
Math. Prog. Comp. (2012) 4:109–149
DOI 10.1007/s12532-012-0036-1

FULL LENGTH PAPER

PySP: modeling and solving stochastic programs
in Python

Jean-Paul Watson · David L. Woodruff ·
William E. Hart

Received: 7 September 2010 / Accepted: 2 February 2012 / Published online: 7 March 2012
© Springer and Mathematical Optimization Society 2012

Abstract Although stochastic programming is a powerful tool for modeling deci-
sion-making under uncertainty, various impediments have historically prevented its
wide-spread use. One factor involves the ability of non-specialists to easily express
stochastic programming problems as extensions of their deterministic counterparts,
which are typically formulated first. A second factor relates to the difficulty of solving
stochastic programming models, particularly in the mixed-integer, non-linear, and/or
multi-stage cases. Intricate, configurable, and parallel decomposition strategies are
frequently required to achieve tractable run-times on large-scale problems. We simul-
taneously address both of these factors in our PySP software package, which is part
of the Coopr open-source Python repository for optimization; the latter is distributed
as part of IBM’s COIN-OR repository. To formulate a stochastic program in PySP,
the user specifies both the deterministic base model (supporting linear, non-linear, and
mixed-integer components) and the scenario tree model (defining the problem stages
and the nature of uncertain parameters) in the Pyomo open-source algebraic model-
ing language. Given these two models, PySP provides two paths for solution of the
corresponding stochastic program. The first alternative involves passing an extensive

J.-P. Watson (B)
Discrete Math and Complex Systems Department, Sandia National Laboratories,
PO Box 5800, MS 1326, Albuquerque, NM 87185-1326, USA
e-mail: jwatson@sandia.gov

D. L. Woodruff
Graduate School of Management, University of California Davis,
Davis, CA 95616-8609, USA
e-mail: dlwoodruff@ucdavis.edu

W. E. Hart
Computer Science and Informatics Department, Sandia National Laboratories,
PO Box 5800, MS 1327, Albuquerque, NM 87185-1327, USA
e-mail: wehart@sandia.gov

123

110 J.-P. Watson et al.

form to a standard deterministic solver. For more complex stochastic programs, we
provide an implementation of Rockafellar and Wets’ Progressive Hedging algorithm.
Our particular focus is on the use of Progressive Hedging as an effective heuristic for
obtaining approximate solutions to multi-stage stochastic programs. By leveraging the
combination of a high-level programming language (Python) and the embedding of
the base deterministic model in that language (Pyomo), we are able to provide com-
pletely generic and highly configurable solver implementations. PySP has been used
by a number of research groups, including our own, to rapidly prototype and solve
difficult stochastic programming problems.

Mathematics Subject Classification (2000) 90C15 · 90C90 · 90C59

1 Introduction

The modeling of uncertainty is widely recognized as an integral component in most
real-world decision problems. Typically, uncertainty is associated with the problem
input parameters, e.g., consumer demands or construction times. In cases where param-
eter uncertainty is independent of the decisions, stochastic programming is an appro-
priate and widely studied mathematical framework to express and solve uncertain
decision problems [8,34,55,48]. However, stochastic programming has not yet seen
widespread, routine use in industrial applications—despite the significant benefit such
techniques can confer over deterministic mathematical programming models. The
growing practical importance of stochastic programming is underscored by the recent
proposals for and additions of capabilities in many commercial algebraic modeling
languages [1,41,52,59].

Over the past decade, two key impediments have been informally recognized as
central in inhibiting the widespread industrial use of stochastic programming. First,
modeling systems for mathematical programming have only recently begun to incor-
porate extensions for specifying stochastic programs. Without an integrated and acces-
sible modeling capability, practitioners are forced to implement custom techniques for
specifying stochastic programs. Second, stochastic programs are often extremely dif-
ficult to solve—especially in contrast to their deterministic counterparts. There exists
no analog to CPLEX [12], GUROBI [25], or XpressMP [60] for stochastic program-
ming, principally because the algorithmic technology is still under active investigation
and development, particularly in the multi-stage, non-linear, and mixed-integer cases.

Some commercial vendors have recently introduced modeling capabilities for sto-
chastic programming, e.g., LINDO [38], FrontLine [20], XpressMP [60], Maximal
[41], and AIMMS [1]. On the open-source front, the options are even more limited.
FLOPC++ (part of COIN-OR) [15] provides an algebraic modeling environment in
C++ that allows for specification of stochastic linear programs. APLEpy provides
similar functionality in a Python programming language environment. In either case,
the available modeling extensions have not yet seen widespread adoption.

The landscape for solvers (open-source or otherwise) targeting classes of sto-
chastic program is extremely sparse. Those modeling packages that do provide sto-
chastic programming facilities with few exceptions rely on the translation of the

123

PySP: modeling and solving stochastic programs in Python 111

problem into an extensive form—a deterministic mathematical program encoding of a
stochastic program in which all scenarios are explicitly and simultaneously
represented. The extensive form can then be supplied as input to a solver for the cor-
responding deterministic class of mathematical program, e.g., linear mixed-integer or
non-linear. Unfortunately, direct solution of the extensive form is impractical in all but
the simplest cases. Some combination of either the number of scenarios, the number of
decision stages, or the presence of discrete decision variables typically leads to exten-
sive forms that are either too difficult to solve or exhaust available system memory.
Iterative decomposition strategies such as the L-shaped method [54] or Progressive
Hedging [46] (as described in Sect. 6) directly address both of these scalability issues.
Other approaches include coordinated branch-and-cut procedures [2]. While effective
in certain contexts, the success of these methods is generally sensitive to choices of
fundamental algorithm parameters and algorithm configuration. Further, there is little
understanding of which algorithms perform best for a particular problem class. In
general, the solution of difficult stochastic programs requires both experimentation
with and customization of alternative algorithmic paradigms—necessitating the need
for generic and configurable solvers.

In this paper, we describe an open-source software package—PySP—that begins to
address the issue of the availability of generic and customizable stochastic program-
ming solvers. At the same time, we describe modeling capabilities for expressing sto-
chastic programs. Beyond the obvious need to somehow express a problem instance
to a solver, we identify a fundamental characteristic of the modeling language that is
in our opinion necessary to achieve the objective of generic and customizable stochas-
tic programming solvers. In particular, the modeling layer must provide mechanisms
for accessing components via direct introspection [45], such that solvers can generi-
cally and programmatically access and manipulate model components. Further, from
a user standpoint, the modeling layer should differentiate between abstract models
and model instances—following best practices from the deterministic mathematical
modeling community [16].

To express a stochastic program in PySP, the user specifies both the deterministic
base model and the scenario tree model with associated uncertain parameters in the
Pyomo open-source algebraic modeling language [26,28]. This separation of deter-
ministic and stochastic problem components is similar to the mechanism proposed
in SMPS [7,24]. Historically, SMPS has served as the de facto interchange format
for specifying stochastic programs—mirroring the early role of the MPS format in
deterministic mathematical programming. Pyomo is a Python-based modeling lan-
guage, and provides the ability to model both abstract problems and concrete problem
instances. The embedding of Pyomo in Python enables model introspection and the
construction of generic solvers.

Given deterministic and scenario tree models, PySP provides two paths for the solu-
tion of the corresponding stochastic program. The first alternative involves passing an
extensive form to an appropriate deterministic solver. For more complex stochastic
programs, we provide a generic implementation of Rockafellar and Wets’ Progressive
Hedging (PH) algorithm, with additional specializations for approximating mixed-
integer stochastic programs. By leveraging the combination of a high-level program-
ming language (Python) and the embedding of the base deterministic model in that

123

112 J.-P. Watson et al.

language (Pyomo), we are able to provide completely generic and highly configurable
solver implementations. Karabuk and Grant [37] describe the benefits of Python for
such model-building and solving in more detail.

The remainder of this paper is organized as follows. We begin in Sect. 2 with a brief
overview of stochastic programming, focusing on multi-stage notation and expression
of the scenario tree. In Sect. 3, we describe the PySP approach to modeling a stochas-
tic program, illustrated using a well-known introductory model. PySP capabilities for
writing and solving an extensive form are described in Sect. 4. In Sect. 5, we compare
and contrast PySP with other open-source software packages for modeling and solving
stochastic programs. Our generic implementation of Progressive Hedging is described
in Sect. 6, while Sect. 7 details mechanisms for customizing the behavior of PH. By
basing PySP on Coopr and Python, we are able to provide straightforward mechanisms
to support distributed parallel solves in the context of PH and other decomposition
algorithms; these facilities are detailed in Sect. 8. Finally, we conclude in Sect. 9, with
a brief discussion of the use of PySP on a number of active research projects.

2 Stochastic programming: definition and notations

We concern ourselves with stochastic optimization problems where uncertain param-
eters (data) can be represented by a set of scenarios, each of which specifies both (1) a
full set of random variable (parameter) realizations and (2) a corresponding probabil-
ity of occurrence. The random variables in question specify the evolution of uncertain
parameters over stages, where the stages usually correspond to time. We index the sce-
nario set by s and refer to the entire index set as S. To improve locution, we often refer
to “scenario s” with the understanding that we mean the scenario indexed by s. The
probability of occurrence of s (or, more accurately, a realization “near” the scenario
indexed by s) is written as Pr(s). The source of these scenarios does not concern us
in this paper, although we observe that they are frequently obtained via simulation or
formed from expert opinions. We assume that the decision process of interest consists
of a sequence of discrete stages, the set of which is denoted T ; we index T by t .

Although PySP supports specification of non-linear constraints and objectives, we
develop notation for the linear case in the interest of simplicity. For each scenario s and
stage t , t ∈ T = {1, . . . , |T |}, we are given a row vector c(s, t) of length n(t), a m(t)
× n(t) matrix A(s, t), and a column vector b(s, t) of length m(t). Let N (t) be the index
set {1, . . . , n(t)} and M(t) be the index set {1, . . . , m(t)}. For notational convenience,
let A(s) denote (A(s, 1), . . . , A(s, |T |)) and let b(s) denote (b(s, 1), . . . , b(s, |T |))�.

The decision variables in a stochastic program consist of a set of n(t) vectors
x(t); one vector for each scenario s ∈ S. Let X (s) be (x(s, 1), . . . , x(s, |T |))�.
We will use X as shorthand for the entire solution system of x vectors, i.e., X =
(x(1, 1), . . . , x(|S|, |T |)).

If we were prescient enough to know which scenario s ∈ S would be ultimately
realized, our optimization objective would be to minimize

fs(X (s)) ≡
∑

t∈T

∑

i∈N (t)

[ci (s, t)xi (s, t)] (Ps)

123

PySP: modeling and solving stochastic programs in Python 113

subject to the constraint

X ∈ �s .

We use �s as an abstract notation to express all constraints for scenario s, includ-
ing requirements that some decision vector elements are discrete, or more general
requirements such as

A(s)X (s) ≥ b(s).

The notation A(s)X (s) is used to capture the usual sorts of single period and inter-
period linking constraints that one typically finds in multi-stage mathematical pro-
gramming formulations, e.g., see Chen et al. [10, pp. 32–35].

We refer to a solution that satisfies constraints for all scenarios as admissible. We
refer to a solution vector as implementable if for all pairs of scenarios s and s′ that are
indistinguishable up to stage t , xi (s, t ′) = xi (s′, t ′) for all 1 ≤ t ′ ≤ t and each i in
each N (t). We refer to the set of all implementable solutions as NS for a given set of
scenarios, indexed by s ∈ S.

We must obtain solutions that do not require foreknowledge and that will be fea-
sible independent of which scenario is ultimately realized. In particular, lacking pre-
science, only solutions that are implementable are practically useful. Solutions that
are not admissible, on the other hand, may have some value because while some con-
straints may represent laws of physics, others may be violated slightly without serious
consequence.

To achieve admissible and implementable solutions, the expected value minimiza-
tion problem then becomes:

min
∑

s∈S
[Pr(s) fs(X (s))] (P)

subject to

X (s) ∈ �s ∀s ∈ S
X (s) ∈ NS ∀s ∈ S.

