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Abstract
Fires are among the most frequent disasters, causing serious injuries and extensive property destruction. In order to prevent 
the uncontrolled spread of fires, recognizing fires accurately and at an early stage is crucial, especially in video surveillance 
applications. The majority of the available deep fire detection models currently operate on single images, limiting their 
analysis to spatial features only. The temporal context and motion information, present in consecutive frames of a scene, are 
not involved leading to incorrect predictions throughout the video. To address this shortcoming, it is proposed in this work to 
explore the temporal information using deep learning networks to directly recognize fire. Indeed, a novel three-dimensional 
convolutional neural network, named 3D Fire Classification Network, is introduced. This approach exploits spatio-temporal 
features to analyze and recognize a video sequence as either fire or non-fire. Initially, the input data is processed to enlarge 
and diversify the constructed dataset. Then, it is passed through the designed network for training. The derived model com-
prises a relatively smaller number of layers, with a reduced number of parameters. The conducted experiments demonstrate 
the efficiency of the resulting model on the created dataset, achieving an improved accuracy of 99.23%. Furthermore, the 
findings show that the developed model consistently outperforms the related methods in recognizing fire videos.

Keywords Fire recognition · Three-dimensional convolutional neural network (3D CNN) · Spatio-temporal learning · 
Video analysis

1 Introduction

In the last few decades, the number of fires has been 
increased in the world, threatening the planet and people’s 
safety causing hazardous effects and huge damages. In 
fact, millions of acres are burned destroying animals, trees, 
homes, and people. According to the Center for Disaster 
Philanthropy, the 43 member countries including some states 
in the Middle East and North Africa, where forest fires were 
previously infrequent, are now seeing a significant increase 
in the fires number and the burnt area (Center Philanthropy 
2022). In 2021, more than 550,000 hectares were burned 
in the European Union and its Mediterranean neighboring 
countries including Turkey, Algeria and Tunisia. In Tur-
key, wildfires were around 2793 burning about 139,503 ha. 
In Tunisia, meanwhile, 28,493 ha were affected (Statista 
2022). As reported in the Technical Report of the Mediter-
ranean wildfires, the most affected countries by wildfires, 
in 2021, were Greece, Italy, followed by Portugal, Spain 
and France where hundreds of people were killed and over 
than 620,000 ha were burned in July and August (Eberle and 
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Higuera Roa 2022). An automatic detection of fire events is 
thereby essential for security applications and intelligent sur-
veillance. This is particularly when considering the ineffec-
tiveness of the available sensor-based fire detection systems 
(Avazov et al. 2022). With these captors, the alarm is only 
triggered when smoke or heat is close enough to the sen-
sors. In certain situations, such as expansive open areas or 
high-temperature environments, using a sensor-based detec-
tion system becomes impractical as it leads to frequent false 
alarms (Avazov et al. 2022). In addition, these systems lack 
the capability to provide visual information, which may be 
essential for helping firefighters in quickly understanding 
the fire scene. Important details concerning the fire size, 
locations and behavior are also not provided.

To cope with all these shortcomings, researches and 
development efforts have been carried out to reduce false 
alarms risks and to achieve accurate real-time fire detection 
early-stage. This has become particularly significant with 
the advancement of video surveillance systems. Add to that, 
the computer vision techniques and the recent evolution of 
neural networks are frequently employed in such applica-
tions (Çetin et al. 2013; Muhammad et al. 2019). In fact, 
numerous significant studies related to fire recognition have 
been proposed over the years, including the video-based fire 
detection systems (VFD) and the deep learning-based fire 
detection systems. VFD approaches are the first developed 
works as an alternative solution to the existing sensor-based 
systems (Chen et al. 2004; Celik 2010). The detection pro-
cess involves a manual extraction of flame features, such 
as color, texture, shape, and motion (Khalil et al. 2021; 
Wahyono, Harjoko et al. 2022). This extraction step, the 
features analysis, the subsequent detection and classification 
processes are time-consuming, which limits the use of these 
VFD methods in real-time. To avoid hand-crafted operations 
and to ensure automatic fire detection task, deep learning 
(DL) models have been extensively employed in recent times 
(Bhat and Khan 2022; Gayathiri e al. 2023; Harsha et al. 
2023). They have proven their efficiency in different fields, 
including object recognition, machine learning (Manohar 
and Das 2022), parameters estimation (Manohar and Das 
2023), and medical analysis (Lakshmi et al. 2024; Manohar 
and Das 2023). The features they extract are learned auto-
matically from annotated data rather than hardcoded by the 
developper. Hence, these DL models can be adapted for an 
automatic fire recognition in surveillance applications, as 
presented in this paper.

It is therefore interesting to develop a real-time fire rec-
ognition method based primarily on exploiting both the 
spatial and temporal information in video sequences. It is 
noticed that the most developed models in the literature are 
designed by exploring spatial features, which provide the 
visual appearance and contextual information of the data. 
Spatial features are directly extracted from frames through 

through two dimensional convolutional neural networks 
(2D CNNs). However, these models lack temporal features, 
that capture the motion dynamics occurring in the range of 
video frames. This is since the fire event is considered as an 
action in video sequences, distinguished by its spatial and 
temporal features across successive frames. The objective of 
fire recognition is to effectively learn discriminative spatio-
temporal representations from video sequences to identify 
the fire class. Motivated by these claims, the direct learn-
ing of spatio-temporal features from video frames is sug-
gested in this work. It is achieved using three-dimensional 
networks (3D CNNs). With much interest to this, the nov-
elty of this contribution is to recognize fire in surveillance 
videos by designing a three-dimensional network, known 
as 3D Fire Classification Network “3D FireClassNet”. The 
presented approach starts by preprocessing the input data for 
its for enlargement and diversification. Then, this preproc-
essed data is fed through the novel 3D network for training. 
The designed architecture has the capability to be directly 
applied to consecutive frames, for the extraction and learn-
ing of spatio-temporal features.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a background on the existing deep learning 
architectures, used for spatio-temporal analysis. In Sect. 3, 
a literature review of DL-based approaches designed to rec-
ognize fire in video sequences is presented. Section 4 thor-
oughly describes the details of our proposed method with 
the novel spatio-temporal convolutional neural network. 
The experimental findings and discussions are exhibited in 
Sect. 5, including a comparative study with the state-of-the-
art works. Lastly, Sect. 6 deals with the conclusions of this 
paper.

2  Deep learning architectures 
for spatio‑temporal analysis

In general, videos are constructed from spatial and temporal 
domains, providing much more information content, com-
pared to a single image. Spatio-temporal features extraction 
methods can be categorized as either hand-crafted or auto-
mated (Rasool Abdali and Ghani 2019; Mehta and Singh 
2023). Deep learning networks offer the ability to automati-
cally capture these features, producing promising results in 
various spatio-temporal approaches for different applica-
tions. The following subsections outline the most common 
architectures employed in deep learning for capturing and 
learning spatio-temporal features.

2.1  Two‑stream architectures

In order to exploit both spatial and temporal features, several 
researchers have proposed the development of two-stream 
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architectures. These architectures consist of two separate 
CNNs (Simonyan and Zisserman 2014). Each one serves for 
a specific purpose. The first convolutional neural network is 
the spatial stream, dedicated to handle spatial features. The 
second one is the temporal stream, devoted to handle tem-
poral features. The outcomes of these distinct networks can 
be merged to create a spatio-temporal video representation.

As shown in Fig. 1, the spatial stream takes a single frame 
from the video to pass it through a series of CNN kernels. 
Then, using the extracted spatial information, predictions 
are generated. The second temporal stream operates by gath-
ering optical flows of each frame. Using this motion data, 
predictions are produced by the final fully connected and 
SoftMax layers of the temporal network. Each individual 
stream is constructed using a deep ConvNet. The softmax 
scores produced by these networks are merged by the use 
of the late fusion technique. With this technique, the two 
streams are independently trained and combined just before 
the model makes the last decision. The final probability is 
attained by averaging the predicted probabilities derived 
from both streams.

Relying on an external optical flow algorithm is one of 
the disadvantages of this type of architectures. This algo-
rithm needs to be executed to compute the motion vectors 
for each video, it is performed before the training phase. 
Being coupled, coupled with the training processes for the 
two networks, leads to a substantial amount of time required 
for the design of the final model.

2.2  Convolutional neural network and long 
short‑term memory (CNN‑LSTM)

A second type of deep learning architectures is the asso-
ciation of a Long Short-Term Mermory (LSTM) to a CNN 
for video analysis. LSTM is a variant of recurrent neural 
networks (RNNs), introduced by Hochreiter and Schmid-
huber (1997). It is designed to enhance its ability to retain 
information for long periods. It is structured as a sequence of 
recurrent cells linked together, where each cell is connected 
to the next one through a cell state (C). This property makes 

LSTM well adapted to tasks requiring long-term memori-
zation (Karthika et al. 2023). That’s why some researchers 
propose the training of LSTM networks to create temporal 
models.

The combination of an LSTM with a CNN enables the 
extraction and learning of spatio-temporal features from 
videos. This architecture is illustrated in Fig. 2. The CNN 
acts as an extractor of spatial features. Indeed, the individ-
ual images in a video sequence are fed into a CNN model, 
which in turn extracts spatial features. These features are 
subsequently passed through the LSTM layer. The output 
derived from the LSTM layer is connected to a fully con-
nected layer, resulting in the recognition purpose. The main 
goal of incorporating LSTM is to capture the temporal con-
nections among images by retaining a memory of preceding 
frames. This enables the model to understand and use the 
sequential information presented in the video data.

This architecture may take advantage of transfer learning 
by exploiting a pre-trained CNN model, such as VGG-16, 
VGG-19, ResNet, and others to extract spatial features. The 
transfer learning is an effective method for building accurate 
models, particularly in cases of limited data. As a result, 
a combination of CNN and LSTM shows its robustness in 
learning spatio-temporal features and developing efficient 
models for video analysis. Nevertheless, it’s important to 
acknowledge that a CNN needs significantly long training 
time to fine-tune the vast number of model’s parameters. 
This issue becomes more complex when considering the 
extension of temporal aspects in the architecture. This is 
because the network requires to process not just single 
frames, but also several video frames simultaneously. Simi-
larly, LSTM training takes a large time, since it has more 
parameters (Kanna and Santhi 2021). Add to that, it needs 
more memory requirements.

2.3  Convolutional long short‑term memory 
(ConvLSTM)

Another category of deep learning architectures designed 
for video recognition is the convolutional long short-term 

Fig. 1  Overview of the two-stream architecture for video recognition
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memory (ConvLSTM). It represents a variant of the LSTM 
architecture that integrates convolutional operations within 
the structure of the LSTM cell (Shi et al. 2015). These 
convolutional operations are introduced during transi-
tions between layers. They replace the internal matrix 

multiplications of the LSTM (Verlekar and Bernardino 
2020), as shown with the red color in Fig. 3. Thus, the 
information passing through ConvLSTM cells retains the 
input dimension, enabling the network to achieve better 
spatio-temporal correlations (Verlekar and Bernardino 
2020; Kanna and Santhi 2022). The ConvLSTM architec-
ture for video recognition is depicted in Fig. 4.

