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Abstract We describe Pyomo, an open source software package for modeling and
solving mathematical programs in Python. Pyomo can be used to define abstract and
concrete problems, create problem instances, and solve these instances with standard
open-source and commercial solvers. Pyomo provides a capability that is commonly
associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS.
In contrast, Pyomo’s modeling objects are embedded within a full-featured high-
level programming language with a rich set of supporting libraries. Pyomo leverages
the capabilities of the Coopr software library, which together with Pyomo is part of
IBM’s COIN-OR open-source initiative for operations research software. Coopr inte-
grates Python packages for defining optimizers, modeling optimization applications,
and managing computational experiments. Numerous examples illustrating advanced
scripting applications are provided.
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1 Introduction

The Python Optimization Modeling Objects (Pyomo) software package supports the
definition and solution of optimization applications using the Python scripting lan-
guage. Python is a powerful high-level programming language that has a very clear,
readable syntax and intuitive object orientation. Pyomo includes Python classes for
defining sparse sets, parameters, and variables, which can be used to formulate alge-
braic expressions that define objectives and constraints. Pyomo can be used to represent
linear, mixed-integer, non-linear, and non-linear mixed-integer models for large-scale,
real-world problems that involve thousands of constraints and variables.

The introduction of Pyomo was motivated by a variety of factors that impact optimi-
zation applications at Sandia National Laboratories, a large US Department of Energy
Laboratory at which two of the co-authors are employed. Sandia’s discrete mathemat-
ics group has successfully used AMPL [3,19] to model and solve large-scale integer
programs for many years. Our application experience highlighted the value of Alge-
braic Modeling Languages (AMLs) for solving real-world optimization applications,
and AMLs are now an integral part of operations research solutions at Sandia.

Our experience with these applications has also highlighted the need for more flexi-
ble AML frameworks. For example, direct integration with a high-level programming
language is needed to allow modelers to leverage modern programming constructs,
ensure cross-platform portability, and access the broad range of functionality found in
standard software libraries. AMLs also need to support extensibility of the core mod-
eling language and associated solver interfaces, since complex applications typically
require some degree of customization. Finally, open-source licensing is required to
manage costs associated with the deployment of optimization solutions, and to facili-
tate the integration of modeling capabilities from a broader technical community.

Pyomo was developed to provide an open-source platform for developing optimi-
zation models that leverages Python’s rich high-level programming environment to
facilitate the development and deployment of optimization capabilities. Pyomo is not
intended to facilitate modeling better than existing, primarily commercial AML tools.
Instead, it supports a different modeling approach in which the software is designed
for flexibility, extensibility, portability, and maintainability. At the same time, Pyomo
incorporates the central ideas in modern AMLs, e.g., differentiation between abstract
models and concrete problem instances.

Pyomo is a component of the Coopr software library, a COmmon Optimization
Python Repository [12]. Coopr includes a flexible framework for applying optimizers
to analyze Pyomo models, interfaces to well-known linear, mixed-integer, and non-
linear solvers, and provides an architecture that supports parallel solver execution.
Coopr also includes an installation utility that automatically installs the diverse set
of Python packages that are used by Pyomo. Coopr is hosted both as part of IBM’s
COIN-OR open-source software initiative for operations research [10] and at Sandia,
and it is actively developed and maintained by Sandia and its collaborators.

The remainder of this paper is organized as follows. Section 2 describes the moti-
vation and design philosophy behind Pyomo, and Sect. 3 discusses why Python was
chosen for the design of Pyomo. Section 4 describes related high-level modeling
approaches, and Pyomo is briefly contrasted with other Python-based modeling tools.
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In Sect. 5, we discuss the novelty and impact of Pyomo, answering the related questions
“Why another AML?” and “Why Pyomo?”. Section 6 describes the use of Pyomo on
a simple application that is also described in AMPL for comparison, introduces a
number of advanced features of Pyomo, and discusses Pyomo run-time performance.
Section 7 describes how Pyomo leverages the broader solver capabilities in Coopr. Sec-
tion 8 illustrates the use of Pyomo by discussing a number of advanced case studies.
Section 9 provides information for getting started with Coopr, and Sect. 10 describes
future work that is planned for Pyomo and Coopr.

2 Design goals and requirements

The following sections describe the design goals and requirements that have guided the
development of Pyomo. The design of Pyomo has been driven by two different types
of projects at Sandia. First, Pyomo has been used by research projects that require
a flexible framework for customizing the formulation and evaluation of optimization
models. Second, projects with external customers frequently require that optimization
modeling techniques be deployed without the need for commercial licenses.

2.1 Open source licensing

A key goal of Pyomo is to provide an open source optimization modeling capabil-
ity. Although open source optimization solvers are widely available in packages like
COIN-OR [10], comparatively few open source tools have been developed to model
optimization applications. The open source requirement for Pyomo is motivated by
several factors:

— Transparency and reliability When managed well, open source projects facilitate
transparency in software design and implementation. Because any developer can
study and modify the software, bugs and performance limitations can be identi-
fied and resolved by a wide range of developers with diverse software experience.
Consequently, there is growing evidence that managing software as open source
can improve its reliability and that open source software exhibits similar defect
evolution patterns as proprietary software [4,56].

— Flexible licensing A variety of significant operations research applications at
Sandia have required the use of a modeling tool with a non-commercial and non-
infectious license. There have been many different reasons for this requirement,
including the need to support open source analysis tools, limitations for soft-
ware deployment on classified computers, and licensing policies for commercial
partners (e.g., who are motivated to minimize the cost of deploying an applica-
tion model internally within their company). The Coopr software library, which
contains Pyomo, is licensed under the BSD [9]. BSD has fewer restrictions for
commercial use than alternative open source licenses like the GPL [24], and is
non-infectious.

The use of an open source software development model is not a panacea; ensuring
high reliability of the software still requires careful management and a committed
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developer community. However, there is increasing recognition that open source
software provides many advantages beyond simple cost savings [11], including
supporting open standards and avoiding being locked into a single vendor.

2.2 Customizable capability

A key limitation of proprietary commercial modeling tools is their limited support for
customization of the modeling components or optimization processes. Pyomo’s open
source project model allows a diverse range of developers to prototype new capabilities.
Thus, developers can customize the software for specific applications, and they can
prototype capabilities that may eventually be integrated into future software releases.

More generally, Pyomo is designed to support a “stone soup” development model
in which each developer “scratches their own itch.” A key element of this design is the
plugin framework that Pyomo uses to integrate software components like optimizers,
optimizer managers, and optimizer model format converters. The plugin framework
manages the registration of components, and it automates the interaction of these
components through well-defined interfaces. Thus, users can customize Pyomo in a
modular manner without the risk of destabilizing core functionality.

2.3 Solver integration

Modeling tools can be roughly categorized into two classes based on how they integrate
with optimization solvers. Tightly coupled modeling tools directly access optimization
solver libraries (e.g., via static or dynamic linking). In contrast, loosely coupled mod-
eling tools apply external optimization executables (e.g., through the use of system
calls). Of course, these options are not exclusive, and a goal of Pyomo is to support
both types of solver interfaces.

This design goal has led to a distinction in Pyomo between model formulation
and optimizer execution. Pyomo uses a high level (scripting) programming language
to formulate a problem that can be solved by optimizers written in low-level (com-
piled) languages. This two-language approach leverages the flexibility of the high-level
language for formulating optimization problems and the efficiency of the low-level
language for numerical computations.

2.4 Abstract models and concrete instances

A requirement of Pyomo’s design is that it support the definition of abstract models
in a manner similar to that of AMPL [3,19] and AIMMS [2,47]. An abstract model
separates the declaration of a model from the data used to generate a specific model
instance; the advantages of this approach are widely appreciated, e.g., see [18, p. 35].
This separation provides an extremely flexible modeling capability, which has been
leveraged extensively in optimization applications developed at Sandia.

To mimic this capability, Pyomo uses a symbolic representation of data, variables,
constraints, and objectives. Model instances are then generated from external data
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sources using construction routines that are provided by the user when defining sets,
parameters, and other modeling components. Further, Pyomo is designed to use data
specified in the AMPL format to facilitate the translation of models between AMPL
and Pyomo.

Pyomo can also create concrete instances directly from specific parameter data,
bypassing the abstract modeling layer. This functionality is similar to that provided in
the open-source modeling tools PuLP and PyMathProg, in addition to capabilities in
many commercial AMLs.

2.5 Flexible modeling language

Another goal of Pyomo is to directly use a modern high-level programming language
to support the definition of optimization models. In this manner, Pyomo is similar to
tools like FlopC++ [17] and Optim] [36], which support modeling in C++ and Java,
respectively. The use of a broad-based high-level programming language to develop
optimization models has several advantages:

—  Extensibility and robustness A widely used high-level programming language pro-
vides a robust foundation for developing and solving optimization models: the lan-
guage has been well-tested in a wide variety of application contexts and deployed on
arange of computing platforms. Further, extensions almost never require changes
to the core language but instead involve the definition of additional classes and
functional routines that can be immediately leveraged in the modeling process.
Further, support of the language itself is not a long-term factor when managing
software releases.

— Documentation Modern high-level programming languages are typically well-doc-
umented, and there is often a large on-line community to provide feedback to new
users.

— Standard libraries Languages like Java and Python have a rich set of libraries
for tackling just about every conceivable programming task. For example, stan-
dard libraries can support capabilities like data integration (e.g., working with
spreadsheets), thereby avoiding the need to directly support such capabilities in a
modeling tool.

An additional benefit of basing Pyomo on a general-purpose high-level program-
ming language is that we can directly support modern programming language features,
including classes, looping and procedural constructs, and first-class functions—all of
which can be critical when defining complex models. By contrast, such features are
not uniformly available in commercial AMLs.

Pyomo is implemented in Python, a powerful dynamic programming language
that has a very clear, readable syntax and intuitive object orientation. However, when
compared with AMLs like AMPL, Pyomo has a more verbose and complex syntax.
For example, declarations like set definitions can be expressed as inlined-functions
in AMPL, but they require a more verbose syntax in Python because it supports a
more generic computing model. Thus, a key issue with this approach concerns the tar-
get user community and their level of comfort with standard programming concepts.
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Our examples in this paper compare and contrast AMPL and Pyomo models, which
illustrate this trade-off.