Formulation (P) is known as a stochastic mathematical program. If all decision
variables are continuous, we refer to the problem simply as a continuous stochastic
program. If at least some of the decision variables are discrete, we refer to the problem
as a mixed-integer stochastic program. Both continuous and mixed-integer stochas-
tic programs can be linear or non-linear, depending on the nature of the problem
constraints and objectives. More comprehensive introductions to both the theoretical
foundations and the range of potential applications of stochastic programming can
be found in Birge and Louveaux [8], Shapiro et al. [48], and Wallace and Ziemba
[55].

In practice, the parameter uncertainty in stochastic programs is often encoded via
a scenario tree, in which a node specifies the parameter values b(s, t), c(s, t), and

123

114 J.-P. Watson et al.

A(s, t) for all scenarios indexed by s = s′ and s = s′′ in S such that s′ and s′′ are
indistinguishable up to stage t . Scenario trees are discussed in more detail in Sect. 6.

3 Modeling in PySP

Modern algebraic modeling languages (AMLs) such as AMPL and GAMS provide
powerful mechanisms for expressing and solving deterministic mathematical pro-
grams [3,21]. AMLs allow non-specialists to easily formulate and solve mathematical
programming models, avoiding the need for a deep understanding of the underlying
algorithmic technologies. We desire to deploy the same capabilities for stochastic
mathematical programming models. Many AMLs differentiate between the abstract,
symbolic model and a concrete instance of the model, i.e., a model instantiated with
data. The advantages of this approach are widely known [16, p. 35], in particular
(1) the improved maintainability and readability of the core algebraic model, (2) the
ability to specify constraint and objective data via symbolic indexing (as opposed to
concrete values), and (3) the separation (and therefore substitutability) of data sources
from specification of the model. Thus, one of our core design objectives is to retain
this differentiation in our approach to modeling stochastic mathematical programs
in PySP. Finally, our ultimate objective is to develop and maintain software under
an open-source distribution license. Consequently, PySP itself must be based on an
open-source AML.

These design requirements have led us to select Pyomo [28] as the AML upon which
PySP is based. Pyomo is an open-source AML developed and maintained by Sandia
National Laboratories (co-developed by authors of this paper), and is distributed as
part of IBM’s COIN-OR initiative [11]. Pyomo is written in the Python high-level
programming language [44], which possesses several features that enable the devel-
opment of generic solvers. AML alternatives to Pyomo (many of which are also written
in Python) do exist, but the discussion of the pros and cons of particular packages are
beyond the present scope; we defer to Hart et al [28] for such arguments. One key
differentiating feature of Pyomo with respect to open-source AMLs is that it supports
the specification of linear and non-linear mathematical programs, with combinations
of continuous and discrete variables. Consequently, PySP fully supports the model-
ing of linear and nonlinear stochastic programs, with or without discrete variables.
Methods for solution of the resulting stochastic programs depends on capabilities of
deterministic mathematical programming solvers available to a user, as we discuss in
Sects. 4, 6, and 7.

In this section, we discuss the use of Pyomo to formulate and express stochastic
programs in PySP. As a motivating example, we consider the well-known “farmer”
stochastic program [8]. Mirroring several other approaches to modeling stochastic
programs (e.g., see [51]), we require the specification of two related components: the
deterministic base model and the scenario tree model. In Sect. 3.1 we discuss the spec-
ification of the deterministic base model and associated data; Sect. 3.2 then details
the specification of scenario tree models in PySP. The mechanisms for specifying
scenario parameter data are discussed in Sect. 3.3. We briefly discuss the program-
matic compilation of a scenario tree specification into objects appropriate for use by

123

PySP: modeling and solving stochastic programs in Python 115

solvers in Sect. 3.4. Finally, we discuss the availability of additional PySP examples
in Sect. 3.5.

3.1 The deterministic reference model

The starting point for developing a stochastic programming model in PySP is the
specification of an abstract reference model, which describes the deterministic multi-
stage problem for an representative scenario. The reference model does not make
use of, or describe, any information relating to parameter uncertainty or the scenario
tree. Typically, it is simply the model that would be used in single-scenario analysis,
i.e., the model that is commonly developed before stochastic aspects of an optimi-
zation problem are considered. PySP requires that the reference model—specified in
Pyomo—is contained in a file named ReferenceModel.py. As an illustrative exam-
ple, the complete reference model for Birge and Louveaux’s farmer problem is shown
Fig. 1. When looking at this figure, it is useful to note that the backslash is the Python
line continuation character.

For details concerning the syntax and use of the Pyomo modeling language, we defer
to Hart et al. [26,28]. Here, we simply observe that a detailed knowledge of Python
is not necessary to develop a reference model in Pyomo; users are often unaware
that a Pyomo model specifies executable Python code, or that they are using a class
library. Relative to the AMPL formulation of the farmer problem, the Pyomo formu-
lation is somewhat more verbose—primarily due to its embedding in an high-level
programming language.

While the reference model is independent of any stochastic components of the prob-
lem, PySP does require that the objective function cost component for each decision
stage of the stochastic program be assigned to a distinct variable or variable index. In
the farmer reference model, we simply label the first and second stage cost variables
as FirstStageCost and SecondStageCost, respectively. The corresponding values are
computed via the constraints ComputeFirstStageCost and ComputeSecondStage-
Cost. We initially imposed the requirement concerning specification of per-stage cost
variables (which is not a common feature in other stochastic programming software
packages) primarily to facilitate various aspects of solution reporting. However, the
convention has additionally proved very useful in implementation of various PySP
solvers.

To create a concrete instance from the abstract reference model, a Pyomo data file
must also be specified. The data can correspond to an arbitrary scenario, and must
completely specify all parameters in the abstract reference model. The reference data
file must be named ReferenceModel.dat. An example data file corresponding to the
farmer reference model is shown in Fig. 2. Although Pyomo supports various data
file formats (including raw ASCII tables, spreadsheets, and databases), the example
illustrates a file that uses Pyomo data commands—the most commonly used data file
format in Pyomo. Pyomo data commands include commands for specifying set and
parameter data that are consistent with AMPL’s data commands. Our adoption of this
convention minimizes the effort required to translate deterministic reference models
expressed in AMPL into Pyomo.

123

116 J.-P. Watson et al.

Fig. 1 ReferenceModel.py. The deterministic reference Pyomo model for Birge and Louveaux’s farmer
problem

123

PySP: modeling and solving stochastic programs in Python 117

Fig. 2 ReferenceModel.dat. The Pyomo reference model data file for Birge and Louveaux’s farmer problem

Finally, we observe that general deterministic mathematical programs can be spec-
ified using Pyomo, including those containing non-linear and mixed-integer (or both)
components. Leveraging this capability, users are able to specify general stochastic
programs in PySP. However, as we discuss subsequently, the ability of PySP to solve a
particular stochastic program depends strongly on the availability of base solvers for
the corresponding class of deterministic mathematical program.

3.2 The scenario tree

Given a deterministic reference model, the second step in developing a stochastic
program in PySP involves specification of the scenario tree structure and associated
parameter data. A PySP scenario tree specification supplies all information concerning
the stages, the mapping of decision variables to stages, how various scenarios are tem-
porally related to one another (i.e., scenario tree nodes and their inter-relationships),
and the probabilities of various scenarios. As discussed below, the scenario tree does
not directly specify uncertain parameter values; rather, it specifies references to input
files containing such data.

As with the abstract reference model, the abstract scenario tree model in PySP is
expressed in Pyomo. However, the contents of the scenario tree model—called Sce-
narioStructure.py and shown in Fig. 3 for reference—are fixed. The model is built
into and distributed with PySP; the user does not edit this file. Instead, the user must
supply values of each of the parameters specified in the scenario tree model, using the
same Pyomo mechanisms used to specify data in the case of (for example) the deter-
ministic reference model. Finally, we observe that the scenario tree model is simply a
collection of data that is specified using Pyomo parameter and set objects, i.e., a very
restricted form of a Pyomo model (lacking variables, constraints, and an objective).

The precise semantics for each of the parameters (or sets) indicated in Fig. 3 are as
follows:

123

118 J.-P. Watson et al.

Fig. 3 ScenarioStructure.py. The PySP model for specifying the structure of the scenario tree

• Stages. An ordered set containing the names (specified as arbitrary strings) of the
stages. The order corresponds to the order of the stages, which is typically deter-
mined by the time corresponding to the stage.
• Nodes. A set of the names (specified as arbitrary strings) of the nodes in the scenario

tree.
• NodeStage. An indexed parameter mapping node names to stage names. Each node

in the scenario tree must be assigned to a unique stage.
• Children. An indexed set mapping node names to sets of node names. For each

non-leaf node in the scenario tree, a set of child nodes must be specified. This set
implicitly defines the overall branching structure of the scenario tree. Using this set,
the parent nodes are computed internally to PySP. There can only be one node in
the scenario tree with no parents, i.e., the tree must be singly rooted.
• ConditionalProbability. An indexed, real-valued parameter mapping node names to

their conditional probability, relative to their parent node. The conditional probabil-
ity of the root node must be equal to 1, and for any node with children, the conditional
probabilities of those children must sum to a value x such that |1− x | <= 1e − 6
(allowing for minor slack due to numerical tolerance issues). Numeric values for
node conditional probabilities must be contained within the interval [0, 1].
• Scenarios. An ordered set containing the names (specified as arbitrary strings) of the

scenarios. These names are used for two purposes: reporting and data specification
(see Sect. 3.3). The ordering is provided as a convenience for the user, to organize
reporting output. The scenario names are distinct from the names of the scenario
leaf nodes, introduced below. The separation (in contrast to simply labeling the

123

PySP: modeling and solving stochastic programs in Python 119

scenarios by their leaf node name) derives from the naming conventions associated
with loading scenario and node-specific data, as we discuss in Sect. 3.3.
• ScenarioLeafNode. An indexed parameter mapping scenario names to their leaf

node name. Facilitates linkage of a scenario to its list of defining nodes in the
scenario tree.
• StageVariables. An indexed set mapping stage names to sets of variable names in

the reference model. The sets of variables names indicate those variables that are
associated with a given stage. Implicitly defines the non-anticipativity constraints
that should be imposed when generating and/or solving the PySP model.
• ScenarioBasedData. A Boolean parameter specifying how the instances for each

scenario are to be constructed. The semantics for this parameter are detailed below
in Sect. 3.3.

Data to instantiate these parameters and sets must be provided by a user in a file
named ScenarioStructure.dat. The scenario tree data for the farmer problem is shown
in Fig. 4, specified using the AMPL data file format.

When loading the ScenarioStructure.dat file, PySP performs extensive consis-
tency checks on the input data. In particular, checks are executed to ensure that the
specified structure is actually a tree (with no loops, forming a single component), and
that parent–child node pairs reside in adjacent decision stages. PySP assumes that the
scenario tree is of uniform depth. Presently, PySP performs limited checking regard-
ing variable to stage assignments, i.e., it is possible to leave variables unassigned to a
stage. Variables cannot be assigned to multiple stages.

We observe that PySP provides a simple “slicing” syntax to specify subsets of
indexed variables. In particular, the “*” character is used to match all values in a
particular dimension of an indexed parameter. In more complex PySP examples, vari-
ables are typically indexed by stage. In these cases, the slice syntax allows for very
concise specification of the stage-to-variable mapping. While the slicing syntax is
incompatible with the AMPL.dat file syntax, this is in practice not a concern because
ScenarioStructure.dat files are intended strictly for use by PySP.

Finally, we observe that PySP makes no assumptions regarding the linkage between
stages and variable index structure. In particular, the stage need not explicitly be ref-
erenced within a variable’s index set. While this is often the case in multi-stage for-
mulations, the convention is not universal, e.g., as in the case of the farmer problem.

3.3 Scenario parameter specification

Data files specifying the deterministic and stochastic parameters for each of the sce-
narios in a PySP model can be specified in one of two ways. The simplest approach
is “scenario-based”, in which a single data file containing a complete parameter spec-
ification is provided for each scenario. In this case, the file naming convention is as
follows: If the scenario is named ScenarioX, then the corresponding data file for the
scenario must be named ScenarioX.dat. This approach is often expedient—especially
if the scenario data are generated via simulation, as is often the case in practice. How-
ever, there is necessarily redundancy in the encoding. Depending on the problem size
and number of scenarios, this redundancy may become excessive in terms of disk

123

120 J.-P. Watson et al.

Fig. 4 ScenarioStructure.dat. The PySP data file for specifying the scenario tree for Birge and Louveaux’s
farmer problem

storage and access time. Scenario-based data specification is the default behavior in
PySP, as indicated by the default value of the ScenarioBasedData parameter in Fig. 3.
We note that the listing in Fig. 2 is an example of a scenario-based data specification.

