
Math. Prog. Comp. (2010) 2:125–165
DOI 10.1007/s12532-010-0015-3

FULL LENGTH PAPER

The MCF-separator: detecting and exploiting
multi-commodity flow structures in MIPs

Tobias Achterberg · Christian Raack

Received: 30 November 2009 / Accepted: 27 May 2010 / Published online: 3 July 2010
© Springer and Mathematical Programming Society 2010

Abstract Given a general mixed integer program, we automatically detect block
structures in the constraint matrix together with the coupling by capacity constraints
arising from multi-commodity flow formulations. We identify the underlying graph
and generate cutting planes based on cuts in the detected network. Our implementa-
tion adds a separator to the branch-and-cut libraries of Scip and Cplex. We make use
of the complemented mixed integer rounding framework but provide a special pur-
pose aggregation heuristic that exploits the network structure. Our separation scheme
speeds-up the computation for a large set of mixed integer programs coming from
network design problems by a factor two on average. We show that almost 10% of the
instances in general testsets contain consistent embedded networks. For these instances
the computation time is decreased by 18% on average.
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1 Introduction

In this paper we present a novel separation heuristic for general mixed integer programs
(MIPs), which we call multi-commodity flow cut separator (Mcf), now available in
Scip 1.2 [60] and Cplex 12.1 [33].

The Mcf-separator identifies a coupled multi-commodity arc-flow formulation in
the constraint matrix and constructs the corresponding network. It then generates
inequalities based on cuts in the detected network. Our separation scheme makes
use of the complemented mixed integer rounding approach (c-MIR) introduced by
Marchand and Wolsey [39–41]. Instead of using the default aggregation heuristic we
aggregate inequalities in such a way that the resulting base inequalities correspond to
cuts of the detected network. In this context our approach can be considered as being
an alternative c-MIR aggregation heuristic which exploits combinatorial structure. If
the considered MIP instance contains a network structure, e.g., if it corresponds to
a network design problem, our implementation is able to identify it and to produce
strong valid special-purpose cuts which help to improve the dual bound and to acceler-
ate the branch-and-cut solver. On the other hand, our implementation is able to decide
whether the detected structure is consistent or not. In particular, we are not generating
cutting planes if the structure is not consistent. This way we introduce almost no over-
head for instances that do not fit into our framework, following a remark from Bixby
and Rothberg [16]:

It may also be tempting to consider a new method in the context of a single
problem class. While an idea that provides a big benefit for one problem class
can be quite useful, both for solving problems of that class and for developing
insights into generalizations of such methods, one practical difficulty is that MIP
practitioners are typically unaware that they are confronting a problem of that
class. At a minimum, a method should be able to recognize models to which it
can be applied, ideally introducing little or no overhead when the model does
not fit the mold.

Let A = (αi j )i∈M, j∈N be a rational matrix with m rows and n columns. We denote
by M and N the row and column indices of A. The set of integer variables is given by
I ⊆ N . We consider the mixed integer program (MIP)

min κT x

Ax ≤ b (1)

x j ∈ Z, ∀ j ∈ I

where the linear constraints of the system (1) are given either as equations or as
inequalities. Upper and lower bounds on variables are already included in the con-
straint system. Associated with (1) we define X := {x ∈ R

N\I × Z
I : Ax ≤ b} to

be the mixed integer set containing all feasible solutions.
Based on the observation that many known strong valid inequalities for different

problems can be obtained by MIR, Marchand and Wolsey [41] (also see [39,40])
proposed a c-MIR procedure that is nowadays one of the most successful separation
schemes in state-of-the-art MIP-solvers such as Scip and Cplex, see [1,16,59]. The
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idea is to generate MIR inequalities from constraints that are valid for X . Marchand
and Wolsey [41] employ four different operations to obtain such base inequalities.
In the first aggregation step a conic combination uT Ax ≤ uT b of the system (1)
using weights u ≥ 0 is considered. This is followed by bound substitution trying
to substitute continuous variables by variable upper or lower bounds of the form
x j ≤ cx j ′ or cx j ′ ≤ x j with j ∈ N\I, j ′ ∈ I . In the third step a subset C ⊆ I of
bounded integer variables is complemented using simple upper or lower bounds of the
form x j ≤ u j or l j ≤ x j with j ∈ C . Eventually, the resulting mixed integer knapsack
inequality is scaled using an appropriate multiplier γ > 0. Each of these four opera-
tions is carried out by heuristics using information from the (current) solution of the
linear programming relaxation. For an introduction to MIR the reader is referred to
[43,58]. The c-MIR framework is introduced in [39,40] while some new insights on
c-MIR and flow-cover inequalities are given in [34]. The implementation of c-MIR in
Scip together with computational tests is described in [1,59]. A computational c-MIR
study concerning the Cut Generation Library (CGL) of the COIN-OR-initiative [22] is
provided by [26]. Results on the performance of c-MIR in Cplex can be found in [16].

Despite the fact that MIR inequalities based on different heuristics are generated by
Scip and Cplex, computational results suggest that important cut-based MIR inequal-
ities for certain network design problems are rarely found, see for instance [49]. This
has mainly two reasons. First, the network structure is not known to these solvers. Sec-
ondly, the corresponding aggregation simply involves too many rows of the original
system (1). It is natural to impose a conservative limit on the maximal number of
inequalities considered for aggregation in general purpose MIR or Chvátal–Gomory
based procedures since this limit appears in the exponent of the running time function.
Moreover, it is very likely that (without additional information) the generated inequal-
ities become very dense if too many inequalities are aggregated. For these reasons,
the default c-MIR aggregation limit in Scip has been set to 7 inequalities. A similar
value is used in Cplex.

Our implementation makes use of the c-MIR separation schemes implemented in
Scip and Cplex based on Marchand and Wolsey [41]. We skip the default aggrega-
tion heuristic and instead construct the vector u using information from the network
detection. The aggregation as described in the following sections can involve a huge
number of flow conservation and capacity constraints. Already for a medium sized net-
work with 50 nodes and 100 commodities we potentially aggregate more than 2,500
constraints (assuming a cut with two equally sized shores). Nevertheless, since the
support of the resulting base constraint corresponds to a cut of the detected network,
the aggregated constraint tends to be very sparse. It is important to understand that
our framework is not explicitly generating cutting planes. It only calculates weight
vectors u. The remaining steps, in particular bound substitution and complementing,
are carried out by the c-MIR functions of Scip, see [1,59]. Notice that scaling the
base constraint with different values γ > 0 before MIR can be seen as using weight
vectors γ uT for aggregation. Also certain bound substitutions can be done already by
aggregation as explained in the next section.

This paper is organized as follows. Section 2 introduces the type of models and
matrix structures which our detection algorithm tries to identify. We also introduce
different strong cut-based inequalities, and we show that these can be obtained using
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the same aggregation and c-MIR procedure. In Sect. 3, the network detection algo-
rithm is explained in detail. We evaluate the quality of the algorithm using a large
set of publicly available network design instances. Section 4 describes our aggrega-
tion and separation scheme. In particular, we explain how to find promising cuts in
the detected network. Some important extensions and model variants are considered
in Sect. 5. In Sect. 6, we report on our computational experiments with the Mcf-
separator of Scip and Cplex. The experiments are carried out with the mentioned
network design instances and in addition using the Miplib 3.0 [17], Miplib 2003
[3], the MIP instances of Hans Mittelmann [42], and the Cplex-internal testset. We
conclude with some remarks in Sect. 7.

2 Network design

Combinatorial optimization problems arising for instance from applications in tele-
communication and public transportation very often involve the problem of designing
a network [20,36,47,51]. This task can be roughly described as follows. Given a
potential network topology (a graph), network links (connections, streets, bus-lines)
and nodes (locations, intersections, stations) have to be dimensioned to allow for the
flow of commodities (data, passengers, goods) corresponding to certain user demands.
If different commodities have to be routed independently through the network, we
speak of multi-commodity flows. Dimensioning in this context means to assign capac-
ity to the network elements (links and nodes). In practice, the set of possible capacity
assignments typically has a discrete structure. Link capacities in telecommunication
applications, for instance, can be composed of integer multiples of a certain base band-
width. In public transportation they typically are chosen from a finite set of possible
vehicle frequencies and types. But also the routing of demands might be discrete in
the sense that it is restricted to single-path or integer flows.

In the mathematical literature there is a vast variety of approaches to model and
solve network design problems depending on the requirements to incorporate. With
our network detection and cutting plane approach we focus on rather general mixed
integer programming models, so-called arc-flow formulations, which allow to dimen-
sion the links of a network such that a multi-commodity flow of given demands can be
accommodated. (Notice that node dimensioning can always be broken down to link
dimensioning by introducing artificial network links.) In the following we will intro-
duce such models in more detail. In particular, we aim at working out the structure of the
corresponding matrix which our network detection and separation algorithms rely on.

Moreover, we will introduce the concepts of network cuts and cut-based inequali-
ties. It is well known that cutting planes defined on network cuts are among the most
effective when used within branch-and-cut frameworks to solve network design prob-
lems, see [6,13,14,24,30,38,45,49] for computational studies. Cut-based inequalities
define facets of the corresponding polyhedra under very mild conditions and they are
usually sparse. We will show how important classes of cut-based inequalities can be
obtained with the c-MIR-approach using an appropriate aggregation of flow-conser-
vation and capacity constraints. It will be emphasized that the same aggregation and
MIR procedure can be used for many of the model variations used in practice.
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The Mcf-separator: detecting and exploiting multi-commodity flow structures in MIPs 129

2.1 Model and matrix structure

First, we consider a basic network flow model, which is described in the following. A
discussion on more general model types can be found in Sect. 5. We are given a con-
nected directed graph G = (V, A) with nodes V and arcs A and a set of commodities
K . With every k ∈ K a vector dk ∈ Q

V of demand (supply) values is associated. We
call v a supply node with respect to commodity k if dk

v > 0 and a demand node if
dk
v < 0. For every commodity k ∈ K we have to construct a flow in G, which can be

considered as being a vector f k ∈ R
A+ with the property that for every node v ∈ V

the flow leaving v on all outgoing arcs minus the flow entering v on all incoming
arcs equals the value dk

v . We assume that
∑

v∈V dk
v = 0 for all k ∈ K , i.e., there is

no flow leaving the network or entering it from “outside”. Very often a commodity
corresponds to a single point-to-point demand, that is, there is exactly one (source)
node s ∈ V with dk

s > 0 and one (target) node t ∈ V with dk
t < 0.

To accommodate the multi-commodity flow we have to dimension the network
arcs. Every arc a ∈ A can be equipped with integer multiples of the capacity value
ca ∈ Q, ca > 0, while the number of capacity modules installable on a is bounded by
ua ∈ Z ∪ {∞}, ua ≥ 1. A flow f ∈ R

A×K+ is said to be feasible if for every arc a the
total flow (over all commodities) is not exceeding the arc capacity. The capacitated
network design problem now asks for a capacity assignment to the arcs plus a feasible
network flow for all commodities that minimizes a given linear (flow and/or capacity)
cost function [6,13,37].

Let f k
a be the flow of commodity k ∈ K on arc a ∈ A. Variables ya ∈ Z+

count the number of capacity modules of size ca provided on arcs a ∈ A. A natural
way to describe all feasible multi-commodity flows together with all feasible capacity
assignments is to use an arc-flow formulation of the form:

∑

a∈δ+(v)

f k
a −

∑

a∈δ−(v)

f k
a = dk

v ∀v ∈ V, k ∈ K (2a)

∑

k∈K

f k
a − ca ya ≤ 0 ∀a ∈ A (2b)

ya ≤ ua ∀a ∈ A (2c)

f, y ≥ 0, (2d)

where δ+(v) and δ−(v) denote all arcs in A having v as source and target node,
respectively. The flow conservation equations (2a) describe the flow for each indi-
vidual commodity. The capacity constraints (2b) ensure that the flows are feasible by
providing sufficient capacity on the network arcs.