It should be noted that both ConvLSTM and CNN-
LSTM architectures serve the same functional purpose: 
extracting spatio-temporal features from video data for 
video recognition tasks. However, they differ in structure. 
Indeed, ConvLSTM incorporates convolution in the archi-
tecture, whereas CNN-LSTM externally combines the two 
types of networks by concatenating their outputs together. 
As defined, the ConvLSTM network effectively captures 
localized spatio-temporal correlations. It accomplishes 
this by employing a convolution operator to predict the 
future state of a specific cell in the grid using inputs and 
previous states of its local neighbors (Vrskova et al. 2022).

ConvLSTM proves to be suitable for processing images 
and videos with temporal dependencies, achieving signifi-
cant results. But, its weaknesses lie in the substantial com-
putational demands and high memory consumption.

Fig. 2  Overview of the CNN-
LSTM architecture for video 
recognition

Fig. 3  A ConvLSTM cell (Verlekar and Bernardino 2020)

Fig. 4  ConvLSTM architecture 
for video recognition
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2.4  Three‑dimensional convolutional neural 
network (3D CNN)

Among the deep learning architectures used for video recog-
nition, there are the 3D convolutional neural networks (3D 
CNNs), known as a spatio-temporal networks. They play a 
prominent role in exploiting spatial and temporal features 
(Tran et al. 2015). The idea involves expanding the 2D 
spatial CNN, based on Conv and pooling layers, into a 3D 
spatio-temporal CNN. This extension aims to analyze and 
then recognize videos.

3D CNNs are similar to 2D CNNs, but with two primary 
differences. First, they are designed to capture the temporal 
relations between video frames, by using three-dimensional 
kernels. This is achieved by processing sequences of frames 
rather than individual ones. Additionally, a 3D CNNs can 
learn the three-dimensional features of video sequences, and 
generate 3D feature maps, a capability that is impossible 
with 2D CNNs. An example of a 3D CNN architecture is 
presented in Fig. 5. As it is displayed, a 3D CNN can be 
composed by a succession of Conv3D layers, ReLU activa-
tion functions, and 3D pooling layers.

• 3D convolution layer (Conv3D) In the same way that the 
convolution layer (CONV or Conv2D) is the basic com-
ponent of the CNN, the three-dimensional convolution 
layer (Conv3D) is equally the fundamental element of 
the 3D CNN. Indeed, the CONV layer lacks the temporal 
information in each convolution operation. In contrast, 
the 3D convolution maintains the temporal informa-
tion from the input data, producing 3D feature maps as 
an output volume. The input to Conv3D is convolved 
across four dimensions: two spatial dimensions (width 
and height), one channel dimension, and one time dimen-
sion (frame). During the convolution process, the 3D 
CNN generates a three-dimensional activation map. This 
feature map serves for data analysis and for the incor-
poration of temporal context. In this operation, three-
dimensional filters are applied, where the kernel moves 
along three directions, as visually depicted in Fig. 6b. 
The resultant output has the form of a 3D volume space. 

The 3D convolution operation is accomplished by wrap-
ping around the center of a cube and stacking adjacent 
layers on top of each other (Vrskova et al. 2022). The 
motion information is captured by the interconnections 
between the feature maps.

• 3D Pooling layer  The 3D pooling layer has the same 
purpose as the pooling layer used in 2D CNN structure. It 
acts as a nonlinear down sampling operation for an input 
tensor. Its aims to reduce the spatial dimensions of an 
image, while retaining only the most significant pixels. 
When applying a 3D pooling in the 3D neural network 
construction, the pooling size must consist of three val-
ues, reflecting the 3D data being dealt with. In fact, this 
operation involves the division of the input tensor’s data 
into smaller 3D subtensors along all three dimensions. 
Afterwards, in each subtensor, the element with the high-

Fig. 5  3D CNN architecture for 
video recognition

Fig. 6  The difference between 2D and 3D convolution operations: a 
2D convolution operation, b 3D convolution operation
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est numeric value is selected. This process converts the 
input tensor into an output tensor, in which each sub-
tensor is replaced by its respective element (maximum, 
minimum or average element). This is because there are 
three commonly employed techniques: Max pooling 
(selecting the highest value), Min pooling (selecting the 
lowest value), and Average pooling (calculating the aver-
age of the values). MaxPooling3D is frequently used in 
the case of color images and its visual representation can 
be seen in Fig. 7.

This exploitation of temporal context is a notable advan-
tage of 3D CNNs in video analysis. This is thanks to the four 
dimensions (two spatial dimensions, one channel dimension 
and one temporal dimension), that allow all types of tempo-
ral interactions between adjacent frames to be easily learned. 
The 3D CNN architecture is not only uncomplicated, but it is 
also fast, and easier to train, particularly when compared to 
CNN-LSTM. Especially with sufficient data, the 3D CNN is 
the most efficient architecture, as a spatio-temporal network 
for video recognition. A limitation of this 3D CNN is that 
the increase of the input dimensions leads to a significant 
rise in both memory and computational requirements (Tran 
et al. 2015).

3  Related works

In the literature, the aforementioned deep learning archi-
tectures, from the previous section, have been suggested 
for recognizing fires in videos, through spatio-temporal 
analysis. Hence, the DL-based fire recognition approaches 
have been considered as a significant challenge because of 
specific information nature contained in videos, particularly 
the temporal continuity of fire movement. Indeed, it is not 
only about the basic two-dimensional space of a frame; but 
the incorporation of previous and subsequent frames is also 
crucial to effectively capture the temporal information.

The spatio-temporal two-stream convolutional neural net-
work is employed in Shin et al. (2018) to introduce a fire rec-
ognition model. A spatio-temporal two-stream convolutional 
neural network-based fire recognition method is introduced. 

The spatial stream employs the VGG-16 network, while the 
temporal model is built using the 3D CNN network. For 
both streams, transfer learning is applied. The output vec-
tors from each stream are concatenated through the fusion 
method in the fully connected layer. With this type of archi-
tecture, the accuracy of the obtained classification model is 
enhanced, and the false positives are reduced. The proposed 
model demonstrates superior performance compared to the 
2D CNN model. However, its computational cost is high. 
Another approach, presented in Rasool Abdali and Ghani 
(2019), is based on the CNN-LSTM architecture for a real-
time fire detection. Initially, a CNN is applied to spatially 
extract features. Then followed by the LSTM cells, the tem-
poral relation learning method is used to build the model. 
To feed the data, the time distribution technique is utilized. 
Experimental results show an improvement in fire recogni-
tion performance, achieving a promising level of accuracy.

To analyze and recognize the flame regions in both spatial 
and temporal domains, this CNN-LSTM architecture is also 
used in Abhilash (2023). Herein, a fire candidate extraction 
stage is introduced to detect fires of varying sizes. Then, the 
CNN-LSTM is employed to analyze the small and clipped 
fire images. Despite the achieved effectiveness, this approach 
suffers from the instability of the fundamental features 
(Abhilash 2023).

In the same way, the spatial and temporal features are 
exploited by Zhikai Yang et al. in Yang et al. (2020). Three 
novel fire recognition models are developed, based on two 
lightweight CNNs (ResNet-18 and MobileNets) and the 
Simple Recurrent Unit (SRU). The SRU, which is improved 
from LSTM by adding a reset gate, is a variant of Recur-
rent Neural Network (RNN). The first model combines 
ResNet-18 with the SRU, and MobileNet is merged with 
SRU for the built of the second model. In the third one, a 3D 
Conv layer is added between the MobileNet and SRU com-
ponents, taking into account the indoor settings and flame 
characteristics. The resulting models prove their efficiency, 
compared to the other CNN-based fire recognition models, 
via single frame. It is also demonstrated that the third devel-
oped model (MobileNet + 3D Conv layer + SRU) reaches 
the best performance. Hence, the importance of the temporal 
aspect is confirmed.

Likewise, another type of DL architecture, using a CNN 
combined with a ConvLSTM, is presented in Verlekar and 
Bernardino (2020) to classify video sequences into either 
fire or non-fire categories. A frame selection step is firstly 
applied in this approach to process video sequences of vari-
able durations. Indeed, 15 frames are selected from every 
input scene. Each frame is then fed into a CNN, named 
Xception, in order to extract static features. Subsequently, 
spatio-temporal features are extracted using a ConvLSTM. 
Finally, the output of the last cell of the ConvLSTM is 
passed to the fully connected network for the classification Fig. 7  MaxPooling3D operation (Vrskova et al. 2022)
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purpose. According to this method, the achieved classifi-
cation accuracy validates the effectiveness of the proposed 
model in classifying video sequences.

The use of ConvLSTM models is also shown in Masrur 
et al. (2024), where they identify and exploit the scale-
dependent spatiotemporal interconnections between the 
space-time of the fire event. Two attention-based spati-
otemporal models are proposed in this study for predicting 
the wildfire progression. Another related work (He et al. 
2024) combines ConvLSTM with a CNN and a Vision 
Transformer (ViT) for fire recognition. In He et al. (2024), 
the CNN-based network is used to extract local features, 
while the Vision Transformer (ViT) serves as a global fea-
ture extraction method employing multi-head attention to 
gather information across the entire image. Combining CNN 
with ConvLSTM adds the ability to consider image data 
features within a spatiotemporal context. Promising findings 
are reached demonstrating the effectiveness of the presented 
approach. However, the model’s precision should be further 
optimized by integrating more dependable datasets.

A spatio-temporal network, designed specifically for 
night-time wildfire recognition in videos, is provided in 
Agirman and Tasdemir (2022). The used architecture com-
bines a CNN with a variant of LSTM, known as the bidirec-
tional long short-term memory (BLSTM). In fact, a BLSTM 
cell employs two interconnected LSTM cell engines. The 
proposed network initially extracts spatial features from vid-
eos, through the use of a pretrained GoogLeNet network, 
with transfer learning applied to this CNN. These extracted 
features are fed into a BLSTM network for temporal learn-
ing. The final layers of the proposed architecture consist of 
a fully connected layer with two output classes, followed 
by a SoftMax layer for probability calculations. Despite the 
promising detection results, instances of misclassification 
persist.