Node-based parameter specification is provided as an alternative to the default sce-
nario-based approach, principally to eliminate storage redundancy. With node-based
specification, parameter data specific to each node in the scenario tree is specified in a
distinct data file. The naming convention is as follows: If the node is named NodeX,
then the corresponding data file for the node must be named NodeX.dat. To create a
scenario instance, data for all nodes associated with a scenario are accessed (via the
ScenarioLeafNode parameter in the scenario tree specification and the computed par-
ent node linkages). Node-based parameter encoding eliminates redundancy, although
typically at the expense of a slightly more complex instance generation process. To
enable node-based scenario initialization, a user needs to simply add the following
line to ScenarioStructure.dat:

123

PySP: modeling and solving stochastic programs in Python 121

In the case of the farmer problem, all parameters except for Yield are identical
across scenarios. Consequently, these parameters can be placed in a file named RootN-
ode.dat. Then, files containing scenario-specific Yield parameter values are specified
for each second-stage leaf node (in files named AboveAverageNode.dat, AverageN-
ode.dat, and BelowAverageNode.dat).

3.4 Compilation of the scenario tree model

The PySP scenario tree model is a declarative entity, merely specifying the data associ-
ated with a scenario tree. PySP internally uses the information contained in this model
to construct a ScenarioTree object, which in turn is composed of ScenarioTreeNode,
Stage, and Scenario objects. In aggregate, these Python objects allow programmatic
navigation, query, manipulation, and reporting of the scenario tree structure. While
hidden from the typical user, these objects are crucial in the processes of generating
the extensive form (Sect. 4) and generic solvers (Sect. 6).

3.5 Additional PySP examples

Several PySP examples are installed automatically with Coopr, in the examples/pysp
sub-directory under the root install directory. In each of these directories, there is
a README.txt file discussing various command-line script options to exercise the
solver capabilities described subsequently. Numerous other PySP examples are avail-
able via download from the following web page: http://www.software.sandia.gov/trac/
coopr/wiki/PySP.

4 Generating and solving an extensive form

Given a stochastic program encoded in accordance with the PySP conventions
described in Sect. 3, the next immediate issue of concern is its solution. The most
straightforward method to solve a stochastic program involves generating an exten-
sive form (also known as a deterministic equivalent) and then invoking an appropriate
(for the particular problem class) standard deterministic programming solver, e.g.,
CPLEX in the case of stochastic mixed-integer programs, or Ipopt in the case of sto-
chastic non-linear programs. An extensive form given as problem (P) in Sect. 2 com-
pletely specifies all scenarios and the coupling non-anticipativity constraints at each
node in the scenario tree. For a variety of reasons (primarily related to our scenario-ori-
ented specification of stochastic programming models, and our subsequent emphasis
on scenario-based decomposition algorithms), we internally employ an explicit repre-
sentation of the extensive form, in which non-anticipativity constraints are constructed
to enforce variable equality across scenarios at each node in the tree. More specifically,
for each non-anticipative variable we create a “master” variable, and post constraints
requiring equality between the value of this master variable and the value of the
corresponding variable in each participating scenario; for additional detail, we defer

123

http://www.software.sandia.gov/trac/coopr/wiki/PySP
http://www.software.sandia.gov/trac/coopr/wiki/PySP

122 J.-P. Watson et al.

to Sect. 4.2. An alternative approach is to implicitly represent the non-anticipativity
constraints by introducing variables that are referenced by multiple scenarios.

In many cases, particularly when small numbers of scenarios are involved or the
decision variables are all continuous, the extensive form can be effectively solved
with off-the-shelf solvers [42]. Further, although decomposition techniques may ulti-
mately be needed for large, more complex models, the extensive form is usually the
first attempted method to solve a stochastic program.

In this section, we describe the use and design of facilities in PySP for generating
and solving the extensive form. Section 4.1 describes a user script for generating and
solving the extensive form; an overview of the implementation of this script is then
provided in Sect. 4.2.

4.1 The runef script

PySP provides an easy-to-use script—runef—to both generate and solve the exten-
sive form of a stochastic program. We now briefly describe the primary command-line
options for this script; note that all options begin with a double dash prefix:

--help
Display all command-line options, with brief descriptions, and exit.
--verbose
Display verbose output to the standard output stream, above and beyond the usual
status output. Disabled by default.
--model-directory=MODEL_DIRECTORY
Specifies the directory in which the reference model (ReferenceModel.py) is
stored. Defaults to “.”, the current working directory.
--instance-directory=INSTANCE_DIRECTORY
Specifies the directory in which all reference model and scenario model data files
are stored. Defaults to “.”, the current working directory.
--output-file=OUTPUT_FILE
Specifies the name of the output file to which the extensive form is written. Defaults
to “efout.lp”.
--solve
Directs the script to solve the extensive form after writing it. Disabled by default.
--solver=SOLVER_TYPE
Specifies the type of solver for solving the extensive form, if a solve is requested.
Defaults to “cplex”.
--solver-options=SOLVER_OPTIONS
Specifies solver options in keyword-value pair format, if a solve is requested.
--output-solver-log
Specifies that the output of the solver is to be echoed to the standard output stream.
Disabled by default. Useful to ascertain status for extensive forms with long solve
times.

For example, to write and solve the farmer problem (provided with the Coopr
installation, in the directory coopr/examples/pysp/farmer) using the GLPK solver,
the user simply executes:

123

PySP: modeling and solving stochastic programs in Python 123

The forward-slash characters in the above listing are simply continuation characters
in Unix, used (here and elsewhere in this article) to restrict the width of the example
inputs and outputs. A single back-slash is similarly used as a continuation character
in Python, and in our example code fragments.

Following solver execution, the resulting solution is loaded and displayed. The solu-
tion output is split into two distinct components: variable values and stage/scenario
costs. For the farmer example, the per-node variable values are given as:

Similarly, the per-node stage cost and per-scenario overall costs are given as
follows:

123

124 J.-P. Watson et al.

All of the above information, in addition to various run-time statistics, are reported
following solves during execution of the runef script.

PySP currently supports output of the extensive form in two solver input file for-
mats: the AMPL solver library “NL” format and the CPLEX “LP” file format. While
originally defined for CPLEX, the latter is read (subject to some vendor-noted excep-
tions) by a variety of commercial and open-source linear and mixed-integer solvers.
The default is the CPLEX LP format; the NL format is indicated by supplying (through
the --output-file option) a file with a .nl suffix. In practice, nearly all commercial and
open-source solvers support one of these two input file formats. Specifically, the LP file
format supports specification of linear and mixed-integer linear problems, with some
extensions to account for specific classes of quadratic objective and constraint. In con-
trast, the NL file format fully supports linear, non-linear, and mixed-integer problems.
The LP file format is most commonly used with CPLEX, Gurobi, and GLPK, while

123

PySP: modeling and solving stochastic programs in Python 125

the NL file format is generally used in conjunction with non-linear solvers providing
an AMPL Solver Library (ASL)-based interface. Coopr provides a generic interface
to ASL-based solvers (e.g., Ipopt and Couenne), in addition to CPLEX, Gurobi, and
GLPK.

Various other command-line options are available in the runef script, including
those related to performance profiling and Python garbage collection. Further, the
runef script is capable of writing and solving the extensive form augmented with a
weighted Conditional Value-at-Risk term in the objective [47].

We conclude by noting that the runef script, as with the decomposition-based solver
script described in Sect. 6, relies on significant functionality from the Coopr Python
optimization library in which PySP is embedded. This includes a wide range of solver
interfaces (both commercial and open-source), problem writers, solution readers, and
distributed solvers. For further details, we refer to Hart et al. [26,28].

4.2 Under the hood: generating the extensive form

We now provide an overview of the implementation of the runef script. In doing so,
our objectives are to (1) illustrate the use of Python to create generic writers and solvers
and (2) to provide some indication of the programmatic-level functionality available
in PySP.

The high-level process executed by the runef script to generate the extensive form
in PySP is as follows:

1. Load the scenario tree data; create the corresponding instance.
2. Create the ScenarioTree object from the scenario tree Pyomo model.
3. Load the reference model; create the corresponding instance from reference data.
4. Load the scenario instance data; create the corresponding instances.
5. Create the master “binding” instance; instantiate per-node variable objects.
6. Add master-to-scenario instance equality constraints to enforce non-anticipativity.

Steps 1 and 2 simply involve the process of creating the Pyomo instance speci-
fying all data related to the scenario tree structure, and creating the corresponding
ScenarioTree object to facilitate programmatic access of scenario tree attributes. In
Step 3, the core deterministic abstract model is loaded. The abstract model is then
used in Step 4, in conjunction with the ScenarioTree object, to create a concrete model
instance for each scenario in the stochastic program. The scenario instances are at
this point—and remain so—completely independent of one another. This approach
differs from that of some of the software packages described in Sect. 5, in which
variables are instantiated for each node of the scenario tree and shared across the
relevant scenarios. While our approach does introduce redundancy, the replication
introduces only moderate memory overhead and confers significant practical advan-
tages when implementing generic decomposition-based solvers, e.g., as illustrated
below in Sect. 6. In particular, we note that scenario-based decomposition solvers
gradually and incrementally enforce non-anticipativity, such that replicated variables
are required.

Next, a master “binding” instance is created in Steps 5 and 6. The purpose of the
master binding instance is to enforce the required non-anticipativity constraints at each

123

126 J.-P. Watson et al.

node in the scenario tree. Using the ScenarioTree object, the tree is traversed and the
collection of variable names (including indices, if necessary) associated with each node
is identified—initially specified via the StageVariables attribute of the scenario tree
model. The corresponding variable objects are then identified in the reference model
instance, cloned, and attached to the binding instance. This step critically requires the
Python capability of introspection: the ability, at run-time, to gather information about
objects and manipulate them.

To illustrate how introspection is used to develop generic algorithms, consider again
the farmer example from Sect. 3. By specifying the line

the user is communicating the requirement to impose non-anticipativity constraints on
(all indices of) the first stage variable DevotedAcreage. The variable is specified sim-
ply as a string, which can be programmatically split into the corresponding root name
and index template. Using the root name, Python can query (via the getattr built-in
function) the reference model for the corresponding variable, validate that it exists,
and if so, return the corresponding variable object. This loose coupling between the
user data and algorithm code is facilitated by this simple, yet powerful, introspection
mechanism.

The final primary step in the runef script involves construction of constraints to
enforce non-anticipativity between the newly created variables in the master binding
instance and the variables in the relevant scenario instances. This process again relies
on introspection to achieve a generic implementation.

Overall, the core functionality of the runef script is expressed in approximately
700 lines of Python code—including all white-space and comments. This includes
both the code for creating the relevant Pyomo instances, generating the master bind-
ing instance via the processed described above, and controlling the output of the LP
file.

Finally, we observe that despite our explicit approach to writing the extensive form
through the introduction of master variables and non-anticipativity constraints, we
find that the impact on run-time is typically negligible. The presolvers in commer-
cial packages such as CPLEX, Gurobi, or XpressMP (and those available with some
open-source solvers) are able to quickly identify and eliminate most of the redundant
variables and constraints.

5 Related proposals and software packages

We now briefly survey prior and on-going efforts to develop software packages sup-
porting the specification and solution of stochastic programs, with the objective of
placing the capabilities of PySP in this broader context. Numerous extensions to exist-
ing AMLs to support the specification of stochastic programs have been proposed in
the literature; Gassmann and Ireland [23] is an early example. Similarly, various solver
interfaces have been proposed, with the dominant mechanism being the direct solu-
tion of the extensive form. Here, we primarily focus on specification and solver efforts
associated with open-source and academic initiatives, which generally share the same

123

PySP: modeling and solving stochastic programs in Python 127

distribution goals, user community targets, and design objectives (e.g., experimental,
generic, and configurable solvers) as PySP.

