths of N i and N i−1 satisfy s(N i) ≤ s(N i−1)+3; and (3) for some
1 ≤ j < k and all 1 ≤ i ≤ j , the matrices N i are graphic or cographic, while N j+1

is not graphic and not cographic. Let Ei be the union of the row and column index
sets of the matrices N i of the sequence.

123

Unimodularity test 65

Since N j+1 is not graphic and not cographic, B is not graphic and not cographic.
If B is regular, then by Theorem 2(v) there is a (3|6)-separation of B that can be
reduced to a (3|6)-separation of N j+1 by suitable reduction of the index sets of the
separation. Since s(N i) ≤ s(N i−1)+3, the matrix N j has a 3-separation that induces
the (3|6)-separation of B. In the search described next, we look instead for a less
demanding (3|4)-separation of B induced by a possibly deficient 3-separation of one
of the matrices N 1, . . . , N j .

We first generate all pairs (T, E1\T) where (1) T satisfies |T | ≤ |E1\T |, and (2)
X1 = X ∩ T , X2 = X\X1, Y1 = Y ∩ T , and Y2 = Y\Y1 define a possibly deficient
3-separation of N 1. The number of such pairs is bounded by a constant since |E1| ≤ 10.
For i = 2, . . . , j , we then generate all pairs (T, T \Ei) where (1) T contains at least
one element of Ei\Ei−1 and at most one element of Ei−1, and (2) the pair defines a
possibly deficient 3-separation of N i analogously to the N 1 case. Thus, the number of
pairs for case i is linear in |Ei |, and overall a total of O((m + n)2) pairs are produced.

The construction rules of the pairs obtained from the sequence N 1, . . . , N j assure
validity of the following claim. If B is regular, then, for some i ≤ j , the possi-
bly deficient 3-separation of N i corresponding to one of the derived pairs induces a
(3|4)-separation of B.

We use PARTITION of the original method to derive such an induced
(3|4)-separation and thus a 3-sum decomposition of B, or to conclude that no such
decomposition is possible. PARTITION specifies that the smaller set T of the input
pair satisfies |T | ≥ 3, but with a trivial modification the algorithm works just as well
for the case |T | = 2 arising here from deficient 3-separations.

Suppose a 3-sum decomposition is carried out. In the original method, work done
prior to that decomposition is used when component matrices are processed. This
approach necessitates that tests for graphicness are accompanied with a search for
decompositions. The implemented method avoids the complexity of that approach
and simply proceeds recursively after each decomposition. In the simplified process,
a sequence of nested 3-connected submatrices N 1, . . . , N k = B is determined, and a
test of graphicness and cographicness is carried out for each matrix of the sequence
until either B is determined to be graphic or cographic, or a nongraphic and nonco-
graphic N j+1 is found. In the latter case, the above-described search for a 3-sum
decomposition either produces such a decomposition or results in the conclusion that
the matrix is not regular.

We turn to the problem of signing the original B. The original method does such
signing and then attempts to scale the signed version so that it becomes the input matrix
A. In the implemented method, the signing of A is taken into account when B is signed,
and thus the scaling step is not needed. Also, the signing is done at the very beginning
since it is quickly done and may already determine the input matrix A to be non-t.u.

The overall run time of the implemented method is O((m + n)5), since (1) PAR-
TITION has at most quadratic run time, (2) a given nested sequence of 3-connected
matrices produces at most a quadratic number of input pairs for PARTITION, (3) there
are at most a linear number of 3-sum decompositions, and (4) the remaining steps are
easily done in O((m + n)5) time.

123

66 M. Walter, K. Truemper

The user might want to obtain a certificate together with the answer. A positive
certificate consists of a tree whose inner nodes correspond to 1-, 2-, and 3-sum decom-
positions, and whose end nodes correspond to graphs and copies of B10.1 and B10.1.