2.6 Portability

A requirement of Pyomo’s design is that it work on a diverse range of computing
platforms. In particular, inter-operability between Microsoft Windows, Linux, and
Macintosh platforms is a key requirement for many Sandia applications. For example,
user front-ends are often GUIs on a Windows platform, while the computational back-
end may reside on a Linux cluster. The main impact of this requirement has been to
limit the choice of the high-level programming language used to develop Pyomo. In
particular, the Microsoft. Net languages were not considered for the design of Pyomo
due to portability considerations.

3 Why Python?

We chose to develop Pyomo using the Python [44] programming language for a variety
of reasons. First, Python meets the criteria outlined in the previous section:

— Open source license Python is freely available, and it has a liberal open source
license that allows users to modify and distribute a Python-based application with
few restrictions.

— Features: Python has arich set of native data types, in addition to support for object
oriented programming, namespaces, exceptions, and dynamic module loading.

— Support and stability Python is stable, widely used, and is well supported through
newsgroups, web forums, and special interest groups.

— Documentation Users can learn about Python from both extensive online docu-
mentation and a number of excellent books.

— Standard library Python includes a large number of useful modules, providing
capabilities for (among others) data persistence, interprocess communication, and
operating and file system access.

— Extensibility and customization Python has a simple model for loading Python
code developed by a user. Additionally, compiled code packages (e.g., NumPy
and SciPy) that optimize computational kernels can be easily integrated. Python
includes support for shared libraries and dynamic loading, so new capabilities can
be dynamically integrated into Python applications.

— Portability Python is available on a wide range of compute platforms, so portability
is typically not a limitation for Python-based applications.

We considered several other popular programming languages prior to developing
Pyomo. However, in most cases Python appears to have distinct advantages:

— .Net As mentioned earlier, the Microsoft. Net languages are not portable to Linux
platforms, and thus they were not suitable for Pyomo.

— Ruby At the moment, Python and Ruby appear to be the two most widely recom-
mended scripting languages that are portable to Linux platforms, and comparisons
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suggest that their core functionality is similar. Our preference for Python is based
in part on the fact that it has a nice syntax that does not require users to enter obtuse
symbols (e.g., $, %, and @). Thus, we expect Python will be a more natural lan-
guage for expressing optimization models. Further, the Python libraries are more
integrated and comprehensive than those for Ruby.

— Java Java has many of the same strengths as Python, and it is arguably as good a
choice for the development of Pyomo. However, Python has a powerful interactive
interpreter that allows real-time code development and encourages experimenta-
tion with Python software. Thus, users can work interactively with Pyomo models
to become familiar with these objects and to diagnose bugs.

— C++ Models formulated with the FlopC++ [17] package are similar to models
developed with Pyomo. Specifically, the models are specified in a declarative style
using classes to represent model components (e.g., sets, variables, and constraints).
However, C++ requires explicit compilation to execute code, and it does not sup-
port an interactive interpreter. Thus, we believe that Python will provide a more
flexible language for users.

Finally, we note that run-time performance was not a key factor in our decision
to use Python. Recent empirical comparisons suggest that scripting languages offer
reasonable alternatives to languages like C and C++, even for tasks that must handle
fair amounts of computation and data [38]. Further, there is evidence that dynamically
typed languages like Python allow users to be more productive than with statically
typed languages like C++ and Java [45,53]. It is widely acknowledged that Python’s
dynamic typing and compact, concise syntax facilitates rapid software development.
Thus, it is not surprising that Python is widely used in the scientific community [34].
Large Python projects like SciPy [30] and SAGE [50] strongly leverage a diverse set
of Python packages to perform complex numerical calculations.

4 Background

A variety of different strategies have been developed to facilitate the formulation and
solution of complex optimization models. For restricted problem domains, optimiz-
ers can be directly interfaced with application modeling tools. For example, modern
spreadsheets like Excel integrate optimizers that can be applied to linear programming
and simple nonlinear programming problems in a natural way.

AMLs are an alternative approach that allows applications to be interfaced with
optimizers that can exploit problem structure. AMLs are specialized high-level pro-
gramming languages for describing and solving mathematical problems, particu-
larly optimization-related problems [31]. AMLs like AIMMS [2], AMPL [3,19], and
GAMS [21] provide programming languages with an intuitive mathematical syntax
that support concepts like sparse sets, indices, and algebraic expressions. AMLs pro-
vide a mechanism for defining variables and generating constraints with a concise
mathematical representation, which is essential for large-scale, real-world problems
that involve thousands or millions of constraints and variables.

Standard programming languages can also be used to formulate optimization mod-
els when used in conjunction with a software library that uses object-oriented design
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to support mathematical concepts. Although these modeling libraries sacrifice some
of the intuitive mathematical syntax of an AML, they allow the user to leverage the
greater flexibility of standard programming languages. For example, modeling tools
like FlopC++ [17] and OptimJ [36] can be used to formulate and solve optimization
models in C++ and Java, respectively.

A related strategy is to use a high-level programming language to formulate
optimization models, which are then solved with optimizers written in low-level lan-
guages. This two-language approach leverages the flexibility of the high-level language
for formulating and manipulating optimization problems and the efficiency of the low-
level language for numerical computations. This approach is increasingly common in
scientific computing tools, and the Matlab TOMLAB Optimization Environment [52]
is probably the most mature optimization software using this approach. Python has
also been used to implement a variety of optimization packages that use this approach:

— APLEpy A package that can be used to describe linear programming and mixed-
integer linear programming optimization problems [5,32].

— CVXOPT A package for convex optimization [14].

— PuLP A package that can be used to describe linear programming and mixed-inte-
ger linear programming optimization problems [40].

— POAMS A modeling tool for linear and mixed-integer linear programs that defines
Python objects for symbolic sets, constraints, objectives, decision variables, and
solver interfaces.

— PyMathProg A package that includes PyGLPK, which encapsulates the function-
ality of the GNU Linear Programming Kit (GLPK) [41].

— OpenOpt A numerical optimization framework that is closely coupled with the
SciPy scientific Python package [35].

Pyomo is closely related to APLEpy, PyMathProg, PuLP, and POAMS. All of
these packages define Python objects that can be used to express optimization models,
but they can be distinguished according to the extent to which they support abstract
models. Abstract models provide a data-independent specification of a mathematical
program. Fourer and Gay [19] summarized the advantages of abstract models when
presenting AMPL:

— The statement of the abstract model can be made compact and understandable

— The independent specification of an abstract model facilitates the specification of
the validity of the associated data

— Data from different sources can be used with the abstract model, depending on the
computing environment

PuLP and PyMathProg do not support abstract models; the concrete models that can
be constructed by these tools are driven by explicit data. APLEpy supports symbolic
definitions of set and parameter data, but the objective and constraint specifications
are concrete. POAMS and Pyomo support abstract models, which can be used to gen-
erate concrete instances from various data sources. Pyomo also provides an automated
construction process for generating concrete instances from an abstract model. Hart
[26] provides Python examples that illustrate the differences between PuLP, POAMS
and Pyomo.
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5 Why Pyomo: the value proposition

Before introducing Pyomo and subsequently illustrating advanced capabilities and
scripting features, we first discuss the “value proposition” for Pyomo. In other words,
we will address the related questions of “Why another AML?” and “Why Pyomo in
particular?” In doing so, we argue that Pyomo holds a unique position in the field of
both commercial and open-source AMLs. In what follows, we provide forward ref-
erences to subsequent sections containing examples that support our arguments. Our
immediate goal in this section is simply to outline the arguments.
The following features are what we view as the primary benefits of Pyomo:

—  Open-source with flexible licensing As we argued in Sects. 2 and 3, a flexible open-
source license is often critical when deploying real-world applications. Further,
open-source software is customizable and typically more extensible than commer-
cial alternatives. Pyomo is obviously differentiated from commercial AMLs in this
regard, and it is differentiated from open-source AMLs such as PyMathProg that
use restrictive licenses.

— Embedded in a high-level, full-featured programming language Commercial
AMLs are embedded in proprietary languages, which typically lack the spec-
trum of language features found in modern high-level programming languages,
e.g., functions, classes, and advanced looping constructs. For example, the lack of
functions in AMPL makes programming many of the types of advanced applica-
tions shown in Sect. 8 very difficult. Other open-source AMLs share this advantage
with Pyomo.

— Access to extensive third-party library functionality By embedding Pyomo in
Python, users immediately gain access to a remarkable range of powerful and
free third-party libraries, including: SciPy, NumPy, Matplotlib, Pyro, and various
database / spreadsheet interfaces.

— Support for abstract and concrete math programming models As we argued in
Sect. 2.4, the separation of model from data is extremely useful in practice. While
commercial AMLs support this distinction, Pyomo is the only open-source AML
to fully support the specification of both abstract and concrete math programming
models.

—  Support for non-linear math programming models and solvers While many com-
mercial AMLs provide capabilities to express and solve non-linear programs, few
open-source tools support non-linear capabilities; OpenOpt [35] is a notable excep-
tion. This Pyomo capability is discussed in Sect. 6.4.

— Integrated support for distributed computation Pyomo provides integrated support
for distributed computation (see Sect. 7.2) by leveraging and extending capabilities
in both Python and the Python library Pyro. This capability is unique in the context
of open-source AMLs, and is uncommon in commercial AMLs. Support for dis-
tributed computation is becoming increasingly critical for application deployment,
given the growing availability of cluster-based and cloud computing.

— Cross-platform deployment capabilities By embedding Pyomo in Python, we are
able to rapidly deploy applications in cross-platform environments. Examples of
such environments are discussed in Sect. 7.2, drawn from real-world computing
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environments exercised by the co-authors and their collaborators. Similar capabil-
ities could be embedded in related open-source AMLs such as PuLP and APLEpy,
but are not currently available.

— Integrated support for obtaining data from external sources Pyomo provides a
rich range of interfaces to extract data from structured text files, spreadsheets, and
databases, driven by the requirements for real-world deployment of optimization
applications. As discussed in Sect. 6.5, this capability distinguishes Pyomo from
other open-source AMLs.

—  Extensibility via component-based software architecture Drawing on best practices
in commercial software design, Pyomo and Coopr are designed in a modular, com-
ponent-based fashion. In particular, users can provide extensions without impacting
the core software design, e.g., in the form of customized solvers and problem writ-
ers. Such functionality is discussed in Sect. 7.3, along with an example of a simple
custom solver. The ability to seamlessly extend the core functionality is unique
among open-source and commercial AMLs.

— Advanced application scripting Perhaps the most important feature of Pyomo is
the comparable ease with which applications requiring advanced scripting can
be developed. For complex optimization applications—beyond those requiring a
simple “express model, generate model, solve model” capability, such scripting is
often integral to successful deployment. Of course, it is difficult to quantify “ease”
in this context, and we make no attempt to do so here. Rather, we point to specific
examples illustrated in Sect. 8.