The constraint matrix corresponding to the system (2), as visualized in Fig. 1, con-
sists of |K | blocks, which all correspond to the same |V | × |A| node-arc incidence
matrix of the graph G = (V, A). Such a matrix has the property to contain one +1 and
one −1 entry in every column which correspond to the source and target node of the
arc represented by the column. The |K | blocks are coupled by the capacity constraints
that, for each arc, sum up the flow-variables of all commodities and limit this total
flow by the arc capacity.
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Fig. 1 A digraph and the corresponding matrix representing a coupled multi-commodity flow. A node has
a flow-row in every commodity. An arc has a column in every commodity and corresponds to one coupling
capacity row

2.2 Cuts and cut-based inequalities

Let S be a nonempty proper subset of the nodes V and let δ(S) := δ+(S) ∪ δ−(S)

be the corresponding dicut, where δ+(S) denotes all arcs in a with source in S and
target in V \S and δ−(S) subsumes all arcs with target in S and source in V \S. For
the ease of exposition we stick to the single-commodity case here with flow-variables
fa for every a ∈ A and node demands (supplies) dv . The multi-commodity case is
covered by considering single-commodity relaxations of (2) obtained by aggregating
all flow-rows (2a) corresponding to a subset of the commodities Q ⊆ K and setting
fa := ∑

k∈Q f k
a for every a ∈ A as well as dv := ∑

k∈Q dk
v for every v ∈ V , see for

instance [6,50].
To develop cut-based inequalities we regard the structure GS = ({S, V \S}, δ(S))

as a two-node network and restrict ourselves to consider the flow across the cut (the
flow between S and V \S) and the capacity provided on the dicut δ(S). We denote
by dS := ∑

v∈S dv =: −dV \S the total cut demand (supply) of the artificial node S
and assume that dS < 0, that is, S is a (single-commodity) demand node. Notice that
in the multi-commodity case the sign of dS depends on the choice of the subset Q
considered for the single-commodity relaxation. Now it obviously holds that the cut
demand is bounded by the cut capacity, that is, informally:

capacity(δ−(S)) ≥ demand(V \S → S) (3)

Similarly the supply of S (which is the demand of V \S) cannot exceed the capacity
on δ+(S). Observation (3) is crucial both from the theoretical and practical point of
view. In practice, if inequality (3) is tight the network cut δ(S) can be considered
as being a bottleneck. The observation also has theoretical consequences, especially
for network flow theory and the max-flow- min-cut theorem [4]. When solving net-
work design problems using branch-and-cut frameworks, inequality (3) can be used
to derive cutting planes, which is our main motivation here.
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Fig. 2 The cut δ(S) obtained by
aggregating the flow-rows of a
nodeset S
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For the network design model (2) observation (3) breaks down to

∑

a∈δ−(S)

ca ya ≥ dV \S . (4)

We will now generalize this base inequality, and we will show how it can be obtained
by aggregating original constraints of the system (2), see also Fig. 2. First, summing up
(and relaxing) all flow equations (2a) corresponding to S and restricting the capacity
constraints (2b) to the dicut δ(S) results in the following (two-node, single-commodity)
cutset relaxation of the formulation (2):

∑

a∈δ+(S)

fa −
∑

a∈δ−(S)

fa ≤ dS (5a)

fa − ca ya ≤ 0 ∀a ∈ δ(S) (5b)

ya ≤ ua ∀a ∈ δ(S) (5c)

The key to derive strong valid cut-based inequalities for network design problems is
to study the convex hull of the solution space defined by (5) and the integrality of ya .
This structure is known as a single node flow set and has been studied extensively in
the literature [5,8,12,28,29,40,46,52,53,56,57] in particular for the case that ya is a
binary variable, i.e., ua = 1 for all a ∈ A. Note that this has been done mainly for
the fact that 0-1 single node flow sets arise as natural relaxations of general MIPs.
Also many 0–1 mixed IP applications have fixed charge network sub-structures. Here
we perceive single node flow sets as corresponding to network cuts. Related polyhe-
dral structures with unbounded integer variables have been studied in [6,50] as cutset
polyhedra motivated by network design.

We now add all capacity constraints (5b) corresponding to a subset A− of the arcs
δ−(S) to inequality (5a) which gives the mixed integer knapsack base inequality

∑

a∈δ+(S)

fa −
∑

a∈ Ā−
fa −

∑

a∈A−
ca ya ≤ dS, (6)

where Ā− :=δ−(S)\A−. We observe that setting A− :=δ−(S) and relaxing yields (4).
The solution space corresponding to (6) is known as a mixed (integer) knapsack set,
see [7,40] and the references therein. By applying MIR to (6) we will recover some
well-known strong valid inequalities for network design problems in the sequel. Since
(6) is an aggregation of original constraints all presented MIR inequalities can, in
principle, be obtained by using the c-MIR heuristic of Marchand and Wolsey [40,41].
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Let us first consider the unbounded case, that is, ua = ∞ for all a ∈ δ(S). For
simplicity we assume that the installable capacity ca is independent of the arcs a, i.e.,
ca = c > 0 for all a ∈ A. In this case, dividing (6) by c and applying MIR gives the
well-known flow-cutset inequalities [6,13,21]

∑

a∈ Ā−
fa +

∑

a∈A−
r ya ≥ r

⌈dV \S

c

⌉

, (7)

where r is the remainder of the division of dV \S by c. Setting A− := δ−(S) we obtain
the cutset inequalities

∑

a∈δ−(S)

ya ≥
⌈dV \S

c

⌉

. (8)

Inequality (8) is crucial since it provides a lower bound on the number of capacity
modules that has to be provided on the cut to allow for feasible flows. Atamtürk [6]
proves that flow-cutset inequalities together with all trivial inequalities yield a complete
description of the cutset polyhedron for S. On the other hand, the cutset inequalities (8)
turn out to be the most effective cuts in practice, see for instance [6,14,21] (directed
models), [35,37,38,49,50] (undirected models), and [35,37,38,49,50] (so-called bi-
directed models). If the capacities are not arc-independent (or similarly if there is
more than one arc facility), inequality (4) can be divided by one of the given capac-
ities ca before applying MIR. In particular, the facet defining cutset and flow-cutset
inequalities in [6,13,35,38,50] can be obtained this way, see also [48].

Cutset inequalities and flow-cutset inequalities clearly remain valid if we impose
upper bounds on the capacity variables. In many applications the capacity variables
are binary, modeling the decision whether or not to install a certain arc facility. For
uncapacitated network design problems with c > dV \S for all nonempty S ⊂ V , the
inequalities (8) and (7) reduce to the Steiner-cut (or dicut) and mixed dicut inequalities

∑

a∈δ−(S)

ya ≥ 1 and
∑

a∈ Ā−
fa +

∑

a∈A−
dV \S ya ≥ dV \S,

see for instance [45]. Notice that � dV \S
c 
 = 1 and r = dV \S in this case.

In the bounded case (ua < ∞ for all a ∈ A) with arc-dependent capacities (ca for
all a ∈ A) a large class of valid inequalities for (5), which incorporate the bounds on the
capacity variables, is given by flow-cover inequalities [28,46,52]. Marchand and Wol-
sey [40,41] and recently Louveaux and Wolsey [34] observed that strong valid lifted
flow-cover inequalities can be obtained by MIR. (Among others, this observation led to
the development of the c-MIR framework.) Starting from the relaxation (6) they allow
to complement a subset C of the capacity variables using the upper bounds ua . The
resulting base inequalities are divided by some constant c > 0 and MIR is applied. In
this context, certain classes of flow-cover inequalities (simultaneously lifted by using
the superadditive MIR function) can be derived in the same way as flow-cutset and
mixed dicut inequalities with the additional feature of complementing simple bounds.
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2.3 Summary

In our implementation we generate cut-based inequalities using the c-MIR approach
based on arc-flow formulations hidden in the constraint system Ax ≤ b of the given
MIP. We first identify a subsystem of the form (2) and construct the corresponding
network as described in Sect. 3, that is, we resolve the structure given in Fig. 1 back-
wards. In the detected network we identify interesting cuts, see Sect. 4. For every
such cut we call the c-MIR procedure of Scip with a weight vector u that results in
a base inequality of the form (6). Given a cut and the corresponding nodeset S, this
aggregation can be summarized as follows:

– Aggregate all flow-rows (2a) for nodes in S and commodities in a subset Q of K .
– Add all capacity constraints (2b) corresponding to a subset A− of the arcs δ−(S).
– For every capacity c, that is, for every coefficient c of an integral variable in one

of the used capacity constraints, use γ = 1/|c| as a multiplier to scale the base
inequality.

MIR is applied to all these scaled base inequalities. In the first step we restrict our
attention to the commodity subset consisting of all demand commodities with respect
to S, that is, Q = K −

S := {k ∈ K : dk
S < 0}, where dk

S := ∑
v∈S dk

v . In the second
step we consider the subset A− =δ−(S) and additionally the subset A− that gives the
most violated inequality among all possible subsets A−. The reverse direction with
Q = K +

S := {k ∈ K : dk
S > 0} and subsets of δ+(S) is considered by repeating

the same procedure for V \S. The separation scheme is described in more detail in
Sect. 4. Clearly, the corresponding aggregation involves a large number of the original
constraints (2a) and (2b) already for small sized networks.

Although the network design model (2) and the corresponding c-MIR aggregation
are already rather general, we have to consider model variations which are frequently
used in practice. These are in particular multi-facility problems, undirected capacity
models, and single-path-flow formulations. In Sect. 5 we explain how these extensions
and variants are incorporated into our framework.

3 Network detection

3.1 Introduction

We start with a high-level presentation of our network detection algorithm. Thereafter
we will explain the corresponding sub-procedures in more detail. Notice that we have
not implemented our algorithms in the way we present them here. Our aim is to describe
the core idea of our implementation. To obtain a fast and stable algorithm one has to
introduce more involved data structures. We will point out necessary improvements
and implementational issues in the detailed description of the four sub-procedures
Flow detection, Arc detection, Node detection, and Network construction whenever
possible.

We will start by explaining the main ingredients of the detection. The idea is to start
with flow conservation constraints or flow-rows of the form (2a). The flow structure
of the network is characterized by a {0,+1,−1}-matrix such that each column has at
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Fig. 3 The network detection algorithm. a Flow detection resulting in a disconnected graph with one
component per commodity. b Arc detection: using capacity constraints to assign arc-ids. c Node detection:
compare arc-id patterns in the different commodities and assign the same node-id to (almost) identical
patterns. d Network construction: ask flow-variables for source and target node, construct incidence function
according to majority vote, minority votes are inconsistencies

most one +1 and at most one −1 entry as it can be seen in Fig. 1. A subset of the
rows of A will be called an embedded network if it has this property, up to scaling of
individual rows. Our Flow detection procedure is based on a Row Scanning Addition
Algorithm introduced by Bixby and Fourer [15], see also Brown and Wright [19].
It identifies an embedded network by consecutively adding flow-rows to the system
starting with an empty set of rows. Each flow-row in the matrix represents one node in
the flow network, a +1 coefficient corresponds to an outgoing flow, a −1 coefficient
corresponds to an incoming flow. An equation can be multiplied by −1 in order to fit
to the flow structure. In addition, if the current row is an inequality but all previous
rows are equations, we can also multiply all previous rows by −1 to make the current
row fit. This operation is called reflection [15,19].

The flow structure could result in a flow network with multiple independent compo-
nents, see Fig. 3a. In the perfect case, these components are isomorphic and represent
the different commodities of the problem. Now the task is to find these isomorphisms.
Notice that the problem of deciding whether two graphs are isomorphic has not yet
been proved to belong to P or to be NP-complete [25]. Since in practice the different
components are usually not identical due to user and solver preprocessing as explained
below, it is more important in our context to decide whether one graph is contained
in another or alternatively to maximize the largest common subgraph. Both problems
are NP-complete (NP-hard) [25].

The main idea to solve the graph isomorphism problems in the network detection
is to find capacity coupling constraints of the form (2b) defined on the arcs of the
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The Mcf-separator: detecting and exploiting multi-commodity flow structures in MIPs 135

network. We identify the capacity constraints and the corresponding arcs in the Arc
detection procedure. In the perfect (directed) case, a capacity constraint contains one
flow-variable of each commodity and one or more capacity-variables. The structure
of the capacity constraints, however, depends on the formulation, see Sect. 5. The Arc
Detection procedure assigns arcs to the coupling capacity constraints and all corre-
sponding flow-variables, see Fig. 3b.