A negative certificate consists of a square matrix whose determinant has absolute
value of at least 2. More interesting is a minimal violator that is not t.u., but all of
whose proper submatrices are t.u. A simple strategy for finding a minimum violator
recursively removes a single row or column, tests for total unimodularity, and adds
the row or column back in if the submatrix turns out to be t.u. Three ideas reduce the
number of total unimodularity tests during the search.

First, if the signing process determines A to be non-t.u. while B was found to be
regular, then the signing directly determines a minimal violator having exactly two
nonzeros in each row and column; see Sect. 5.

Second, suppose that the method has stopped since the currently processed matrix
is nonregular. Due to the structure of the decompositions, that nonregular matrix is
obtainable from the original matrix B by a sequence of pivots followed by deletion of
some rows and columns. The sequence of pivots and the deletions are readily deter-
mined. If a deleted row or column was never involved in a pivot, then its deletion from
B produces a smaller nonregular matrix. Hence, we carry out all such deletions.

The third idea is based on the fact that the given matrix may contain a number of
minimal violators. This need not be so, as shown by the construction of [18] where the
matrices having exactly one minimal violator are produced. Guessing that a number of
minimal violators are present, we remove 80% of the rows or columns of the nonregular
B. If the resulting submatrix is nonregular, recursion is used. Otherwise, we go back
to the original matrix and remove 40% of the rows or columns. We go on by always
halving the amount until we reach a fixed threshold. If the heuristic fails to produce
a nonregular submatrix, we apply the naïve strategy and remove only a single row or
column at a time.

We use a straightforward matrix implementation with O(1) indexed access. For
conceptual simplicity, subroutines sometimes move certain submatrices of a given
matrix to the top left corner or carry out column/row permutations or transposition.
For efficient handling of these cases, we have implemented various matrix proxies.
The most important one is an object that refers to another matrix, but applies row and
column permutations beforehand. With the help of generic programming, it can be
used as a usual matrix, but only needs O(1) time to swap two rows or columns.

Below, the implemented method is called Decomposition Test, for short DT. Method
DT followed by construction of a minimal violator, if applicable, is called DT&V.

3 Enumerative methods

We also have implemented two naïve enumerative tests for comparison purposes. The
first one tests the square submatrices using the criterion of Camion [4], according to
which a matrix A is t.u. if and only if, for every square submatrix A′ of A with even
row and column sums, the sum of the entries of A′ is divisible by 4. Submatrix Test,
for short ST, applies that test to the square submatrices of A in increasing order.

The second one is based on the characterization of total unimodularity by Ghouila-
Houri [8], which says that a matrix A is t.u. if and only if for each column submatrix

123

Unimodularity test 67

A′ of A, there is a {±1} vector x such that A′x is a {0,±1} vector. Algorithm Column
Enumeration, for short CE, carries out that test in straightforward fashion.

4 Computational results

We have implemented DT, DT&V, ST, and CE in C++ and have applied them to three
matrix classes using an AMD Opteron with 2.3 GHz. In the tables below, the run time
is measured in seconds and omitted if less than 0.1 s.

The first class consists of randomly generated matrices. If the generation is carried
out without some care, then the resulting matrices most likely contain a non-t.u. 2 × 2
submatrix and typically are detected to be non-t.u. by the signing process. Thus, the
methods ST, CE, and DT would settle the cases very quickly. To prevent that trivial
outcome, we generate {0, 1} matrices B randomly and apply the signing procedure to
obtain {0,±1} matrices A which are then tested. The net effect of this change is that
(1) ST and CE are less likely to terminate due to a 2 × 2 non-t.u. submatrix, and (2)
DT and DT&V never detect non-total unimodularity in the signing process and thus
always carry out the generally difficult regularity test of B.

Details of the generation of the random matrices are as follows. For each p = 2/3,
1/2, 1/4, and 1/8, and each n = 200, 400, and 800, we randomly select ten n ×n {0, 1}
matrices B where p is the probability that a given entry receives the value 1. Then
we apply the signing procedure to each B to obtain {0,±1} matrices A. Thus, A is
t.u. if and only if B is regular. To each such matrix A, the methods ST, CE, DT, and
DT&V are applied. In Table 1 below, the results listed for each pair of p and n are the
geometric means of the run times for the ten matrices.