6 Pyomo: an overview

Pyomo can be used to define abstract models, create concrete problem instances (both
directly and from abstract models), and solve those instances with standard solvers.
Pyomo can generate problem instances and apply optimization solvers within a fully
expressive programming language. Python’s clean syntax allows Pyomo to express
mathematical concepts in a reasonably intuitive and concise manner. Further, Pyomo
can be used within an interactive Python shell, thereby allowing a user to interactively
interrogate Pyomo-based models. Thus, Pyomo has most of the advantages of both
AML interfaces and modeling libraries.

6.1 A simple example

In this section, we illustrate Pyomo’s syntax and capabilities by demonstrating how a
simple AMPL example can be replicated with Pyomo Python code. We focus here on
the specification of symbolic or abstract models; concrete or directly specified models
are discussed in Sect. 6.3.

Consider the following AMPL model prod .mod, which is available from http://
www.ampl.com/BOOK/EXAMPLES/EXAMPLES1:
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set P;

param a {j in P};
param b;

param c¢ {j in P};
param u {j in P};

var X {j in P};
maximize Total_Profit: sum {j in P} c[j] * X[j];
subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;

subject to Limit {j in P}: 0 <= X[j] <= u[j];

To translate this AMPL model into Pyomo, the user must first import the Pyomo
Python package and create a Pyomo AbstractModel object:

# Imports
from coopr.pyomo import x

# Create the model object
model = AbstractModel ()

This import assumes that Pyomo is present in the user’s Python path (see standard
Python documentation for further details about the PYTHONPATH environment vari-
able); the virtual Python executable installed by the Coopr installation script described
in Sect. 9 automatically includes all requisite paths.

Next, we create the sets and parameters that correspond to the data declarations
used in the AMPL model. This can be done very intuitively using the Set and Param
classes defined by Pyomo:

# Sets
model .P = Set ()

# Parameters

model.a = Param(model .P)
model.b = Param ()
model.c¢ = Param(model.P)
model.u = Param (model .P)

Note that the parameter b is a scalar, while parameters a, ¢, and u are arrays indexed
by the set P. Further, we observe that all AML components in Pyomo (e.g., parameters,
sets, variables, constraints, and objectives) are explicitly associated with a particular
model. This allows Pyomo to automatically manage the naming of AML components,
and multiple Pyomo models can be simultaneously defined and co-exist within a single
application.
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Next, we define the decision variables in the model using the Pyomo Var class:

# Variables
model .X = Var(model.P)

Model parameters and decision variables are used in the definition of the objectives
and constraints in the model. Parameters define constants, and the variable values are
determined via optimization. Parameter values can be defined in a separate data file
that is processed by Pyomo (see Sect. 6.5), similar to the paradigm used in AMPL and
AIMMS.

Objectives and constraints are explicitly defined expressions in Pyomo. In abstract
models, the Objective and Constraint classes require a rule keyword option
that specifies how these expressions are to be constructed. A rule is a function that takes
one or more arguments and returns an expression that defines the constraint (body and
bounds) or objective (expression). The last argument in a rule is the model contain-
ing the corresponding objective or constraint, and the preceding arguments are index
values for the objective or constraint that is being defined. If only a single argument
is supplied, the constraint and objectives are necessarily singletons, i.e., non-indexed.
Using these constructs, we express the AMPL objective and constraints in Pyomo as
follows:

# Objective
def objective_rule (model):
return summation(model.c, model.X)
model. Total_Profit = Objective (rule=objective_rule , sense=maximize)

# Time Constraint
def time_rule (model):

return summation(model.X, denom=model.a) <= model.b
model. Time = Constraint (rule=time_rule)

# Limit Constraint
def limit_rule(j, model):
return (0, model . X[j], model.u[j])
model. Limit = Constraint (model.P, rule=limit_rule)

This example illustrates several conventions for generating constraints using stan-
dard Python language constructs. The function objective_rule returns an alge-
braic expression that defines the objective, and the function time_rule returns a
less-than-or-equal expression that defines an upper bound on the constraint body. They
are created with Pyomo’s summation function, which concisely specifies a vector
sum of one or more arguments. An alternative is to use the Python sum function. So,
for example, the sum over i in model. P of X;/a; could be done using the sum-
mation function as shown or using sum(model.X[j]/model.al[j] for jJ
in model.P), which has the same effect. The function 1imit_rule illustrates
another convention that is supported by Pyomo; a rule can return a tuple that defines
the lower bound, constraint body, and upper bound for a constraint. The Python value
None can be supplied as one of the limit values if a bound is not enforced.
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Once an abstract Pyomo model has been created, it can be printed as follows:

model . pprint ()

This command summarizes the information in the Pyomo model, but it does not print
out explicit expressions. This is due to the fact that an abstract model needs to be instan-
tiated with data to generate the variables, constraints, and objectives. An instance of
the prod model can be generated and displayed as follows:

instance = model.create (”prod.dat”)
instance.pprint ()

The file prod. dat file contains set and param data commands that are consistent
with AMPL data commands; this example file is also available from http://www.ampl.
com/BOOK/EXAMPLES/EXAMPLESI.

Once a model instance has been constructed, an optimizer can be applied to find
an optimal solution. For example, the CPLEX mixed-integer programming solver can
be used within Pyomo as follows:

from coopr.opt import x
opt = SolverFactory (”cplex”)
results = opt.solve(instance)

This code fragment imports the solver interfaces associated with Pyomo, and cre-
ates an optimizer interface for the CPLEX executable. The Pyomo model instance
is optimized, and the optimizer returns an object that contains the solution(s) gener-
ated during optimization. Note that this optimization process is executed using other
components of the Coopr library. The coopr . opt package manages the setup and
execution of optimizers, and Coopr optimization plugins are used to manage the exe-
cution of specific optimizers.

Finally, the results of the optimization can be displayed simply by executing the
following command:

results. write (num=1)

Here, the num option indicates the maximum number of solutions from the results
object to be written; some solvers (including CPLEX) can return multiple solutions
that represent alternative optima, or other feasible points.

6.2 Advanced Pyomo modeling features
The previous example provides a simple illustration of Pyomo’s symbolic modeling

capabilities. Much more complex models can be developed using Pyomo’s flexible
modeling components. For example, multi-dimensional set and parameter data can
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be naturally represented using Python tuple objects. The dimen option specifies the
dimensionality of set or parameter data, e.g., as follows:

model.p = Param(model.A, dimen=2)

In this example, the p parameter is an array of data values indexed by A for which
each value is a 2-tuple.

Additionally, set and parameter components can be directly constructed with data
using the initialize option. In the simplest case, this option specifies data that is
used in the component:

model.s = Set(initialize=[1,3,5,7])

For arrays of data, a Python dictionary can be specified to map data index values to
set or parameter values:

model .A = Set(initialize=[1,3,5,7])
model.s = Set(model.A, initialize={1:[1,2,3], 5:[1]})
model.p = Param(model.A, initialize={1:2, 3:4, 5:6, 7:8})

More generally, the initialize option can specify a function that returns data
values used to initialize the component:

def x_init (model):
return [2xi for i in range(0, 10)]
model .x = Set(initialize=x_init)

Set and parameter components also include mechanisms for validating data. The
within option specifies a set that contains the corresponding set or parameter data,
for example as follows:

model.s = Set(within=Integers)
model.p = Param(within=model.s)

The validate option can also specify a function that returns a boolean indicating
whether data is acceptable:

def p_valid(val, model):
return val >= 0.0
model.p = Param(validate=p_valid)

Pyomo includes a variety of virtual set objects that do not contain data but which can
be used to perform validation, including:

— Any: Any numeric or non-numeric value other than the Python None value
— PositiveReals: Positive real values
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— NonNegativeIntegers: Non-negative integer values
— Boolean: Zero or one values

Finally, there are many contexts where it is necessary to specify index sets that
are more complex than simple product sets. To simplify model development in these
cases, Pyomo supports set index rules that automatically generate temporary sets for
indexing. For example, the following example illustrates how to index a variable on
2-tuples (i, j) for whichi < j:

model .n = Param(within=PositiveIlntegers)
def x_index (model):
return [(i,j) for i in range(0,model.n.value)
for j in range(0,model.n.value) if i<j]
model .x = Var(x_index)

6.3 Constructing concrete models

Concrete models are the most direct type of model that Pyomo supports. These mod-
els can be formulated in the same way as abstract models using Pyomo components
for variables, objectives, and (optionally) constraints. Additionally, a user can easily
leverage native Python data structures while constructing concrete models. The Con-
creteModel class is used to represent concrete models whose data is provided as
the model components are declared. In contrastto AbstractModel,aConcrete-
Model immediately initializes model components as they are added to a instance.

6.4 Non-linear modeling extensions

A key differentiating feature of Pyomo relative to other open-source (and some com-
mercial) modeling languages is the ability to specify and generate non-linear optimi-
zation models. Currently, the non-linear model output format supported by Pyomo
is NL, the native AMPL file format. We have chosen this format principally because
it is used by a variety of non-linear solvers, including Ipopt [29] and BONMIN [8].
Further, the NL format supports the full range of non-linear operators. Examples of
such operators, also provided in Pyomo, include:

— pow, exp, and related operators (including sqgrt and 1ogl10)
— sin, cos, tan, and related hyperbolic and inverse operators
— abs, the absolute value operator

To illustrate the use of non-linear operators in Pyomo, consider the objective associated
with the brownden CUTEtr test problem instance [13]:

def f(model):
expa = sum ([((model.x[1]+model.t [i]*model.x[2]— \
exp(value(model.t[i])))**2 + \
(model.x[3]+model.x [4]# sin (value (model .t [i])) — \
cos(value(model.t[i])))**2 )**2 for i in model.St])
return expa
model. f = Objective (rule=f, sense=minimize)
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As the example illustrates, non-linear operators are naturally incorporated into the
syntax for specifying algebraic expressions in both constraints and objectives.

6.5 Importing data

While commercial AMLs provide streamlined functionality for accessing external data
sources, the same is not true of open-source AMLs. As discussed below in Sect. 6.7,
Python-based AMLs other than Pyomo require the user to specify data via native
Python constructs, e.g., in dictionaries or low-level input/output routines. The same
holds for non-Python open-source AMLSs such as FlopC++. While flexible, this inter-
face can be cumbersome and inefficient for non-programmers. In the case of abstract
models, where data varies across a single core abstraction, users must maintain inde-
pendent data stores for each instance. Further, in deployed optimization applications,
data is almost exclusively maintained in central data stores, e.g., Excel or a database.
To address these concerns, Pyomo provides streamlined initialization of data from
external data sources.