StAMPL Fourer and Lopes [18] describe an extension to AMPL, called StAMPL,
whose goal is to simplify the modeling process associated with stochastic program
specification. One key objective of StAMPL is to explicitly avoid the use of scenario
and stage indices when specifying the core algebraic model, separating the specifica-
tion of the stochastic process from the underlying deterministic optimization model.
The authors describe a preprocessor that translates a StAMPL problem description
into the fully indexed AMPL model, which in turn is written in SMPS format for
solution. PySP differs from StAMPL in that it provides a straightforward mechanism
to specify a stochastic program, and does not strive to advance the state-of-the-art
in modeling. Rather, our primary focus is on developing generic and configurable
solvers, and discussed in Sects. 4, 6, and 7.

STRUMS STRUMS is a system for performing and managing decomposition and
relaxation strategies in stochastic programming [17]. Input problems are specified
in the SMPS format, and the package provides mechanisms for writing the exten-
sive form, performing basic and nested Benders decomposition (i.e., the L-shaped
method), and implementing Lagrangian relaxation; only stochastic linear programs are
considered. The design objective of STRUMS—to provide mechanisms facilitating
automatic problem decomposition—is consistent with the design of PySP. However,
PySP currently provides mechanisms for scenario-based decomposition, in contrast
to stage-oriented decomposition. In contrast to STRUMS, PySP is integrated with an
AML.

DET2STO Thénié et al. [51] describe an extension of AMPL to support the spec-
ification of stochastic programs, noting that (at the time the effort was initiated) no
AMLs were available with stochastic programming support. In particular, they provide
a script—called DET2STO, available from http://www.apps.ordecsys.com/det2sto—
taking an augmented AMPL model as input and generating the extensive form via an
SMPS output file. The research focus is on the automated generation of the exten-
sive form, with the authors noting: “We recall here that, while it is relatively easy
to describe the two base components—the underlying deterministic model and the
stochastic process—it is tedious to define the contingent variables and constraints and
build the deterministic equivalent” [51, p.35]. While subtle modeling differences do
exist between DET2STO and PySP (e.g., in the way scenario-based and transition-
based representations are processed), they provide identical functionality in terms of
ability to model stochastic programs and generate the extensive form.

SMI Part of COIN-OR, the stochastic modeling interface (SMI) [49] provides a set
of C++ classes to (1) either to programmatically create a stochastic program or load
a stochastic program specified in SMPS, and (2) to write the extensive form of the
resulting program. SMI provides no solvers, instead focusing on generation of the
extensive form for solution by external solvers. Connections to FLOPC++ [15] do
exist, providing a mechanism for problem description via an AML. While providing

123

http://www.apps.ordecsys.com/det2sto

128 J.-P. Watson et al.

a subset of PySP functionality, the need to express models in a compiled, technically
sophisticated programming language (C++) is a significant drawback for many users.

APLEpy Karabuk [36] describes the design of classes and methods to implement sto-
chastic programming extensions to his Python-based APLEpy [35] environment for
mathematical programming, with a specific emphasis on stochastic linear programs.
Karabuk’s primary focus is on supporting relaxation-based decompositions in general,
and the L-shaped method in particular, although his design would create elements that
could be used to construct other algorithms as well. The vision expressed in Karabuk
[36] is one where the boundary between model and algorithm must be crossed so that
the algorithm can be expressed in terms of model elements. This approach is also pos-
sible using Pyomo and PySP, but it is not the underlying philosophy of PySP. Rather,
we are interested in enabling the separation of model, data, and algorithm except when
the users wish to create model specific algorithm enhancements.

SPInE SPInE [53] provides an integrated modeling and solver environment for sto-
chastic programming. Stochastic models are specified either in an extension to AMPL
called SAMPL, or an extension of MPL called SMPL. Both language extensions pro-
vide similar functionality, and are integrated with a number of built-in solvers. PySP,
SAMPL, and SMPL provide similar mechanisms for modeling stochastic programs.
In contrast to PySP, the solvers are not specifically designed to be customizable, and
are generally limited to specific problem classes. For example, multi-stage stochastic
linear programs are solved via nested Benders decomposition, while Lagrangian relax-
ation is the only option for two-stage mixed-integer stochastic programs. SPInE is pri-
marily focused on providing an out-of-the-box solution for stochastic linear programs,
which is consistent with the lack of emphasis on customizable solution strategies.

SLP-IOR Similar to SPInE, SLP-IOR [33] is an integrated modeling and solver
environment for stochastic programming, with a strong emphasis on the linear case.
In contrast to SPInE, SLP-IOR is based on the GAMS AML, and provides a broader
range of solvers. However, as with SPInE, the focus is not on easily customizable
solvers (most of the solver codes are written in FORTRAN). Further, solvers for the
integer case are largely ignored.

SUTIL SUTIL [50] is a C++ library for loading stochastic programs defined in the
SMPS format, and subsequently allowing for programmatic manipulation. Examples
of manipulations include generation of the deterministic equivalent, extracting indi-
vidual scenarios, and creating a scenario tree via Monte Carlo sampling. The focus of
SUTIL is similar to that of SMI. In contrast to SUTIL, PySP provides for expression
of the base deterministic model and associated scenario data in a full-fledged AML
(as opposed to SMPS), and assumes that the user has performed scenario sampling
exogenously.

OSiL/SE OSiL [19] is an effort to develop a modern inter-change language for math-
ematical programs, to replace the antiquated MPS format. OSiL leverages a modern,
extensible file format, specifically XML. OSiL/SE [19] is an extension of OSiL for

123

PySP: modeling and solving stochastic programs in Python 129

supporting the specification of stochastic programs, with the objective of modern-
izing and eventually replacing SMPS. The objectives of OSiL/SE and PySP differ
with respect to modeling. Specifically, OSiL/SE is an interchange format for spec-
ifying concrete problem instances, in contrast to the symbolic models specified via
modern AMLs (including Pyomo). OSiL/SE is intended to be used to communicate
with solvers, and is a possible future format to be considered by PySP (in addi-
tion to the presently supported LP and NL formats). However, very few solvers cur-
rently support OSiL/SE—or the core OSiL format in the case of deterministic math
programs.

6 Progressive hedging: a generic decomposition strategy

We now transition from modeling stochastic programs and solving them directly via
the extensive form to decomposition-based solution strategies, which are in practice
typically required to efficiently solve large-scale instances with large numbers of sce-
narios, non-linearities, discrete variables, or decision stages. There are two broad
classes of decomposition-based strategies in stochastic programming: horizontal and
vertical. Vertical strategies decompose a stochastic program by stages; the L-shaped
method of Van Slyke and Wets [54] is the primary method in this class, targeted to
two-stage problems. Nested decomposition schemes [6,22] extend the basic L-shaped
method to the multi-stage case. In contrast, horizontal strategies decompose a sto-
chastic program by scenario; Rockafellar and Wets’ [46] Progressive Hedging (PH)
algorithm and Caroe and Schultz’s [9] Dual Decomposition (DD) algorithm are two
notable methods in this class.

Currently, there is not a large body of literature to provide an understanding of
practical, computational aspects of stochastic programming solvers, particularly in
the non-linear and mixed integer cases. For any given problem class, there are few
heuristics to guide selection of the algorithm likely to be most effective. Similarly,
while stochastic programming solvers are typically parameterized and/or configu-
rable, there is little guidance available regarding how to select particular parameter
values or configurations for a specific problem. Lacking such knowledge, the interface
to solver libraries must provide facilities to allow for easily selecting parameters and
configurations.

Beyond the need for highly configurable solvers, solvers should also be generic,
i.e., independent of any particular AML description. Decomposition strategies are
non-trivial to implement, requiring significant development time—especially when
more advanced features are considered. The lack of generic decomposition solvers
is a known impediment to the broader adoption of stochastic programming. Thénié
et al. [51] concisely summarize the challenge as follows: “Devising efficient solution
methods is still an open field. It is thus important to give the user the opportunity to
experiment with solution methods of his choice.” By introducing both customizable
and generic solvers, our goal is to promote the broader use of and experimentation
with stochastic programming by significantly reducing the barrier to entry.

In this section, we discuss the interface to and implementation of a generic imple-
mentation of Progressive Hedging. Our selection of this particular decomposition

123

130 J.-P. Watson et al.

algorithm is based largely on our successful experience with PH in solving diffi-
cult, multi-stage mixed-integer stochastic programs. However, the method is equally
applicable to multi-stage linear and non-linear stochastic programs, as we discuss.
In Sect. 6.1 we introduce the Progressive Hedging algorithm, and discuss its use in
both linear and mixed-integer stochastic programming contexts. The interface to the
PySP script for executing PH given an arbitrary PySP model is described in Sect. 6.2.
Finally, we present an overview of the generic implementation in Sect. 6.3.

6.1 The Progressive Hedging algorithm

Progressive Hedging (PH) is a horizontal or scenario-based decomposition technique
for solving stochastic programs, which possesses theoretical convergence properties
when all decision variables are continuous. In particular, the algorithm converges in
linear time given a convex reference scenario optimization model. PH was initially
introduced as a decomposition strategy for solving large-scale stochastic linear pro-
grams; Rockafellar and Wets [46] further note the potential application of PH to solving
nonlinear stochastic programs.

Despite its introduction in the context of stochastic linear and non-linear programs,
PH has proved to be a very effective heuristic for solving stochastic mixed-integer pro-
grams [13,14,31,39,40]. PH is particularly effective in this context when there exist
computationally efficient techniques for solving the deterministic single-scenario opti-
mization problems. A key advantage of PH in the mixed-integer case is the absence
of requirements concerning the number of stages or the type of variables allowed in
each stage—as is common for many proposed stochastic mixed-integer algorithms.
A disadvantage is the current lack of provable convergence and optimality results.
For large, real-world stochastic mixed-integer programs, the determination of optimal
solutions is generally not computationally tractable.

The basic idea of PH for the linear case is as follows:

1. For each scenario s, solutions are obtained for the problem of minimizing, subject
to the problem constraints, the deterministic fs (Formulation Ps).

2. The variable values for an implementable—but likely not admissible—solution
are obtained by averaging over all scenarios at a scenario tree node.

3. For each scenario s, solutions are obtained for the problem of minimizing, sub-
ject to the problem constraints, the deterministic fs (Formulation Ps) plus terms
that penalize the lack of implementability using a sub-gradient estimator for the
non-anticipativity constraints and a squared proximal term.

4. If the solutions have not converged sufficiently and the allocated compute time
is not exceeded, goto Step 2.

5. Post-process, if needed, to produce a fully admissible and implementable solution.

To begin the PH implementation for solving formulation (P), we first organize the
scenarios and decision stages into a tree. The leaves correspond to scenario realiza-
tions, such that each leaf is connected to exactly one node at stage t ∈ T and each of
these nodes represents a unique realization up to stage t . The leaf nodes are connected
to nodes at stage t − 1, such that each scenario associated with a node at stage t − 1
has the same realization up to stage t − 1. This process is iterated back to stage 1

123

PySP: modeling and solving stochastic programs in Python 131

(i.e., “now”). Two scenarios whose leaves are both connected to the same node at
stage t have the same realization up to stage t . Consequently, in order for a solution
to be implementable it must be true that if two scenarios are connected to the same
node at some stage t , then the values of xi (t ′) must be the same under both scenarios
for all i and for t ′ ≤ t .

Progressive Hedging is a technique to iteratively and gradually enforce implement-
ability, while maintaining admissibility at each step in the process. For each scenario
s, approximate solutions are obtained for the problem of minimizing, subject to the
constraints, the deterministic fs plus terms that penalize the lack of implementability.
These terms strongly resemble those found when the method of augmented Lagran-
gians is used [5]. The method makes use of a system of row vectors, w, that have
the same dimension as the column vector system X , so we use the same shorthand
notation. For example, w(s) denotes (w(s, 1), . . . , w(s, |T |)) in the multiplier system.