It turns out that all matrices are non-t.u., which is no surprise. The impressive
performance of method CE is due to the fact that non-total unimodularity can be proved
using few columns. Method DT also handles all cases well since it typically finds small
3-connected nongraphic and noncographic submatrices that result in few candidate
pairs for induced (3|4)-separations. Method ST is third in performance and works well
except for the cases with p = 2/3 and n = 400, 800. The methods DT and DT&V

Table 1 Running times for
random matrices

Size p ST CE DT DT&V

200 × 200 2/3 185.4 0.1

400 × 400 2/3 2,948.8 0.1 0.3 0.4

800 × 800 2/3 >3,600 0.2 0.7 0.9

200 × 200 1/2 28.2

400 × 400 1/2 218.3 0.1 0.1 0.1

800 × 800 1/2 >3,600 0.3 0.7 0.7

200 × 200 1/4 0.1 0.1 0.1

400 × 400 1/4 0.2 0.1 0.3 0.3

800 × 800 1/4 1.0 0.3 0.4 0.5

200 × 200 1/8 0.1 0.1 0.1

400 × 400 1/8 0.2 0.1 0.2 0.3

800 × 800 1/8 0.5 0.2 0.6 2.0

123

68 M. Walter, K. Truemper

Table 2 Running times for
network matrices

Size ST CE DT

10 × 10 0.3

12 × 12 1.8

14 × 14 21.6 0.1

16 × 16 311.8 1.0

18 × 18 >3,600 8.3

20 × 20 >3,600 83.1

22 × 22 >3,600 709.6

24 × 24 >3,600 >3,600

50 × 50 >3,600 >3,600

100 × 100 >3,600 >3,600

200 × 200 >3,600 >3,600 0.1

400 × 400 >3,600 >3,600 0.5

800 × 800 >3,600 >3,600 5.3

have similar run times. This is due to the fact that the heuristic for finding minimal
violators described in Sect. 2.3 is very effective for the matrix class constructed here.

The second set of test matrices is generated from randomly generated directed
networks. According to Theorem 2, these matrices and their transposes are in some
sense the main building blocks of t.u. matrices. We generate the networks by con-
structing Erdös–Rényi graphs G(n, p) (see [9]) and compute matrices representing
the corresponding graphic matroids. The parameters n and p are chosen such that the
resulting matrix is connected and of suitable size. For each matrix size listed below,
we generate one instance. These matrices are t.u. and therefore should be difficult
for the enumerative methods ST and CE. At the same time, DT should perform well
since the method never needs to find a 3-sum decomposition or locate a minimal
violator. The data of Table 2 support these predictions.

The third class consists of matrices that contain exactly one square submatrix whose
determinant is not equal to 0 or ±1 and thus must be a minimal violator. Each matrix is
constructed from a square matrix of odd order n ≥ 5 where each row and each column
has exactly two 1s, arranged in cycle fashion. In that matrix, two adjacent rows are
selected, and for any column where those two rows have 0s, both 0s are replaced by
1s. It is readily shown that any such matrix is a minimal violator. Using results of
[18], the matrix is transformed by pivots to one having exactly one violator of order
(n − 1)/2. Thus, as n grows, effort of ST and CE must grow exponentially, and even
for modest values of n the two methods should be unable to decide total unimodularity.
On the other hand, DT should be able to process these difficult cases with reasonable
efficiency. Finally, DT&V should require significant additional effort beyond that for
DT since each matrix has just one minimal violator, and that submatrix is relatively
large. Table 3 confirms these predictions.