The data file format discussed in Sect. 6.1 is one example of an external method
by which Pyomo data can be initialized, and this is the most common mechanism for
novice and academic Pyomo users. These files contain custom Pyomo data commands
that are similar to those used by AMPL.

To support data access from more general sources such as structured ASCII file,
csv files, spreadsheets, and databases, Pyomo supports the import command. The
import command directs Pyomo to load a relational table that represents set and
parameter data. A relational table consists of a matrix of numeric string values, sim-
ple strings, and quoted strings. All rows and columns must have the same number of
entries, and the first row represents labels for the column data.

We now discuss some aspects of the Pyomo import syntax using small illustrative
examples. First, consider data stored in a simple text white-space delimited text file
called Y. tab:

A

Al
A2
A3

w w w <
U W

This file specifies the values of a parameter Y, which is indexed by set A. The following
import command loads the parameter data:

import Y.tab : [A] Y ;

The first argument is the name of the file containing the data. The options after the
“:” character indicate how the table data is mapped onto model data. The option [A]
indicates that the set A is used as the index, and the option Y indicates the name of the
parameter to be initialized.

Similarly, set data can be loaded from an ASCII file named A. tab containing a

single column:
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A

Al
A2
A3

The format option must be specified to denote the fact that the relational data is to
be interpreted as a set, as follows:

import A.tab format=set : A ;

Simple extensions of this general syntax can be used to specify data tuples, or indexed
sets; additional keywords are provided to guide how relational table data is interpreted
by Pyomo. The same general syntax can be used to access relational table data in csv
(comma-separated) and xIs (Excel) files. Similarly, data can be extracted from rela-
tional databases by adding appropriate keyword specifying the database driver, query,
and optional user name and password, for example:

import ABCD.mdb using=pyodbc query=*“SELECT x FROM ABCD” : \
7Z=[A,B,C] Y=D ;

This command creates a relational table using all of the columns in the database table
ABCD, extracted using the pyodbc database interface. The using keyword indi-
cates that data is to be extracted using an external Python package, the Python ODBC
database interface.

Other data partitioning and organizational commands are also supported in Pyomo,
e.g., include statements that import nested. dat files and namespace commands
that logically partition the contents of a single .dat file. Namespaces are particularly
useful, allowing for the specification of data for multiple model instances in a single
file.

6.6 The Pyomo command

While Pyomo-based Python code can be entered and executed directly from within the
Python interpreter, Pyomo includes the pyomo command-line tool that can construct
an abstract or concrete model, create a concrete instance from user-supplied data (if
applicable), apply an optimizer, and summarize the results. For example, the following
command line optimizes the AMPL prod model using the data in prod.dat:

pyomo prod.py prod.dat

The pyomo command automatically executes the following steps:

— Create an abstract or concrete model

— Read the instance data (if applicable and specified)

— Generate a concrete instance from the abstract model and instance data (if appli-
cable)
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— Apply simple preprocessors to the concrete instance
— Apply a solver to the concrete instance

— Load the results into the concrete instance

— Display results

The pyomo script supports a variety of command-line options to guide and provide
information about the optimization process; documentation of the various available
options is obtained by specifying the —help option. Options can control how much or
even if debugging information is printed, including logging information generated by
the optimizer and a summary of the model generated by Pyomo. Further, Pyomo can
be configured to keep all intermediate files used during optimization, which facilitates
debugging of the model construction process.

6.7 Comparison with other Python-based modeling languages

We now briefly contrast Pyomo with several open-source Python-based math program
modeling packages providing related functionality. A comprehensive comparison is
beyond the scope of this paper. Instead, our goal here is to briefly outline the primary
differences in the design and functionality of these packages. We focus first and in
most detail on a comparison of Pyomo and PuLP, as the latter is arguably the most
widely used open-source AML.

PuLP The PuLP package [40] is a widely used, light-weight Python package for

expressing and solving optimization problems. The biggest functional differences

between PuLP and Pyomo are: (1) PuLP can only express concrete model instances,

(2) PuLP only allows for expression of linear and mixed-integer models, and (3)

PuLP provides no built-in mechanism (other than what is available through Python)

to load and save model data from external sources, e.g., text files, spreadsheets, and

databases. As discussed previously, the availability of these features is either critical

for or extremely useful in the deployment of solutions to real-world applications.
For concrete model specification, the PuLP and Pyomo syntax are qualitatively sim-

ilar. However, some differences are worth briefly highlighting. Consider the following

PuLP model:

from pulp import =

prob = LpProblem ( “A small concrete model ” ,LpMaximize)

x1 = LpVariable (“x1”,5, 10) # 5 <= z1 <= 10

x2 = LpVariable (“x27”,10, 30) # 10 <= z1 <= 30

prob += x14x2, “The Objective”

prob += 0.5%xx1 + 1.5%xx2 <= 50, “The Constraint”

In this example, the variables x1 and x2 are not explicitly associated with the model.
They can be accessed by scanning the set of model constraints, but this is in practice
expensive. In Pyomo, all model components (parameters, sets, variables, etc.) are con-
sistently and explicitly associated with a specific model, and can be directly accessed
by querying the model in a clean, object-oriented fashion.

The mechanisms for expressing indexed components—in particular variables and
constraints—are more natural and flexible in Pyomo than in PuLP. Indexed variables
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in PuLLP are specified by creating a dictionary (mapping of keys to values) of variables,
e.g., as follows:

index_a = [1, 2, 3]

index_.b = [4, 5, 6]

indexed_var = LpVariable. dicts (‘my_vars’ , \
(index_a, index_b), 0, 1, Lplnteger)

This construct is expressed in Pyomo as follows:

index_a = [1, 2, 3]
index_-b = [4, 5, 6]
model.indexed_var = Var(index_a, index_b, within=Binary)

One minor limitation of the PuLP indexed variable syntax is that variable lower and
upper bounds are assumed to be homogeneous. In contrast, Pyomo provides for index-
specific bounds by supplying an arbitrary function via the bounds keyword in the
Var constructor.

Next, we consider an example in which constraints are imposed on a variable value
on a per-index basis. In PuLP, an example of such a constraint is as follows:

for x in index_a:
for y in index_b:
prob += indexed_var [x,y] <= \

some_param [x,y] * other_var[x,y]|, “”

Note that the looping constructs must be manually specified, and that the constraints are
not logically grouped within the model. In Pyomo, this constraint would be expressed
as follows:

def some_rule (model, x,y)
return model.indexed_var [x,y] <= \
model . some_param [x,y] * model.other_var [x,y]
model. my_constraint = Constraint (index_a , index_b, rule=some_rule)

Contrasting the two approaches, we observe that the related constraints are automat-
ically grouped in Pyomo, and the explicit (and potentially error-prone) looping con-
structs in PuLP are avoided. Similarly, constraint names are assigned automatically
in Pyomo (e.g., my_constraint[1, 3]), whereas the PuLP looping constructs
require the user to explicitly form the constraint name (which is left unspecified for
this reason in our example).

PuLP is actively supported, and is distributed under an open, BSD-like license.
PuLP was recently accepted into the COIN-OR project.

APLEpy The APLEpy package [5] is similar to PuLP in both design and functionality,
although there are some differences worth highlighting. In contrast to PuLP, all model
components are implicitly members of a single, globally accessible model object. As a
consequence, maintaining and manipulating multiple model instances (e.g., as shown
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for Pyomo in Sect. 8) is not possible. The syntax for constructing constraints is very
similar to that of PuLP. For example, explicit user looping is required in the case of
indexed constraints. Like PuLP, APLEpy only supports concrete model specification,
provides no integrated facilities for accessing external data, and does support speci-
fication of indexed variables and constraints. Although still available for download,
APLEpy does not appear to be actively supported. APLEpy is distributed under the
Common Public License.

PyMathProg and POAMS Other than PuLP and APLEpy, POAMS and PyMathProg
are the two most similar open-source AMLs to Pyomo. Unfortunately, POAMS is not
widely available for download and experimentation (there has been no formal release).
PyMathProg [41] is associated with the GNU GLPK project, and as a consequence,
only interfaces to the GLPK solver. Models are specified in a PuLP-like syntax; no
functionality for specifying abstract models is provided, nor are integrated interfaces
to external data sources. PyMathProg is distributed under the GPL license.

Numberjack and Google OR-Tools A number of Python modeling and solver packages
have recently originated from the constraint programming community, in particular
Google OR tools [37] and Numberjack [28]. The goals of Numberjack are broader
than Pyomo and related AMLs from the mathematical programming community, in
that the objective is to support specification and solution of constraint programming,
mixed-integer linear programming, and boolean satisfiability models. Consequently,
a different set of solvers is supported, e.g., the SCIP mixed-integer solver, the Mistral
constraint programming solver, and the MiniSat satisfiability solver. Like the other
open-source AMLs discussed above, models may not be specified symbolically, and
there is no integrated support for data input from external sources such as Excel.
Non-linear operators for mathematical programming are not supported. The Number-
jack syntax is very similar to that of PuLP, e.g., models are constructed using the +=
syntax and variables are specified externally to a model object. Numberjack is dis-
tributed under the LGPL. The solver interfaces in Numberjack are similar in design
spirit to those in Coopr. In contrast to Numberjack, Google’s OR-tools package is
primarily focused at the present time on specifying and solving constraint programs,
and supports a single integrated solver. Like Numberjack, the OR-tools package does
not allow specification of abstract models, and lacks integrated support for obtaining
data from external data sources. Google’s OR-tools package is distributed under the
Apache license, while Numberjack is licensed under the LGPL.