To provide an algorithm statement of PH, we first develop notation for some of
the scenario tree concepts. We use Pr(A) to denote the sum of Pr(s) over all scenar-
ios s emanating from node A (i.e., those s that are the leaves of the sub-tree having
A as a sub-tree root, also referred to as s ∈ A). We use t (A) to indicate the stage
index for node A (i.e., node A contains scenario indices that correspond to scenarios
with data that is the same up to stage t). We use X(t;A) on the left hand side of a
assignment statement to indicate assignment to the vectors (x1(s, t), . . . , x N (t)(s, t))
for each s ∈ A, where N (t) is the number of decision vector elements corresponding
to stage t . The notation on the right-hand side of that assignment is similar: We refer to
vectors X (t; s) to indicate (x1(s, t), . . . , xN (t)(s, t)). This notation enables us to suc-
cinctly express the computation and assignment of the average of decision elements
for a node in the scenario tree.

The vectors at each iteration of PH are identified using a superscript; e.g., w(0)(s)
is the multiplier vector for scenario s at PH iteration zero. The PH iteration counter
is k. If we briefly defer the discussion of termination criteria, a formal version of the
algorithm (with step numbering that matches in the informal statement just given) can
be stated as follows, taking ρ > 0 as a parameter.

k ←− 0
1. For all scenario indices, s ∈ S:

X (0)(s)←− argmin[fs(X (s)) : X (s) ∈ �s] (1)

and

w(0)(s)←− 0

k ←− k + 1
2. For each node, A, in the scenario tree, and for t = t (A):

X
(k−1)

(A)←−
∑

s∈A

Pr(s)X (t; s)(k−1)/ Pr(A)

123

132 J.-P. Watson et al.

3. For all scenario indices, s ∈ S:

w(k)(s)←− w(k−1)(s)+ (ρ)
(

X (k−1)(s)− X
(k−1)

)

and

Xk(s)←− argmin[fs(X (s))+ w(k)(s)X (s)

+ρ/2
∥∥∥X (s)− X

k−1
∥∥∥

2 : X (s) ∈ �s]. (2)

4. If the termination criteria are not met (e.g., solution discrepancies quantified via
a metric g(k)), then goto Step 3.

The termination criteria are based mainly on convergence, but we must also allow
for the use of time-based termination because non-convergence is a possibility. Iter-
ations are continued until k reaches some pre-determined limit or the algorithm has
converged—which we take to indicate that the set of scenario solutions is sufficiently
homogeneous. One possible definition is to require the inter-solution distance (e.g.,
Euclidean) to be less than some parameter.

The value of the perturbation vector ρ strongly influences the actual convergence
rate of PH: if ρ is small, the penalty coefficients will vary little between consecutive
iterations. To achieve tractable PH run-times, significant tuning and problem-depen-
dent strategies for computing ρ are often required; mechanisms to support such tuning
are described in Sect. 6.2.

We note that the generic PH implementation described subsequently has been
applied by the authors and their collaborators to stochastic linear programs (hydro-ther-
mal generator scheduling), stochastic non-linear programs (parameter estimation for
infectious disease models) [58], and various stochastic mixed-integer linear programs
(e.g., network design, sensor placement, forest harvesting, and generation expansion).
We have also explored the use of PH in the context of stochastic mixed-integer non-
linear programs, but this area of application is effectively an open research issue.

6.2 The runph script

Analogous to the runef script for generating and solving the extensive form, PySP
provides a script—runph—to solve and post-process stochastic programs via PH.
We now briefly describe the general usage of this script, followed by a discussion
of some generally effective options to customize the execution of PH. As is the case
with the runef script, all options begin with a double dash prefix. A number of key
options are shared with the runef script: --verbose, --model-directory,
--instance-directory, and --solver. In particular, the --model
-directory and--instance-directory options are used to specify the PySP
problem instance, while the --solver option is used to specify the solver applied
to individual scenario sub-problems. The most general PH-specific options are:

--max-iterations=MAX_ITERATIONS
The maximal number of PH iterations. Defaults to 100.

123

PySP: modeling and solving stochastic programs in Python 133

--default-rho=DEFAULT_RHO
The default (global) ρ scalar parameter value for all variables with the exception
of those appearing in the final stage. Defaults to 1.
--termdiff-threshold=TERMDIFF_THRESHOLD
The convergence threshold used to terminate PH (Step 6 of the pseudocode). Con-
vergence is by default quantified as the difference between variable values and
the mean scaled by the average and normalized by the number of variables to be
blended. Defaults to 0.0001. This quantity is known as the termdiff.

In general, the default values for the maximum allowable iteration count, ρ, and the
convergence threshold are likely to yield slow convergence of PH; for any real applica-
tion, experimentation and analysis should be applied to obtain a more computationally
effective configuration.

To illustrate the execution runph on a stochastic linear program, we again consider
Birge and Louveaux’s farmer problem. To solve the farmer problem with PySP, a user
simply executes the following:

which will result in eventual convergence to an optimal, admissible, and implement-
able solution—subject to the numerical tolerance issues. For the sake of brevity, we do
not illustrate the output here; the final solution is reported in a format identical to that
illustrated in Sect. 4. The quantity of information generated by PH can be significant,
e.g., including the penalty weights and solutions for each scenario problem s ∈ S at
each iteration. However, this information is not generated by default. Rather, simple
summary information, including the value of g(k) at each PH iteration k, is output. As
is theoretically promised in the case of stochastic linear programs, runph does con-
verge given a linear PySP input model. The exact number of iterations depends in part
on the precise solver used; on our test platform, for example, convergence is achieved
in 48 iterations using CPLEX 11.2.1. It should be noted that for many stochastic lin-
ear—and even small, mixed-integer—programs (including the farmer example), any
implementation of PH may solve significantly slower than the extensive form. This
behavior is primarily due to the overhead associated with communicating with solvers
for each scenario, for each PH iteration. However, this overhead is not significant with
larger and/or more difficult scenario problems.

Finally, we critically note that by default the solver supplied to the runph script
must be capable of handling the quadratic proximal terms introduced by PH to aug-
ment the original objective function. Examples of such solvers supported by PySP
(through the Coopr optimization interface library) include CPLEX, Gurobi, and Ip-
opt. If such solvers are not available, the runph script supports automatic linearization
of these quadratic terms, as described in detail below. If runph is run without such
linearization using a solver that does not support quadratic terms, then the script will
fail with an indication that the associated scenario sub-problems could not be solved.

123

134 J.-P. Watson et al.

Setting variable-specific ρ. In many applications, no single value of ρ for all vari-
ables yields a computationally efficient PH configuration. Consider the situation in
which the objective is to minimize expected investment costs in a spare parts supply
chain, e.g., for maintaining an aircraft fleet. The acquisition cost for spare parts is
highly variable, ranging from very expensive (engines) to very cheap (gaskets). If ρ

values are too small, e.g., on the order of the price of a tire, PH will require large
iteration counts to achieve changes—let alone convergence—in the decision variables
associated with engine procurement counts. If ρ values are too high, e.g., on the order
of the price of an engine, then the PH weights w associated with gasket procurement
counts may converge too quickly, yielding sub-optimal variable values. Alternatively,
we have observed in many examples that PH sub-problem solves may “over-shoot”
the optimal variable value, resulting in oscillation. Various strategies for computing
variable-specific ρ are discussed in Watson and Woodruff [56].

To support the implementation of variable-specific ρ strategies in PySP, we define
the following command-line option to runph:

--rho-cfgfile=RHO_CFGFILE
The name of a configuration script to compute PH rho values. Default is None.

The rho configuration file is a piece of executable Python code that computes the
desired ρ. This allows for the expression of arbitrarily complex formulas and proce-
dures. An example of such a configuration file, used in conjunction with the PySP
SIZES example [32], is as follows:

The self object in the script refers to the PH object itself, which in turn possesses
an attribute _model_instance. The _model_instance attribute represents the deter-
ministic reference model instance, from which the full set of problem variables can
be accessed. The example script implements a simple cost-proportional ρ strategy, in
which ρ is specified as a function of a variable’s objective function cost coefficient.
Once the appropriate ρ value is computed, the script invokes the setRhoAllScenarios
method of the PH object, which distributes the computed ρ value to the corresponding
parameter of each of the scenario problem instances. It is also possible to set the ρ

values on a per-variable, per-scenario basis; however, there are currently no reported
strategies that effectively use this mechanism.

The customization strategy underlying the PySP variable-specific ρ mechanism is
a limited form of callback in which the core PH code temporarily hands control back

123

PySP: modeling and solving stochastic programs in Python 135

to a user script to set specific model parameters. While the code is necessarily execut-
able Python, the constrained scope is such that very limited knowledge of the Python
language is required to write such an extension.

Linearization of the proximal penalty terms. At each iteration k ≥ 1 of PH, scenario
sub-problem solves involve an augmented form of the original optimization objective,
with both linear and quadratic penalty terms. The presence of the quadratic terms can
cause significant practical computational difficulties. At present, no open-source linear
or mixed-integer solvers currently support quadratic objective terms in an integrated,
robust manner. While most commercial solvers can handle problems with quadratic
linear and mixed-integer objectives, solver efficiency is often dramatically worse rela-
tive to the linear case: we have consistently observed quadratic scenario sub-problems
requiring an order of magnitude or more of run-time for solution than their linearized
counterparts. The presence of quadratic terms is not a significant factor for non-linear
solvers (e.g., Ipopt and Bonmin), where instead sub-problem size and achieving global
optimality are the primary concerns.

To address this issue, the runph script provides for automatic linearization of qua-
dratic penalty terms in PH. We first observe that a linear expression results from the
expansion of any quadratic penalty term involving binary variables. Consequently, the
default behavior is to linearize these terms for binary variables. To linearize penalty
terms involving continuous and general integer variables (via simple linear interpola-
tion between sampled points of the quadratic term), the runph script allows specifi-
cation of the following options:

--linearize-nonbinary-penalty-terms=BPTS
Approximate the PH quadratic term for non-binary variables with a piece-wise lin-
ear function. The argument BPTS gives the number of breakpoints in the linear
approximation. Defaults to 0, indicating linearization is disabled.
--breakpoint-strategy=BREAKPOINT_STRATEGY
Specify the strategy to distribute breakpoints on the [lb, ub] interval of each variable
when linearizing. Defaults to 1, indicating a uniform distribution of BPTS break-
points between lb and ub. A value of 2 distributes breakpoints uniformly between
current minimum and maximum values observed for the variable at the correspond-
ing node in the scenario tree; segments between the node min/max values and the
variable lower and upper bounds are also automatically generated. A value of 3
places half of the BPTS breakpoints on either side of the observed variable aver-
age at the corresponding node in the scenario tree, with exponentially increasing
distance from the mean.

To linearize a proximal term, runph requires that both lower and upper bounds
(respectively denoted lb and ub) be specified for each variable in each scenario instance.
This is most straightforwardly accomplished by specifying bounds or rules for com-
puting bounds in each of the variable declarations appearing in the base deterministic
scenario model. In reality, lower and upper bounds can be specified for all variables,
even if trivially. If for some reason bounds are not easily specified in the deterministic
scenario model, the option --bounds-cfgfile option is available, which func-
tions in a fashion similar to the mechanism for setting variable-specific ρ described

123

136 J.-P. Watson et al.

above. Note that if a breakpoint would be very close to a variable bound, then the
breakpoint is omitted. In other words, the BPTS parameter serves as an upper bound
on the number of actual breakpoints.

By introducing automatic linearization of the proximal penalty term, PySP enables
both a much broader base of solvers to be used in conjunction with PH and more
efficient utilization of those solvers. In particular, it facilitates the use of open-source
solvers—which can be critical in parallel environments in which it may be infeasible to
procure large numbers of commercial solver licenses for concurrent use (see Sect. 8).

Other command-line options. While not discussed here, the runph script also pro-
vides options to control the type and extent of output at each iteration (weights and/or
solutions), specify solver options, report exhaustive timing information, and track
intermediary solver files. In general, these are provided for more advanced users;
more information can be obtained by supplying the --help option to runph.

6.3 Implementation details

We now discuss high-level aspects of the implementation of the runph script, empha-
sizing the mechanisms linking the PH implementation with a generic Pyomo specifi-
cation of the stochastic program. In doing so, our objective is to illustrate the power
of embedding an algebraic modeling language within a high-level programming lan-
guage, and specifically one that enables object introspection.