To determine the nodes of the graph G we compare the arc-patterns of the flow-
rows in the different commodities in the Node detection procedure. The arc-pattern
of a flow-row is given by the arc-ids of the involved flow-variables. If two flow-rows
of two different commodities have a similar arc-pattern we decide to map them to
the same node, see Fig. 3c. Eventually, we determine the source and target incidence
functions for the network arcs in the Network construction procedure. In a perfect
network, the flow-variables of an arc (of a capacity constraint) should point to the
same source and target node in the different commodities. Then, the source and target
node assignment means to just use these two uniquely determined nodes, see Fig. 3d.
In reality, however, flow-variables of the same arc might have different source or tar-
get nodes in the different commodities, that is, the detected network matrices are not
isomorphic or arcs and nodes have been assigned incorrectly. For every arc a ∈ A we
use the majority vote of the flow-variables across the commodities and assign source
and target accordingly. Additionally, we record the minority votes as inconsistencies
in the network data structure. The number of inconsistencies divided by the number
of commodities gives the arc inconsistency ratio �(a) ∈ [0, 1), which is used to dis-
card individual arcs. The average inconsistency ratio over all network arcs is called
the network inconsistency �(G) ∈ [0, 1), which is used to decide whether or not
our network detection was successful and whether the separation scheme should be
applied.

3.2 Inconsistency and presolving

If �(G) = 0 we detected a consistent coupled multi-commodity flow network. The
commodity network matrices can be considered being isomorphic and we correctly
assigned arcs and nodes to rows and columns. If, however, �(G) is close to 1 our
detection failed or there is no consistent embedded network in the constraint matrix.
In our implementation we fixed the maximum inconsistency ratio �max to 0.02. If
�(G) > �max, then all network data structures are released and it is not tried to gen-
erate cutting planes. In addition we do not allow for arcs with individual inconsistency
ratio �(a) greater than �max

a = 0.5. The influence of the inconsistency parameters
�max and �max

a is tested in Sect. 6.1.
There are several reasons for potential inconsistencies. First, our detection is a heu-

ristic. Its success largely depends on a proper identification and ordering of flow and
capacity-rows, see the detailed description below. But already the formulation of the
concrete MIP instance can be “corrupted” even if it corresponds to a coupled multi-
commodity flow. As a consequence, the detection procedures cannot expect pure and
isomorphic network matrices. The same node or the same arc do not need to be present
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Fig. 4 The impact of preprocessing. a A node and all incoming arcs deleted by user presolving. Notice that
two of the remaining arcs have no source. b Loosely connected nodes and arcs deleted by solver presolving

in every commodity. Moreover, an arc does not necessarily have both a source and a
target node, that is, the corresponding flow-rows might be missing:

User presolving. It is known that the rank of a network matrix corresponding to a
directed network G = (V, A) is exactly |V |−1. For every commodity, an arbitrary row
in (2a) can be omitted. To save constraints, this preprocessing is sometimes already
carried out by the modeler and results in deleting a node from G for every commodity,
see Fig. 4a. Moreover, the node that is deleted typically differs from commodity to
commodity. For example, if each commodity has a single source node, it is common
to omit the flow conservation constraint of this source node from the formulation.

Another common presolving technique is to discard all flow-variables that corre-
spond to arcs pointing into source-nodes or pointing away from target-nodes. This
is done to avoid cycle-flows in the solutions. Deleting flow-variables corresponds to
deleting arcs in the network matrix. Again the omitted arcs differ from commodity to
commodity. It turns out that, in practice, our detection has to face multi-commodity
formulations with blocks for individual commodities that are not isomorphic, although
they originally correspond to the same network. However, our detection procedures is
still correctly identifying most of the underlying graphs even if the formulations have
passed these user presolving techniques, see Table 2.

Solver presolving. In order to decrease the size of the formulation, state-of-the-art
MIP-solvers carry out a series of preprocessing steps before starting the actual branch-
and-cut procedure. The model is transformed by deleting redundant constraints and
by fixing, substituting, and deleting variables. We refer to [1] for a description of the
presolving methods used in Scip. We observed that by preprocessing, in particular
loosely connected nodes and arcs are deleted from the original graph, see Fig. 4b. If
for instance node v has only one outgoing arc a and no incoming arc, the resulting
flow-row has the form fa = dv . Hence fa can be fixed and removed from the system.
If, alternatively, v has only one outgoing arc a and only one incoming arc a′, one of
the corresponding flow-variables can be substituted by the other since fa − fa′ = dv .

As shown in Table 2, the number of nodes and arcs deleted by preprocessing may
amount to more than 20% even for pure network design instances of type (2). But
also if the network size is strongly reduced (as for the instance sets avub, arc.set, fc)
the inconsistency ratio �(G) is not necessarily increasing. Also our separator per-
forms very well, compare with Table 3. The remaining graphs after presolving seem
to reflect the core of the network such that generated cut-inequalities still capture
important structural information.
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3.3 Notation

Before explaining the four sub-procedures of our network detection strategy in more
detail, we introduce some useful notation. Our detection algorithm identifies potential
flow-row and capacity-row candidates, which are subsets MF ⊆ M and MC ⊆ M of
the rows of A. During the course of the algorithm, these sets are reduced in order to
obtain two disjoint subsets, which correspond to the nodes and arcs in the final multi-
commodity flow network structure. Constructing the network means to map the rows
and columns of the matrix A to network elements and commodities. The mappings
are

rowcom : M → K ∪ {0}, i �→ rowcom(i)
colcom : N → K ∪ {0}, j �→ colcom( j)
rowarc : M → A ∪ {0}, i �→ rowarc(i)
colarc : N → A ∪ {0}, j �→ colarc( j)

rownode : M → V ∪ {0}, i �→ rownode(i),

where rowcom and colcom map rows and columns of the flow-system to commodi-
ties, the functions rowarc and colarc map the coupling (capacity) constraints and the
flow-variables to arcs of the network, and rownode assigns a node to every flow-row.
A mapping to 0 means that the corresponding row or column has not been assigned.
To construct the graph G = (V, A) we use the source and target incidence functions

s : A → V, a �→ s(a)

t : A → V, a �→ t (a)

All of our algorithms, based on data structures provided by Scip, rely on sparse
array representations of the rows and columns of the matrix A. Whenever iterating
rows or columns, we in fact iterate all corresponding non-zeroes. For a subset N ′ ⊆ N
of the column indices, the set M[N ′] := {i ∈ M : ∃ j ∈ N ′ with αi j �= 0} contains
all row indices with a non-zero entry in one of the columns of N ′. Similarly, for a
row index set M ′ ⊆ M , the set N [M ′] := { j ∈ N : ∃i ∈ M ′ with αi j �= 0} corre-
sponds to all columns with a non-zero entry in one of the rows of M ′. We abbreviate
M[ j] := M[{ j}] and call M[ j] the support of column j . Similarly, N [i] := N [{i}]
denotes the support of row i .

3.4 Flow detection

The goal of the flow detection Algorithm 1 is to find an embedded network in A
that is inclusion-wise maximal with respect to the rows. For finding the embedded
network we use a modified row-scanning-addition algorithm [15]. Roughly speaking,
this algorithm starts with an empty set of flow-rows and adds rows until a maximal
embedded network has been built.

Prior to calling Algorithm 1 we identify a potential set of flow-row candidates MF

among all rows M . Initially, the set MF contains all rows in A that have, up to scaling,
entries in the set {0,+1,−1}. Note that in contrast to Bixby and Fourer [15] we do
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Algorithm 1: Flow Detection
Input : flow-row candidates MF , scoring sF : MF → R+
Output : set of commodities K , mappings rowcom : M → K ∪ {0}, colcom : N → K ∪ {0}
Sort MF in non-increasing order of sF1
Initialize rowcom(i) := 0 for all i ∈ M2
Initialize k := 03
for i ∈ MF with rowcom(i) = 0 do // Scan flow-row candidates4

k := k + 1 // Create new commodity5
i ′ := i6
rowcom(i ′) := k // Add row i ′ to commodity k7
colcom( j) := k for all j ∈ N [i ′] // Add non-zero cols of i ′ to commodity k8
for j with colcom( j) = k do // Search for adjacent rows9

for i ′ ∈ M[ j] with rowcom(i ′) = 0 do10
if row i ′ fits to system MF (k) then goto 7; // i ′ is best row of j11

end12

end13
if flow-system MF (k) is too small then // Delete commodity k14

colcom( j) := 0 for all j ∈ NF (k)15
rowcom(i ′) := 0 for all i ′ ∈ MF (k)16
k := k − 117

end18

end19
MF := MF \{i ∈ MF : rowcom(i) = 0} // Remove nonassigned candidates20
NF := N [MF ]21

not allow for scaling of columns in order to obtain a {0,−1, 1} system. All nonzero
coefficients of a row in MF have the same absolute value. We do not explicitly scale
rows but keep track of the scaling factors. The actual scaling is carried out by the
weighted aggregation in the c-MIR procedure. Since in practice the degree of network
nodes is relatively small and for efficiency reasons we do not allow for flow-rows
with more than 10% non-zeroes, that is, we limit the node degree to 0.1|A| (in the
single-commodity case).

Our flow detection algorithm is strongly driven by a scoring of the flow-row can-
didates. To every row i in MF we assign a score sF (i) ∈ R+. The larger sF (i), the
more we trust row i to be part of a flow-system. The following properties of row i (in
decreasing order of their importance) increase its score sF (i) in our implementation:

– Row i does not need to be scaled, i.e., its coefficients are among {0,−1,+1}.
– All variables (with non-zero coefficient) are continuous (corresponding to split-

table flows).
– All variables in row i (with non-zero coefficient) are integer or all variables in

row i (with non-zero coefficient) are binary (corresponding to integer splittable or
single-path flows).

– Row i has both positive and negative coefficients. (There are both inflow and
outflow variables)

– Row i is an equation.

We use the number of non-zeroes and the absolute dual value of row i in the initial
solution of the LP relaxation for tie-breaking. The larger these values are the earlier the
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flow-row candidate is considered: scanning and evaluation of the flow-row candidates
in Steps 4 and 10 of Algorithm 1 are carried out in non-increasing order of sF .

The submatrix defined by the flow-rows might contain independent blocks, i.e., the
corresponding network is not necessarily connected. These different blocks, that is,
the corresponding rows and columns, are assigned to different commodities. In con-
trast to the row-scanning-addition algorithm of Bixby and Fourer [15] our procedure
constructs the flow-system of every commodity one by one (Steps 5–13). We denote
by MF (k) all flow-rows that are assigned to commodity k, MF (k) := {i ∈ MF :
rowcom(i) = k}. Similarly, the set NF (k) := N [MF (k)] contains all flow-variables
assigned to commodity k. If MF (k) cannot be increased, a new commodity is created
until all potential flow-row candidates have been considered. In Step 14 of Algorithm 1
we say that a finished commodity k is too small if |MF (k)| < 3 or there exists a com-
modity k′ such that |MF (k)| < 0.5|MF (k′)|. In this case the commodity mappings
for the corresponding rows and columns are released. These rows can then indeed be
used again for new commodities. But notice that every row is considered at most once
as the starting row of a commodity in Step 4, which guarantees the termination of the
algorithm.

Every step of the addition method results in a feasible flow-system (an embedded
and connected sub-network) for the current commodity k. Given a flow-row candidate
i ∈ MF\MF (k), we say that i fits to MF (k), if

– i is adjacent to MF (k), i.e., the intersection of NF (k) and N [i] is non-empty,
– the augmented system MF (k) ∪ {i} is an embedded network, i.e., it has at most

one +1 and at most one −1 entry in every column (up to scaling and reflection).

In Steps 9–13 we scan all columns of MF (k) for adjacent flow-rows. For efficiency
reasons we take the first row that fits. But note that this row has the largest score w.r.t.
the current column. To accelerate the loop 9–13 we consider only those columns j in
Step 9 that have exactly one entry in MF (k). This is achieved by introducing arrays that
count the number of +1 and −1 entries in the current commodity for every column. In
our implementation these arrays are also used for testing if a row fits to MF (k), also
see Bixby and Fourer [15].

To fit a row into a flow-system one can reflect it, i.e., multiply it by −1. Since our
separation approach (see Sect. 4) relies on aggregating flow-rows, this operation can
be applied as long as the current row i is an equation (or similarly, every row of the
current system MF (k) is an equation). In case there is a ≤-inequality among MF (k)

and a ≤-constraint has to be reflected in Step 11 to make it fit to MF (k) we decrease
its score such that it is considered later in the loop 10–12. This way we avoid to intro-
duce slacks when aggregating subsets of the rows of (1) in the c-MIR procedure by
summing up ≤ and ≥-constraints.

After calculating a maximal embedded network within MF all rows that do not
participate in the flow-system are removed from MF (Step 21 of Algorithm 1).