Similarly, another DL-based fire recognition approach is 
proposed in Vu et al. (2021). In this method, flame regions 
are initially detected by exploiting the motion and color fea-
tures of the fire. In the subsequent phase, a combination 
of a CNN and LSTM is applied to determine whether the 
flame is a true fire or a non-fire moving object. In fact, the 
CNN architecture is based on ResNet-18 to extract spatial 
features. The LSTM model is used to extract temporal fea-
tures in videos. Experimental results demonstrate that the 
suggested approach performs well in terms of accuracy, 
with rapid processing speed. Aiming to further improve the 
obtained results, authors suggest in Nguyen et al. (2021)an 
enhanced multistage fire detection method. It is also based 
on the CNN-LSTM architecture. As the previously reported 
work (Vu et al. 2021), the candidate fire regions are firstly 
detected using both a color model and the computed flicker 
energy. The images from every candidate flame region are 
then passed through the convolutional network, to extract 

spatial features. For this purpose, the CNN, based on the 
pretrained ResNet-18 model, is finetuned. These features are 
later on input to a multilayer Bidirectional LSTM network, 
which temporally merges the extracted information. This 
BiLSTM is dedicated to classify the fire/non-fire sequence 
images. The outcome of the proposed method achieves the 
highest F1-score, validating its effectiveness in accurately 
recognizing fires with minimal false positives. However, 
the limited availability of fire image data remains a limi-
tation of this method, which ultimately impacts its overall 
performance.

After the above discussion of different deep learning 
approaches, it is clear that the task of recognizing fire in 
video surveillance scenes presents a spatio-temporal chal-
lenge. It can be concluded that these works exhibit a reliable 
performance, when compared to deep learning approaches 
devoted for fire images classification. Accurately captur-
ing the spatial and temporal features of the flame object, 
yields to achieve good results. Besides, it is deduced that 
the exploitation of the spatio-temporal features, particularly 
through the use of deep learning architectures, remains lim-
ited in the fire recognition filed. Nevertheless, the presented 
related works frequently encounter issues of high cost in 
terms of both time and computation. This is due to the struc-
ture of the spatio-temporal architectures, leading to a high 
parameters number. Consequently, the memory requirements 
are increased, owing to the heavy architectures and the large 
number of video frames, needed for the spatial and temporal 
training. Therefore, up to now, developing a spatio-temporal 
architecture with one stream network and fewer trainable 
parameters is still the ongoing researchers focus. This aim 
is to mitigate the challenges posed by memory and compu-
tational demands.

4  3D FireClassNet: a novel spatio‑temporal 
convolutional neural network for fire 
recognition in video surveillance scenes

The suggested approach is a novel DL-based method for 
fire recognition. It is based on the exploration of spatial and 
temporal information, available in a fire video surveillance 
scenes. It is designed considering the 2D convolutional 
neural network “FireClassNet”, presented in Daoud et al. 
(2023), which exhibits highly efficacy for static image rec-
ognition tasks. The effectiveness of this 2D CNN lies in its 
ability to process spatial information in fire images. How-
ever, fire videos inherently contain both spatial and tempo-
ral data, which 2D CNN struggles to capture. Because of 
this limitation, the “FireClassNet” model overlooks crucial 
motion information in fire videos, making it unsuitable for 
fire video analysis task (Daoud et al. 2023). As a result, it 
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may not correctly predict every video frame, due to rapid 
changes between successive frames.

Unlike 2D CNN structure, which focuses only on spatial 
information, the 3D CNN structure adds a third dimension, 
time, enabling it to capture spatio-temporal information in 
videos. The motion and changes across frames are detected 
through the 3D CNN making it ideal for fire video recogni-
tion task. The goal of this study is to create an end-to-end 
3D CNN designed to classify videos as fire or non-fire by 
extracting spatial and temporal features. Our major motiva-
tion is to remedy the limitation of the “FireClassNet”, the 
2D CNN architecture presented in Daoud et al. (2023), and 
to automatically recognize fire videos while improving accu-
racy and decreasing false alarms number. To achieve this, it 
is suggested to design 3D CNN structure named “3D Fire-
ClassNet”, inspired by the “FireClassNet” architecture. This 
structure considers the temporal dimension that enhances the 
capability of the network to recognize complex relationships 
between spatial and temporal features in videos. Neverthe-
less, it is important to take into account the increased com-
putational requirements of a 3D CNN architecture. Hence, 
another objective of this work is to develop the 3D CNN 
model with fewer parameters, to be used even in mobile 
systems with limited memory and processing capacity.

The different phases of the proposed approach are dis-
played in Fig. 8. The process begins by preprocessing the 
created dataset to enlarge the input data. Subsequently, the 
development of the fire recognition model, is carried out 
involving a novel deep learning network that automatically 
extracts spatio-temporal features. With these extracted fea-
tures, the model is trained and then tested on a new data. 
The performance of the designed model is evaluated, using 
different evaluation metrics. The details of each phase are 
described in the following two subsections.

4.1  Preprocessing

Before feeding the data to the designed network, preprocess-
ing is conducted. This phase is crucial, as it has a significant 
impact on overcoming the shortcomings of the created data, 
such as insufficient data and its lack of diversity. The pro-
cess involves making essential adjustments and transforma-
tions to the data. Since the deep learning models need large 
amounts of data, it is proposed in our approach to generate 
additional data by augmenting the collected dataset. Specifi-
cally, video data augmentation techniques, including hori-
zontal and vertical flipping and rotation, are employed to 
expand our dataset and enhance its diversity. Some samples 
are shown in Fig. 9.

Each video of the constructed dataset undergoes various 
augmentations, including horizontal flips, vertical flips, and 
rotations. The augmented dataset, now comprising a diverse 
set of samples, is then used to train the deep learning model. 
This preprocessing phase not only enhances the data quan-
tity by introducing different variations of each sample but 
also improves the model’s performance by mitigating over-
fitting. By augmenting the dataset in this way, we ensure 
a richer training set for the model, which should lead to 
improved results and better generalization.

4.2  Presentation of the “3D FireClassNet” 
architecture

As it is observed in the literature review, the existing works 
for fire recognition in videos, particularly those that exploit 
the spatio-temporal features, are limited and still in progress. 
Most of works use the combination of two networks: the 
first one is trained with spatial features and the second one 
is trained with temporal features. This results in a high time 
consumption and large memory requirements. In order to 
explore spatial and temporal features in a single network 
and to avoid the huge training and prediction times, a novel 
deep fire recognition model is needed nowadays. Motivated 
by these statements, the main contribution of the presented 
approach is the development of a 3D CNN architecture 
for fire videos recognition, by exploiting spatio-temporal 
features.

Inspired by the 2D CNN “FireClassNet”, suggested in 
Daoud et al. (2023), our 3D CNN, named “3D FireClass-
Net”, is designed to simultaneously handle spatial and tem-
poral features. The differences are evident in the convolution 
and pooling layers, as well as in the employed filter kernel 
sizes, with the addition of the temporal dimension. Hence, 
the kernel of a 3D convolution layer is expressed as (H × 
W × dt), where H and W represent the height and width 
of the convolution kernels on the 2D plane, and dt denotes 
the depth of the convolution kernel, representing the time 
dimension. The 2D and 3D structures of the convolutional Fig. 8  Flow chart of the proposed fire recognition approach
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layers are depicted in Fig. 10. In this example, H and W are 
both set to 1 and dt is set to 3. Further details are given in 
the Sect. 2.4.

An overview of the proposed “3D FireClassNet” network 
is presented in Fig. 11. It consists of four main blocks, with-
out taking into account the input and output data. Three suc-
cessive blocks of convolutional layers, each accompanied by 
pooling layers, are intended for feature extraction. The final 
block consists of fully connected layers designed for video 
recognition tasks.

The initial block is composed of a sequence comprising 
a 3D convolution layer, a ReLU non-linear activation func-
tion, a batch normalization layer, and a 3D pooling layer. 
The second and third blocks of layers have the same struc-
ture, where the 3D convolution and non-linear layers are 
doubled, followed by batch normalization and 3D pooling 

layers. The successive layers in these three blocks serve to 
extract spatial and temporal features, thanks to the Conv3D 
and MaxPooling3D layer architecture. It’s important to note 
that the ReLU non-linear activation function is applied after 
each Conv3D layer, in order to enhance the learning speed. 
Besides, a normalization operation is carefully added before 
the 3D pooling layer. This serves the dual purpose of regu-
lating the distribution of inputs to the hidden neurons and 
enhancing the training speed and overall performance. After 
the extraction of spatial and temporal features through the 
three first blocks, the fourth block is dedicated to recog-
nize fire in videos. The input of this block is a vector that 
reshapes the extracted features into 1D array, which is then 
processed by the dense layers. This block consists of a fully 
connected layer, with 1024 neurons, followed by a ReLU, 
batch normalization, and dropout layers. Subsequently, there 

Fig. 9  Examples of the aug-
mented data

Fig. 10  2D and 3D convolu-
tional layer structures
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is another fully connected layer with two neurons, and finally 
a SoftMax layer, as the constructed dataset contains two dis-
tinct classes.

In this architecture, 22 frames from each preprocessed 
video data, resized to 64 × 64 , serve as inputs to the “3D 
FireClassNet” network. Thus, the input shape for the 3D 
convolution layer is (64, 64, 22, 3), where 64 × 64 repre-
sent the width and height of the frame. 22 corresponds to 
the number of selected frames in a video sequence, known 
as the depth hyperparameter. The 3 value is the number of 
channels. The initial 3D convolution layer employs 16 three-
dimensional filters of size 3 × 3 × 3 on the input data. All 
subsequent 3D convolutional layers use filter kernels with 
a size of 3 × 3 × 3 . These layers are introduced as spatio-
temporal convolutional layers with a stride of 3. Every filter 
moves in three directions (x, y, t) to compute the feature 
representations, as seen in Fig. 6. The output of the 3D con-
volution is a feature map, represented as a 3D volume (64, 
64, 22, 16). This resulting feature map is required for data 
analysis, spatial and temporal context. This layer contains 
1312 trainable parameters. As defined, the trainable param-
eters of a 3D CNN structure encompass all the weights (W) 
and biases (B) in the network. These weights and biases con-
stitute the two types of parameters in each layer. In the case 
of a 3D Conv layer, the sum of weights and biases returns 
the number of parameters ( ParamConv ), computed via the 
following formula:

where Wconv represents the number of weights 
( Wconv = K ∗ K ∗ k ∗ C ∗ Nbrfilters ), with K is the dimen-
sion of the used 3D filter kernel, C is the number of chan-
nels in input images, and N denotes the filters number, also 

(1)
Paramconv = Wconv + Bconv = (K ∗ K ∗ K ∗ C + 1) ∗ Nbrfilters

representing the biases number ( Bconv = N  ). Table 1 pro-
vides a detailed analysis of how these trainable parameters 
are derived.

After the initial Conv3D layer, a MaxPooling3D layer, 
with a size of 2 × 2 × 2 , is applied. It is used to reduce the 
dimensions of data from an input size equal to (64, 64, 22, 
16) to (22, 22, 8, 16). The output dimensions of each 3D 
max pooling operation follow the same equation as the 
resulting 2D max pooling output size, provided by Eq. (2).