The PySP PH initialization process is similar to that for the EF writer/solver: the
scenario tree, reference Pyomo instance, and scenario Pyomo instances are all cre-
ated and initialized from user-supplied data. Without loss of generality, we assume
two-stage problems in the following discussion. Following this general initialization,
for each first-stage variable PH must create the corresponding: (1) ρ parameter, (2)
node average vector x , and (3) weight vector w. This is accomplished by accessing
the information in the StageVariables set. In the farmer example, the StageVari-
ables set contains the singleton string “DevotedAcreage[*]”. The “*” in this example
indicates that non-anticipativity must be enforced at the root node for all indices of
the variable DevotedAcreage: DevotedAcreage[CORN], DevotedAcreage
[SUGAR_BEETS], and DevotedAcreage[WHEAT].

Using Python introspection (via the getattr built-in function to query object
attributes by name), PySP accesses the corresponding variable objects in the reference
model instance. From the variable object, the index set (also a first-class Python object)
is extracted and cloned, eliminating all indices (none, in the case of a template equal
to “*”) not matching the specified template.

PySP uses the newly constructed index set to create new parameter objects rep-
resenting the ρ, weight w, and node average x corresponding to the identified var-
iable; the index set is the first argument to the parameter class constructor. Using
the Python setattr method, the ρ and w parameters are attached to the appropri-
ate scenario instance (the process is repeated for each scenario), while the node
average x is attached to the root node object in the scenario tree. The ability to
create object attributes on-the-fly is directly supported in dynamic languages such

123

PySP: modeling and solving stochastic programs in Python 137

as Python or Java, as opposed to C++ or other static and compiled strongly typed
languages.

Following initialization, PH solves the original scenario sub-problems and loads the
resulting solutions into the corresponding Pyomo instances. Using the same dynamic
object query mechanism, PySP computes the first-stage variable averages and stores
the result in the newly created parameters in the scenario tree. An analogous process is
then used to compute and store the current w parameter values for each scenario. Before
executing PH iterations k ≥ 1, PySP must augment the original objective expres-
sions with the linear and quadratic penalty terms discussed in Sect. 6.1. Because the
Pyomo scenario instances and their attributes (e.g., parameters, variables, constraints,
and objectives) are first-class Python objects, their contents can be programmatically
modified at run-time. Consequently, it is straightforward to—for each first-stage var-
iable—identify the corresponding variable, weight parameter, and average parameter
objects, create objects representing the penalty terms, and augment the original opti-
mization objective.

In summary, the processes described above rely on three capabilities explicitly facil-
itated through the use of Python. First, user-specified strings (e.g., first stage variables
names) can be manipulated to dynamically identify attributes of objects (e.g., vari-
ables of scenario instances). Second, all elements of the Pyomo algebraic modeling
language (e.g., parameters, variables, constraints, and objectives) are first-class Python
objects, and as a consequence can be programmatically queried, cloned, and—most
importantly—modified. Third, Python allows for the dynamic addition of attributes to
objects (e.g., weight and ρ parameters to scenario instances). None of these enabling
features of Python are particularly advanced, and are in general easy to use. Rather,
these are key properties of a dynamic high-level programming language, which can
be effectively leveraged to construct generic solvers for stochastic programming.

7 Progressive hedging extensions: advanced configuration

The basic PySP PH implementation is by design customizable to a rather limited
degree: mechanisms are provided to allow for specification of ρ values and lineari-
zation of the PH objective. In either case, core PH functionality is not perturbed. We
now describe more extensive and intrusive customization of the PySP PH behavior.
In Sect. 7.1, we describe the interface to a PH extension providing functionality that
is often critical to achieving good performance on stochastic mixed-integer programs.
Some components are additionally useful in the case of stochastic linear programs.
We then discuss in Sects. 7.2 and 7.3 command-line options that enable functionality
commonly used in PH practice. Finally, we discuss in Sect. 7.4 the programmatic
facilities that PySP provides to users (typically programmers) that want to develop
their own extensions.

7.1 Convergence accelerators and mixed-integer heuristics

The basic PH algorithm can converge slowly, even if appropriate values of ρ have
been computed. Further, in the mixed-integer case, PH can exhibit cyclic behavior,

123

138 J.-P. Watson et al.

preventing convergence. Consequently, PH implementations in practice are augmented
with methods to both accelerate convergence and prevent cycling. Many of these exten-
sions are either described or introduced in Watson and Woodruff [56].

The PySP implementation of PH provides these extensions in the form of a plugin,
i.e., a piece of code that extends the core functionality of the underlying algorithm, at
well-defined points during execution. This “Watson–Woodruff” (WW) plugin general-
izes the accelerator and cycle-avoidance mechanisms described in Watson and Wood-
ruff [56]. The Python module implementing this plugin is namedwwextension.py;
general users do not need to understand the contents of this module.

The runph script provides three command-line options to control the execution of
the Watson–Woodruff extensions plugin:

--enable-ww-extensions
Enable the Watson–Woodruff PH extensions plugin. Defaults to False.
--ww-extension-cfgfile=WW_EXTENSION_CFGFILE
The name of a configuration file for the Watson–Woodruff PH extensions plugin.
Defaults to “wwph.cfg”.
--ww-extension-suffixfile=WW_EXTENSION_SUFFIXFILE
The name of a variable suffix file for the Watson–Woodruff PH extensions plugin.
Defaults to “wwph.suffixes”.

As discussed in Sect. 7.4, user-defined extensions can co-exist with the Watson–Wood-
ruff extension.

Before discussing the configuration of this extension (which necessarily relies on
problem-specific knowledge), we provide more motivation and algorithmic detail
underlying the extension:

• Convergence detection. A detailed analysis of PH behavior on a variety of prob-
lems indicates that individual decision variables frequently converge to specific,
fixed values across all scenarios in early PH iterations. Further, despite interac-
tions among the variables, this value frequently does not change in subsequent PH
iterations. Such variable “fixing” behaviors lead to a potentially powerful, albeit
obvious, heuristic: once a particular variable has converged to an identical value
across all scenarios for some number of iterations, fix it to that value. However,
the strategy must be used carefully. In particular, for problems where the problem
constraints impose both upper and lower bounds on variables x , these methods
may result in PH encountering infeasible scenario sub-problems even though the
problem is ultimately feasible.
• Cycle detection. In the presence of integer variables, PH occasionally exhibits

cycling behavior. Consequently, cycle detection and avoidance mechanisms are
required to force eventual convergence of the PH algorithm in the mixed-integer
case. To detect cycles, we focus on repeated occurrences of the weight vectors w,
heuristically implemented using a simple hashing scheme [57] to minimize impact
on run-time. Once a cycle in the weight vectors associated with any decision variable
is detected, the value of that variable is fixed (using problem-specific, user-supplied
knowledge) across scenarios in order to break the cycle.
• Convergence-based sub-problem optimality thresholds. A number of research-

ers have noted that it is unnecessary to solve scenario sub-problems to optimality

123

PySP: modeling and solving stochastic programs in Python 139

in early PH iterations [29]. In these early iterations, the primary objective is to
quickly obtain coarse estimates of the PH weight vectors, which (at least empir-
ically) does not require optimal solutions to scenario sub-problems. Once coarse
weight estimates are obtained, optimal solutions can then be pursued to tune the
weight vectors in the effort to achieve convergence. Given a measure of sce-
nario solution homogeneity (e.g., the convergence threshold g(k)), a commonly
used strategy is to set the solver mipgap—a termination threshold based on the
difference in current lower and upper bounds—in proportion to this
measure.

7.1.1 Mipgap control and cycle detection parameters

The WW extension defines and exposes a number of key user-controllable parameters,
each of which can be optionally specified in the WW PH configuration file (named
wwph.cfg by default). The full range of parameters available is documented in the
PySP user’s manual, installed with the software. Informally, parameters are available
for controlling mipgaps and cycle detection logic.

Users specify values for these parameters in the WW PH configuration file, which
is loaded by specifying the --ww-extension-cfgfile runph command-line
option. To simplify implementation, the parameters are set directly using Python syn-
tax, e.g., as follows:

The contents of the configuration file are read by the WW extension following ini-
tialization. The self identifier refers to the WW extension object itself; the file
contents are directly executed by the WW extension via the Python execfile
command. While powerful and simplistic, this approach to initialization is poten-
tially dangerous, as any attribute of the WW extension object is subject to
manipulation.

7.1.2 General variable fixing and slamming parameters

Variable fixing is often an empirically effective heuristic for accelerating PH conver-
gence. Fixing strategies implicitly rely on strong correlation between the converged
value of a variable across all scenario sub-problems in an intermediate PH iteration
and the value of the variable in the final solution should no fixing be imposed. Var-
iable fixing reduces scenario sub-problem size, accelerating solve times. However,
depending on problem structure, the strategy can lead to either sub-optimal solutions
(due to premature declarations of convergence) or the failure of PH to converge (due
to interactions among the constraints). Consequently, careful and problem-depen-
dent tuning is typically required to achieve an effective fixing strategy. To facili-
tate such tuning, the WW PH extension allows for specification of various global

123

140 J.-P. Watson et al.

parameters to control fixing, e.g., the conditions under which discrete and continu-
ous variables can be fixed as a function of the number of PH iterations over which
convergence is observed. The full set of parameters is documented in the PySP user’s
manual.

Fixing strategies at iteration 0 are typically distinct from those in subsequent iter-
ations, e.g., iteration 0 agreement of acquisition quantities in a resource allocation
problem to a value of 0 may (depending on the problem structure) indicate that no
such resources are likely to be required. In general, longer lag times for PH iterations
k ≥ 1 yield better solutions, albeit at the expense of longer run-times; this trade-off is
numerically illustrated in Watson and Woodruff [56]. Differentiation between fixing
behaviors at lower bounds, upper bounds, or intermediate values are typically neces-
sary due to variable problem structure (e.g., variables being constrained from lower
or upper bounds).

For many mixed-integer problems, PH can spend a disproportionately large number
of iterations “fine-tuning” the values of a small number of variables in order to achieve
convergence. Consequently, it is often desirable to force early agreement of these vari-
ables, even at the expense of sub-optimal final solutions. This mechanism is referred
to as slamming in Watson and Woodruff [56]. Slamming is also used to break cycles
detected through the mechanisms described above. The WW PH extension supports
a number of configuration options to control variable slamming, e.g., the number of
iterations allowed to proceed before slamming is enabled, or the values to which a
variable can be slammed. The full set of variable slamming options is documented in
the PySP user’s manual.

Slamming to the minimum and maximum scenario tree node values is often use-
ful in resource allocation problems. For example, it is frequently safe with respect
to feasibility to slam a variable value to the scenario maximum in the case of one-
sided “diet” problems (i.e., problems in which there are no constraints that imply
upper bounds on the resources needed, which means that additional resources strictly
inflate solution cost but cannot result in infeasibility; see Watson and Woodruff [56]
for additional details). In the event that multiple slamming options are available,
the priority order is given as: lower bound, minimum, upper bound, maximum, and
anywhere.

7.1.3 Variable-specific fixing and slamming parameters

Global controls for variable fixing and slamming are generally useful, but for many
problems more fine-grained control is required. For example, in one-sided diet prob-
lems, feasibility can be maintained during slamming by fixing a variable value at
the maximal level observed across scenarios (assuming a minimization objective)
[56]. Similarly, it is often desirable in a multi-stage stochastic program to fix vari-
ables appearing in early stages before those appearing in later stages, or to fix binary
variables for siting decisions in facility location prior to discrete allocation variables
associated with those sites.

The WW PH extension provides fine-grained, variable-specific control of both fix-
ing and slamming using the concept of suffixes, similar to the mechanism employed
by AMPL [3]. Global defaults are established using the mechanisms described in

123

PySP: modeling and solving stochastic programs in Python 141

Sect. 7.1.2, while optional variable-specific over-rides are specified via the suffix
mechanism we now introduce.

The specific suffixes (fully documented in the PySP user’s manual) recognized by
the WW PH extension include analogous, variable-specific functionality to that pro-
vided by the parameters described in Sect. 7.1.2. In addition, we introduce the suffix
SlammingPriority, which allows for prioritization of variables slammed during
convergence acceleration; larger values indicate higher priority. The latter are partic-
ularly useful, for example, in the context of resource allocation problems in which
early slamming of lower-cost items tends to yield lower-cost final solutions.