3.5 Arc detection

The goal of the arc detection procedure given by Algorithm 2 is to identify the coupling
of the commodities K and to assign arc-ids to the (coupling) capacity constraints as
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Algorithm 2: Arc Detection
Input : capacity-row candidates MC , scoring sC : MC → R+, mappings

rowcom : M → K ∪ {0} and colcom : N → K ∪ {0}
Output : mappings rowarc : M → A ∪ {0} and colarc : N → A ∪ {0}
Sort MC in non-increasing order of sC1
Initialize colarc( j) := 0 for all j ∈ N , rowarc(i) := 0 for all i ∈ M2
Initialize a := 03
for i ∈ MC do // Scan capacity-row candidates4

f lowvars := |N [i] ∩ NF |5
unassigned := |{ j ∈ N [i] ∩ NF : colarc( j) = 0}| // Count unassigned6

flow-variables
if unassigned > f lowvars/3 then // 1/3 of the flow-variables unassigned7

a := a + 1 // Create new arc8
rowarc(i) := a9
colarc( j) := a for all j ∈ N [i] ∩ NF with colarc( j) = 010

end11

end12
MC := MC \{i ∈ MC : rowarc(i) = 0} // Remove nonassigned candidates13

well as to all involved flow-variables. The set MC of capacity-row candidates initially
contains all rows in M that are not flow-rows and that contain at least one flow-variable.
Hence:

MC := {i ∈ M\MF : N [i] ∩ NF �= ∅}

These candidates are sorted in non-increasing order of a score sC : MC → R+ similar
to the flow-row candidates in Algorithm 1. The most important property of a capacity-
row candidate in this context is to contain a flow-variable for every commodity, i.e.,
to couple the flow-systems MF (k), k ∈ K . Basically, the score sC (i) is largest if the
constraint i ∈ MC is of the form (2b).

Properties that influence the score of capacity-row candidates are given in the fol-
lowing in decreasing order of their importance. Note that capacity-row candidates
given as equations can always be reflected. For simplicity we assume that they are
given as ≤-inequalities in the following. We increase sC (i)

– for every covered commodity, i.e., for every k ∈ K such that N [i] ∩ NF (k) �= ∅,
– if i contains (close to) one flow-variable per commodity, i.e., if the number of

flowvariables |N [i] ∩ NF | divided by the number of covered commodities |{k ∈
K : N [i] ∩ NF (k) �= ∅}| is close to 1,

– if i is a (capacity) constraint bounding flow from above, i.e., it holds that αi j > 0
for all j ∈ N [i] ∩ MF and αi j < 0 for all j ∈ N [i]\MF ,

– if αi j = 1 for all j ∈ N [i] ∩ MF without scaling, or
– if αi j = 1 for all j ∈ N [i] ∩ MF by scaling.

We use the absolute dual values of the capacity-row candidates for tie-breaking. As
for flow-rows we keep track of the necessary scaling factors. These will be used as
weights in the c-MIR aggregation, see Sect. 4.

Algorithm 2 simply assigns an arc-id to every capacity-row candidate and all unas-
signed flow-variables in the support of the capacity-row candidate if one third of
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Algorithm 3: Node Detection
Input : flow-row candidates MF , mappings rowcom : M → K ∪ {0} and colarc : N → A ∪ {0}
Output : mapping rownode : M → V ∪ {0}
Initialize rownode(i) := 0 for all i ∈ M1
Initialize v := 02
for i ∈ MF with rownode(i) = 0 do // Scan flow-rows3

v := v + 1 // Create new node4
rownode(i) := v // Assign node v to flow-row i5
if |K | = 1 then continue6
k = rowcom(i)7
pattern := PatternOf(i)8
for i ′ ∈ MF with rowcom(i ′) �= k do // Scan flow-rows of commodities k′ �= k9

k′ := rowcom(i ′)10
score := ComparePattern(pattern, PatternOf(i ′))11
Remember bestrow(k′) with largest score for k′12

end13
for k′ ∈ K\{k} do // Assign v to rows with closest arc-pattern to i14

rownode(bestrow(k′)) := v15
end16

end17

the flow-variables is still unassigned. Note that in a perfect network all capacity con-
straints are disjoint w.r.t. the flow-variables hence the flow-variables are all unassigned
in Step 7. Here we allow for some overlap between capacity constraints, for example
to cope with presolving reduction. The loop 4 is carried out in non-increasing order
of sC . Eventually, all capacity-rows without an arc-id are removed from MC . Algo-
rithm 2 terminates with a bijection rowarc : MC ↔ A of capacity-rows to arc-ids.
Flow-variables j ∈ NF with colarc( j) = 0 are considered to be uncapacitated since
they do not have a supporting capacity constraint. For these variables we will create
(uncapacitated) arcs in a final step after the construction of the network, see below.

3.6 Node detection

Algorithm 3 uses the incidence information given by the arc-id mapping colarc to
identify (almost) isomorphic nodes in the different commodities. Two flow-rows in
different commodities are considered to belong to the same node if they have a similar
incidence pattern w.r.t. to their arc-ids.

Algorithm 3 scans all flow-rows in non-increasing order of sF . In the single-
commodity case every flow-row simply gets a different node-id. Given a flow-row
i ∈ MF belonging to commodity k in the case |K | > 1, we try to identify flow-rows
in all commodities k′ �= k with a similar arc-pattern. To calculate the arc-pattern of a
flow-row i we count for every arc a, how often it appears as an outgoing and incoming
arc in the support of the constraint, i.e., how many flow-variables with positive and
negative coefficients in the support of i are assigned to arc a.

If the problem formulation is of the ideal form (2) and if we managed to detect
the flow-system and arcs correctly in Algorithm 1 and 2, then PatternOf(i) returns
an incidence vector in {0,+1,−1}A giving all outgoing and incoming arcs of the
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flow-row i . Due to inconsistencies in the system or matrix preprocessing the entries
might differ from 0, +1, or −1.

In Step 11 of Algorithm 3 we compare all arc-patterns of flow-rows i ′ of commodi-
ties k′ �= k with the pattern of row i of commodity k using the function
ComparePattern. Notice that it suffices to scan only those flow-rows i ′ in the loop
9–13 that are coupled with i by a capacity constraint. Hence we consider only rows
i ′ ∈ MF that have at least one arc in common with i . The functionComparePattern
returns the (weighted) overlap of the two arc-patterns. As a tie-breaker we use the
number of non-overlapping entries of the two pattern vectors divided by the num-
ber of columns of the matrix A. As already mentioned, there might be uncapacitated
flow-variables that have no arc-id. In our implementation we also count the number
of these uncapacitated flow-variables (both with positive and negative sign) in the
two flow-rows and use this information as an additional tie-breaker when compar-
ing two patterns. Hence flow-rows should have a similar number of uncapacitated
flow-variables in addition to a similar arc-pattern to receive a large score. It should
be mentioned that every individual commodity flow-system MF (k) can be reflected
once, which means to reflect every flow-row in the system. This has to be considered
when comparing the arc-patterns.

Subsequent to the node-detection procedure we perform a cleanup of the network
information obtained so far. We remove commodities that have no arcs (no flow-
variable with an arc-id) or too few nodes (too few flow-rows assigned to different
nodes). A commodity has too few nodes if its total number is smaller than 3 or it has
less then 50% of the nodes of the largest commodity. In general one wishes to have
commodity systems of almost the same size. Removing a commodity means to release
the corresponding data structures and assignments to nodes and arcs.

3.7 Network construction

For constructing a digraph G based on the nodeset V and arcset A it remains to
construct the source and target incidence functions s : A → V and t : A → V .
The corresponding information is hidden in our data structures. Given a flow-variable
j ∈ NF assigned to some arc a ∈ A, there are at most two flow-rows in MF having j
in their support, one with positive and one with negative coefficient. These flow-rows
are assigned to nodes. It follows that every flow-variable, if assigned to an arc, has a
source and a target node.

Algorithm 4 iterates all arcs in A and asks all the corresponding flow-variables
for their source and target node. Due to inconsistencies in the formulation or in
the network detection the flow-variables of the same arc might answer differently.
Based on the majority of the votes the incidence function is constructed. For every
arc a ∈ A we evaluate its inconsistency �(a) ∈ [0, 1) in Step 24, where �(a)

corresponds to the number of minority votes divided by the number of involved com-
modities. Inconsistent arcs, that is, arcs a with �(a) > �max

a , are deleted. The mean
of the arc inconsistencies defines the network inconsistency ratio �(G) ∈ [0, 1).
This ratio is used to decide about the quality of the detected network structure.
If the inconsistency ratio is too large, that is �(G) > �max, all data structures
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Function PatternOf(i)
Input : flow-row i
Output : pattern ∈ Z

A

pattern(a) = 0 for all a ∈ A // Initialize arc-pattern of row i1
for j ∈ N [i] do2

a = colarc( j)3
if a = 0 then continue // Uncapacitated flow-variable4
if αi j > 0 then pattern(a) = pattern(a) + 1 // Outgoing arc5

if αi j < 0 then pattern(a) = pattern(a) − 1 // Incoming arc6

end7
return pattern8

Function ComparePattern(pattern1, pattern2)
Input : arc-patterns pattern1, pattern2
Output : score ∈ R+
Initialize score := 01
for a ∈ A do2

if pattern1(a) · pattern2(a) > 0 then // Patterns overlap and signs match3

score := score + min(
pattern1(a)
pattern2(a)

,
pattern2(a)
pattern1(a)

) // Increase weighted overlap4

end5
Calculate tiebreaker 0 ≤ ε � 16
score := score − ε7

end8
return score9

are released and we do not try to generate inequalities based on the detected net-
work, see Algorithm 5. The influence of the parameters �max and �max

a is tested in
Sect. 6.1.

It remains to answer the question what happens with uncapacitated flow-variables
that could not be assigned to arcs in the arc detection Algorithm 2. For these variables
we try to create uncapacitated arcs in a procedure following the network construction.
We create a new uncapacitated arc (s, t) for s, t ∈ V if there are enough uncapacitated
flow-variables in different commodities having s as source and t as target node. More
precisely, if for the number uncap(s,t) of uncapacitated flow-variables corresponding
to (s, t) it holds that uncap(s,t) ≥ �0.8|K |
 we create a new arc a = (s, t). Notice
that for (s, t) there can only be one matching flow-variable for every commodity. Also
notice that for the single-commodity case this means that we create a new arc for each
uncapacitated flow-variable in the flow-system.

The constructed graph G = (V, A) might be disconnected for two reasons. First,
the arc-capacity constraints do not necessarily couple all commodity flowsystems
but only subsets of them. Secondly, the network might get disconnected by deleting
inconsistent arcs. Our separation procedure is applied to every individual component
of G. Each of these components might correspond to a multi-commodity system.
For simplicity, in the rest of this paper we assume that there is only one such compo-
nent in the sequel, i.e., G is connected.
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Algorithm 4: Network Construction
Input : nodes V, arcs A, mappings rowarc : M → A ∪ {0} and colcom : N → K ∪ {0}
Output : digraph G = (V, A) with incidence functions s : A → V and t : A → V , network

inconsistency �(G) ∈ [0, 1)

Initialize inconsistencies := 01
for a ∈ A do2

i := rowarc−1(a) // Capacity row of arc a3
for k ∈ K do4

nvars(k) := |{ j ∈ N [i] : colcom( j) = k}| // # flow-variables per5
commodity

end6
ncom := |{k ∈ K : nvars(k) > 0}| // # commodities in row i7

// Ask all flow-variables for source and target node
Initialize scount (v) := 0, tcount (v) := 0 for all v ∈ V8
for j ∈ N [i] with colcom( j) > 0 do9

k := colcom( j)10
for i ′ ∈ M[ j] ∩ MF do // j has at most two incident flow-rows11

v := rownode(i ′)12
if αi ′ j > 0 then // Increase source count for v13

scount (v) := scount (v) + 1/nvars(k)14
else // Increase target count for v15

tcount (v) := tcount (v) + 1/nvars(k)16
17 end18

end19

// Majority vote wins
s(a) := argmax{scount (v) : v ∈ V, scount (v) ≥ tcount (v)} // Assign best20

source to a
t (a) := argmax{tcount (v) : v ∈ V, tcount (v) ≥ scount (v)} // Assign best21

target to a

// Minority votes give arc inconsistency
totalcount := ∑

v∈V (scount (v) + tcount (v))22
�(a) := (totalcount − scount (s(a)) − tcount (t (a)))/2 · ncom // Arc inconsistency23
�(G) := �(G) + �(a)/|A| // Network inconsistency24

end25
for a ∈ A do26

if �(a) > �max
a then A := A\a; // Delete inconsistent arcs27

end28

3.8 Detection—results

In the following we discuss the success of our detection strategy. For our tests we
selected publicly available network design instances (with formulations similar to
type (2)) as well as general MIP instances. Achterberg and Raack [2] provide a com-
plete list of the considered instances with more detailed information. Table 1 intro-
duces the testsets. It states the name of the testset, its source, and the number of
instances contained. For the network design instances we also give details about the
used formulations within the testset. For possible model variations also see Sect. 5.
There are single-commodity (SCF) and multi-commodity (MCF) instances. The flow
can be splittable (S) or unsplittable (US). The capacity formulation can be directed
(DI) or undirected (UN) with a single arc facility (SF), multiple arc facilities (MF), or
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Table 1 Publicly available network design instances with different formulations and general MIP testsets