Fig. 11  Structure of the 
proposed “3D FireClassNet” 
network

Table 1  The parameters of the proposed “3D FireClassNet” network

Layer type Output shape Weights Biases Number of 
parameters

Input frame (64, 64, 22, 3) 0 0 0
Conv3D (64, 64, 22, 16) 1296 16 1312
BN (64, 64, 22, 16) 64 0 64
MaxPool3D (22, 22, 8, 16) 0 0 0
Conv3D (22, 22, 8, 32) 13,824 32 13,856
Conv3D (22, 22, 8, 32) 27,648 32 27,680
BN (22, 22, 8, 32) 128 0 128
MaxPool3D (11, 11, 4, 32) 0 0 0
Conv3D (11, 11, 4, 64) 55,296 64 55,360
Conv3D (11, 11, 4, 64) 110,592 64 110,656
BN (11, 11, 4, 64) 256 0 256
MaxPool3D (6, 6, 2, 64) 0 0 0
FC_1 1024 4,718,592 1024 4,719,616
BN 1024 4096 0 4096
FC_2 2 2048 2 2050
Total 4,935,074
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Also, the depth value is reduced from 22 to 8, using the same 
formula. As it is indicated in Table 1, the MaxPooling3D 
layer has no trainable parameters, unlike the batch normali-
zation layer, which has 4 parameters, resulting in a total BN 
parameters: ParamBN = 4 ∗ N . Consequently, the total num-
ber of parameters in this first block is 1376. It is obtained 
by summing the parameters of the Conv3D and BN layers 
(1376 = 1312 + 4 * 16).

In the second block of the “3D FireClassNet”, two suc-
cessive Conv3D layers are employed. Each one is with 32 
filters and the same filter size of 3 × 3 × 3 as the first 3D 
convolution layer. The number of trainable parameters for 
every layer in these two Conv3D layers is 13,856 and 27,680 
respectively.

All the Conv3D layers use filter kernels with dimensions 
of 3 × 3 × 3 . The deployment of these two Conv3D layers 
results in a 3D feature map of size (22, 22, 8, 32). The next 
layer is obtained by employing the MaxPooling3D with a 
2 × 2 × 2 kernel size and a stride of 2. The resulting 3D fea-
ture maps are further reduced to a size of (11, 11, 4, 32). 
This second block contains a total of 41,664 parameters, 
as deduced from Table 1. The third block follows a similar 
structure to the previous one, differing primary in the used 
filters number. In fact, 64 filters of size 3 × 3 × 3 are applied 
for each Conv3D layer, resulting in downsized feature maps 
of dimensions (11, 11, 4, 64). Behind the final 3D convo-
lution layer, there is a MaxPooling3D with the same size 
2 × 2 × 2 as the previous Maxpooling3D layer. This results 
in a 3D feature map of size (6, 6, 2, 64), leading to 166,272 
trainable parameters (the sum of the parameters number 
from the two Conv3D and the BN layers). Based on the 
analysis of this table, it is claimed that increasing the number 
of filters also increases the parameters number.

At the end of the network, a flattened layer is introduced, 
transforming the feature maps generated by the last Max-
Pooling3D layer into a single vector. This vector is then 
passed through a fully connected layer, which consists of 
1024 units. In terms of parameters number, this results in 
a total of 4,719,616 parameters, obtained by applying this 
equation:

where SWidth and SHeight are the width and height size of the 
output feature map of the layer just before the fully con-
nected layer. Nbrneurons is the number of neurons in the FC 
layer. The FC layer incorporates non-linear, batch normali-
zation, and dropout techniques. The non-linearity is intended 

(2)Outputsize =

(

Inputsize − Filtersize + 2xPadding

Stride

)

+ 1

(3)

ParamFC_1

= WFC_1 + BFC_1

= (SWidth ∗ SWidth ∗ SHeight ∗ N + 1) ∗ Nbrneurons

to accelerate the learning process in the fourth block for 
the recognition task. Batch normalization serves to normal-
ize the previous layer’s values in each batch. As a form of 
regularization, dropout is applied, in our “3D FireClassNet”, 
with the dense layer, specifically before the last FC layer. 
The standard dropout probability of 0.5 is used, in order to 
reduce more the issue of overfitting. The final dense layer 
comprises 2 neurons designed for the output prediction. Its 
size is selected to be equal to the number of target classes 
(fire and non-fire). This layer ends with a SoftMax classifier, 
defined by the following Eq. (4):

This ensures a probabilistic representation for the different 
classes. For a fire video recognition task with 2 classes, the 
number of parameters in the final fully connected layer is 
2050. It is computed using Eq. (5), which is distinct from 
formula (3). This difference is due to the existence of two 
types of fully connected layers in a CNN. The first FC type 
is connected to the last Conv3D or MaxPooling3D layers, 
whereas the second one is connected to other FC layers.

Here, ( Nbrneurons)−1 denotes the number of neurons in the 
previous FC layer. Therefore, the total number of trainable 
parameters in the presented “3D FireClassNet” model is 
4,935,074, where all of them are initialized randomly. It is 
obtained by summing the parameters number of all 3D con-
volutional, BN, and FC layers.

5  Experimental evaluation and discussion

To assess the effectiveness of the proposed 3D fire recogni-
tion model, the experimental protocol is firstly introduced 
in Sect. 5.1. It outlines the description of the constructed 
dataset, used for the training and validation of the proposed 
network, as well as the experimental architecture fine-tuning. 
Then, Sect. 5.2 focuses on validating the model using differ-
ent numbers of filters and the adopted experimental proto-
col. In this subsection, experiments are presented, and their 
results are analyzed and discussed. Furthermore, Sect. 5.3 
provides a comparative study between the proposed “3D 
FireClassNet” and the other related works, particularly the 
hand-crafted approaches and the developed spatio-temporal 
architectures. A comparison between our designed 3D CNN 
and the 2D network suggested in Daoud et al. (2023) is pre-
sented in Sect. 5.4.

It is noteworthy that the training of the derived 3D 
model is carried out using the deep learning framework 
Keras on the following hardware specifications: Intel (R) 

(4)P(zi) =
ezi

∑

jNbr of classesezi

(5)
ParamFC_2 = WFC_2 + BFC_2 = ((Nbrneurons)−1 + 1) ∗ Nbrneurons
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Core (TM) i5 2.5 GHz, 8 GB RAM and Nvidia Geforce 
GTx 980 M 2 GB GPU.

5.1  Experimental protocol

5.1.1  Dataset description

For the different experiments, we try to create our own 
dataset for the “3D FireClassNet” training, since there 
is no standard fire database for this research field. This 
dataset is constructed by collecting the available video 
sequences from the public databases (Cetin 2007; Foggia 
et al. 2015; Cazzolato et al. 2017; Grammalidis et al. 2017; 
Phillips Iii et al. 2002; Steffens et al. 2015). We ensure a 
more diverse representation of fire events on different sam-
ples. This dataset consists of two distinct categories: fire 
and non-fire video sequences. All details are displayed in 
Table 2. This established dataset comprises 92 fire scenes, 
and 38 non-fire sequences. The initial step in the train-
ing process of the “3D FireClassNet” network, involves 
loading data to be passed through the first network layer. 
To achieve this, 22 successive frames are randomly taken 
from each video sequence, since the depth hyperparameter 
is set to 22. This value is experimentally determined, and it 
is adopted based on the analysis and discussions, presented 
in Sect. 5.2.2. Selecting successive frames allows us to 
explore the temporal features present in video sequences.

As indicated in the preprocessing phase (in Sect. 4.1), 
our main goal is to enlarge the constructed dataset to 
address the challenge of limited samples and lack of 
diversity. Hence, three transformations, including rotation, 
horizontal and vertical flipping, are applied to the data. 
This results in a total of 520 video sequences, compris-
ing 11,440 frames, forming our created dataset that will 
be used as inputs for the “3D FireClassNet”. By employ-
ing video data augmentation techniques, we enhance the 
dataset’s diversity and make it more challenging. These 
transformations ensure, in the video frames, various posi-
tions of fire and other objects.

5.1.2  Training and validation of the 3D model

As mentioned previously, once the network structure is 
developed, the subsequent critical phase involves training 

and validation of the model in order to evaluate its perfor-
mance. For this purpose, the constructed dataset is parti-
tioned into three distinct groups: 60% of the data is allocated 
for training, 20% is for validation and the remaining 20% is 
set aside to test the model’s effectiveness on a holdout data-
set. This partition strategy is designed to ensure an equita-
ble assessment of the model’s capacity to generalize and its 
competence in handling unseen data. Subsequently, in order 
to evaluate and compare the performance of the developed 
model against other spatio-temporal deep learning models 
designed for fire recognition in videos, various datasets are 
employed.

5.1.3  Experimental architecture tuning

For the optimization of the presented deep fire recognition 
model, hyperparameters of the “3D FireClassNet” has to be 
carefully selected for an effective model. The adopted hyper-
parameters are listed in Table 3. Experiments are carried 
out for different depths of the “3D FireClassNet” network: 
depth = 8, 10, 20, 22, 25. The depth dimension represents 
the temporal dimension. It is the number of frames taken 
from each input video to construct the 3D volume of data. 
Fixing the depth is necessary to accurately capture the tem-
poral information and ensure that the length of the input 
videos is the same. For that, every experiment is repeated 
by varying the depth value to validate our adopted choice, to 
22 frames. Moreover, the number of epochs is determined, 
using the same method applied for the selection of temporal 
dimension value. In fact, the number of epochs is varied 
to 50, 100, 200, and 300. Then, the value that yields to the 
best results is retained, which is 200 epochs. The impact of 
the depth and the epochs number on the 3D model’s perfor-
mance is further analyzed in the subsequent subsections. 
Additionally, the number of training frames in a single set, 
defined by the batch size hyperparameter, is set to 8 for our 
network training.

During the training process, the optimizer plays a signifi-
cant role in enhancing the reduction of loss and updating 

Table 2  Description of the dataset used for the 3D model training

Number of fire 
videos

Number of non-
fire videos

Total

Collected videos 92 38 130
Augmented videos 368 152 520

Table 3  Training hyperparameters of the proposed “3D FireClass-
Net” network

Hyperparameter Value

Depth 22
Epochs 200
Batch size 8
Optimizer RMSProp
Weights initialization Randomly
Initial learning rate Initial Lr = 0.001
Learning rate tuning method The learning rate is reduced by

A factor of 0.5 each 50 epochs
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of the network’s parameters. For that, various available 
optimizers, such as Stochastic Gradient Descent (SGD), 
Adaptive Gradient (AdGrad), Adaptive Moment Estimation 
(Adam), and Root Mean Square Propagation (RMSProp) 
are tested to select the most adequate one for the “3D Fire-
ClassNet” training. Based on the results analysis, RMSProp 
improves the model’s performance. Thus, it is retained for 
our network training. To further optimize our 3D CNN, ran-
dom initialization of the weights is applied. Obviously, ran-
domly initializing parameters consistently yields to superior 
results in our experiments, when compared to alternative 
initialization methods.