6.8 Run-time performance

Run-time performance was not the most significant factor in our choice of Python
as a modeling language, but it is clearly an important factor for many Pyomo users.
Although the optimization solver run-time is typically dominant, in some applica-
tions the time required to construct complex models can be nontrivial. Thus, we have
simplified and tuned the behavior of Pyomo modeling components in an attempt to
minimize the run-time required for model construction. This tuning effort is on-going,
driven by experience with specific test applications.
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Fig. 1 The real (wall clock) run time required to construct and write dense p-median model instances to
an NL file with AMPL and Pyomo

Figure 1 shows the run-time performance for Pyomo and AMPL on dense instances
of the well-known p-median facility location problem. We have considerable experi-
ence solving large-scale p-median problem instances arising in water security contexts
[27], motivating our investigation of run-time scaling using this particular optimization
problem. The two curves in this plot show the time, in seconds, that was required to
generate and write (but not solve) a model with AMPL and Pyomo. In both cases, we
write the resulting mixed-integer program in the NL problem format, i.e., the preferred
format in AMPL. The x-axis captures the problem size N - M for p-median problems
where the number of customers, N, equals the number of facilities, M. Each point in
this plot represents the average of 15 different trials, executed on a modern (3.33 GHz
dual-processor Intel Xeon (x5680) with 24GB RAM and no hypher threading) multi-
core workstation running Linux. This graph was generated with the version of Pyomo
that is included in the Coopr 3.0 release.

This figure shows that there is a substantial performance gap between Pyomo and
AMPL for large p-median instances. For the largest problems, Pyomo with garbage
collection enabled (the default) was 82 times slower than AMPL. This difference
largely stems from the fact that Python is notoriously slow at constructing and destruct-
ing large numbers of small objects, e.g., such as parameter and variable values appear-
ing in expressions. Constraint and objective expressions in Pyomo are encoded as trees,
which represent each arithmetic operator and data value with a distinct Python object.
Thus, constructing large expression trees involves the construction of many Python
objects, yielding the observed performance differences. We are currently exploring
alternative encodings of expression trees, specifically to avoid this source of perfor-
mance degradation. Other sources of performance bottlenecks include string (compo-
nent label) manipulation, expression preprocessing in preparation to write the NL file,
and expression verification and simplification. Our analysis of Pyomo profiler output
suggests that these bottlenecks can also be mitigated with a moderate development
effort. Python performance can also be improved by using the Psyco JIT compiler
[39], but this tool can only be used on 32-bit versions of Python on 64-bit computers.
Finally, we observe that the performance discrepancies vary significantly, depending
strongly on the model structure and the comparative baseline. For example, Dimitrov
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observed a 6x discrepancy between the performance of GAMS and Pyomo on a
complex production/ transportation model [15].

7 The Coopr optimization package

Much of Pyomo’s flexibility and extensibility is due to the fact that Pyomo is integrated
into Coopr, a COmmon Optimization Python Repository [12]. Coopr utilizes a compo-
nent-based software architecture to define plugins that modularize many aspects of the
optimization process. This allows Coopr to support a generic optimization process.
Coopr components manage the execution of optimizers, including run-time detec-
tion of available optimizers, conversion to file formats required by an optimizer, and
transparent parallelization of independent optimization tasks.

7.1 Generic optimization process

Pyomo strongly leverages Coopr’s ability to execute optimizers in a generic manner.
For example, the following Python script illustrates how an optimizer is initialized
and executed with Coopr:

opt = SolverFactory (solver_name)
results = opt.solve(concrete_instance)
results . write ()

This example illustrates Coopr’s explicit segregation of problems and solvers into
separate objects. Such segregation promotes the development of tools like Pyomo that
define optimization applications.

The results object returned by a Coopr optimizer includes information about
the problem, the solver execution, and one or more solutions generated during optimi-
zation. This object supports a general representation of optimizer results that is similar
in spirit to the results encoding scheme used by the COIN-OR OS project [20]. The
main difference is that Coopr represents results in YAML, a data serialization format
that is both powerful and human readable [55]. For example, Fig. 2 shows the results
output after solving the AMPL example production planning problem described in
Sect. 6.

7.2 Solver parallelization

Coopr includes two components that manage the execution of optimization solvers.
First, Solver objects manage the local execution of an optimization solver. For exam-
ple, Coopr includes plugins for MIP solvers like CPLEX, GUROBI, and CBC. Second,
SolverManager objects coordinate the execution of Solver objects in different
environments. The API for solver managers supports asynchronous execution of solv-
ers as well as solver synchronization. Coopr includes solver managers that execute
solvers serially, in parallel on compute clusters, and remotely with the NEOS optimi-
zation server [16].
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= Solver Results =

Problem Information

I KR

Problem :

— Lower bound: —inf
Upper bound: 192000
Number of objectives: 1
Number of constraints: 6
Number of variables: 3
Number of nonzeros: 7
Sense: maximize

# Solver Information
#

Solver:

— Status: ok

Termination condition: OK
Error rc: 0

#
# Solution Information
Solution :

— number of solutions: 1
number of solutions displayed: 1
— Gap: 0.0
Status: optimal
Objective:
I3
Id: 0
Value: 192000
Variable:
X[bands]:
Id: 0
Value: 6000
X[coils]:
Id: 1
Value: 1400
Constraint :
c_u_Limit [bands] _:
Id: 1
Dual: 4
c.u-Time_:
Id: 4
Dual: 4200

Fig. 2 Results output for the production planning model described in Sect. 6

Coopr’s Pyro solver manager supports parallel execution of solvers using two key
mechanisms: the standard Python pick1e module and the Pyro distributed computing
library [43]. The pickle module performs object serialization, which is a pre-
requisite for distributed computation. With very few exceptions, any Python object
can be pickled for transmission across a communications channel. This includes sim-
ple, built-in objects such as lists, and more complex Pyomo objects like Abstract-
Model and ConcreteModel instances. For example, the following code fragment
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illustrates the use of the pickle module to write and restore a Pyomo model instance
via an intermediate file:

import pickle

instance = model_builder () # function to build Pyomo instance
pickle .dump(instance , open(‘tempfile’, ‘wb’))

instance_copy = pickle.load (open(‘tempfile’,’r’))

The simplicity of complex object serialization in Python is remarkable, especially
relative to low-level languages like C++ in which users must develop complex class-
specific methods to achieve equivalent functionality. This issue is amplified by the
presence of complex inter-relationships among objects, i.e., such as those present in
Pyomo models.

Pyro (Python Remote Objects) [43] is a mature third-party Python library that pro-
vides an object-oriented framework for distributed computing that is similar to Remote
Procedure Calls. Pyro is cross-platform, such that different application components
can execute on fundamentally different platform types, e.g., Windows and Linux. Inter-
process communication is facilitated through a standard name server mechanism, and
object serialization and de-serialization is performed via the Python pickle module.

The standard Coopr distribution includes both the Pyro library and a number of
solver-centric utilities to facilitate parallel solution of Pyomo models. All communi-
cation is established through the Coopr name server, invoked via the coopr -ns script
on some host node in a distributed system. A “router” process is then launched on a
compute node via the Coopr dispatch_srvr script. Finally, one or more solver
processes are launched on various compute nodes via the Coopr pyro_mip_server
script. Each solver process identifies a dispatch server through the name server and
notifies the dispatch server that it is available for solving instances. Note that the
various solver processes can execute on distinct cores of a single workstation, across
multiple workstations, and even across multiple workstations running different oper-
ating systems, e.g., hybrid Windows/Linux clusters. Communication with the global
name server is typically accomplished by setting the PYRO_NS_HOSTNAME envi-
ronment variable to identify the name server host; in a non-distributed (e.g., SMP)
environment, such communication is automatic.

Once initialized, the distributed solver infrastructure is accessed by the Pyro solver
manager, which can be constructed using the SolverManagerFactory function-
ality:

solver_manager = SolverManagerFactory (” pyro”)

The Pyro solver manager identifies dispatch servers through the Coopr name server.
Thus, a simple change in the argument name to the solver manager factory is sufficient
to access distributed solver resources in Coopr. We note that if no solver manager is
specified (as is the case for examples shown early in this paper), a default serial
solver manager is constructed automatically; this particular manager executes solves
locally, in a sequential fashion.
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8 Core Server
4 Cplex licenses
pyro_mip_server

pyro_mip_server

64 Node Cluster
CBC install
pyro_mip_server

Admin Workstation
coopr-ns
dispatch_srvr

pyro_mip_server

User Laptop
client script

Fig. 3 An example of a hybrid compute architecture and how it can be configured for distributed solves
using Pyro and Coopr

Given a Pyro solver manager, a Pyomo instance can be solved via the following
code:

instance = model_builder () # function to build Pyomo instance
ah = solver_manager.queue(instance)

solver_manager. wait_for (ah)

results = solver_manager. get_results (ah)

The ah object is known as an action handle, and informally serves as a “tracking
number” through which users can interrogate the status of a submitted solve request.

Figure 3 illustrates a typical architecture for distributed solver computation in
Coopr. In this example, the user executes a solver script (e.g., the runbenders
script described in Sect. 8.2) on his or her local machine. The name and dispatch
server processes (coopr-ns and dispatch_srvr) are configured as daemons on
an administrative workstation, such that they are persistently available. This exam-
ple network has two major compute resources: a Windows cluster and a multi-core
Linux server. The Linux server has four CPLEX licenses, while the Windows clus-
ter has the open-source CBC solver available on all of its 64 compute nodes. Four
pyro_mip_server daemons are executing on the server (each is allocated two
cores), while a pyro_mip_server daemon is executing on each compute node
of the Windows cluster. In this particular example, all user-solver communication is
performed via the sole dispatch server; in general, multiple dispatch servers can be
configured to mitigate communication bottlenecks.
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7.3 Solver plugins

A common object-oriented characteristic of open-source optimization software is the
ability to use classes and class inheritance to develop extensible functionality. In con-
trast, Coopr leverages the PyUtilib Component Architecture (PCA) to separate the
declaration of component interfaces from their implementation [46], through a mech-
anism referred to as a plugin. A plugin specifies the required method and data associ-
ated with a specific interface, but does not require that all instances of this interface be
derived from a particular base class. For example, in Coopr all optimization solvers are
implemented by defining a distinct class encapsulating the associated functionality.
However, these classes are not required to be sub-classes of a solver interface class.
Instead, they are simply required to provide the same interface methods and data.

Coopr uses plugin components to modularize the process workflow commonly
associated with optimization. A component is a software package, module, or object
that provides a specific functionality. Plugin components augment the standard optimi-
zation workflow by implementing functionality that is exercised “on demand.” Com-
ponent-based software with plugins is a widely recognized best practice for extending
and evolving complex software systems in a reliable manner [48]. Component-based
frameworks manage the interaction between components to promote adaptability, sca-
lability, and maintainability in large software systems [51]. For example, with com-
ponent-based software there is much less need for major releases because software
changes can be encapsulated within individual components. Component architectures
also encourage third-party developers to add value to software systems without risking
destabilization of the core functionality.