Testset Size Source Paper Problem description

arc.set 35 Atamtürk [9] [10] MCF, S, US, BIN, DI, SF

avub 60 Atamtürk [9] [11] SCF, BIN, DI, MF, RG

cut.set 15 Atamtürk [9] [6] MCF, INT, DI

fc 20 Atamtürk [9] [5] SCF, BIN, DI, SF, RG

fctp 32 Gottlieb [27] – SCF, BIN, DI, SF, bipartite graphs

sndlib 52 ZIB [61] [44] MCF, INT, BIN+GUB, DI, UN, MF

ufcn 83 Wolsey [55] [45] SCF, BIN, DI, M

miplib 92 ZIB [3,17] [3,17] General MIP instances

mittelmann 59 Mittelmann [42] – General MIP instances

a big-M capacity (M) in case of uncapacitated problems. The capacity variables are
either binary (BIN) with an additional generalized upper bound constraint (BIN+GUB)
or they are integer (INT). Some instances are randomly generated (RG).

The miplib testset contains all instances from the Miplib 3 [17] and Miplib 2003
[3] libraries. The mittelmann testset subsumes instances available on the website of
Hans Mittelmann [42, January 2009] used to benchmark MIP-solvers. From the latter
we removed instances that are already contained in miplib and fctp such that all testsets
in Table 1 are disjoint.

For all the network design instances except for the cut.set testset we could deter-
mine the original network the formulations are based on, that is, we know the correct
number of nodes, arcs, and commodities. Thus we can compare the detected with the
original networks.

All the presented results correspond to our implementation in Scip 1.1.0.8 using
Cplex 11.2.1 as linear programming solver. This development version can be made
available on request by the authors. There is no difference in the Mcf-separator of
Scip 1.1.0.8 and the publicly available Scip 1.2 [60], but note that changes in other
Scip plugins and the framework itself could affect the computational results.

All calculations were done on a 64bit 3.00 GHz Quad-Core machine with 6144
KB of cache and 8 GB of RAM using a single CPU. The detailed computational
results for the network detection are presented in [2] (Tables 9 and 10 for instances
with known and unknown original network, respectively). Table 2 summarizes these
results. We performed two tests. First, we switched off the preprocessing of Scip such
that our network detection procedures worked on the original formulation (detection—
no presolve). But note that the original formulation might already contain model
reductions by user presolving. In the second test, Scip was run in its default set-
tings with preprocessing switched on (detection—presolve). For both tests and every
testset, Table 2 reports on the number of instances for which we detect a network
(nets), the number of instances with a detected network and inconsistency ratio of at
most �max = 0.02 (nice), and the maximum inconsistency ratio among all instances
in the testset (max(�)). Recall that the value �max is used in our framework as a
default parameter to decide whether or not to separate. In case the original network
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Table 2 Network detection results summary

Testset # detection—no presolve detection—presolve

mean diff % mean diff %

nets nice max(�(G)) V A K nets nice max(�(G)) V A K

arc.set 35 35 35 0.009 0.0 0.0 0.7 35 35 0.008 20.1 13.4 0.9

cut.set 15 15 0 0.403 – – – 15 0 0.366 – – –

fc 20 20 20 0.000 0.0 0.0 0.0 20 20 0.002 23.3 11.5 0.0

fctp 32 30 30 0.000 3.1 3.3 6.7 30 30 0.000 3.1 3.3 6.7

avub 60 60 60 0.000 0.3 0.4 0.0 60 60 0.002 26.9 21.8 0.0

sndlib 52 52 52 0.000 0.3 0.0 0.0 52 51 0.023 0.4 0.1 0.0

ufcn 83 83 83 0.018 3.8 4.2 0.0 83 83 0.009 9.3 8.3 0.0

miplib 92 46 20 0.669 – – – 57 23 0.656 – – –

mittelmann 59 41 2 0.712 – – – 41 6 0.621 – – –

is available, we compare it with the detected network by taking the arithmetic mean
(mean diff %) of the percentage deviation from the original number of nodes (V ), arcs
(A), and commodities (K ). A single node deviation, for instance, is given by the ratio
100 · ||V | − |V �||/|V �|, where |V �| and |V | correspond to the number of nodes in the
original and detected network, respectively.

Let us first discuss the results for the network design instances. With solver pre-
solving switched off we find a consistent network in almost all of the instances. The
inconsistency ratio is close to zero on average and the deviations from the original
network are insignificant. There are only a few exceptions. Two fctp-networks are
not detected (bk4x3 and gr4x6), and one detected fctp-network significantly differs
from the original one (ran4x64). (All other fctp-networks are correctly identified,
see Table 9 in [2]). It turns out that some of the fctp flow-rows are rejected because
they have a density exceeding 10% of the total number of variables, which is done
by the flow-detection procedure for efficiency reasons, see above. Note that the fctp
instances are based on complete bipartite graphs which can result in dense flow-rows.
In addition, the proposed algorithm is not able to identify consistent networks in the
cut.set instances. We observed that the algorithm already fails in the flow-detection
procedure. For individual cut.set instances we do not know the original network but
according to Atamtürk [6] the set consists of problems with 19–29 nodes and 23–93
commodities. In contrast, our flow-detection procedure detects 1–6 commodities with
up to 168 nodes (see Table 10 in [2]). The matrix is not correctly decomposed into
commodity blocks caused by additional coupling constraints that are misleadingly
used as flow-rows.

If presolving is switched on, the detected networks obviously differ in size from
the original ones. The mean deviation in the number of nodes and arcs exceeds 20%
for arc.set, fc, and avub while the number of commodities is stable for all network
design instances. For most of the instances the network size is decreased because of
deleted flow-rows or flow-variables. This does however not mean that these networks
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are less consistent. Only for the sndlib testset the inconsistency ratios are noticeably
increasing.

For roughly half of the general MIP instances (miplib and mittelmann) we detect a
network but only a few of them are consistent. The inconsistency ratio can be close to
one in general, which is not surprising. It is remarkable that with presolving switched
on the number of detected networks and the number of consistent networks increases
while the maximum inconsistency ratio decreases for both the miplib and mittelmann
testset. It seems that some networks can be identified easier if redundant rows and
columns are removed from the system. In the default settings, we find 6 mittelmann
and 23 miplib instances with a network that can be considered being consistent.

4 Separation

In case the described network detection scheme identified a network G = (V, A) with
�(G) ≤ �max, we apply the following separation scheme. Our separation heuristic
relies on calculating a weight vector u ∈ Q

M+ that is used to aggregate original con-
straints of the system (1). For every weight vector we additionally provide a set G of
multipliers γ > 0 where 1/γ is chosen among the (absolute values of the) coefficients
of integer variables in the capacity coupling constraints i ∈ MC with ui �= 0. The
final base mixed integer rows are given by γ uT Ax ≤ γ uT b for all γ ∈ G.

The vector u and a multiplier γ ∈ G are passed to the the c-MIR framework
of Scip which carries out the aggregation and scaling. It additionally applies bound
substitution, complementing, and scaling as proposed by Marchand and Wolsey [41]
before the MIR inequality is generated, see [1,59] for details. We chose the vector
u such that the resulting inequality is of the form (6) corresponding to a cut in the
detected network. The vector u already incorporates the necessary scaling and reflect-
ing of flow and capacity rows from the network detection procedures. In the following
description we ignore this fact and assume that all flow and capacity rows are correctly
scaled, that is, ui ∈ {0, 1} for all i ∈ M . To select constraints for aggregation based on
the network structure we make use of the calculated mappings rowarc : MC → A,
rowcom : MF → K , and rownode : MF → V . From rowarc we construct a func-
tion arcrow : A → MC ∪ {0} that returns the capacity constraint for every arc a ∈ A
or 0 if arc a is uncapacitated. From rownode and rowcom we construct a function
nodecomrow : V × K → MF ∪ {0} that returns the flow-row corresponding to node
v ∈ V and commodity k ∈ K or 0 if node v (and hence the corresponding flow-row)
is not existing for commodity k. Notice that our detection algorithm ensures that there
can be at most one capacity row for every arc and at most one flow-row for every node
and commodity.

The high-level separation scheme of our implementation is given by Algorithm 5.
Our cut selection strategy is very close to procedures proposed in [13,14,30,45,49]
which have been successfully used in branch-and-cut frameworks to solve different
types of network design problems. We favor the generation of cut-based inequalities
in the space of the capacity variables over the generation of mixed inequalities con-
taining both flow and capacity variables. This is based on experimental observations
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Algorithm 5: Separation scheme
Input : mappings arcrow : A → MC ∪ {0} and nodecomrow : V × K → MF ∪ {0}, primal and

dual solution (x∗, π∗) of the linear programming relaxation
if �(G) > �max then return // Stop if network is inconsistent1
Initialize weights ui := 0 for all i ∈ M2
Calculate a collection C of nodesets S ⊂ V using (x∗, π∗)3
for S ∈ C do4

for k ∈ K do5

Determine cut demand dk
S := ∑

v∈S dk
v , where dk

v := bi with i := nodecomrow(v, k)6

end7

Determine demand commodities K −
S := {k ∈ K : dk

S < 0}8

for v ∈ S, k ∈ K −
S do i := nodecomrow(v, k) and ui := 1 // Set flow-row weights9

Initialize set of multipliers G := ∅.10

for a ∈ δ−(S) do11
i := arcrow(a) and ui := 1 // Set capacity-row weights12
for j ∈ I ∩ N [i] do add 1/|αi j | to G // Use coeffs of int variables for13

scaling
end14
for γ ∈ G do15

violation = cMIR(u, γ) // Generate cutset inequality (8)16
if violation > 0 then add c-MIR-cut to the cut-pool17

end18
if no violated c-MIR-cut was found then19

Chose γ ∈ G and determine a subset A− ⊆ δ−(S)20

for a ∈ δ−(S)\A− do21
i := arcrow(a) and ui := 0 // Remove capacity-row for a from22

aggregation
end23
violation = cMIR(u, γ) // Generate flow-cutset inequality (7)24
if violation > 0 then add c-MIR-cut to the cut-pool25

end26

end27

that the latter are not as efficient in improving the dual bounds and performance, see
for instance [13,45,49].

Algorithm 5 starts by calculating a set of cuts in the detected network (see below
for details). If nodeset S is in the list C, then also the reverse direction is considered,
i.e., V \S ∈ C (for the undirected case see Sect. 5). For every nodeset S we determine
the set of demand commodities K −

S , i.e., the set of commodities that has to be routed
from V \S to S. We set the weights u such that in the ideal case a cutset inequality
of the form (8) is generated by the c-MIR framework (Step 16 of Algorithm 5). This
inequality contains only capacity variables since flow-variables for arcs in δ−(S) are
canceled out by the corresponding capacity constraints and flow-variables for arcs in
δ+(S) get a zero-coefficient by MIR. Several such inequalities might be generated
because we try different scaling factors γ > 0. In our implementation we use a max-
imum of 20 from the largest multipliers in G. Two multipliers γ1 ≥ γ2 are considered
to be identical if γ1/γ2 < 1.001.

123



The Mcf-separator: detecting and exploiting multi-commodity flow structures in MIPs 149

To get tight base inequalities (having no slack) we only accept tight flow-rows for
aggregation in Step 9 of Algorithm 5, and we are not accepting capacity-rows with a
slack greater than 0.1 (the largest coefficient being normalized to 1) in Step 12. Recall
that in the ideal case flow-rows are equations. The nodesets S ∈ C are selected to
prefer tight capacity rows on the cut, see below.