Since the learning rate directly determines the network’s 
efficiency by updating the weights and parameters, it is con-
sidered as the most crucial hyperparameter, which should 
be carefully tuned. Consequently, different initial learning 
rates are tested to investigate the effect of the learning rate 
on the “3D FireClassNet” network’s performance. The initial 
learning rate is first set to 0.1. Then for each test experiment, 
it is set to 0.001, and 0.0001, respectively. According to the 
experimentation, the best value for finding a good local 
minimum, is 0.001. Then, for each 50 epochs, the learning 
rate is reduced by a factor of 0.5. Using this learning rate 
fine-tuning method, as illustrated in Fig. 12, results in lower 
local loss and increased accuracy.

To further optimize the designed network, several addi-
tional parameters are incorporated into the training process. 
These parameters, including the data augmentation tech-
nique, batch normalization, and dropout, are also adopted. 
Indeed, data augmentation is used to expand the variability 
of samples in the dataset. This is achieved by applying three 
types of transformations to the input videos: rotation, hori-
zontal, and vertical flipping. These transformations gener-
ate diverse representations of the frames, featuring various 

orientations and positions of the fire object. As a result, this 
approach mitigates the limitations posed by the relatively 
small number of video frames.

Additionally, batch normalization is also implemented 
in the “3D FireClassNet” network, specifically after the 
non-linear layer. Batch normalization is used to standardize 
neuron activations across layers and replaces bias variables 
(Nithya et al. 2024). This leads to improved model efficiency 
and training speed.

Another regularization technique applied to our 3D 
CNN is the dropout, with a probability of 0.5. It is primar-
ily utilized after the final fully connected layer. Dropout is 
employed to address a fundamental issue that can impact 
the model’s predictability, called overfitting. During train-
ing, this technique randomly drops units from the network, 
enhancing the model’s generalization. The fine-tuning of the 
presented hyperparameters and the judicious selection of 
parameter configurations contribute to the improved perfor-
mance of our proposed network.

5.2  Evaluation of the “3D FireClassNet” architecture

The efficacy of the presented “3D FireClassNet” network 
is assessed by analyzing the training and validation accura-
cies (Acc) and the loss function (Loss), introduced in Eqs. 6 
and 7.

The accuracy value indicates the percentage of the correct 
recognized fire scenes. The loss function, computed via 
cross-entropy, is the metric reduced by the optimizer during 
the model training. It calculates the difference between the 
model’s predictions (represented as Yi in Eq. 7) and the target 
labels that we aim to predict, known as ground truth (rep-
resented as Yi in Eq. 7), for each class i in the set of classes 
C. In the specific fire image classification task, C contains 
two classes: fire and non-fire. During each phase of train-
ing, validation, and testing, the network’s accuracy can be 
measured and monitored to demonstrate how quickly it is 
improving. By minimizing the cross-entropy loss, the model 
adjusts its parameters to improve its accuracy in distinguish-
ing between fire and non-fire classes.

In addition, other evaluation metrics, including recall (R), 
precision (P), and F1 score (F1) are computed to evaluate 
the performance of our 3D CNN. These metrics are obtained 
using the following equations:

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)Cross_Entropy Loss = −

C
∑

i

Yi ∗ logŶi

Fig. 12  The learning rate tuning method during the training with an 
initial value of 0.001
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where

• TP represents the number of fire video sequences that are 
correctly recognized as fire;

• FP denotes the number of non-fire videos which are 
wrongly recognized as fire;

• TN is the count of non-fire scenes correctly recognized 
as non-fire;

• FN indicates the number of fire video sequences that are 
incorrectly recognized as non-fire scenes.

Aiming to validate our novel “3D FireClassNet” network 
structure, two architectures with a variation in the number of 
filters are proposed. Their results are analyzed and discussed 
to validate the adopted “3D FireClassNet”. Furthermore, our 
model is evaluated based on the retained hyperparameters 
and the used parameters. The outcomes of these assessments 

(8)Recall =
TP

TP + FN

(9)Precision =
TP

TP + FP

(10)F1score = 2 ∗
Recall ∗ Precision

Recall + Precision

and the conclusion drawn are presented and discussed in the 
subsequent subsections.

5.2.1  Validation of the filters number

The number of filters in the convolutional layers is defined 
as follows: 16 filters are applied in the first 3D convolu-
tion of the first block, they are then doubled to 32 in every 
3D convolutional layer of the second block, and it is finally 
increased to 64 in each 3D convolutional layer of the third 
block. All these filters use a kernel size of 3 × 3 × 3 . In order 
to demonstrate the impact of the filters number on the fire 
recognition model’s performance, it is suggested to build 
a second variant of our architecture, where the number of 
filters is reduced by keeping the kernels size to 3 × 3 × 3 . A 
detailed description of the two variants of our architecture 
is provided in Table 4. The first block starts with 8 filters in 
the Conv3D layer. Then, it is increased to 16 filters in the 
convolution layers of the second block, to reach 32 filters 
in the two Conv3D layers of the third block. The results 
of these two architectures training are exhibited in Table 5.

It is demonstrated, from Table 5, that the second pro-
posed network, which employs a reduced number of filters, 
outperforms the “3D FireClassNet” network throughout 
the training and validation processes. The second net-
work achieves a high training accuracy ( AccTrain ) and a 
lower loss value ( LossTrain ). During the validation phase, 

Table 4  Details of the “3D 
FireClassNet” network structure 
and the second variant of the 
proposed architecture

Type Input Filter Kernel size Output

1st Network “3D FireClassNet”
Conv3D (64, 64, 22, 3) 16 3 × 3 × 3 (64, 64, 22, 16)
MaxPool3D (64, 64, 22, 16) 16 3 × 3 × 3 (22, 22, 8, 16)
Conv3D (22, 22, 8, 16) 32 3 × 3 × 3 (22, 22, 8, 32)
Conv3D (22, 22, 8, 32) 323 × 3 × 3 (22, 22, 8, 32)
MaxPool3D (22, 22, 8, 32) 32 2 × 2 × 2 (11, 11, 4, 32)
Conv3D (11, 11, 4, 32) 64 3 × 3 × 3 (11, 11, 4, 64)
Conv3D (11, 11, 4, 64) 64 3 × 3 × 3 (11, 11, 4, 64)
MaxPool3D (11, 11, 4, 64) 642 × 2 × 2 (6, 6, 2, 64)
FC_1 4608 – – 1024
FC_2 1024 – – 2
2nd network
Conv3D (64, 64, 22, 3) 8 3 × 3 × 3 (64, 64, 22, 8)
MaxPool3D (64, 64, 22, 8) 8 3 × 3 × 3 (22, 22, 8, 8)
Conv3D (22, 22, 8, 8) 16 3 × 3 × 3 (22, 22, 8, 16)
Conv3D (22, 22, 8, 16) 16 3 × 3 × 3 (22, 22, 8, 16)
MaxPool3D (22, 22, 8, 16) 16 2 × 2 × 2 (11, 11, 4, 16)
Conv3D (11, 11, 4, 16) 32 3 × 3 × 3 (11, 11, 4, 32)
Conv3D (11, 11, 4, 32) 32 3 × 3 × 3 (11, 11, 4, 32)
MaxPool3D (11, 11, 4, 32) 32 2 × 2 × 2 (6, 6, 2, 32)
FC_1 2304 – – 1024
FC_2 1024 – – 2
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the accuracy remains high at 99.04%, whereas the “3D 
FireClassNet” reaches an accuracy rate ( AccVal ) of 98.1% 
with a lower loss value of 0.0380. A comparison of these 
values is also represented in Fig. 13. The training and vali-
dation accuracy curves (Fig. 13a, c) show the two models’ 
progress during the training and validation processes. In 
Fig. 13a, the validation curve of the “3D FireClassNet” 

is close to the training curve, which converges to 1. But 
in Fig. 13c, the validation curve of the second network 
has multiple oscillations, which is different to the “3D 
FireClassNet” validation curve. Whereas the training and 
validation loss curves (Fig. 13b, d) exhibit a decrease to 
a converging point, with a minor difference in their final 
values. These results confirm the model’s capability to 

Table 5  Training results of the 
twoproposed 3D CNN networks 
when varying the number of 
filters

Training Validation Testing Parameters

Acc
Train

 (%) Loss
Train

Acc
Val

 (%) Loss
Val

Acc
Test

 (%) Loss
Test

1st network “3D 
FireClassNet”

99.36 0.0088 98.1 0.0380 98.077 0.0696 4,935,074

2nd network 100 1.25 e−07 99.04 0.0535 96.15 0.1064 2,419,282

Fig. 13  Training and validation results of the two proposed networks: a and b accuracy and loss curves of the “3D FireClassNet”, c and d accu-
racy and loss of the second network
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accurately predict unseen data samples. However, the 
highest values of accuracy and the lowest loss are obtained 
during the testing phase, by the “3D FireClassNet”. This 
demonstrates the first proposed network’s ability to effec-
tively recognize the test video data. In experimental terms, 
the results are very close, with only a slight difference. 
Visually, the representations of the training and validation 
curves of the “3D FireClassNet” are closer than those of 
the second proposed network. Based on these observations 
and the resulting ( AccTest ) and ( LossTest ) values, the struc-
ture of the “3D FireClassNet” is adopted. This is despite 
the number of parameters and the training time that are 
relatively higher, compared to the second network.

To further justify our choice of the “3D FireClassNet” 
network structure, the two derived models are evaluated. 
Their performance is depicted in Table 6. The number of 
well recognized videos (TP and TN) is the highest with the 
“3D FireClassNet”. Similarly, for FN, just two fire scenes 
are wrongly recognized as non-fire videos, compared to 
four non-fire scenes with the second network. This reflects 
the improved value of recall in the first proposed network, 
which reaches 99.46% compared to 98.91% of the second 
one. Additionally, the accuracy value 99.23%, is superior 
to the rate of 99.038% achieved by the second model. 
These findings prove the ability of the developed model, 
generated by the “3D FireClassNet” training, to accurately 
recognize fire video sequences. Nevertheless, the result-
ing precision rate of the second variant of our architec-
ture is better with a difference of 0.27%. This is since two 
non-fire videos are incorrectly recognized as fire. Thus, 
the number of false positives should be further reduced 
to enhance the model’s performance. Based on these out-
comes, the model derived by “3D FireClassNet” network 
performs better than the second model, obtained by train-
ing the proposed variant of our architecture. This further 
justifies our selection of the presented “3D FireClassNet”.

5.2.2  Experimental hyperparameters tuning 
for an enhanced “3D FireClassNet” architecture

In order to validate the retained hyperparameters, several 
distinct models are trained to validate the effectiveness of 
our novel model in recognizing fires in video sequences. To 
achieve this and to confirm our selection of the experimental 
protocol for the suggested 3D CNN network optimization, 
one of the hyperparameters is varied, while keeping the oth-
ers constant.