Coopr uses the PCA to define interfaces for the following plugin components:

— Solvers, which perform optimization

— Solver managers, which manage the execution of solvers

— Converters, which translate between different optimization problem file formats
— Solution readers, which load optimization solutions from solver output files

— Problem writers, which create solver input files that specify optimization problems
— Transformations, which generate new models via reformulation of existing models

Coopr also contains Pyomo-specific components for preprocessing Pyomo models
before they are solved.

Coopr includes a variety of plugins that implement these component interfaces,
many of which rely on third-party software packages to provide key functionality.
For example, solver plugins are available for the CPLEX, GUROBI, CBC, PICO, and
GLPK mixed-integer linear programming solvers. These plugins rely on the avail-
ability of binary executables for these solvers, which need to be installed separately.
Similarly, Coopr includes plugins that convert between different solver input file for-
mats; these plugins rely on binary executables built by the GLPK [23] and Acro [1]
software libraries.

Figure 4 illustrates the definition of a solver plugin that can be directly used by the
pyomo command; this example is available in the standard Coopr distribution, in the
directory coopr/examples/pyomo/p-median. The MySolver class imple-
ments the IOpt Solver interface, which declares this class as a Coopr solver plugin.
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# Imports from Coopr and PyUtilib
from coopr.pyomo import =

from pyutilib.plugin.core import x*
from coopr.opt import x

import random

import copy

class MySolver (object ):

# Declare that this is an [OptSolver plugin
implements (IOptSolver)

# Solve the specified problem and return
# a SolverResults object
def solve(self, instance, sxkwds):

print ”Starting random heuristic”

val , sol = self._random (instance)
n = value (instance .N)
# Setup results
results = SolverResults ()
results . problem.name = instance .name
results.problem.sense = ProblemSense. minimize
results.problem.num_constraints = 1
results.problem.num_variables = n
results.problem.num_objectives = 1
results.solver.status = SolverStatus.ok
soln = results.solution .add()
soln . value = val
soln .status = SolutionStatus.feasible
for j in range(1l,n+1):

soln.variable [instance.y[j].name] = sol[j—1]

# Return results
return results

# Perform a random search
def _random (self, instance):

sol = [0]*value(instance .N)
for j in range(0,value(instance.P)):
sol[j] =1

# Generate 100 random solutions, and keep the best
best = None
best_sol = []
for kk in range(100):
random . shuffle (sol)
# Compute value
val=0.0
for j in range(1l,value(instance .M)+1):
val += min(value ([instance.d[i,]])
for i in range(1l,value(instance.N)+1)
if sol[i—1] = 1])
if best is None or val < best:
best=val
best_sol=copy.copy(sol)
return [best, best_sol]

# Register the solver with the name ’random’
SolverRegistration (?random” , MySolver)

Fig. 4 A simple customized Coopr solver for p-median problems
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This plugin implements a solve method, which randomly generates solutions to
a p-median optimization problem. The only other step required is to invoke Coopr’s
SolverRegistration function, which associates the solver name, random, with
the plugin class, MySolver.

Importing the Python module containing My Solver activates this plugin; all other
registration is automated by the PCA. For example, if this plugin is contained within
the file solver2.py, then the following Python script can be used to apply this
solver to Coopr’s p-median example model:

import coopr.opt
import pmedian
import solver2

instance=pmedian . model. create ( ’pmedian.dat’)
opt = coopr.opt.SolverFactory ( 'random )
results = opt.solve(instance)

print results

The pyomo script can also be used to apply a custom optimizer in a natural manner.
The following command-line is used to solve the Coopr’s p-median example with the
CBC mixed-integer programming solver:

pyomo —solver=cbc pmedian.py pmedian.dat

Applying the custom solver simply requires the specification of the new solver name,
random, and an indication (via the 1oad option) that the solver2 . py file should
be imported before optimization:

pyomo —solver=random —load=solver2.py pmedian.py pmedian.dat

Thus, users can develop custom solvers in Python modules, which can be executed
and tested directly using the pyomo command.

This example serves to illustrate the ease with which new solver interfaces can be
prototyped and deployed using Pyomo and Coopr. Similar plugins could be easily
implemented for a wide range of metaheuristic or problem-specific solvers; the user
simply needs to extract the necessary information from a Pyomo instance, transfer it
to the specific solver, and then extract and store the results of the solve in the canonical
Coopr results format. Further, such plugins can be seamlessly integrated into existing
optimization workflows, e.g., via the pyomo command line utility.

8 Advanced scripting and algorithm development

In Sect. 6, we presented a straightforward use of Pyomo: to construct a concrete
instance from an abstract model and a data file, and to subsequently solve the instance
using a specific solver plugin. A generic optimization process is executed by the
pyomo command, so the typical user does not need to understand the details of the
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functionality present in most Pyomo and Coopr libraries. However, this command
masks much of the power underlying Pyomo and Coopr, and it limits the degree to
which Python’s rich set of libraries can be leveraged.

An important consequence of the Python-based design of Pyomo and its integra-
tion with the Coopr environment is that modularity is fully supported over a range
of abstractions. At one extreme, model elements can be manipulated explicitly by
specifying their names and the values of their indexes. This sort of reference can be
made more abstract, as is the case with other AMLs, by specifying various types
of named sets and parameters so that the dimensions and details of the data can be
separated from the specification of the model. Separation of an abstract model from
the data specification is a hallmark of structured modeling techniques [22]. At the
other extreme, elements of a optimization model can be treated in their fully canon-
ical form as is supported by callable solver libraries. Methods can be written that
access or manipulate, e.g., objective functions or constraints in a fully general way.
This capability is a fundamental tool for general algorithm development and extension
[33]. Pyomo provides the full continuum of abstraction between these two extremes to
support modeling, scripting, and algorithm development. Furthermore, methods are
extensible via overloading of all defined operations. Both modelers and developers
can alter the behavior of a package or add new functionality.

In the remainder of this section, we introduce a variety of example case studies high-
lighting the relative ease of both scripting and algorithm development in Coopr. The
example in Sect. 8.1 discusses a script implementing a hybrid MIP-NLP optimization
algorithm. Section 8.2 describes the Pyomo-based implementation of a Benders-based
decomposition algorithm for a simple production planning problem. Together, these
two examples illustrate the use of Pyomo and Coopr to solve optimization models
requiring some degree of algorithmic customization, emphasizing different coding
approaches to achieve similar goals. Finally, in Sect. 8.3 we introduce an example
highlighting features of Pyomo and Python that facilitate the development of generic
algorithms.

8.1 Advanced scripting: hybrid optimization

Hybrid methods may be required to solve particularly difficult real-world optimization
problems. Due to the deviation from the standard optimization workflow process, in
which a model is handed to an off-the-shelf solver, implementation of hybrid methods
typically requires non-trivial scripting.

One instance of such a hybrid algorithm implemented in Coopr/Pyomo was devel-
oped by our collaborators in Texas A&M’s Department of Chemical Engineering. The
specific problem of interest involved the development of a global optimization algo-
rithm to solve a parameter estimation problem arising in the context of a model for
childhood infectious disease transmission. For further information regarding both the
model and its Pyomo implementation we refer to Hackebeil and Laird [25]. Below, we
briefly survey the high-level solution strategy, and highlight key fragments of Pyomo
code implementing the strategy.
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The parameter estimation model considered is a difficult non-convex, non-linear
program for which no efficient solution algorithm exists. Consequently, to facilitate
tractable solution, the problem is reformulated using a MIP under-estimator and an
NLP over-estimator. Information is exchanged between the two formulations, and the
process is iterated until the two solutions converge.

The main script for this process is implemented in Pyomo as follows; some initial-
ization code is omitted for clarity:

data_file = “disease_data.dat”
results_file = “global_opt_results”

# the function “initialize_dicts” is a utility specific to
# this example, which exztracts data from the input file and
# various input arguments (not shown), and returns two Python
# dictionaries .

mdl_inputs ,data_inputs = initialize_dicts (data_file, ....)

for i in range(1,MAXITERS+1):

# define the full optimization model for this iteration.
# data is significantly changing each iteration ...
mstr_mdl = disease_mdl(mdl_inputs ,data_inputs)

# create and solve MIP over—estimator.
inst , MIP_results = solve_MIP (mstr_mdl, MIP _options)

# create and solve the NLP under—estimator.
inst , NLP _results = solve NLP (mstr_mdl, MIP results, \
NLP options)

# load results, report status, and compute the gap/ub.
GAP, UB = output_results(inst, ..., MIP_results, \
NLP_results, ...)

# use results to determine parameters for the next

# iteration , via updates to the “mdl_inputs”

# dictionary.

mdl_inputs, POINTS.AADDED = update_points(mdl_inputs,inst, \
... MIP_results)

if (UB != None) and (i = 1):
# perform solves to strengthen model.
mdl_inputs = tighten_bounds(inst ,mdl_inputs,data_inputs,)\
UB, num_lb_points , MIP _options)

if (POINTS.ADDED =— 0) or (GAP <= MAXGAP):
break

In this example, user-defined Python functions are used to organize and modularize
the optimization workflow. In contrast to examples shown previously, the optimization
model in this case is constructed via a function (disease_model). A fragment of
code for this function is as follows:
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def disease_mdl (INPUTS, DATA):
model = ConcreteModel ()

# attach non—Pyomo data wvalues to the model instance.
model . pts_LS = INPUTS[ 'LSP’ |

model. pts_LS_lower = INPUTS[ 'LSPL’]

model. pts_LI = INPUTS[ 'LIP’ |

model. pts_LI_lower = INPUTS[ 'LIPL’]

model . TIME = Set (ordered=True, initialize=DATA[ TIME’ |)
model . BIRTHS = Param (model . TIME, initialize=DATA[ 'BIRTHS’|)

# more parameter and set definitions ...

model.logS = Var(model.TIME, bounds=logS_bounds_rule)
model.logl = Var(model.TIME, bounds=logI_bounds_rule)

# more model variables ...

model.obj = Objective (rule=obj_rule)
model . pn_con = Constraint (model . TIME, rule=pn_rule)

# more model constraints

# automatically generate, wvia a function, additional
# constraints associated with linearization and add
# them to the model...
linearize_exp (model . TIME, model .S, model. logS, \
model . pts_LS ,model. pts_LS_lower)
linearize_exp (model.TIME, model. I, model.logl , \
model. pts_LI ,model. pts_LI_lower)

return model

Beyond the standard Pyomo model constructs, we observe the ability to dynamically
augment Pyomo models with arbitrary data, e.g., the definition of the pts_LS and
pts_LI attributes; these are not model components, but rather raw Python data types.
Pyomo itself is unaware of of these attributes, but other components of a user-defined
script can access and manipulate these attributes. Such a mechanism is invaluable when
information is being propagated across disparate components of a complex, multi-step
optimization process. We note the use of an auxiliary function (1inearize_exp,
introduced to modularize the code) to construct specific classes of constraint, which
are then added to the input Pyomo model.