In a second step, if no violated cutset inequality was found, we try to generate a
flow-cutset inequality (mixed dicut inequality, flow-cover inequality) of the form (7)
containing both flow and capacity-variables. For these mixed inequalities we only try
the multiplier in G (Step 20) that gave the tightest cutset inequality. Among all possible
subsets A− of the cut-arcs δ−(S) we determine the one that gives the most violated
mixed inequality in Steps 20–23, see also [6,45,49]. This can be done in linear time
as follows. We heuristically assume that the right-hand side of the capacity constraints
is zero as in (5b), i.e., there is no pre-installed capacity on δ−(S). In this case the
right-hand side of the base inequality (6) does not depend on the chosen subset A−. It
follows that the MIR coefficients do not depend on A−. Hence the change of the vio-
lation of the MIR inequality can be pre-calculated for every arc a that is removed from
A−. Remove, as an example, arc a from A− in the base inequality (6). This changes
the activity of the MIR inequality (7) by f ∗

a −r y∗
a . We can start with A− = δ−(S) and

remove all arcs a from A− with f ∗
a < r y∗

a which gives the most violated inequality
(7) for the given scaling factor γ ∈ G.

Network cut selection—shrinking. It remains to explain our cut selection strategy
in Step 3. We always add all (singleton) nodesets S with |S| = 1 or |V \S| = 1 to
the cut-collection C. In addition we apply a shrinking heuristic, which has been first
proposed by Bienstock et al. [14] and Günlük [30], see also [45,49]. To every node-
pair {s, t} ∈ V × V , for which an arc a = (s, t) or a = (t, s) exists, we assign a
weight wst ∈ R and iteratively contract the two nodes with the largest weight until

 ≥ 2 node clusters are left. In the remaining graph we enumerate all cuts and add
the corresponding sets S and V \S in the original graph to C. The weight of a nodepair
{s, t} is initialized with the minimum of all corresponding arc-weights wa defined by

wa := s∗
a − |π∗

a |,

where s∗
a denotes the slack value of the capacity constraint arcrow(a) with respect

to the solution x∗. Similarly, π∗
a denotes the dual value of the row arcrow(a). Note

that by complementary slackness s∗
a and |π∗

a | cannot be positive simultaneously. We
set wa to infinity if arc a is uncapacitated. With shrinking weights defined this way,
cuts are preferred that have many arcs with small slack and large absolute dual. If (all
of) the capacity constraints in the cut are tight then also the base inequality will be
tight. For tight base constraints, it is more likely to derive a violated MIR inequality.
To subtract the dual values for tight arcs is based on the heuristic argument that the
inequalities we generate increase the capacity on the cut. Hence, they introduce slacks
in the capacity constraints on the cut. It follows that using large absolute duals should
maximally improve the dual bound. With weights that can be positive and negative,
this shrinking scheme is a fast max-cut heuristic.
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Obviously, the number of considered cuts increases exponentially with the size of

. In our implementation we use a value of 
 = 5. The effect of the parameter 
 is
evaluated in Sect. 6.2.

Many authors studying different network design problems showed that a crucial
condition for a cut-based inequality to be strong (to define a facet) is that the two
subgraphs G[S] and G[V \S], i.e., the graphs defined by the nodes in S (resp. V \S)
and the arcs with both endnodes in S (resp. V \S), are (strongly) connected, see [13,
23,35,37,50]. In our implementation we remove nodesets S from the list C if either
G[S] or G[V \S] is disconnected. The connectivity check is carried out using a breadth
first search algorithm on these graphs. Note, however, that every individual shore in
the network partition is connected since we start with a connected network and only
contract arcs.

5 Extensions

In the following we present some extensions to the algorithms introduced above. Our
implementation also incorporates different model alternatives of (2). We show how
these variations influence our detection and cutting plane procedure.

Multi-facility problems. The capacity on a given arc is not necessarily the single
product of a capacity and an (integer) capacity variable. It can be a general scalar
product. In this case we speak of multi-facility problems [6,11,50,54]. Given a set of
admissible facilities Ta for every arc a ∈ A and capacity values ct

a ∈ Q+, t ∈ Ta , the
capacity constraints change to

∑

k∈K

f k
a −

∑

t∈Ta

ct
a yt

a ≤ 0 ∀a ∈ A (9)

Capacity constraints of the form (9) do not influence our algorithms. In fact, our
detection and separation framework is independent from the structure of the capacity
variables and their coefficients in the capacity constraints. It only relies on the fact
that (almost) all arc-flow-variables appear in the coupling inequality. For models with
unbounded capacity variables it is known that the aggregation described in Sect. 2 and
Algorithm 5 results in strong valid multi-facility cutset and flow-cutset inequalities.
One simply uses the capacity constraints (9) for bound substitution (or similarly adds
them to (5a)) and considers all the facility capacities for scaling before MIR, see
[6,49,50]. Exactly the same is done by our procedure.

Unsplittable flow models. Many applications require that the flow is unsplittable,
that is, the flow of a commodity has to use a single path from the source to the des-
tination [10,18,31,32]. To model unsplittable flow one typically introduces binary
flow-variables f k

a that state whether or not the flow of commodity k uses arc a.
Additionally, the flow conservation constraints are formulated with a vector dk

defined by
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dk
v =

⎧
⎨

⎩

1 v = s
−1 v = t

0 else
, ∀v ∈ V, k = (s, t) ∈ K ,

where (s, t) ∈ V × V denotes the source-target node-pair of commodity k. The actual
demand values d(s,t) ∈ Q+ that have to be routed on a single path from s to t are
included in the capacity constraints:

∑

k=(s,t)∈K

d(s,t) f k
a − ca ya ≤ 0 ∀a ∈ A. (2b”)

This results in capacity constraints with coefficients for flow-variables that are com-
modity dependent. Note that the same formulation alternative can be used in the
context of splittable flow and single-source, single-target commodities. In this case
the flow-variable f k

a denotes the fraction of flow routed on arc a for commodity k.
This formulation does not affect any of the detection procedures since none of them
evaluates the coefficients in the capacity constraints. Because of a potentially smaller
score, capacity-rows of type (2b”) will be considered later in the arc detection Algo-
rithm 2. But this is only of interest if there are also capacity-rows of type (2b) among
MC that cover all commodities.

While this model variant has no influence on the network detection, we have to
adapt the weights in the separation scheme. The aim to add the capacity constraints
for δ−(S) to the aggregated flow-system (5a) is to cancel out the corresponding flow
variables in order to obtain the base constraint (6). Since the coefficients of the capac-
ity constrains depend on the commodities we have to scale the flow-rows for every
commodity accordingly. Before applying Algorithm 5 we heuristically normalize all
capacity constraints in such a way that the coefficients for flow-variables of the same
commodity are identical. Let us assume that the coefficient of the single-source, sin-
gle-target commodity k = (s, t) is d(s,t) in all capacity constraints after normalization.
In this case, every flow-row for commodity k has to be scaled by d(s,t) which is carried
out in Step 9 of Algorithm 5. Notice that normalization and scaling has no effect on
the standard model with capacity constraints of type (2b).

We refer to [18] for MIR cutset inequalities and the case that the flow is unsplittable.

Undirected capacity models. Undirected capacity models appear frequently in tele-
communication applications since capacities in practice are typically installed bidi-
rectional and (s, t) demands are routed using the same paths as (t, s) demands [31,
32,35,37,38,49,50,54]. Assume that the digraph G = (V, A) has anti-parallel arcs,
i.e., for every arc a = (v,w) there exists the inverted arc a′ = (w, v). In undirected
(single-facility) formulations there is only one capacity-variable yvw for every of these
anti-parallel arc-pairs, and the anti-parallel flows have to share the common capacity
cvw yvw:

∑

k∈K

( f k
(v,w) + f k

(w,v)) − cvw yvw ≤ 0 ∀a = (v,w) ∈ A, v < w (2b”’)
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For every commodity there are two flow-variables in every capacity constraint.
While the flow-system is still directed, the direction of the flow is arbitrary and the
capacitated network can be considered being undirected.

Our implementation is able to distinguish directed and undirected capacity models.
Basically one can think of two different implementations. The user is able to decide
which algorithm to use by setting a modeltype parameter. In the default setting we try
to detect the modeltype automatically.

The flow detection Algorithm 1 is identical for both model types, directed or undi-
rected. If the user is not explicitly claiming either of two detection variants, we decide
about the modeltype when assigning the score to the potential capacity-rows just
before the arc detection Algorithm 2. If, on average, the number of flow-variables per
commodity in the capacity-row is greater than or equal to two we switch to the undi-
rected detection algorithm. The scoring is modified accordingly. In the arc detection
procedure we then construct edges instead of arcs. Again, every edge corresponds to
either exactly one capacity constraint or it is uncapacitated. The node detection in
Algorithm 3 is adapted in the way that the incidence pattern of a node does not depend
on the direction of the incident arcs. We only compare the arc-ids of two flow-rows but
not their {+1,−1} pattern. When constructing the incidence functions in Algorithm 4
we do not distinguish between source and target node count but consider the sum
count (v) := scount (v) + tcount (v) and simply assign the two nodes with largest
count (V ) to be source and target of edge a.

Given a nodeset S, the separation scheme Algorithm 5 considers the set of cut-
edges δ(S) for undirected models. Since the generated inequalities are identical for
S and V \S we only add one of the two nodesets to the list C. Since the direction of
traffic is arbitrary we calculate the set K +

S ∪ K −
S . Flow-rows corresponding to K +

S are
reflected, i.e., the weight ui is set to −1 for i = nodecomrow(v, k) with v ∈ S and
k ∈ K +

S . Hence, the right-hand side value in the base constraints (4) and (6) (the cut
demand) gives dS = −∑

k∈K +
S

dk
S + ∑

k∈K −
S

dk
S < 0. For flow-cutset inequalities we

consider a subset A∗ of the cut-edges δ(S) instead of the set A−. For more details on
general flow-cutset inequalities and undirected models the interested reader is referred
to [49,50].

Additional cut generation procedures. Both Scip and Cplex contain procedures to
generate (mixed) knapsack-cover inequalities and flow-cover inequalities (using exact
and heuristic lifting methods) for a base inequality such as (6), provided that this base
inequality is already in the required form or can be relaxed accordingly.

Our Scip implementation of the Mcf-separator tries to generate exactly lifted knap-
sack-cover inequalities (based on knapsack-covers) in addition to applying default
c-MIR to (6). We have not tried flow-cover inequalities with Scip. Notice that the
corresponding implementation also uses the c-MIR framework but with a different
complementing heuristic based on flow-covers, see [59].

We have tried both the flow-cover and knapsack-cover separators of Cplex
but computational tests indicated that these do not improve the performance.
Hence, the Mcf-separator in Cplex is exclusively based on the presented c-MIR
procedure.
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6 Computational results

In this section we evaluate the performance of the Mcf-separator implemented in Scip
and Cplex. We start by comparing the solvers in their default settings (mcf) with the
Mcf-separator being switched off (nomcf) which is summarized in Tables 3 and 4 for
Scip as well as Table 5 for Cplex. Detailed results for Scip can be found in Tables 11
and 12 in [2].

For the maximum performance of our separation strategy we fixed a series of param-
eters based on extensive computational tests. We intended to accelerate the solvers by
an order of magnitude for the network design instances without cutting too aggres-
sively and without decreasing the performance for general MIPs. For the main test mcf
versus nomcf we fixed the inconsistency parameters to �max = 0.02 and �max

a = 0.5
and set 
 = 5. The effect of changing �max

a and �max is studied in Sect. 6.1. In
Sect. 6.2 we report on the impact of the parameter 
 which relates to the number of
network cuts used for separation.

For Scip we used the testsets introduced in Table 1. For Cplex, in addition, we
report on the results using the Cplex-internal testset. The Scip tests have been carried
out using the same machine and the same Scip version as in Sect. 3.8. For the Cplex
12.1 tests we used a single CPU of a 64bit 3.33 GHz Quad-Core machine with 6144
KB of cache and 16 GB of RAM. The Mcf-separator is called with the default cutting
strategy, that is, it is called in every pass of the solver but only in the root node. For
all tests we fixed the time limit to 1 h and the memory limit to 6 GB. We will dis-
tinguish easy and hard instances in our exposition. Hard instances cannot be solved
to optimality by the considered solver within the time limit regardless of whether the
separator is switched on or off. All other instances are considered to be easy. Notice
that this definition depends on the solver.