• Validation of the learning rate tuning method Dur-
ing the development of the 3D fire recognition model, 
parameters are updated based on the choice of hyperpa-
rameters, particularly the learning rate. It significantly 
influences the performance of the network. That’s why 
it is proposed to evaluate the impact of different initial 
learning rates on the network’s performance. Initially, a 
learning rate of 0.01 is tested. Then, the learning rates 
for every trial are set to 0.001 and 0.0001, respectively. 
The experimental findings are detailed in Table 7. For an 
initial learning rate equal to 0.01, the model achieves an 
accuracy of 97.11% on the testing set, which is 0.967% 
lower compared to the accuracy reached with an initial 
learning rate of 0.001. When the initial learning rate 
is set to 0.0001, the testing accuracy ( AccTest ) drops to 
91.35%, with a reduction of 6.727% compared to the 
accuracy at 0.001. These results are also observed in the 
loss values. Thereby, the model, with an initial learning 
rate of 0.001, performs well, achieving the highest testing 
accuracy of 98.077% and the lowest loss value of 0.0696. 
Thus, the chosen initial learning rate for our novel 3D 
model is 0.001. From these results, the effect of the ini-
tial value of the learning rate on the “3D FireClassNet” 
training is shown, demonstrating that the designed model 
is effective at recognizing fire and non-fire sequences 
on unseen data (testing set). In order to avoid the issues 
of overfitting or underfitting, the learning rate has to be 
adjusted and monitored. So it is reduced by a factor of 

Table 6  The performance of the 
two proposed 3D CNN when 
varying the number of filters

Proposed networks TP FN FP TN P (%) R (%) F1 (%) A (%)

“3D FireClassNet” 366 2 2 150 99.46 99.46 99.46 99.23
2nd network 364 4 1 151 99.73 98.91 99.32 99.038

Table 7  Accuracy and loss 
results of the proposed network 
“3D FireClassNet” by varying 
the initial value of the learning 
rate

Initial value Training Validation Testing

Acc
Train

 (%) Loss
Train

Acc
Val

 (%) Loss
Val

Acc
Test

 (%) Loss
Test

0.01 99.04 0.1423 98.08 0.3099 97.11 0.3956
0.001 99.36 0.0088 98.1 0.0380 98.077 0.0696
0.0001 99.35 0.0122 94.23 0.2815 91.35 0.5264
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0.5 for each 50 epochs, as indicated in Table 3 and pre-
sented in Fig. 12. The impact of this learning rate tun-
ing method is presented in Table 8. The learning rate is 
dropped from an initial value of 0.001 to a final value 
of 0.000125. With each reduction by 0.5, both training 
and validation accuracies are enhanced. The AccTrain is 
increased from 96.79% to reach 99.36%. And the train-
ing loss is decreased significantly from 0.0874 to 0.0088. 
These improvements are also observed in the validation 
process. During these two processes of training and vali-
dation, decreasing the learning rate enhances the model 
stability and allows for finer adjustments to the weights. 
This makes the 3D model converges to a more optimal 
point in terms of loss.

• Validation of the depth hyperparameter Different 
experiments are conducted to evaluate the impact of the 
depth hyperparameter on the model’s performance. As 
indicated in Sect. 5.1.3 of this Chapter, the depth hyper-

parameter is the temporal dimension of the “3D Fire-
ClassNet”. It represents the quantity of extracted frames 
from each input video to create the three-dimensional 
data volume. The depth is firstly set to 8, and then to 10, 
20, 22 and 25 for each trial. The results of these vari-
ations are exhibited in Table 9. It is shown that when 
the depth is equal to 8 and 25, the accuracy of the “3D 
FireClassNet” over the training set is at 100%. However, 
the testing accuracies reach 96.15% and 88.5% respec-
tively. The high value of accuracy on the training set and 
the low accuracy on the testing set reflect that the model 
is overfitting. The highest testing accuracy ( AccTest ) of 
98.077% is obtained when the depth hyperparameter is 
set to 22, and this leads to closer values for AccTrain and 
AccVal . Add to that, the lowest loss values are achieved 
when the depth is equal to 22. Therefore, a depth value 
of 22 is adopted. These outcomes are also confirmed 
by Fig. 14, illustrating the effect of varying the depth 
value on the model’s performance. The highest values, 
achieved when the depth is set to 22, prove the model’s 
robustness, compared with the other obtained models. 
Our 3D presented model achieves 99.46% in terms of 
recall and precision respectively. A high recall value indi-
cates that the majority of fire video sequences are cor-
rectly recognized, resulting in a high number of true posi-
tives and a low number of false negatives. Furthermore, 
the reached precision is 99.46%, reflecting a low number 
of false positives (only two non-fire videos are incor-

Table 8  Effect of the learning rate tuning method

Training Validation

Acc
Train

 (%) Loss
Train

Acc
Val

 (%) Loss
Val

0.001 96.79 0.0874 96.15 0.1026
0.0005 99.04 0.0231 98.07 0.0713
0.00025 98.72 0.0478 98.08 0.0470
0.000125 99.36 0.0088 98.1 0.0380

Table 9  Accuracy and loss 
results of the proposed 
network “3D FireClassNet” 
when varying the depth 
hyperparameter

Depth Training Validation Testing

Acc
Train

 (%) Loss
Train

Acc
Val

 (%) Loss
Val

Acc
Test

 (%) Loss
Test

8 100 0.0185 99.03 0.0586 96.15 0.1837
10 99.67 0.0163 96.15 0.1219 92.31 0.3865
20 99.6 0.0165 94.23 0.2748 92.30 0.4636
22 99.36 0.0088 98.1 0.0380 98.077 0.0696
25 100 0.0082 88.46 0.2886 88.5 0.5584

Fig. 14  Test performance of the 
proposed model when varying 
the depth value
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rectly classified as fire scenes). Figure 15, displaying the 
various confusion matrices, further justifies these results. 
In conclusion, our model, with a temporal dimension in 
the input vector, demonstrates its ability to accurately 
identify most fire and non-fire videos with a minimal 
number of false positives.

• Validation of the used optimizer  Further experiments 
are carried out to validate the choice of adopted hyper-
parameters, specifically the optimizer and the use of data 
augmentation technique. As previously mentioned, one 
hyperparameter is varied while the others are fixed. As 
depicted in Table 10, four types of optimizers are tested: 
Adam, SGD, AdaGrad, and RMSProp. Then, two tri-
als are performed, one without data augmentation and 
the other with data augmentation, to demonstrate the 
added value of this technique in improving the model’s 
efficiency. By analyzing the results, the derived mod-
els obtained by the Adam and SGD optimizers achieve 
higher training accuracies, compared to their testing 
accuracies. When using the Adam optimizer, the AccTrain 
is 100% which is 2.89% greater than the testing accuracy 
( AccTest ). This may lead to the possibility of overfitting 
issue. Similarly with the SGD and AdaGrad optimizers, 
the testing accuracies ( AccTest ) are 86.53% and 84.61% 
respectively, which are 13.47% and 15.39% lower from 
the training accuracies ( AccTrain ). This gap between the 
training and testing accuracies is not observed when 
using the RMSProp optimizer. In fact, the RMSProp opti-
mizer yields to higher training results, compared to other 
optimizers. These findings are approved in Fig. 16, which 
shows the impact of varying the optimizer on the model’s 
performance. As depicted, RMSProp outperforms the 
other optimizers in terms of accuracy and F1 score. The 
main issue with AdaGrad is its slow convergence because 
the sum of squared gradients only accumulates and never 
decreases. RMSProp addresses this problem by introduc-
ing a decay factor, which allows the accumulated sum 
to gradually reduce over time, preventing the learning 
rate from becoming too small. Similarly, the limitation 
of the SGD optimizer is its slower convergence. For the 
Adam, results are close to those of RMSProp, without 
exceeding them. The superior performance of RMSProp 
reflects its ability to stabilize the learning process by 
dividing the learning rate by the moving average of the 
squared gradients. This results in a more consistent train-
ing process. With the RMSProp optimizer, our derived 
3D model achieves the highest precision and recall, 
indicating the high level of accuracy and F1 score. This 
means that our model correctly identifies most fire video 
sequences, yielding to a high number of true positives 
and a low number of false negatives. Therefore, we adopt 
the RMSProp optimizer for the optimization of our “3D 
FireClassNet”.

• Validation of the used weights initialization method 
The initialization of layer weights is an important aspect 
in deep learning which can enhance or decrease the mod-
el’s performance (Chandra and Das 2023a, b, 2024). In 
our experiments, different techniques including Glorot 
(Xavier) (Glorot and Bengio 2010), He distributions (He 
et al. 2015), and random initialization are tested to show 
their impact on the training process. The Glorot initial-
izer depends on the input and output neurons, providing 
two initialization methods (Normal and Uniform). For 
Glorot Normal initialization, the initial value is gener-
ated from a normal Gaussian distribution centered on 0, 
where each layer has different standard deviation value 
defined by: std= 

√

2∕(neuronin + neuronon) . In the case 
of Glorot Uniform initialization, the initial value is gen-
erated from a uniform distribution within [-limit, limit]. 
limit is computed by: limit=

√

(6∕(neuronin + neuronon) . 
The He initializer is proposed by He et al. because the 
Glorot initializer is not effective with the ReLU activa-
tion function. The He Normal initialization generates 
the initial value from normal Gaussian distribution cen-
tered on 0, depending only on the input units, as fol-
lows: std =

√

(2∕(neuronin)) . For He Uniform initializa-
tion, weights are generated from a uniform distribution 
within [-limit, limit], where the limit is computed as: 
limit =

√

(6∕(neuronin)) . Lastly, in Random initializa-
tion, weights are initialized using random values derived 
from Gaussian distributions. The resulting accuracy 
and loss values from these initializers are exhibited in 
Table 11. It is demonstrated that the Glorot Normal ini-
tialization technique outperforms the other initializers 
in each phase. During training, it achieves an accuracy 
( AccTrain ) of 99.35%. Even for validation, the accuracy 
( AccVal ) reaches 99.04%, with a similar testing accuracy 
AccTest of 99.04%. These close accuracy values prove the 
model’s ability to make accurate predictions on unseen 
samples during training. These values highlight the effec-
tiveness of the Glorot Normal initialization method. In 
comparison to the Glorot Uniform initializer, the loss 
values ( LossTrain and LossTest ) are still higher than those 
obtained with random initialization. Concerning the He 
distributions, there is a gap between the training and test-
ing accuracies, leading to inaccurate recognition of fire 
scenes. For the model initialized with random weights, 
the accuracy and loss values are approximately similar, 
showing good performance in recognizing the test data. 
Based on the observation that the training accuracy of the 
random weights’ initialization method converges rapidly 
to a constant value, this final initializer is retained. Add 
to that, the accuracy and loss tend to converge faster dur-
ing the validation phase, indicating a more stable training 
and validation processes compared to models initialized 
with the Glorot and He distributions.