Following instance construction, MIP and NLP variants of the master model
instance are solved using the user-defined utility functions solve_MIP and
solve_NLP. These functions simply activate the relevant model components (all
model components in Pyomo can be independently activated and deactivated), solve
the corresponding model, and return the results. The function output_results
reports and caches results, and computes the current gap and upper bound. Finally,
the functions update_points and tighten_bounds perform computations
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(obtained both analytically and via MIP solves) that yield the input data required
for the next iteration of the process.

This example serves to illustrate, at a very high level, the scripting of a complex
hybrid optimization algorithm using Pyomo and Coopr. Despite the complexity of the
process (hidden in large part due to code modularization), the code (including that
for the model definition) is relatively compact—a total of approximately 650 lines
of Python code, including white-space. The full code is available upon request by
contacting one of the authors.

8.2 Benders decomposition

To further illustrate advanced scripting in Pyomo, we next consider the translation of
an AMPL example involving the solution via Benders decomposition of a production
planning problem formulated as a stochastic linear program. This example empha-
sizes different aspects of Pyomo and Coopr than the hybrid optimization discussed in
Sect. 8.1, specifically in terms of how models are defined, manipulated, and solved.

The production planning problem considered is defined as follows. Given a num-
ber of product types and associated production rates, production limits, and inventory
holding costs, the objective is to determine a production schedule over a number of
weeks that maximizes the expected profit over a range of anticipated revenue scenar-
ios. The problem is formulated as a two-stage stochastic linear program; first-stage
decisions include the initial production, sales, and inventory quantities, while sec-
ond-stage decisions (given scenario-specific revenues) include analogous parameters
for all time periods other than the initial week. We refer the reader to Bertsimas and
Tsitsiklis [6] for a discussion of how general two-stage stochastic linear programs can
be solved via Benders decomposition.

The original AMPL example consists of the three files stoch2 . run (an AMPL
script), stoch2 .mod (an AMPL model file), and stoch.dat (an AMPL data file),
which are available from http://www.ampl.com/NEW/LOOP2. The translation of this
AMPL example into Pyomo illustrates many of the more powerful capabilities of Py-
omo and Coopr, including dynamic construction of model variables and constraints,
as well as parallelization of sub-problem solves.

The codes for this example are available in the Coopr distribution, in the direc-
tory coopr/examples/pyomo/benders. The first step in the translation process
involves creation of the master and sub-problem abstract models, mirroring the process
previously documented in Sect. 6; the resulting models are captured in the files mas -
ter.py and subproblemn.py. We observe that AMPL allows “pick-and-choose”
selection of components from a single model definition file to construct sub-models.
In contrast, Pyomo requires that distinct models be self-contained in their definition.

The Python code to execute Benders decomposition for this particular example is
found in the file runbenders; the remainder of this section will explore key aspects
of this code in more detail.

As with the basic Pyomo example introduced in Sect. 6, the runbenders script
begins by loading the necessary components of the Pyomo, Coopr, PyUtilib, and
Python system libraries:
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import sys

from pyutilib.misc import import_file

from coopr.opt.base import SolverFactory

from coopr.opt.parallel import SolverManagerFactory

from coopr.opt.parallel.manager import solve_all_instances
from coopr.pyomo import x

The need for and role of these various modules will be explained below.

The first executable component of the runbenders script involves construction
of the abstract models and concrete problem instances for both the master and sec-
ond-stage sub-problems:

# initialize the master instance.

mstr-mdl = import_file (”master.py” ). model
mstr_inst = mstr.mdl. create (” master.dat”)

# initialize the sub—problem instances.

sb_mdl = import_file (”subproblem.py” ). model

sub_insts = []

sub_insts .append(sb_mdl. create (name="Base Sub—Problem” , \
filename="base_subproblem .dat”))

sub_insts.append (sb_mdl. create (name="Low Sub—Problem” , \

filename="1low_subproblem .dat”))
sub_insts.append (sb_mdl. create (name="High Sub—Problem” , \
filename="high_subproblem .dat”))

In this code fragment, the master . py and subproblem. py model definition files
are loaded (via the PyUltilib function import_ fi1le), defining the associated abstract
models; the runbenders script accesses the corresponding model objects in the
respectively Python modules. Given an abstract model object, a concrete instance can
be created by invoking its create method supplied with an argument specifying a
data file. For reasons discussed below, the second stage sub-problems are gathered
into a Python list.
Next, we create the necessary solver and solver manager plugins:

# initialize the solver and solver manager.
solver = SolverFactory (”cplex”)
if solver is None:
print ”A CPLEX solver is not available on this machine.”
sys.exit (1)
solver_manager = SolverManagerFactory (”serial”) # serial
#solver_manager = SolverManagerFactory(”pyro”) # parallel

In this example, we use CPLEX to solve concrete instances, as it provides the var-
iable and constraint suffixes needed for the Bender’s procedure (e.g., reduced-costs,
as discussed below). In Coopr, the solver manager is responsible for coordinating the
execution of any solver plugins. The code fragment above specifies two alternative
solver managers, with serial execution enabled by default; see Sect. 7.2 for a discussion
of parallel solver execution (via the Pyro solver manager).

Benders decomposition is an iterative process; sub-problems are solved, cuts are
added to the master problem, and the master problem is (re-)solved; the process repeats
until convergence. In the master . py model, the set of cuts and the corresponding
constraint set is defined as follows:
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model .CUTS = Set (within=Positivelntegers , ordered=True)

model. Cut_Defn = Constraint (model.CUTS)

Initially, the CUTS set is empty. Consequently, no rule is required in the definition
of the constraint set Cut_Defn. Similarly, the pricing (i.e., reduced-cost and dual)
information from the sub-problems is stored in the following parameters within ma s -
ter.py (such pricing information is integral in the definition of Benders cuts [6]):

model. time_price = Param(model . TWOPLUSWEEKS, model .SCEN, \
model .CUTS, default=0.0)

model. bal2_price = Param(model . PROD, model .SCEN, model.CUTS, \
default=0.0)

model. sell _lim_price = Param(model .PROD, model . TWOPLUSWEEKS, \
model .SCEN, model.CUTS, \
default=0.0)

Again, because the index set CUTS is empty, these parameter sets are initially empty.
The parameters are indexed by sets whose declaration is not shown here: PROD is the
set of products, SCEN is the set of scenarios, and TWOPLUSWEEKS is the set of weeks
beginning with week 2.

Given these definitions, we now examine the main loop in the runbenders script.
The first portion of the loop body solves the second stage sub-problems as follows:

solve_all_instances (solver_manager , solver , sub_insts)

The function solve_all_instances is a Coopr utility that performs three dis-
tinct operations: (1) queue the sub-problem solves with the solver manager, (2) solve
each of the sub-problems, and (3) load the results into the sub-problem instances. This
function encapsulates the detailed logic of queuing, solver/solver manager interac-
tions, and barrier synchronization; such detail can be exposed as needed, e.g., when
sub-problems can be solved asynchronously.

Next, the index set CUTS is expanded, and the pricing parameters are extracted
from the sub-problem instances and stored in the master instance:

mstr_inst .CUTS. add (i)
for s in range (1, len(subproblems)+1):
inst = sub_insts [s—1]

for t in mstr_inst . TWOPLUSWEEKS:

mstr_inst.time_price[t,s,i] = inst.Time[t].dual
for p in mstr_inst .PROD:
mstr_inst.bal2_price[p,s,i] = inst.Balance2[p].dual

for p in mstr_inst .PROD:
for t in mstr_inst . TWOPLUSWEEKS:
mstr_inst.sell_lim_price [p,t,s,i] = inst.Sell[p,t].urc
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The first line in this code block dynamically expands the size of the CUTS set, adding
an element corresponding to the current Benders loop iteration counter i. The code
for transferring pricing information from the sub-problems to the master instance
is straightforward: access of pricing parameters with a sub-index equal to i in the
master instance is legal given the dynamic update of the CUTS set. Additionally, we
observe the availability in Pyomo of standard variable “suffix” information (in this
case constraint dual variables and variable upper reduced costs).
With pricing information available in the master instance, we can now define the
new cut for Benders iteration i as follows:
cut = sum ([ mstr_inst.time_price[t,s,i] * mstr_inst.avail [t] \
for t in mstr_inst . TWOPLUSWEEKS \
for s in mstr_inst.SCEN]) + \
sum ([ mstr_inst . bal2_price [p,s,i] * (—mstr_inst.Invl[p]) \
for p in mstr_inst .PROD \
for s in mstr_inst .SCEN]) + \
sum ([ mstr_inst.sell_lim_price [p,t,s,i] * \
mstr_inst . market [p,t] \
for p in mstr_inst .PROD \
for t in mstr_inst . TWOPLUSWEEKS \

for s in mstr_inst.SCEN]) — \
mstr_inst . Min_Stage2_Profit

mstr_inst.Cut_Defn.add (i, (0.0, cut, None))

The expression for the cut is formed using the Python sum function in conjunction
with Python’s list comprehension syntax. While somewhat more complex, the funda-
mentals of constraint generation shown above are qualitatively similar to the constraint
rule generation examples presented in Sect. 6.1. Given the cut expression, the corre-
sponding new element of the Cut_Defn constraint set is created via the add method
of the Constraint class. Here, the method arguments respectively represent (1) the
constraint index and (2) a tuple consisting of the constraint (lower bound, expression,
upper bound).

The remainder of the runbenders script is straightforward, involving a sim-
ple looping construct and checks for convergence. This example further illustrates
that sophisticated optimization strategies requiring direct access to Pyomo’s mod-
eling capabilities and Coopr’s optimization capabilities can be easily implemented.
The runbenders script has roughly the same complexity and length as the original
AMPL script. Additionally, this script supports parallelization of this solver in a generic
and straightforward manner.