5 Details of implementation

This section provides implementation details. We skip the trivial enumerative tests
ST and CE, and also omit steps that are identical to their counterparts in the original

123

Unimodularity test 69

Table 3 Running times for
odd-cycle matrices

Size ST CE DT DT&V

11 × 11 0.7

13 × 13 5.7

15 × 15 79.3 0.6

17 × 17 1,201.8 6.0 0.1

19 × 19 >3,600 59.1 0.1

21 × 21 >3,600 569.2 0.2

23 × 23 >3,600 >3,600 0.3

51 × 51 >3,600 >3,600 0.6 3.2

101 × 101 >3,600 >3,600 3.4 170.7

151 × 151 >3,600 >3,600 13.1 1,302.5

201 × 201 >3,600 >3,600 32.1 3,490.1

301 × 301 >3,600 >3,600 137.2 >3,600

401 × 401 >3,600 >3,600 476.3 >3,600

501 × 501 >3,600 >3,600 1,457.1 >3,600

601 × 601 >3,600 >3,600 2,422.0 >3,600

701 × 701 >3,600 >3,600 >3,600 >3,600

method. As an easy means of differentiation, we use the names of the procedures of the
original method in capital letters, just as done in [17], and employ lower-case names
for the subroutines introduced here. Bold fonts for both types of names help set them
apart from the text.

The discussion proceeds in a top-down manner. Thus, we start with the main routine,
which tests for total unimodularity.

The signing procedure described next recursively modifies the entries of the {0,±1}
input matrix A so that certain minimal submatrices V with exactly two nonzeros in
each row and column and with entries summing to 2 (mod 4) have the entries sum to 0
(mod 4) after the signing. In the context of the main routine is_totally_unimodular,
the matrix A is t.u. if and only if the signing routine does not change any entry of A
and the binary version B of A is regular. On the other hand, if the signing routine does
change at least one such entry, then the subroutine can be stopped when the first such
change is to be made. The matrix V on hand at that time is a minimal non-t.u matrix.

123

70 M. Walter, K. Truemper

Recall that the signing procedure is used in the construction of the first class of test
matrices, where each randomly generated matrix B is signed by the signing procedure
to obtain a matrix A. When methods DT and DT&V later process each such test
matrix A, the signing procedure does not alter A, and thus regularity of B is tested.
The outcome of the latter test then decides whether A is t.u.

The next subroutine is the top procedure for the regularity test of B. Given B, either
(1) the subroutine decomposes B in a 1- or 2-sum decomposition and then invokes
recursion for the components; or (2) it determines B to be isomorphic to B10.1 or B10.2

of Fig. 6 and thus to be regular; or (3) it constructs a sequence of nested 3-connected
submatrices N 1, . . . , N k which are tested for graphicness and cographicness; if all
submatrices turn out to be graphic or cographic, B is regular; or (4) it uses the sequence
N 1, . . . , N k to decompose B in a 3-sum decomposition and then invokes recursion
for the components of the decomposition; or, if none of (1)–(4) apply, (5) it concludes
that B is not regular.

123

Unimodularity test 71

123

72 M. Walter, K. Truemper

Subroutine test_graphicness is described next. It calls TEST-C repeatedly to
extend the graph of a submatrix N i to the graph of the next larger submatrix N i+1.
TEST-C contains a minor error arising from two special cases. The code uses the
amended version.

If A is not t.u., a minimal violator is found as described in Sect. 2.3. Finally, tests
for unimodularity and strong unimodularity have been implemented in straightfor-
ward fashion using Theorem 1. In the unimodularity test of an integer matrix A,
Gaussian elimination selects a basis C of A and solves the equation C X = A for X .
Computation of the Smith Normal Form [13] settles whether gcdi det Ci = 1, and
is_totally_unimodular decides if X is t.u. The matrix A is unimodular if and only if
gcdi det Ci = 1 and X is t.u. Strong unimodularity of A is decided by testing if both
A and At are unimodular.