Evolving Systems 

Fig. 15  The resulting confusion matrices when varying the depth hyperparameter value: a depth = 8, b depth = 10, c depth = 20, d depth = 22, 
e depth = 25
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• Validation of the use of data augmentation technique 
Two experiments are performed, one without data aug-
mentation and the other with data augmentation, to dem-
onstrate the effect of video data augmentation technique 
on the model’s enhancement. In this experiment, the 
“3D FireClassNet” is trained without data augmenta-
tion, using RMSProp as the optimizer, with the adopted 
learning rate method, and the depth value which is set 
to 22. The results in Table 12 indicate that, when the 
model is trained without data augmentation, it achieves 
a final test accuracy of 65.38%. However, when data aug-

mentation technique is incorporated during training, the 
model’s test accuracy significantly increases to 98.077%. 
These outcomes represent a significant improvement of 
32.697%, highlighting the necessity and benefits of the 
augmented data in the model prediction process. The 
loss value ( LossTest ) is also greatly enhanced. Moreover, 
data augmentation improves the training and valida-
tion processes, as shown in Fig. 17. Figure 17c, d illus-
trate that the model trained without data augmentation 
strongly overfits the training data. This justifies the gap 
between the curves, indicating that the model performs 
better on training data, compared to the validation data. 
Hence, the divergence between the curves serves as a 
clear indicator of an overfitting model. Nevertheless, in 
Fig. 17a, b, where the “3D FireClassNet” is trained with 
data augmentation, the training and validation curves of 
the accuracy and loss are much closer. Data augmenta-
tion, which effectively increases the dataset size by gen-
erating different realistic scenes, acts as a regularization 
technique. It helps at preventing overfitting and enhances 
the model’s ability to generalize and successfully predict 
the testing set of data. Consequently, our model’s per-
formance on unseen data is improved, which explain the 
improvement in the testing results ( AccTest and LossTest ). 
By these two experiments, the added value of data aug-
mentation technique in improving the model’s efficiency 
is demonstrated.

Table 10  Accuracy and loss 
results of the proposed “3D 
fireClassNet” when varying the 
optimizer

Optimizer Training Validation Testing

Acc
Train

 (%) Loss
Train

Acc
Val

 (%) Loss
Val

Acc
Test

 (%) Loss
Test

Adam 100 0.0123 99.04 0.0242 97.11 0.07666
SGD 100 0.02495 94.23 0.1647 86.53 0.3148
AdaGrad 100 0.0114 90.38 0.2383 84.61 0.3472
RMSProp 99.36 0.0088 98.1 0.0380 98.077 0.0696

Fig. 16  Test performance of the proposed model when varying the 
optimizer

Table 11  Accuracy and 
loss results of the proposed 
network “3D FireClassNet” 
when varying the weights 
initialization method

Weights initialization method Training Validation Testing

Acc
Train

 (%) Loss
Train

Acc
Val

 (%) Loss
Val

Acc
Test

 (%) Loss
Test

GlorotNormal 99.35 0.0190 99.04 0.0242 99.04 0.0575
GlorotUniform 99.36 0.0190 100 0.0005 98.08 0.2198
HeNormal 100 1.27 × 10−7 98.07 0.0321 95.19 0.0857
HeUniform 100 1.34 × 10−7 95.19 0.2324 94.23 0.2379
Random initialization 99.36 0.0088 98.1 0.0380 98.077 0.0696

Table 12  Training results when 
adding video data augmentation 
over 200 epochs with RMSProp 
optimizer

Training Validation Testing

Acc
Train

 (%) Loss
Train

Acc
Val

 (%) Loss
Val

Acc
Test

 (%) Loss
Test

Without DA 97.37 0.1841 76.92 1.993 65.38 2.5455
Proposed with DA 99.36 0.0088 98.1 0.0380 98.077 0.0696
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• Validation of the number of epochs  Once the hyper-
parameters mentioned above are selected and evaluated, 
the number of epochs is varied to determine the adequate 
one for the training of our “3D FireClassNet”. It is ini-
tially set to 50, and then it is varied to 100, 200, and 300 
epochs. The results of this experiment are presented in 
Table 13. By analyzing this table, the highest accuracy 

value, closest to the validation accuracy, and with the 
minimal losses ( LossTrain ) and ( LossVal ), are achieved 
when the epochs number is equal to 200. Increasing this 
number for more training iterations may lead to an over-
fitting, as observed when using 300 epochs. A difference 
of 8.65% is observed between the training and testing 
accuracy. Compared with the remaining results, using 

Fig. 17  Effect of adding the video data augmentation on the training and validation results of the proposed “3D FireClassNet”: a, b accuracy and 
loss curves when training with video data augmentation, c, d accuracy and loss curves when training without video data augmentation

Table 13  Accuracy and loss 
results of the proposed network 
“3D FireClassNet” when 
varying the number of epochs

Number of 
epochs

Training Validation Testing

Acc
Train

 (%) Loss
Train

Acc
Val

 (%) Loss
Val

Acc
Test

 (%) Loss
Test

50 99.04 0.0337 88.46 0.5054 87.5 0.3865
100 97.11 6.01 × 10−5 97.11 0.1318 95.19 0.0981
200 99.36 0.0088 98.1 0.0380 98.077 0.0696
300 100 1.19 × 10−7 95.19 0.4544 91.35 0.7339
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200 epochs is optimal for the 3D CNN training. Regard-
ing the test process, the model trained with 200 epochs 
performs better on unseen data, reaching an accuracy of 
over 98%. Based on this analysis, we conclude that train-
ing our “3D FireClassNet” for 200 epochs is the most 
suitable choice.

5.3  Comparative study

In order to further demonstrate the effectiveness of the 
proposed 3D fire recognition model, a comparative anal-
ysis is conducted with the state-of-the-art models. Two 
types of fire recognition approaches, based on exploiting 
the spatio-temporal features, are used for this compari-
son: hand-crafted approaches (Dimitropoulos et al. 2012; 
Barmpoutis et al. 2013; Dimitropoulos et al. 2015; Tora-
bian et al. 2021) and deep learning ones (Shin et al. 2018; 
Kim and Lee 2019; Vu et al. 2021; Nguyen et al. 2021). 
The results of these two comparisons are summarized 
in Tables 14 and 15, in the subsequent subsections. It is 
important to note that in these tables, the values presented 
in bold format indicate the best results, while the blank 
values marked with “NA” signify that the corresponding 
values are not reported in the related research.

5.3.1  Comparison with the existing video‑based fire 
detection approaches

Table 14 presents the comparison findings between the 
developed 3D fire recognition model and the related works 
based on manual spatio-temporal features extraction. 
Each contribution is evaluated on a specific dataset. This 
is because there is no standard fire database, as previously 
mentioned. For an accurate comparison, it is suggested to 
assess our model on the datasets used by these approaches. 
In Dimitropoulos et al. (2012); Barmpoutis et al. (2013); 
Dimitropoulos et al. (2015), the “Firesense” dataset, con-
taining 11 fire videos and 16 non-fire scenes (Grammalidis 
et al. 2017), is used for the experiments. Dimitropolous et al. 
focus on extracting spatial and temporal features using dif-
ferent descriptors. In Dimitropoulos et al. (2012), a motion 
descriptor is employed based on the spatio-temporal features, 
combined with a color model. These extracted features are 
merged with a new spatio-temporal consistency, in Barm-
poutis et al. (2013). Afterwards, dynamic texture analysis is 
introduced in Dimitropoulos et al. (2015) to enhance the fire 
recognition performance. As shown, the False Positive Rate 
(FPR) is enhanced, in Dimitropoulos et al.’s works, from 
13.8% in Dimitropoulos et al. (2012) to 0% in Dimitropoulos 
et al. (2015). Similarly, no false positives are identified by 
our model, when it is evaluated on the “Firesense” dataset. 
Besides, the accuracy value is 99.37% which is greater than 
the reached one 98.05% achieved by the model presented by 

Table 14  Comparison of 
the presented 3D model 
performance with the existing 
hand-crafted methods

Approaches Datasets FPR (%) R (%) P (%) A(%)

Hand-crafted methods
Dimitropoulos et al. (2012) Firesense Grammalidis 

et al. (2017)
13.80 96.31 NA NA

Barmpoutis et al. (2013) Firesense 0.08 96.18 NA 98.05
Dimitropoulos et al. (2015) Firesense 0 99.17 NA NA
Torabian et al. (2021) Bilkent Cetin (2007) 0.03 99.52 NA NA
DL-based method

Firesense 0 98.21 100 99.37
Proposed approach Bilkent 0.0192 96.42 96.43 97.5

Our dataset 0.01315 99.46 99.46 99.23

Table 15  Comparison of our 
3D fire recognition model’s 
performance with the related 
deep models

Approaches Datasets FPR (%) R (%) P (%) A(%)

Shin et al. (2018) Furg Steffens et al. (2015) 0.0395 NA 86.70 96.14
Kim and Lee (2019) Mivia Foggia et al. (2015) 2.47 NA NA 97.92
Vu et al. (2021) Mivia 2.7 NA NA 97.5
Nguyen et al. (2021) Mivia 2.7 NA 92 93.3

Furg 0 100 100 100
Proposed approach Mivia 0.0294 88.46 95.83 93.33

Our dataset 0.01315 99.46 99.46 99.23
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Barmpoutis et al. (2013). It is demonstrated that, by giving 
sufficient data and computational power, our proposed 3D 
CNN architecture outperforms the traditional hand-crafted 
methods. These approaches, relying on manually extracting 
and analyzing features, might capture certain aspects of the 
data well but often struggle with high-dimensional nature of 
video data. In contrast, our proposed three-dimensional net-
work automatically extracts and directly learns features from 
the data itself, enabling it to capture the spatio-temporal fea-
tures of video sequences. Despite of the promising findings 
achieved by these approaches, they may not reach the higher 
performance as a 3D model. This is primarily because hand-
crafted methods can miss out on important temporal infor-
mation that is crucial for accurately recognizing and tracking 
fire in videos. The 3D CNN, on the other hand, processes the 
spatial and temporal dimensions simultaneously, offering a 
more comprehensive analysis of the video data.

Another dataset is employed by Torabian et al. in Tora-
bian et al. (2021), to assess their fire recognition model, 
known as the “Bilkent” dataset (Cetin 2007). Their approach 
is based on extracting spatial and temporal features from 
each frame, which are then used in an SVM classifier to dis-
tinguish fires in video sequences. The difference in the False 
Positive Rate (FPR) between our model, evaluated on the 
“Bilkent” dataset and that of Torabian et al. does not exceed 
0.0108%. This indicates their close effectiveness at reducing 
the false positives. The model, introduced in Torabian et al. 
(2021), also guarantees slightly better fire recognition per-
formance than our 3D model, in terms of recall. The reached 
recall value of 96.42% can be explained by some misclassifi-
cation, where there is a lot of fire scenes that are incorrectly 
recognized as non-fire fire videos. It’s important to note that 
the “Bilkent” dataset comprises only 13 fire videos, which is 
insufficient for our “3D FireClassNet” training, needing two 
classes: fire and non-fire.