Tables 3, 4, and 5 contain 2–3 rows for every individual testset, where row all refers
to all instances, row sep corresponds to those instances for which the Mcf-separator
was switched on and found at least one violated inequality, and row nosep summarizes
the results for the rest of the instances (no network found, network inconsistent, or
no inequality found). The respective number of instances is given in the second col-
umn (#). If there are no instances in sep or nosep the corresponding rows are omitted.

For the instances that are easy (Table 3 Scip and Table 5 Cplex) we report on
the geometric means of the CPU time in seconds (time) and the explored branch-
and-bound nodes (nodes) used to solve the problems. For the Scip runs in Table 3
we additionally provide the arithmetic means of the closed root gap (rootgap closed)
which is defined as

100 · (root − lp)/(bestprimal − lp),

where lp denotes the value of the initial LP relaxation, bestprimal the best known
primal solution value (see Table 8 in [2]), and root the value of the LP at the root
node after cutting before branching. All mean values are given for both the mcf and
nomcf runs. The last four columns in Table 3 and Table 5 (mcf/nomcf) compare the
mcf and nomcf runs with respect to the number of wins (wins) and the number of time
or memory limit hits (t-outs), and they provide the time (time) and node (nodes) ratios
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Table 3 Summary for easy instances—mcf versus nomcf —Scip

Testset # nomcf—means mcf—means mcf/nomcf

rootgap time nodes rootgap time nodes wins t-outs time nodes
closed % closed %

arc.set

all 25 58.4 31.7 3326 71.4 16.6 1103 20/4 0/0 0.52 0.33

sep 25 58.4 31.7 3326 71.4 16.6 1103 0.52 0.33

cut.set

all 11 88.7 16.6 1232 88.7 16.5 1232 0/0 0/0 1.00 1.00

nosep 11 88.7 16.6 1232 88.7 16.5 1232 1.00 1.00

fc

all 20 93.6 3.3 415 94.2 3.5 305 2/10 0/0 1.08 0.74

sep 19 93.8 3.2 384 94.5 3.4 276 1.08 0.72

nosep 1 89.1 5.9 1570 89.1 5.9 1570 1.00 1.00

fctp

all 16 76.9 4.5 1679 77.3 4.6 1603 3/5 0/0 1.02 0.95

sep 13 73.8 6.7 3049 74.3 6.8 2885 1.02 0.95

nosep 3 89.9 0.3 50 89.9 0.3 50 1.06 1.00

avub

all 45 86.8 55.2 4267 94.2 17.8 1396 25/8 0/14 0.32 0.33

sep 44 86.5 60.0 4658 94.1 18.9 1491 0.32 0.32

nosep 1 100.0 0.5 1 100.0 0.6 1 1.20 1.00

sndlib

all 22 47.7 84.7 24197 64.1 45.1 10710 18/2 0/3 0.53 0.44

sep 21 48.7 95.3 25943 65.8 49.2 11049 0.52 0.43

nosep 1 26.3 6.4 5555 26.3 6.5 5555 1.02 1.00

ufcn

all 58 85.7 22.1 3984 89.7 11.6 1804 32/11 0/9 0.52 0.45

sep 58 85.7 22.1 3984 89.7 11.6 1804 0.52 0.45

miplib

all 67 62.7 7.0 816 62.5 6.9 784 4/2 0/1 0.99 0.96

sep 13 86.5 9.0 1479 85.5 8.4 1212 0.94 0.82

nosep 54 56.9 6.5 704 56.9 6.5 704 1.00 1.00

mittelmann

all 56 61.3 82.2 3579 61.1 85.2 3676 1/2 0/0 1.04 1.03

sep 3 68.0 31.6 22815 64.1 57.8 37098 1.83 1.63

nosep 53 61.0 86.8 3217 61.0 87.1 3217 1.00 1.00

of the respective geometric means. If by switching on the Mcf-separator the time to
solve the problem is decreased by at least 10% we say that the mcf-run “wins”. If it
increases by at least 10% the nomcf-run “wins”.
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Table 4 Summary for hard instances—mcf versus nomcf—Scip

Testset # nomcf—means mcf—means mcf/nomcf

closed gaps % endgap closed gaps % endgap

root dual primal % root dual primal % wins endgap

arc.set

all 10 33.9 59.3 86.9 1.4 35.6 61.8 86.5 1.3 2/1 0.93

sep 10 33.9 59.3 86.9 1.4 35.6 61.8 86.5 1.3 0.93

cut.set

all 4 58.0 68.0 100.0 12.6 58.0 68.0 100.0 12.6 0/0 1.00

nosep 4 58.0 68.0 100.0 12.6 58.0 68.0 100.0 12.6 1.00

fctp

all 16 21.2 24.0 97.1 24.9 21.3 24.1 97.5 24.8 0/0 0.99

sep 16 21.2 24.0 97.1 24.9 21.3 24.1 97.5 24.8 0.99

avub

all 15 31.1 37.7 29.1 83.9 72.5 75.6 91.7 10.2 14/0 0.12

sep 15 31.1 37.7 29.1 83.9 72.5 75.6 91.7 10.2 0.12

sndlib

all 30 31.9 56.5 90.5 7.6 42.0 63.8 94.2 6.2 17/2 0.82

sep 29 32.7 57.8 90.5 8.5 43.2 65.3 94.3 6.9 0.81

nosep 1 9.6 20.4 91.7 0.2 9.6 20.4 91.7 0.2 1.00

ufcn

all 25 74.5 80.9 84.5 10.7 81.8 87.7 91.5 7.2 19/2 0.67

sep 25 74.5 80.9 84.5 10.7 81.8 87.7 91.5 7.2 0.67

miplib

all 25 19.0 36.3 38.2 15.9 19.0 36.5 38.2 15.9 0/0 1.00

sep 3 11.4 28.8 99.7 14.8 11.5 30.2 99.7 14.2 0.97

nosep 22 20.0 37.3 32.0 16.1 20.0 37.4 32.0 16.1 1.00

mittelmann

all 3 19.6 52.4 100.0 2.7 19.6 52.4 100.0 2.7 0/0 1.00

nosep 3 19.6 52.4 100.0 2.7 19.6 52.4 100.0 2.7 1.00

For the hard instances (Table 4 Scip only) we report on the arithmetic mean of the
closed root gaps (root), the closed dual gaps (dual), the closed primal gaps (primal),
and the endgaps (endgap). The closed root gap is defined as above. The closed dual
and closed primal gaps are defined as

100 · (dual − lp)/(bestprimal − lp)

and

100 · (bestprimal − bestdual)/(primal − bestdual),
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Table 5 Summary for easy instances—mcf versus nomcf—Cplex

Testset # nomcf—means mcf—means mcf/nomcf

time nodes time nodes wins t-outs time nodes

arc.set

all 25 14.9 3244 10.2 1258 15/4 0/0 0.70 0.39

sep 23 16.9 3344 11.2 1194 0.68 0.36

nosep 2 3.2 2286 3.2 2286 1.01 1.00

cut.set

all 12 12.7 892 12.7 1232 0/0 0/0 1.00 1.00

nosep 12 12.7 892 12.7 1232 1.00 1.00

fc

all 20 1.5 270 1.6 260 5/7 0/0 1.04 0.97

sep 20 1.5 270 1.6 260 1.04 0.97

fctp

all 17 3.9 751 4.1 687 3/5 1/0 1.04 0.92

sep 15 5.0 1329 5.3 1202 1.05 0.91

nosep 2 0.1 1 0.1 1 1.00 1.00

avub

all 41 4.6 413 1.8 163 18/2 0/3 0.50 0.33

sep 40 4.8 454 1.9 175 0.49 0.32

nosep 1 0.1 1 0.1 1 1.00 1.00

sndlib

all 25 93.3 20353 41.1 7427 18/1 0/4 0.45 0.37

sep 22 81.1 15624 31.8 4967 0.40 0.32

nosep 3 258.5 141400 258.4 141400 1.00 1.00

ufcn

all 67 3.3 349 3.5 404 8/11 0/0 1.05 1.15

sep 59 3.4 379 3.6 448 1.05 1.18

nosep 8 2.6 186 2.6 186 1.01 1.00

miplib

all 67 3.0 558 2.9 556 3/1 0/0 0.99 1.00

sep 8 5.7 1060 5.2 1023 0.93 0.97

nosep 58 2.7 511 2.7 511 1.00 1.00

mittelmann

all 56 23.2 1101 22.4 1073 3/2 0/0 0.97 0.98

sep 6 73.2 5232 52.2 4135 0.72 0.79

nosep 50 20.1 912 20.2 912 1.00 1.00
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Table 5 continued

Testset # nomcf—means mcf—means mcf/nomcf

time nodes time nodes wins t-outs time nodes

cplex

all 1266 34.9 1201 34.2 1170 45/35 5/5 0.98 0.97

sep 115 42.8 6665 34.9 5006 0.82 0.75

nosep 1151 34.1 1011 34.2 1011 1.00 1.00

cplex10s

all 780 132.5 3225 128.8 3118 30/25 5/5 0.97 0.97

sep 77 142.9 15230 106.8 10856 0.75 0.71

nosep 703 131.4 2719 131.5 2719 1.00 1.00

cplex100s

all 411 504.4 8989 484.1 8589 20/13 5/5 0.96 0.96

sep 42 546.3 38192 365.8 24486 0.67 0.64

nosep 369 499.8 7623 499.8 7623 1.00 1.00

respectively. The endgap is given by

100 · (primal − dual)/|bestdual|.

All closed gaps (root, dual, primal) are defined such that larger values correspond to
better results with a maximum of 100% whereas the endgap is the better the closer to
0%. The values lp and bestprimal are defined as above and bestdual refers to the best
known dual bound. These values can be found in Table 8 in [2]. The numbers primal
and dual correspond to the primal and dual bound at the end of the optimization. Note
that in case that primal = bestdual for an individual run we set the closed primal
gap to 100%. If the LP value is already optimal (lp = bestprimal = bestdual) then
rootgap as well as dualgap are considered to be 100%. If primal or dual bounds are
not finite or in case that bestdual = 0 the corresponding gaps are not defined and
hence not considered in the calculation of the mean. Again all mean values are given
for both the mcf and nomcf runs. The last two columns in Table 4 (mcf/nomcf) compare
the mcf and nomcf runs with respect to the number of wins (wins) and the endgap. If
by switching on the Mcf-separator the endgap decreases by at least 10% we say that
the mcf-run wins. If it increases by at least 10% the nomcf-run wins.

In Table 3 it can be seen that our implementation of the Mcf-separator in Scip
drastically reduces the computation times and branch-and-bound nodes for almost all
of the network design instances. In particular for the testsets arc.set, avub, sndlib, and
ufcn we save between 56 and 67% of the tree nodes and between 47 and even 68%
of the solving time on average. Moreover, 14 avub, 2 sndlib, and 9 ufcn instances
can be solved within the time limit of 1 h only if the Mcf-separator is switched on.
Table 4 shows similar effects for the hard instances of these 4 testsets. The average
endgap is decreased and the mcf-run wins in most of the cases. The results for the
hard avub instances are remarkable. We decrease the endgap from 83.9 to 10.2% on
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average which is caused by improving both the dual and the primal bounds. Already
at the root node we close the optimality gap by 72.5% compared to 31.1% without
the Mcf-separator. For the very easy testsets fc and also fctp (excluding the n37*
instances) with an average solving time of less than 5s we decrease the number of
nodes but slightly increase the solving time (from 3.3 to 3.5 s and from 4.5 to 4.6 s
on average), see Table 3. For these instances it does not pay off to tighten the relax-
ation. Our separator has no effect on the hard fctp n37* instances (see Table 4) and
for the (hard and easy) cut.set instances the Mcf-separator is switched off because the
networks are not consistent, also compare with Table 2.

The results for the general MIP sets miplib and mittelmann are not conclusive
since the number of affected instances is very small (only 16 miplib and 3 mittelmann
instances overall). There is some decrease in the computation time and nodes for
miplib and one instance can only be solved in the mcf-run but for 2 out of 3 mittelmann
instances the performance degrades.

Table 5 shows that the results for Cplex are comparable to the results for Scip with
respect to the easy network design instances. The effect is not as dramatic since Cplex
is already very fast without the Mcf-separator (compare the average nomcf computa-
tion times in Table 3 and Table 5). But the decrease of the computation time is still
between 30 and 55% for the arc.set, avub, and sndlib instances with 61–67% saved
branch-and-bound nodes. In contrast to Scip the time increases for the ufcn testset but
these instances are very easy for Cplex with average solving times below 5s in the
nomcf run similar to the fc and fctp testsets.