8.3 Generic algorithms: generating extensive forms of stochastic programs

Moving beyond model-specific scripting, we now briefly discuss capabilities of Pyomo
and Python that, when used in conjunction, can be used to develop generic, model-
independent algorithms. For purposes of illustration, we consider the case of stochastic
linear and mixed-integer programs. A stochastic program can be viewed in terms of a
scenario tree, i.e., a tree representing the evolution of model parameter uncertainty. To
simplify exposition, we consider a two-stage stochastic program in which a single root
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node has n children, each of which represents a leaf node. Associated with each node is
a set of variables. The variables corresponding to the root node are so-called first-stage
variables, and represent decisions that must be made before the actual realization of
uncertainty is revealed. The values of variables associated with the leaf nodes (also
known as second-stage variables) are determined once the corresponding parameter
uncertainty is revealed. For an in-depth introduction to stochastic programming, we
defer to Shapiro et al. [49].

Conceptually, an n-scenario stochastic program can be viewed as a collection of
n independent deterministic mathematical programs (each representing a single sce-
nario), with one key augmentation: so-called non-anticipativity constraints are added
to ensure equality of the first-stage decision variables across all n scenarios. Non-an-
ticipativity is required to avoid prescient decision-making. This conceptualization is
useful in practice, in part because it facilitates the transition from deterministic to sto-
chastic programs, and further because many decomposition-based solution strategies
explicitly operate on such a conceptualization. We now briefly discuss the implemen-
tation of a generic algorithm for constructing the mathematical program associated
with this conceptualization, which is known as the extensive form. Further details con-
cerning stochastic programming in the context of Pyomo and Coopr can be found in
Watson et al. [54], which describes the PySP module of Coopr.

To generate the extensive form of any stochastic program using Pyomo/Coopr, the
first step is to construct the individual scenario model instances. This can be accom-
plished with any of the approaches detailed above in Sects. 8.1 and 8.2. The more
difficult step is to construct the non-anticipativity constraints, in a generic and model-
independent fashion. To understand the underlying programmatic mechanism, we first
discuss how scenario trees are specified by users.

In PySP, there is a canonical Pyomo model of the scenario tree structure, specified
as follows:

scenario_tree_model=AbstractModel ()

scenario_tree_model . Stages=Set (ordered=True)
scenario_tree_model . Nodes=Set ()

scenario_tree_model.NodeStage=Param( \
scenario_tree_model.Nodes, \
within=scenario_tree_model.Stages)

scenario_tree_model . Children=Set (scenario_tree_model.Nodes, \
within=scenario_tree_model.Nodes, ordered=True)

scenario_tree_model.ConditionalProbability=Param( \
scenario_tree_model . Nodes)

scenario_tree_model.Scenarios=Set (ordered=True)

scenario_tree_model.ScenarioLeafNode= Param( \
scenario_tree_model.Scenarios, \
within=scenario_tree_model.Nodes)

scenario_tree_model.StageVariables=Set ( \
scenario_tree_model. Stages)

scenario_tree_model.StageCostVariable=Param( \
scenario_tree_model. Stages)
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A key observation concerning this model is that all set and parameter values are strings,
i.e., names given by the user to various objects. Of particular interest with respect to
generation of a stochastic program extensive form is the definitions of the set Stage-
Variables. For the well-known Birge and Louveaux “farmer” example (see [7]),
the corresponding data are specified as follows:

set StageVariables [FirstStage] := DevotedAcreage [%]| ;

set StageVariables[SecondStage] := QuantitySubQuotaSold [*]
QuantitySuperQuotaSold [ ]
QuantityPurchased [*] ;

This data indicates that all indices of the variable DevotedAcreage are first-stage
decision variables, for which non-anticipativity constraints must be constructed. In
terms of implementation, the three key mechanisms required are (1) identification
of the relevant Var objects on each Pyomo scenario instance, (2) construction of a
“master” variable corresponding to each such object, and (3) construction of the non-
anticipativity constraints enforcing equality between the master variable and each of
the corresponding scenario instance variables. The following code fragment illus-
trates the implementation of these three steps; we have intentionally omitted various
error-checking mechanisms (vital in the real PySP implementation), in addition to the
code translating the scenario tree information above into a traversable, object-oriented
structure:

ef_instance = ConcreteModel ()

# the “stage” object is a component of an object—oriented
# encoding of the scenario tree structure. the code below is
# executed for each stage, although we only show a single

# stage for compactness.

for stage_reference_variable in stage._variables:

# for all but the last stage...

for tree_node in stage._tree_nodes|[: —1]:
stage_variable_ name = stage_reference_variable.name
stage_variable_indices = \

tree_node. _variable_indices [stage_variable_name ]

ef_variable_name = ... # some unique name

ef_variable_index = getattr(reference_instance , \
stage_variable_name).index

ef_variable = Var(ef_variable_index ,name=ef_variable_name)

setattr (ef_instance , ef_variable_name , ef_variable)
for index in stage_variable_indices:
for scenario_instance in tree_node._scenarios:

scenario_variable = getattr(scenario_instance , \
stage_variable_name)
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def makeEqualityRule(ef_variable , scenario_variable, \
index ):
def equalityRule (model):
return (0.0, \
ef_variable [index] — scenario_variable [index], \
0.0)
return equalityRule

ef_constraint_name = ... # some unique name
ef_constraint =Constraint (name=ef_constraint_name , \
rule=makeEqualityRule (ef_variable , \
scenario_variable , index))
setattr (ef_instance , ef_constraint_name, \
ef_constraint)

The most salient observation regarding this code is its compactness, which is facil-
itated by a combination of Pyomo and Python functionality. In particular, the Python
function getattr function is used to extract attributes of objects by name, at run-
time—something that is not possible in statically typed languages such as C++. This
capability, known as introspection, is used in the above fragment to access the Var
objects on each Pyomo scenario instance in a completely generic and model-indepen-
dent manner. Other features worth noting include (1) the ability to clone Var objects
using index sets (as occurs when the ef variables are constructed), (2) the use of the
Python function setattr to add components to the extensive form model instance,
and (3) the use of in-line function definitions to construct the expressions associated
with the non-anticipativity constraints.

The example above serves to illustrate the use of Pyomo/Coopr in the role of
algorithm development, as opposed to just simple scripting. In particular, generic
algorithms can be constructed with relatively little code. For example, the full con-
struction routine for the extensive form in PySP is approximately 300 lines (including
all white-space and error checking). Similarly, the core code for a complex decompo-
sition solver strategy (Progressive Hedging) is approximately 1,000 lines. While we
are not advocating the development of core numerical routines in Pyomo/Coopr (e.g.,
mixed-integer solvers), our efforts to date indicate that such an approach is effec-
tive when developing high-level computational strategies that in turn leverage fast
numerical routines through, for example, the use of solver plugins.

9 Getting started with Pyomo

The installation of Pyomo is complicated by the fact that Coopr is comprised of an
ensemble of Python packages, as well as third-party numerical software libraries.
Coopr provides an installation script, coopr_install, that leverages Python’s
online package index [42] to install Coopr-related Python packages. For example, in
Linux and MacOS the command:

coopr_install coopr

will create a coopr directory that contains a virtual Python installation. All Coopr
scripts will be installed in the coopr /bin directory, and these scripts are configured
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to automatically import the Coopr and PyUtilib libraries, in addition to other necessary
Python packages. Similarly, in MS Windows the command:

python coopr_install coopr

will create a coopr directory containing a virtual Python installation. The Coopr
scripts will be installed in the coopr /bin directory, including * . cmd scripts that
are recognized as DOS commands. On all platforms, the only additional user require-
ment is that the PATH environment variable be updated to include coopr /bin (Linux
and MacOS) or coopr\bin (MS Windows). Windows installer executables are also
available.

By default, the coopr_install script installs the latest official release of all
Coopr-related Python packages. The coopr_install script also includes options
forinstalling trunk versions (via the —t runk option) of the Coopr and PyUtilib Python
packages. This facilitates collaborations with non-developers to fix bugs and try out
new Coopr capabilities.

More information regarding Coopr is available on the Coopr wiki page, available
at: https://software.sandia.gov/trac/coopr/. This Trac site includes detailed installation
instructions, and provides a mechanism for users to submit tickets for feature requests
and bugs. Coopr is a COIN-OR software package [10]; further information can be
obtained by e-mailing the associated COIN-OR or Google groups mailing lists.

10 Discussion and conclusions

Pyomo was developed and is actively supported for real-world optimization appli-
cations at Sandia National Laboratories [27]. Our experience to date with Pyomo
and Coopr has validated our initial assessment that Python is an effective language for
supporting the development and deployment of solutions to optimization applications.
Although it is clear that custom AMLSs can support a more concise and mathemati-
cally intuitive syntax, Python’s clean syntax and programming model make it a natural
choice for optimization tools like Pyomo.

It is noteworthy that the use of Python for developing Pyomo has proven quite
strategic. First, the development of Pyomo did not require implementation of a parser
and the effort associated with cross-platform deployment, both of which are neces-
sary for the development of an AML. Second, Pyomo users have been able to rely on
Python’s extensive documentation to rapidly get up-to-speed without relying on devel-
opers to provide detailed language documentation. Although general use of Pyomo
requires documentation of Pyomo-specific features, this is a much smaller burden
than the language documentation required for optimization AMLs. Finally, we have
demonstrated that Pyomo can effectively leverage Python’s rich set of standard and
third-party libraries to support advanced computing capabilities like distributed exe-
cution of optimizers. This clearly distinguishes Pyomo from custom AMLs, and it
frees Pyomo and Coopr developers to focus on innovative optimization capabilities.

Pyomo and Coopr were publicly released as an open source project in 2008. Future
development will focus on several key design issues:
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Optimized expression trees Our scaling experiments suggest that Pyomo’s runtime
performance can be significantly improved by using a different representation for
expression trees. The representation of expression trees could be reworked to avoid
frequent object construction, either through a low-level representation or a Python
extension library.

Extending the range of solver plugins We plan to expand the suite of pre-written
solver plugins to include other commercial solvers, e.g., XpressMP. Additionally,
we plan to leverage optimizers that are available in other Python optimization
packages, which are particularly interesting when solving nonlinear formulations.
Direct optimizer interfaces Currently, most Coopr solvers are invoked via system
calls. However, direct library interfaces to optimizers are also possible. For exam-
ple, both CPLEX and GUROBI ship with Python library bindings. Direct solver
interfaces promise to yield improved performance, due to the lack of a need for
file manipulation and the overhead associated with spawning processes.

Remote solver execution Coopr currently supports solver managers for remote
solver execution using Pyro. A preliminary interface to NEOS [16] has been devel-
oped, but this solver manager currently only supports CBC. We plan to extend this
interface, and to develop interfaces for Optimization Services [20], as well as cloud
computing solvers based on, for example, Amazon’s EC2 compute cloud.
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