By analyzing this table, it is revealed that our 3D model 
outperforms the related hand-crafted methods in terms of 
False Positive Rate. This is particularly when testing on the 
datasets used in the related works. When the test perfor-
mance is measured on our created dataset, better results are 
achieved, compared to reached findings when testing on the 
other dataset. This reflects the impact of the preprocessing 
phase, where the input data are augmented through differ-
ent transformations. Our dataset includes diverse positions 
and orientations of fire object in video sequences. It is var-
ied with challenging samples of fire and non-fire scenes. 
Therefore, our generated 3D model shows a greater ability 
to recognize fire and non-fire videos sequences, yielding to 
significant results. The outcomes highlight the advantages 
of deep learning models in recognition tasks compared to 
hand-crafted methods. These latter typically require more 
computational time and memory for feature extraction and 
recognition processes, since the whole recognition process is 

applied for each frame. In contrast, once a three-dimensional 
deep neural network is trained, the prediction process can be 
quickly accomplished. This is mainly because the 3D CNN 
simultaneously processes both spatial and temporal dimen-
sions, providing a more accurate analysis of the video data.

5.3.2  Comparison with the related deep learning 
models based on spatio‑temporal networks for fire 
recognition

Concerning the existing deep fire recognition models, that 
are based on spatio-temporal architectures, the proposed 
3D model is compared with four related models (Shin et al. 
2018; Kim and Lee 2019; Vu et al. 2021; Nguyen et al. 
2021). Our model is evaluated using the datasets from 
these works, for a fair comparison. Table 15 presents the 
effectiveness comparison between our approach and the 
one proposed in Shin et al. (2018), using the “Furg” data-
set (Steffens et al. 2015). It is composed by 17 fire videos 
and 6 non-fire scenes. As shown, our presented 3D model 
outperforms the Shin et al.’s model (Shin et al. 2018) in 
recognizing fire sequences, in terms of FPR, precision and 
accuracy. Indeed, the obtained FPR is lower than that of 
Shin et al. (2018). And the resulting values of precision and 
accuracy are greater than those achieved by Shin et al.’s 
model. This model is composed by two streams: the spatial 
stream is based on the VGG-16 network, and the temporal 
one is designed using a 3D CNN to capture the temporal 
information. Hence, it is demonstrated that the proposed “3D 
FireClassNet”, based on a 3D convolutional neural network, 
provides better fire recognition performance, than that of 
Shin et al. (2018).

It can be also seen from this table that the “Mivia” dataset 
is utilized in Kim and Lee (2019); Vu et al. (2021); Nguyen 
et al. (2021). Using this dataset, containing 14 fire videos 
and 16 non-fire scenes, our presented model is more effi-
cient than the three state-of-the-art models of Kim and Lee 
(2019); Vu et al. (2021); Nguyen et al. (2021). Their intro-
duced networks are based on a CNN-LSTM architecture for 
the spatio-temporal analysis. In fact, our achieved precision 
is actually superior by 3.83% compared to the value belong-
ing to the model of Nguyen et al. (2021). The False Positive 
Rate (FPR) is also improved with our “3D FireClassNet” 
by 2.6706%, which demonstrates the ability of our model 
to reduce the number of false positives. This reflects the 
best precision value of 95.83%, compared to the model’s 
precision of 92%. It should be pointed that the results of our 
fire recognition model, evaluated on our constructed dataset, 
reaches the highest findings.

This advantage derives not only from the diversity of 
samples in our dataset, but also from the simplicity of the 
proposed 3D CNN structure. A 3D CNN is designed to 
simultaneously analyze spatial and temporal information 
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within a single network. It differs greatly from the CNN-
LSTM and the two-stream networks, which require sep-
arate models to process spatial and temporal data. This 
leads to longer training time. These complex models need 
much more time to learn, as they involve the coordina-
tion of two separate networks. By using the presented 
“3D FireClassNet”, this process is optimized by reduc-
ing overall training time while efficiently capturing the 
crucial temporal dynamics and spatial features required 
for accurate fire recognition. This efficiency makes the 
3D CNN particularly well adapted to our diverse dataset, 
enabling robust performance without the extended training 
time needed by other methods.

To further assess our model’s effectiveness, it is com-
pared to other approaches based on spatio-temporal net-
works. Table  16 presents the comparative results. The 
precision and recall achieved with our model exceed those 
obtained by Zhikai Yang et al. who used a lightweight CNN 
and the Simple Recurrent Unit (SRU) Yang et al. (2020). 
Specifically, our model’s precision is 99.46% compared to 
97.4%. This low precision in Yang et al. (2020) shows that 
their model may require additional training or specific heu-
ristics to capture more fire instances. The improved scores 
indicate that our 3D network structure yields more accurate 
fire recognition outcomes. This is thanks to the simplicity 
of the “3D FireClassNet” and its well-adjusted hyperparam-
eters. More notably, when compared with studies that use the 
combination of CNN architecture with BLSTM and LSTM 
respectively (Agirman and Tasdemir 2022; Abhilash 2023), 
our model demonstrates a high overall performance with an 
accuracy of 99.23%. This proves that the simplified structure 
of the proposed “3D FireClassNet” along with the optimized 
hyperparameters for training, outperforms results obtained 
from the CNN-BLSTM and CNN-LSTM architectures. 
These ones, which require analyzing multiple consecutive 
video frames simultaneously, typically need longer train-
ing times and a larger number of parameters. Furthermore, 
our model exhibits superior performance with an impressive 
weighted harmonic mean F1 score of 99.46%, which is bet-
ter than results from works employing ConvLSTM-based 
architectures with various modifications, like in (He et al. 
2024; Masrur et al. 2024).

According to this comparison, our 3D CNN is the best 
performing architecture for fire recognition purposes. This 
is not only related to the varied and diversified samples that 
constitute our dataset, but also to the simple structure of a 
3D CNN. Just one network is designed to analyze simul-
taneously spatial and temporal informations. It does not 
require a significant amount of time for training, unlike the 
CNN-LSTM or two-stream architectures, which need a lot 
of time to train two separate networks. Thanks to its uncom-
plicate structure, 3D CNN requires four dimensions: two 
spatial dimensions, one channel dimension and one tempo-
ral dimension. Therefore, the structure of the proposed “3D 
FireClassNet” with the adopted hyperparameters of the pre-
sented experimental protocol, along with a sufficient amount 
of data, contributes to the promising achieved results.

5.4  Comparison between “3D FireClassNet” 
and “FireClassNet” architectures

As it is mentioned, our proposed network “3D FireClass-
Net” is inspired by the presented “FireClassNet” of the work 
(Daoud et al. 2023), which is developed for fire image clas-
sification. Our idea is to expand the 2D spatial CNN into 
a spatio-temporal neural network using a 3D CNN, where 
spatio-temporal features are learned, and a time dimension is 
added to the input vector. This temporal dimension enhances 
the capability of the network to analyze video sequences 
and recognize the fire object. The main difference lies in the 
convolutional and max pooling layers: Conv2D with filter 
size of 2 × 2 and MaxPooling2D layers are applied in the 2D 
structure of “FireClassNet”, whereas Conv3D with a filter 
kernel size of 3 × 3 × 3 and MaxPooling3D layers are used in 
the 3D structure of “3D FireClassNet” network. The impact 
of employing Conv3D layers is significantly proved since 
they exploit spatio-temporal features rather than relying only 
on spatial features for fire image classification.

It is experimentally shown, from Table 17, that our model 
based on the 3D CNN performs better than the developed 
model for fire image classification approach. Actually, our 
“3D FireClassNet” is inspired by the 2D architecture “Fire-
ClassNet” presented in Daoud et al. (2023). During experi-
ments, it is deduced that the training time of the 3D CNN 

Table 16  Performance 
comparison with other related 
works

Approaches Architectures A (%) P (%) R (%) F1(%)

Yang et al. (2020) CNN + SRU 97.20 97.4 96.2 96.79
Agirman and Tasdemir (2022) CNN + BLSTM 94.5 NA NA 94.4
He et al. (2024) Optimized ConvLSTM 92.17 NA NA 89.37
Masrur et al. (2024) ConvLSTM with attention 

mechanism
NA 98.40 61.93 76.02

Abhilash (2023) CNN + LSTM 97.47 NA NA NA
Proposed 3D CNN 99.23 99.46 99.46 99.46
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network is reduced compared to the training time of “Fire-
ClassNet”, as well as the prediction time. Predicting a video 
is faster than predicting each separate frame of a sequence. 
Hence, the huge time required for the prediction process 
in a single frame is reduced. This is because the model’s 
input is a video where the spatial and temporal informations 
are simultaneously treated through a single-stream network. 
Add to that, concerning the number of parameters in each 
architecture, the “3D FireClassNet” has approximately 4 M 
parameters, compared to 6 M in the “FireClassNet” network. 
With these achievements, the main goals of this study have 
been accomplished, including the development of a simpli-
fied 3D CNN structure for fire video analysis. The derived 
model is characterized by having fewer parameters and 
reduced training and prediction times, making it suitable 
for deployment on small devices to recognize fires in video 
surveillance systems.

6  Conclusion

In this paper, a novel deep fire recognition approach in 
video surveillance scenes is introduced. It is principally 
based on a new 3D convolutional neural network “3D Fire-
ClassNet”, which captures and learns spatial and temporal 
features using one stream network. This approach consists 
in preprocessing the input video data by applying various 
transformations. Subsequently, the proposed 3D CNN is 
trained on the varied video samples of the created dataset. 
An accurate 3D model, capable of recognizing fire in vid-
eos, is generated. The experimental outputs demonstrate the 
efficiency of the 3D CNN structure in learning the spatial 
information and the temporal interactions between adjacent 
frames. Comparative analysis also illustrates that the “3D 
FireClassNet” outperforms the related hand-crafted methods 
and spatio-temporal architectures in terms of false positive 
rate and precision. This proves the potential benefits of using 
3D CNN in the fire recognition field, specifically to explore 
the spatial and temporal features simultaneously within a 
single network. Hence, the motion is captured more effec-
tively than 2D CNN, yielding to improved performance and 
reduced training and prediction times.

Despite these achieved promising results, the developed 
3D model has some limitations that should be considered 
in our follow-up work. Indeed, training the network with 
a large number of videos that cover diverse situations and 
contexts, can result in greater accuracy. To further enhance 
the model’s performance, we propose enriching the dataset 
swith more fire and non-fire scenes, incorporating more 
challenging sequences. It is also planned to expand the fire 
recognition task to include smoke detection, where fires 
will be detected from their early stages starting with the 
appearance of smoke. These improvements for the upcom-
ing research aim to create a more robust and efficient 3D 
CNN model for a comprehensive fire recognition system 
applicable to real-world scenarios.
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