6 Summary

The work reported here was motivated by the practical need for an effective com-
puter program testing total unimodularity, strong unimodularity, and unimodularity.
We decided to use the algorithm of [17] for the total unimodularity test, which for
m × n matrices has O((m + n)3) complexity. Exact implementation of that algo-
rithm is rather daunting, so we used a somewhat simplified version with O((m + n)5)

complexity. Computational tests indicate that matrices with several hundred rows and
columns should be handled in reasonable time. For the processing of larger matri-
ces, the implementation could be refined using the parts of the algorithm of [17] that
have been simplified here. An intermediate remedy could also be implemented where
the time-consuming search for decompositions is handled by parallel processors. The
present program is purposely structured to simplify such a shift to parallel computa-
tion.

123

Unimodularity test 73

References

1. Bixby, R.E., Cunningham, W.H.: Converting linear programs to network problems. Math. Oper. Res.
5, 321–357 (1980)

2. Bixby, R.E., Cunningham, W.H., Rajan, R.: A decomposition algorithm for matroids. Rice University,
Technical report (1986)

3. Boost Software License http://www.boost.org/LICENSE_1_0.txt
4. Camion, P.: Matrices Totalement Unimodulaire et Problèmes Combinatoires. PhD thesis, Université

Libre de Bruxelles, Bruxelles (1963)
5. Cunningham, W.H., Edmonds, J.: Decomposition of linear systems, (unpublished). (1965)
6. Edmonds, J.: Minimum partition of a matroid into independet subsets. J. Res. Natl. Bur. Stand. (B) 69,

67–72 (1965)
7. Fujishige, S.: An efficient pq-graph algorithm for solving the graph-realization problem. J. Comput.

Syst. Sci. 21, 63–86 (1980)
8. Ghouila-Houri, A.: Caracterisation des matrices totalement unimodulaires. C.R. Acad. Sci. Paris 254,

1192–1194 (1962)
9. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)

10. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. Ann. Math. Stud. 38,
223–246 (1956)

11. Hoffman, A.J., Oppenheim, R.: Local unimodularity in the matching polytope. Ann. Discret. Math. 2,
201–209 (1978)

12. Seymour, P.D.: Decomposition of regular matroids. J. Comb. Theory Ser. B 28, 305–359 (1980)
13. Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Philos. Trans. R. Soc.

Lond. 151, 293–326 (1861–1862)
14. Software available at: http://www.utdallas.edu/~klaus/TUtest/; http://www.math.uni-magdeburg.de/

~walter/TUtest/
15. Truemper, K.: Algebraic characterizations of unimodular matrices. SIAM J. Appl. Math. 35, 328–332

(1978)
16. Truemper, K.: Complement total unimodularity. Linear Algebra Appl. 30, 77–92 (1980)
17. Truemper, K.: A decomposition theory for matroids. V. Testing of matrix total unimodularity. J. Comb.

Theory Ser. B 49, 241–281 (1990)
18. Truemper, K.: A decomposition theory for matroids. VII. Analysis of minimal violation matrices.

J. Comb. Theory Ser. B 55, 302–335 (1992)
19. Truemper, K.: Matroid Decomposition (revised edn). Leibniz, Plano, TX (1998)
20. Truemper, K., Chandrasekaran, R.: Local unimodularity of matrix–vector pairs. Linear Algebra Appl.

22, 65–78 (1978)
21. Tutte, W.T.: A homotopy theorem for matroids I, II. Trans. Am. Math. Soc. 88, 527–552 (1958)
22. Whitney, H.: 2-isomorphic graphs. Am. J. Math. 55, 245–254 (1933)

123

http://www.boost.org/LICENSE_1_0.txt
http://www.utdallas.edu/~klaus/TUtest/
http://www.math.uni-magdeburg.de/~walter/TUtest/
http://www.math.uni-magdeburg.de/~walter/TUtest/

	Implementation of a unimodularity test
	Abstract
	1 Introduction
	2 Summary of implementation
	2.1 Key concepts
	2.2 Original method
	2.3 Implemented method

	3 Enumerative methods
	4 Computational results
	5 Details of implementation
	6 Summary
	References