Let us discuss the results in Table 5 for the general MIP instances with Cplex.
In contrast to Table 3 and Scip we can trust these values since the overall testset is
very large with a reasonable number of affected instances. In addition to the miplib
and mittelmann testsets we consider an internal Cplex-library containing 1266 easy
instances (cplex). The subsets cplex10s and cplex100s correspond to those instances
within cplex that need at least 10s and 100s of CPU time to be solved, respectively,
by the slower of the two versions, mcf and nomcf. Among all 1388 MIP instances
(miplib, mittelmann, and cplex) 129 instances or 9.3% are affected by the Mcf-sep-
arator. We save 17.9% of the computation time and 23.6% of the search tree nodes
on average for these 129 instances which refers to 2% time and 2.8% node savings
over the whole testset. Moreover, it turns out that the harder the instances are to solve
the larger are the benefits of the Mcf-separator. The saved time amounts to 25% for
the 77 affected instances in cplex10s and to even 36% for the 42 affected instances in
cplex100s.

In all cases (Scip, Cplex, easy and hard), if the separator is switched off or does not
find violated inequalities there is almost no degradation of the computation time (see
the nosep rows). This means that the detection as well as the separation procedures are
very fast. Summarizing it can be said that using the Mcf-separator many instances can
now be solved within 1 h that could not be solved before. For the instances the separator
is designed for a significant reduction in the computation time and the branch-and-
bound nodes is observed which is driven by improved dual bounds at the root node.
Whenever the solvers struggle in solving a specific problem class switching on the
Mcf-separator gives substantial benefits (see e.g. avub, sndlib for Scip and sndlib,
cplex100s for Cplex).
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6.1 The impact of inconsistency

The two parameters �max
a and �max control our algorithm with respect to inconsistent

or not existing networks in the constraint matrix. If violated inequalities are identified
these are always valid since our framework relies on aggregating original constraints
and on applying MIR to aggregations. But the larger the inconsistency in the network
the lower the chance to produce base inequalities that correspond to network cuts or to
have any relation to a network. For very large inconsistency we basically simulate ran-
domized aggregation. Moreover, since the number of considered original constraints
can be very large (in contrast to the default c-MIR heuristics) and because there is not
necessarily a proper cancellation of flow-variables in case of inconsistency we might
produce dense and unstable cutting planes.

Increasing �max
a means to increase the size of the networks (and hence the size

of the aggregations) by allowing for more inconsistent arcs (and the corresponding
capacity constraints). These are arcs with uncertain source or target assignment. On
the other hand, increasing �max means to consider more instances for separation. In
the first test we released both parameters �max

a and �max individually and simulta-
neously. Table 6 reports on the results for all considered general MIP instances for
both Scip and Cplex. The third column in Table 6 gives the total number of easy
instances in the testset. For every run there are three columns providing the number
of affected instances (sep), the ratio of the wins (wins), and the time ratio (time). The
ratios compare the respective mcf-run with the nomcf-run. The time ratios are based on
geometric means over the whole testset (not only the affected instances). The number
of clusters 
 is fixed to 5 in all runs. Columns 4–6 in Table 6 summarize the values
for the default settings for comparison. These are precisely the values you can already
find in Table 3 and Table 5 for Scip and Cplex, respectively. Notice again that the
results for the testsets miplib and mittelmann should not be overestimated since the
number of affected instances is simply too small.

It can be seen that releasing the maximum arc inconsistency ratio �max
a alone

(Columns 7–9) does not remarkably change the behavior of the solver. Recall that

Table 6 Impact of inconsistency—Scip and Cplex—easy instances

Solver Testset # �max = 0.02† �max = 0.02† �max = ∞ �max = ∞
�max

a = 0.5† �max
a = ∞ �max

a = 0.5† �max
a = ∞

sep wins time sep wins time sep wins time sep wins time

Scip miplib 67 13 4/2 0.99 13 4/2 0.99 18 5/3 0.98 20 5/6 0.99

mittelmann 56 3 1/2 1.04 3 1/2 1.03 9 3/3 1.03 10 6/3 1.01

Cplex miplib 67 8 3/1 0.99 8 3/1 0.99 11 3/2 0.99 12 3/2 0.99

mittelmann 56 6 3/2 0.97 6 2/2 0.97 9 3/4 0.98 10 3/5 1.00

cplex 1266 115 45/35 0.98 115 46/33 0.98 214 78/80 0.99 247 84/99 1.00

cplex10s 780 77 30/25 0.97 77 31/24 0.97 146 58/56 0.98 166 62/71 0.99

cplex100s 411 42 20/13 0.96 43 20/11 0.96 81 35/28 0.96 90 39/34 1.01

† Default values
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Fig. 5 Impact of inconsistency—Scip—miplib easy testset. �max
a set to ∞ and �max increasing

the network inconsistency ratio �(G) is defined as the mean of the arc inconsis-
tency ratios �(a). Hence in case of a very small value �(G) there cannot be many
inconsistent arcs such that releasing �max

a while keeping �max small has not a great
impact on our algorithm. On the other hand, relaxing the maximum network incon-
sistency ratio �max while keeping �max

a = 0.5 (Column 10–12) already deteriorates
the performance. There are more instances considered for separation but the wins and
time ratios degrade at least for the larger cplex testsets. As shown in Columns 13–15
of Table 6, releasing both inconsistency parameters even worsens the performance in
terms of wins and time ratios while the number of affected instances is again increas-
ing. It turns out that the arc inconsistency ratio is not as important as the network
inconsistency ratio, but releasing both restrictions gives the worst results.

In a second test we study the impact of different values for �max while fixing
�max

a = ∞. We restrict our attention to the Scip tests and the easy instances within
the miplib testset. Figure 5 shows the number of instances that are considered to con-
tain a consistent network (nice) and the number of instances for which at least one
violated inequality was found (sep). The value wins(mcf)-wins(nomcf) refers to the
difference of the number of instances for which the computation time was decreased
(wins(mcf)) and increased (wins(nomcf)) by at least 10% using the Mcf-separator.
There are 14 easy instances in miplib with an embedded network and �(G) = 0.
For 11 of these instances we found at least one violated inequality. It is no surprise
that the number of considered instances increases with �max. Since the largest incon-
sistency ratio in miplib is 0.656 (compare with Table 2) a value �max = 0.8 means
that the Mcf-separator is switched on for all 40 easy miplib instances containing an
embedded network. But it is remarkable that the number of affected instances only
slightly increases to 20. For most of the instances with very large inconsistency ratios
the generated inequalities are not violated such that separation based on the network
detection has no effect. Moreover, for values of �max larger than 0.05 there are more
and more instances for which using the Mcf-separator increases the computation time.
Notice that wins(mcf)–wins(nomcf) decreases. Hence even if violated inequalities are
found they do not help.
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Summarizing the observed phenomena from Table 6 and Fig. 5, both mechanisms
for refusing inconsistent networks or network components help to improve the overall
performance of the separator and can be used alone. But the best results are obtained
with a small maximum network inconsistency ratio �max. We decided to use a more
conservative default setting with both �max

a and �max being active. For �max a good
trade-off between performance and the number of affected instances seems to be
between 0.02 and 0.05. Based on a number of similar test scenarios we fixed �max

a
to 0.5.

6.2 The impact of aggressive cutting

By changing the value of 
 we control the size of the partition used to enumerate
network cuts and thus the size of the network cut collection C, see Sect. 4. For directed
networks the number of considered cuts amounts to a maximum of 2
 − 2, but recall
that we allow for cutsets only if both cut-shores are connected. The parameter 
 should
be large enough to produce enough interesting cutsets and cut-based inequalities. But
setting it too large can result in unacceptable computation times for calculating the
inequalities itself and also for solving the LP relaxations since too many violated
inequalities might be added.

In the test reported in Table 7 we increased the value 
 from 3 to 9 fixing the
inconsistency parameters �max and �max

a to their default values. Table 7 contains all
testsets except for cut.set for which no inequalities are separated independent of 
.
We report on the number of easy instances contained in each of the testsets (#) as
well as the number of affected instances (sep) which is constant over the considered
scenarios. For every run we report on the ratio of the wins (wins), the geometric mean
of the time ratios (time), and the arithmetic mean of the number of inequalities added
to the LP (#cuts). The means are taken over all easy instances of the testset.

First it can be observed that the number of generated cutting planes increases with 


but the increase is not exponential. The number of added inequalities approximately

Table 7 Impact of the partition size 
—Scip easy

Testset # sep 
 = 3 
 = 5† 
 = 7 
 = 9

wins time #cuts wins time #cuts wins time #cuts wins time #cuts

arc.set 25 25 20/3 0.53 110 20/4 0.52 133 19/3 0.57 169 20/0 0.50 205

fc 20 19 3/13 1.13 423 2/10 1.08 464 6/11 1.10 620 3/14 1.24 819

fctp 16 13 3/3 0.99 424 3/5 1.02 455 4/3 0.98 506 3/6 0.99 699

avub 45 44 27/8 0.32 249 25/8 0.32 256 25/8 0.36 278 22/11 0.34 329

sndlib 22 21 18/2 0.64 102 18/2 0.53 144 15/4 0.38 220 16/2 0.37 296

ufcn 58 58 29/11 0.52 118 32/11 0.52 135 30/13 0.53 202 24/16 0.54 358

miplib 67 13 4/1 0.99 54 4/2 0.99 58 3/3 0.99 66 4/3 1.00 73

mittelmann 56 3 1/2 1.03 6 1/2 1.04 8 0/3 1.04 5 0/2 1.04 5

† Default values
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doubles from 
 = 3 to 
 = 9. Only the sndlib instances really benefit from a
large 
 value. For this testset the time ratio decreases from 0.64 for 
 = 3 to 0.37
for 
 = 9. The performance is slightly deteriorated for fc, avub, ufcn, miplib, and
mittelmann while it is slightly improved for arc.set and fctp. We decided to fix 
 to the
conservative value 5. For certain classes of network design instances it can be crucial
to cut more aggressively.

7 Concluding remarks

Based on the observation that cut-based MIR inequalities can be used to drastically
reduce computation times and gaps when generated within branch and cut procedures
to solve network design problems, and based on the fact that these strong inequalities
are not detected by state of the art MIP solvers, we proposed a separation framework
for general MIP that is now implemented in Scip and Cplex. This algorithm consists
of two main steps.

First, we try to identify the block structure of a multi-commodity flow formulation
in the constraint matrix of a general MIP. Coupling capacity constraints are used to
resolve the isomorphism of the graphs represented by the network matrices of indi-
vidual commodity blocks. The corresponding underlying network is constructed.

In a second step we derive cutting planes based on the identified network struc-
ture. Using mappings from network elements to rows of the original MIP formulation,
we replace the default aggregation heuristic of the c-MIR separator implemented in
Scip and Cplex. In our framework, rows are aggregated such that the resulting base
inequalities correspond to network cuts. These base inequalities are then used to gen-
erate MIR cut-set inequalities, flow-cover inequalities, dicut inequalities, and the like,
depending on the type of capacity constraints and variables. In contrast to default
aggregation of the c-MIR separator the number of aggregated rows depends on the
size of the network and can be in the order of hundreds. However, the calculated base
inequalities are sparse due to the {+1,−1} pattern in the detected network matrices.

One of the key-features in our implementation is to decide about the consistency
of the detected networks. On the one hand, we delete inconsistent network elements
in order to work on the consistent network core. In addition, only if the calculated
overall network inconsistency ratio is very small we trust the detected structures on
which we try not generate cutting planes. With this machinery we are able to recognize
network design type models for which the methods are successful, introducing almost
no overhead for other models.

By extensive computational tests we showed that the proposed separation scheme
speeds-up the computation for a large set of network design problems by a factor of
two on average. Many of these problems can only be solved within 1 h of CPU time if
the Mcf-separator is switched on. In roughly 10% of general MIP instances we found
consistent embedded networks. For these instances the computation time is decreased
by 18% on average. There is almost no degradation for the remaining instances.

Given these results and the fact that state-of-the-art MIP solvers have almost no
knowledge about the underlying problem, one might consider a new paradigm of
exploiting structure in MIP solving. Many known and very successful approaches
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(cutting planes, heuristics, branching rules) for special purpose problems can be used
within the MIP solver if the constraint matrices are scanned for known structures more
consequently.
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