Variable-specific suffixes are supplied to the WW PH extension in a file, the name
of which is communicated to the runph script through the --ww-extension-
suffixfile option. An example of a suffix file (notionally implementing the moti-
vational examples described above) is as follows:

In general, suffixes are specified via (VARSPEC, SUFFIX, VALUE) triples, where
VARSPEC indicates a variable slice (i.e., a template that matches one or more indices
of a variable; if the variable is not indexed, only the variable name is specified),
SUFFIX indicates the name of a suffix recognized by the WW PH extension, and
VALUE indicates the quantity associated with the specified suffix (and is expected to
be consistent with the type of value expected by the suffix). If no suffix is associated
with a given variable, then the global default parameter values are accessed.

In terms of implementation, suffixes are easily processed via Python’s dynamic
object attribute functionality. For each VARSPEC encountered, the index template
(if it exists) is expanded and all matching variable value objects are identified. Then,
for each variable value, a call to setattr is performed to attach the corresponding
attribute/value pair to the object. The advantage of this approach is simplicity and
generality: any suffix can be applied to any variable. The disadvantage is the lack of
error-checking, in that suffixes unknown to the WW PH extension can inadvertently
be specified, e.g., a capitalized SLAMMINGPRIORITY suffix. However, specification
of unknown suffixes is benign, in the sense that they will be stored but never queried
by the system.

7.2 Solving a constrained extensive form

A common practice in using PH as a mixed-integer stochastic programming heuristic
involves running PH for a limited number of iterations (e.g., via the
--max-iterations option), fixing the values of discrete variables that appear to
have converged, and then solving the significantly smaller extensive form that results

123

142 J.-P. Watson et al.

[40]. The resulting compressed extensive form is generally far smaller and easier to
solve than the original extensive form. This technique directly avoids issues related
to the empirically long number of PH iterations required to resolve relatively small
remaining discrepancies in scenario sub-problem solutions. Any disadvantage stems
from variable fixing itself, i.e., premature fixing of variables can lead to sub-optimal
extensive form solutions.

To write and solve the extensive form following PH termination, we provide the
following options in the runph script:

--write-ef
Upon termination, write the extensive form of the model. Disabled by default.
--solve-ef
Following write of the extensive form model, solve the extensive form and display
the resulting solution. Disabled by default.
--ef-output-file=EF_OUTPUT_FILE
The name of the extensive form output file. Defaults to “efout.lp”.

When writing the extensive form, all variables whose value is currently fixed in
any scenario sub-problem are automatically (via Pyomo) preprocessed into constant
terms in any referencing constraints or the objective. Solver selection is controlled
with the --solver keyword, and is identical to that used for solving scenario sub-
problems. The runph script additionally provides mechanisms for specifying solver
options (including mipgap) specific to the extensive form solve.

7.3 Alternative convergence criteria

The PySP PH implementation supports a variety of alternative convergence metrics,
enabled via the following runph command-line options:

--enable-termdiff-convergence
Terminate PH based on the termdiff convergence metric, which is defined as the
unscaled sum of differences between variable values and the mean. Defaults to
False.
--enable-normalized-termdiff-convergence
Terminate PH based on the normalized termdiff convergence metric. Each term
in the termdiff sum is scaled by the average variable value and the overall sum is
normalized by the number of variables to blend (i.e. number of variables for which
non-anticipativity must be enforced). Defaults to True.
--enable-free-discrete-count-convergence
Terminate PH based on the free discrete variable count convergence metric, which
is a function of the current number of non-fixed, non-anticipative discrete variables
in the scenario tree (e.g., all but those in the final stage). Defaults to False.
--free-discrete-count-threshold=FREE_DISCRETE_COUNT_
THRESHOLD
The convergence threshold associated with the free discrete variable count conver-
gence metric. PH will terminate once the number of free discrete variables (see
definition immediately above) drops below this threshold.

123

PySP: modeling and solving stochastic programs in Python 143

Only a single termination criterion can be activated for any given run; the soft-
ware will warn and exit if multiple criteria are enabled. The default value for the
–enable-termdiff-convergence ensures that at least one criterion is always active.
The termination criterion associated with the free discrete variable count is particu-
larly useful when deployed in in conjunction with the capability to solve restricted
extensive forms described in Sect. 7.2.

7.4 User-defined extensions

The Watson–Woodruff PH extensions described in Sect. 7.1 are built upon a simple,
general callback framework in PySP for developing user-defined extensions to the core
PH algorithm. While most modelers and typical PySP users would not make use of
this feature, programmers and algorithm developers can easily leverage the capability.
The interface for user-defined PH extensions is defined in a PySP read-only file called
phextension.py. The file contents are supplied as follows, to identify the points
at which runph temporarily transfers control to the user-defined extension:

To create a user-defined extension, one simply needs to define a Python class that
implements the PH extension interface shown above, e.g., via the following code
fragment:

123

144 J.-P. Watson et al.

The full example PH extension is supplied with PySP, in the form of the Python file
testphextension.py. All Coopr user plugins are derived from a
SingletonPlugin base class (indicating that there cannot be multiple instances
of each type of user-defined extension), which can for present purposes be viewed
simply as a necessary step to integrate the user-defined into the Coopr framework in
which PySP is embedded. We defer to Hart and Siirola [27] for an in-depth discussion
of the Coopr plugin framework leveraged by PySP.

Each transfer point (i.e., callback) in the user-defined extension is supplied the PH
object, which includes the current state of the scenario tree, reference instance, all
scenario instances, PH weights, etc. User code can then be developed to modify the
state of PH (e.g., current solver options) or variable attributes (e.g., fixing as in the
case of the Watson–Woodruff extension).

To use a customized extension with runph, the user invokes the command-line
option --user-defined-extension=EXTENSIONFILE. Here, EXTENSION
FILE is the Python module name, which is assumed to be either in the current directory
or in some directory specified via the PYTHONPATH environment variable. Finally,
we observe that both a user-defined extension and the Watson–Woodruff PH extension
can co-exist. However, the Watson–Woodruff extension will be invoked prior to any
user-defined extension.

8 Solving PH scenario sub-problems in parallel

One immediate benefit to embedding PySP and Pyomo in a high-level language
such as Python is the ability to leverage both native and third-party functionality
for distributed computation. Specifically, Python’s pickle module provides facilities
for object serialization, which involves encoding complex Python objects—includ-
ing Pyomo instances—in a form (e.g., a byte stream) suitable for transmission and/or
storage. The third-party, open-source Pyro (Python Remote Objects) package [43] pro-
vides capabilities for distributed computing, building on Python’s pickle serialization
functionality.

PySP currently supports distributed solves, accessible from both the runef and
runph scripts. At present, only a simple client-server paradigm is supported in the
publicly available distribution. The general distributed solver capabilities provided

123

PySP: modeling and solving stochastic programs in Python 145

in the Coopr library are discussed in Hart et al. [28], including the mechanisms and
scripts by which name servers (used to locate distributed objects) and solver servers
(daemons capable of solving MIPs, for example) are initialized and interact. Here, we
simply describe the use of a distributed set of solver servers in the context of PySP.

Both the runef and runph scripts are implemented such that all requests for the
solution of scenario sub-problems are mediated by a “solver manager”. The default
solver manager in both scripts is a serial solver manager, which executes all solves
locally. Alternatively, a user can invoke a remote solver manager by specifying the
command-line option --solver-manager=pyro. The remote (pyro) solver man-
ager identifies available remote solver daemons, serializes the relevant Pyomo model
instance for communication, and initiates a solve request with the daemon. After the
daemon has solved the instance, the solution is returned to the remote solver manager,
which then transfers the solution to the invoking script.

The accessibility of remote solvers within the PySP PH implementation immedi-
ately confers the benefit of trivial parallelization of scenario sub-problem solves. In
the case of commercial solvers, all available licenses can be leveraged. In the open-
source case, cluster solutions can be deployed in a straightforward manner. Parallel-
ism in PySP most strongly benefits stochastic mixed-integer and non-linear program
solves, in which the difficulty of scenario sub-problems masks the overhead associated
with object serialization and client-server communication. At the same time, parallel
efficiency necessarily decreases as the number of scenarios increases, due to high
variability in mixed-integer and non-linear solve times and the presence of barrier
synchronization points in PH (after Step 2 in the pseudocode introduced in Sect. 6.1).
However, parallel efficiency is of increasingly diminishing concern relative to the need
to support high-throughput computing.

For solving the extensive form, remote solves serve a different purpose: to facilitate
access to a central computing resources, with associated solver licenses. For example,
our primary workstation for developing PySP is a 16-core workstation with a large
amount of RAM (96GB). All commercial solver licenses are localized to this work-
station, which in turn exposes parallelism enabled by now-common multi-threaded
solver implementations.

Given the growing availability of cluster-based computing resources and the increas-
ing accessibility of solver licenses (as is particularly the case for academics, with access
to free licenses for most commercial solvers), the use of distributed computation by
PySP users is expected to continue to grow.

9 Conclusions

Despite the potential of stochastic programming to solve real-world decision problems
involving uncertainty, the use of this tool in industry is far from widespread. Historical
impediments include the lack of stochastic programming support in algebraic model-
ing tools and the inability to experiment with and customize stochastic programming
solvers, which are immature relative to their deterministic counterparts.

We have described PySP, an open-source software tool designed to address both
impediments simultaneously. PySP users express stochastic programs using Pyomo,

123

146 J.-P. Watson et al.

an open-source algebraic modeling language co-developed by the authors. In addi-
tion to exhibiting the benefits of open-source software, Pyomo is based on the Python
high-level programming language, allowing generic access and manipulation of model
elements. PySP is also embedded within Coopr, which provides a wide range of solver
interfaces (both commercial and open-source), problem writers, solution readers, and
distributed solvers.

PySP leverages the features of Python, Pyomo, and Coopr to develop model-inde-
pendent algorithms for generating and solving the extensive form directly, and solving
the extensive form via scenario-based decomposition (PH). The resulting PH imple-
mentation is highly configurable, broadly extensible, and trivially parallelizable. PySP
serves as a novel case study in the design of generic, configurable, and extensible
stochastic programming solvers, and illustrates the benefits of integrating the core
algebraic modeling language within a high-level programming language.

PySP has been used to develop and solve a number of difficult stochastic linear,
non-linear, and mixed-integer linear multi-stage programs, and is under active use
and development by the authors and their collaborators. PySP ships with a number
of academic examples that have been used during the development effort, including
examples from Birge and Louveaux’s text, a network flow problem [56], and a produc-
tion planning problem [32]. Real-world applications that have either been completed
in PySP or are under active investigation include biofuel network design [30], for-
est harvesting [4], wind farm network design, sensor placement, and electrical grid
generation expansion.

In-progress and future PySP development efforts include new solvers (e.g., the
L-shaped method), scenario bundling techniques, and support for large-scale paral-
lelism. In addition, we have recently integrated capabilities for confidence interval
estimation on solution quality.

Both PySP and the Pyomo algebraic modeling language upon which PySP is based
are actively developed and maintained by Sandia National Laboratories. Both are pack-
ages distributed with the Coopr open-source Python project for optimization, which
is now part of the COIN-OR open-source initiative [11].

Acknowledgments Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department
of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. This research
was funded in part by the Department of Energy’s Office of Advanced Scientific Computing Research, as
part of the Complex Interconnected Distributed Systems program. The authors would like to acknowledge
several early users of PySP and Pyomo, whose experience dramatically improved the quality and design
of the software: Yueyue Fan (UC Davis), Yongxi Huang (UC Davis), Chien-Wei Chen (UC Davis), and
Fernando Badilla Veliz (University of Chile). The authors would also like to acknowledge the anonymous
referees, whose comments led to a significantly improved manuscript.

Appendix: Getting started

Both PySP and the underlying Pyomo modeling language are distributed with the
Coopr software package. All documentation, information, and source code related
to Coopr is available from: http://www.software.sandia.gov/trac/coopr. Installation
instructions are found by clicking on the Download tab found on the Coopr main

123

http://www.software.sandia.gov/trac/coopr

PySP: modeling and solving stochastic programs in Python 147

page, or by navigating directly to following web page: http://www.software.sandia.
gov/trac/coopr/wiki/GettingStarted. A variety of installation options are available,
including directly from the project SVN repositories or via release snapshots found
on PyPi (http://www.pypi.python.org/pypi). Two Google group e-mail lists are asso-
ciated with Coopr and all contained sub-projects, including PySP. The coopr-forum
group is the main source for user assistance and release announcements. The coopr-
developers group is the main source for discussions regarding code issues, including
bug fixes and enhancements. Much of the information found at http://www.software.
sandia.gov/trac/coopr is mirrored on the COIN-OR web site (http://www.projects.
coin-or.org/Coopr); similarly, a mirror of the Sandia SVN repository is maintained by
COIN-OR.

References

1. AIMMS: Optimization software for operations research applications. http://www.aimms.com/
operations-research/mathematical-programming/stochastic-programming, July (2010)

2. Alonso-Ayuso, A., Escudero, L.F., Ortuño, M.T.: BFC, a branch-and-fix coordination algorithmic
framework for solving some types of stochastic pure and mixed 0-1 programs. Eur. J. Oper. Res.
151(3), 503–519 (2003)

3. AMPL: A modeling language for mathematical programming. http://www.ampl.com, July (2010)
4. Badilla, F.: Problema de Planificación Forestal Estocástico Resuelto a Traves del Algoritmo Progres-

sive Hedging. PhD thesis, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago,
Chile (2010)

5. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific,
Massachusetts (1996)

6. Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper.
Res. 33, 989–1007 (1985)

7. Birge, J.R., Dempster, M.A., Gassmann, H.I., Gunn, E.A., King, A.J., Wallace, S.W.: A standard input
format for multiperiod stochastic linear program. COAL (Math. Prog. Soc. Commun. Algorithms)
Newsletter 17, 1–19 (1987)

8. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Berlin (1997)
9. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett.

24(1–2), 37–45 (1999)
10. Chen, D.-S., Batson, R.G., Dang, Y.: Applied Integer Programming. Wiley, New York (2010)
11. COIN-OR: COmputational INfrastructure for Operations Research. http://www.coin-or.org, July

(2010)
12. CPLEX: http://www.cplex.com, July (2010)
13. Crainic, T.G., Fu, X., Gendreau, M., Rei, W., Wallace, S.W.: Progressive hedging-based meta-heuristics

for stochastic network design. Technical report CIRRELT-2009-03, University of Montreal CIRRELT,
January (2009)

14. Fan, Y., Liu, C.: Solving stochastic transportation network protection problems using the progressive
hedging-based method. Netw. Spatial Econ. 10(2), 193–208 (2010)

15. FLOPCPP: Flopc++: Formulation of linear optimization problems in C++. http://www.projects.
coin-or.org/FlopC++, August (2010)

16. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: a mathematical programming language. Manage. Sci.
36, 519–554 (1990)

17. Fourer, R., Lopes, L.: A management system for decompositions in stochastic programming. Ann.
Oper. Res. 142, 99–118 (2006)

18. Fourer, R., Lopes, L.: StAMPL: a filtration-oriented modeling tool for multistage recourse problems.
INFORMS J. Comput. 21(2), 242–256 (2009)

19. Fourer, R., Ma, J., Martin, K.: OSiL: an instance language for optimization. Comput. Optim. Appl.
45(1), 181–203 (2010)

20. FrontLine: Frontline solvers: developers of the Excel solver. http://www.solver.com, July (2011)

123

http://www.software.sandia.gov/trac/coopr/wiki/GettingStarted
http://www.software.sandia.gov/trac/coopr/wiki/GettingStarted
http://www.pypi.python.org/pypi
http://www.software.sandia.gov/trac/coopr
http://www.software.sandia.gov/trac/coopr
http://www.projects.coin-or.org/Coopr
http://www.projects.coin-or.org/Coopr
http://www.aimms.com/operations-research/mathematical-programming/stochastic-programming
http://www.aimms.com/operations-research/mathematical-programming/stochastic-programming
http://www.ampl.com
http://www.coin-or.org
http://www.cplex.com
http://www.projects.coin-or.org/FlopC++
http://www.projects.coin-or.org/FlopC++
http://www.solver.com

148 J.-P. Watson et al.

21. GAMS: The General Algebraic Modeling System. http://www.gams.com, July (2010)
22. Gassmann, H.I.: MSLiP: a computer code for the multistage stochastic linear programming problem.

Math. Program. 47, 407–423 (1990)
23. Gassmann, H.I., Ireland, A.M.: On the formulation of stochastic linear programs using algebraic mod-

eling languages. Ann. Oper. Res. 64, 83–112 (1996)
24. Gassmann, H.I., Schweitzer, E.: A comprehensive input format for stochastic linear programs. Ann.

Oper. Res. 104, 89–125 (2001)
25. GUROBI: Gurobi optimization. http://www.gurobi.com, July (2010)
26. Hart, W.E., Laird, C.D., Watson, J.P., Woodruff, D.L.: Pyomo: Optimization Modeling in Python.

Springer, Berlin (2012)
27. Hart, W.E., Siirola, J.D.: The PyUtilib component architecture. Technical report, Sandia National

Laboratories (2010)
28. Hart, W.E., Watson, J.P., Woodruff, D.L.: Python optimization modeling objects (Pyomo). Math. Pro-

gram. Comput. 3, 219–260 (2011)
29. Helgason, T., Wallace, S.W.: Approximate scenario solutions in the progressive hedging algorithm: a

numerical study. Ann. Oper. Res. 31(1–4), 425–444 (1991)
30. Huang, Y.: Sustainable Infrastructure System Modeling under Uncertainties and Dynamics. PhD thesis,

Department of Civil and Environmental Engineering, University of California, Davis (2010)
31. Hvattum, L.M., Løkketangen, A.: Using scenario trees and progressive hedging for stochastic inventory

routing problems. J. Heurist. 15(6), 527–557 (2009)
32. Jorjani, S., Scott, C.H., Woodruff, D.L.: Selection of an optimal subset of sizes. Int. J. Prod. Res.

37(16), 3697–3710 (1999)
33. Kall, P., Mayer, J.: Building and solving stochastic linear programming models with SLP-IOR. In:

Wallace, S.W., Ziemba, W.T. (eds.) Applications of Stochastic Programming, pp. 79–93. MPS-SIAM
(2005)

34. Kall, P., Mayer, J.: Stochastic Linear Programming: Models, Theory, and Computation. Springer,
Berlin (2005)

35. Karabuk, S.: An open source algebraic modeling and programming software. Technical report,
University of Oklahoma, School of Industrial Engineering, Norman (2005)

36. Karabuk, S.: Extending algebraic modeling languages to support algorithm development for solving
stochastic programming models. IMA J. Manage. Math. 19, 325–345 (2008)

37. Karabuk, S., Grant, F.H.: A common medium for programming operations-research models. IEEE
Softw. 24(5), 39–47 (2007)

38. LINDO: LINDO systems, August (2010)
39. Listes, O., Dekker, R.: A scenario aggregation based approach for determining a robust airline fleet

composition. Transport. Sci. 39, 367–382 (2005)
40. Løkketangen, A., Woodruff, D.L.: Progressive hedging and tabu search applied to mixed integer (0,1)

multistage stochastic programming. J. Heurist. 2, 111–128 (1996)
41. Maximal Software: http://www.maximal-usa.com/maximal/news/stochastic.html, July (2010)
42. Parija, G.R., Ahmed, S., King, A.J.: On bridging the gap between stochastic integer programming and

mip solver technologies. INFORMS J. Comput. 16, 73–83 (2004)
43. PYRO: Python remote objects. http://pyro.sourceforge.net, July (2009)
44. Python: Python programming language—official website. http://python.org, July (2010)
45. Dive Into Python: http://diveintopython.org/power_of_introspection/index.html, July (2010)
46. Rockafellar, R.T., Wets, R.J.-B.: Scenarios and policy aggregation in optimization under uncertainty.

Math. Oper. Res. 16(1), 119–147 (1991)
47. Schultz, R., Tiedemann, S.: Conditional value-at-risk in stochastic programs with mixed-integer

recourse. Math. Program. 105(2–3), 365–386 (2005)
48. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on stochastic programming: modeling and

theory. Society for Industrial and Applied Mathematics (SIAM) (2009)
49. SMI: SMI. http://www.projects.coin-org.org/Smi, August (2010)
50. SUTIL: SUTIL—a stochastic programming utility library. http://www.coral.ie.lehigh.edu/~sutil, July

(2011)
51. Thénié, J., van Delft, Ch., Vial, J.-Ph.: Automatic formulation of stochastic programs via an algebraic

modeling language. Comput. Manage. Sci. 4(1), 17–40 (2007)
52. Valente, C., Mitra, G., Sadki, M., Fourer, R.: Extending algebraic modelling languages for stochastic

programming. INFORMS Journal On Computing 21(1), 107–122 (2009)

123

http://www.gams.com
http://www.gurobi.com
http://www.maximal-usa.com/maximal/news/stochastic.html
http://pyro.sourceforge.net
http://python.org
http://diveintopython.org/power_of_introspection/index.html
http://www.projects.coin-org.org/Smi
http://www.coral.ie.lehigh.edu/~sutil

PySP: modeling and solving stochastic programs in Python 149

53. Valente, P., Mitra, G., Poojari, C.A.: A stochastic programming integrated environment. In: Wallace,
S.W., Ziemba, W.T. (eds.) Applications of Stochastic Programming, pp. 115–136. MPS-SIAM (2005)

54. Van Slyke, R.M., Wets, R.J.-B.: L-shaped linear programs with applications to optimal control and
stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)

55. Wallace, S.W., Ziemba, W.T. (eds.): Applications of Stochastic Programming. Society for Industrial
and Applied Mathematics (SIAM) and the Mathematical Programming Society (MPS) (2005)

56. Watson, J.P., Woodruff, D.L.: Progressive hedging innovations for a class of stochastic mixed-integer
resource allocation problems. Comput. Manage. Sci. 8(4), 355–370 (2011)

57. Woodruff, D.L., Zemel, E.: Hashing vectors for tabu search. Ann. Oper. Res. 41(2), 123–137 (1993)
58. Word, D.P., Burke, D.A., Iamsirithaworn, D.S., Laird, C.D.: A nonlinear programming approach for

estimation of transmission parameters in childhood infectious disease using a continuous time model.
J. R. Soc. Interface (Under Review)

59. Xpress-Mosel. http://www.dashopt.com/home/products/products_sp.html, July (2010, to appear)
60. XpressMP: FICO express optimization suite. http://www.fico.com/en/products/DMTools/pages/

FICO-Xpress-Optimization-Suite.aspx, July (2010)

123

http://www.dashopt.com/home/products/products_sp.html
http://www.fico.com/en/products/DMTools/pages/FICO-Xpress-Optimization-Suite.aspx
http://www.fico.com/en/products/DMTools/pages/FICO-Xpress-Optimization-Suite.aspx

	PySP: modeling and solving stochastic programs in Python
	Abstract
	1 Introduction
	2 Stochastic programming: definition and notations
	3 Modeling in PySP
	3.1 The deterministic reference model
	3.2 The scenario tree
	3.3 Scenario parameter specification
	3.4 Compilation of the scenario tree model
	3.5 Additional PySP examples

	4 Generating and solving an extensive form
	4.1 The runef script
	4.2 Under the hood: generating the extensive form

	5 Related proposals and software packages
	6 Progressive hedging: a generic decomposition strategy
	6.1 The Progressive Hedging algorithm
	6.2 The runph script
	6.3 Implementation details

	7 Progressive hedging extensions: advanced configuration
	7.1 Convergence accelerators and mixed-integer heuristics
	7.1.1 Mipgap control and cycle detection parameters
	7.1.2 General variable fixing and slamming parameters
	7.1.3 Variable-specific fixing and slamming parameters

	7.2 Solving a constrained extensive form
	7.3 Alternative convergence criteria
	7.4 User-defined extensions

	8 Solving PH scenario sub-problems in parallel
	9 Conclusions
	Acknowledgments
	Appendix: Getting started
	References

