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Abstract
Social networks such as Facebook, Twitter, etc. have dramatically increased in recent years. These databases are huge and 
their use is time consuming. In this work, we present an optimal calculation in graph mining for link prediction to reduce 
the runtime. For that purpose, we propose a novel approach that operates on the connected components of a network instead 
of the whole network. We show that thanks to this decomposition, the results of all link prediction algorithms using local 
and path-based similarity measure scan be achieved with much less amount of computations and hence within much shorter 
runtime. We show that this gain depends on the distribution of nodes in components and may be captured by the Gini and 
the variance measures. We propose a parallel architecture of the link prediction process based on the connected components 
decomposition. To validate this architecture, we have carried out an experimental study on a wide range of well-known 
datasets. The obtained results clearly confirm the efficiency of exploiting the decomposition of the network into connected 
components in link prediction.

Keywords Link prediction · Social network · Parallel computing · Graph mining · Local information · Interaction mining · 
Complex networks

1 Introduction

Interaction mining in complex networks has increasingly 
attracted the attention of several researchers and has become 
the subject of many branches of science. Various real-world 
systems can be modeled as networks in evolving interactions 

in the form of graphs (Newman 2003), such as computers, 
neural networks; chemical as well as online social networks 
(Zhou et al. 2009). In such networks, entities are represented 
by nodes or vertices, while edges between pairs of nodes 
describe interactions, associations, or relationships between 
nodes (Liao et al. 2015). Several efforts have been made to 
understand networks evolution (Albert and Barabasi 2002; 
Dorogovtsev and Mendes 2002), their relationships with 
both topologies and operation (Newman 2003; Boccaletti 
et al. 2006), as well as network characteristics (Costa et al. 
2007).

Another important area of research in complex networks 
is interested in links between nodes and consists in study-
ing the persistence of existing links or the prediction of new 
links when the networks evolves. Persistent links, also called 
durable links, stable links or permanent links, are links that 
exist in the past and will continue to exist in the future. On 
the other side, link prediction is related to detecting links 
that are missing in the past but that potentially will appear as 
new links in the future (Liben-Nowell and Kleinberg 2007).

Link prediction can be used in a variety of contexts: it 
has been used in bioinformatics to predict protein–protein 
interactions (PPI) (Yu et al. 2021). It is also used in security 
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applications to identify hidden groups of terrorists and crim-
inals (Hasan and Zaki 2011). It has been applied in health-
care to predict the spread of epidemic diseases (Kamath 
et al. 2001) and in the development of strategies to immunize 
potentially affected people to limit the spread of the epi-
demic. Link prediction has been used in the development of 
road networks to improve routes (Liu et al. 2011), in online 
connected community networks where future associations 
can be suggested as probable friendships, which can help 
the system to recommend new friends and thus increase their 
reliability towards the service (Dorogovtsev and Mendes 
2002). Another example of practical use of link prediction 
is on Amazon, and Alibaba products, where recommended 
movies on Netflix and advertisements are displayed to users 
on Google AdWords and Facebook (Ibrahim and Chen 
2015). Most link prediction algorithms that have been pro-
posed are similarity-based algorithms, i.e., they are based 
on a similarity measure which assigns a score to each pair 
of vertices in order to quantify its probability of existence. 
Similarity based algorithms are widely used due to their pre-
diction accuracy and their computational efficiency (Yang 
and Zhang 2016).Similarity-based algorithms can be classi-
fied into two types: Algorithms based on local information 
of nodes (nearest neighbor) and algorithms based on global 
path information (shortest path). However, since traditional 
link prediction algorithms try to evaluate all the absent links 
in a network, they generally cannot effectively handle large-
scale complex networks. It is necessary to look for new tech-
niques and approaches able to reduce the amount of compu-
tations during link prediction in such networks in order to 
ensure a reasonable consumption of time and memory space. 
The aim of the present paper is to address this problem and 
propose such a new approach based on the decomposition 
of the initial network into connected components. The idea 
is that in similarity-based algorithms for link prediction, the 
links between nodes belonging to different components do 
not matter. Our approach only focuses on the calculation of 
local links, i.e., links inside each component.

Moreover, from the observation that the components may 
be treated separately, in our approach again, we propose a 
parallel architecture for link prediction which distributes the 
set of components on several processors.

The main contributions of this paper can be summarized 
as follows.

– In the first part of our contribution, we show the impor-
tance of our approach and the gain we obtain by using 
the decomposition into connected components instead 
of working directly on the original graph. We formally 
analyze this gain in terms of the reduction of the number 
of calculated links. This gain is also illustrated experi-
mentally in terms of runtime. Moreover, a comparison 
between the baseline approach, to which belong all pre-

vious works, and our approach has been done using the 
same databases.

– The second part of our contribution is based on the 
remark that the decomposition allows us to parallelize 
the calculations. So, we have derived four variants of our 
algorithm, according to: (1) the use or not of parallel-
ism and/or (2) the inclusion or not of the decomposition 
step into the calculation process. The experimental study 
shows that parallelization allows us to save additional 
time.

The reminder of the paper is organized as follows. We 
present in Sect. 2 an overview of various measures based 
on local or neighborhood data as well as measures based on 
the shortest paths between nodes. Section 3 gives a formal 
description of the link prediction problem and highlights the 
potential difficulties due to the large size of networks for link 
prediction. Then, it discusses how the decomposition into 
connected components can be very useful in reducing the 
amount of computations. In Sect. 4 we present our proposed 
architecture for a link prediction system based on the decom-
position of the network into its connected components. In 
particular, the proposed architecture exploits the decomposi-
tion to ensure a parallel treatment by distributing the compo-
nents on several processors. In Sect. 5, we present the base-
line algorithm which does not use decomposition and four 
variants of our proposed approach, based on decomposition, 
depending on whether the decomposition step is included in 
the scenario or not and whether the treatment is sequential 
or parallel. Section 6 is devoted to an experimental study for 
the validation of our proposal. Finally, in Sect. 7, we con-
clude our work and give some perspectives for future work.

2  Related work

In many link prediction methods, scores are derived from the 
class of immediate node neighborhoods. In other methods, 
scores calculation is based on paths between nodes (Wang 
et al. 2015; Lü and Zhou 2011). Several research works are 
based on the use of these measures either to compare the 
performance of new approaches (Li et al. 2020) or to mod-
ify them (Yang and Zhang 2016; Ahmad et al. 2020) and 
propose new extensions (Aziz et al. 2020). Among these 
measures which are still popularly used, we can quote the 
following measures categorized in two classes: those based 
on local information and those used in path methods.

2.1  Similarity indices based on local information

There are numerous local similarity measures. They are 
basically determined by the number of common neighbors 
shared by two nodes, say x and y. Let us denote by Γ(x) the 



305Evolving Systems (2024) 15:303–320 

1 3

set of x’s neighbors and by k(x) =|Γ(x)| the x’s degree. To 
each link (x, y) a score is assigned which is denoted by Sxy.

– Common neighbors (Liben-Nowell and Kleinberg 
2007). This measure captures the common sense idea 
that two nodes are more likely to have a link if they 
have many common neighbors; this measure is defined 
as follows:

– Jaccard index (Liben-Nowell and Kleinberg 2007). Jac-
card index normalizes the size of common neighbors. 
This measure is defined by:

– Adamic Adar index (Adamic and Adar 2003). This meas-
ure is calculated by adding weights to the nodes that are 
connected to both nodes x and y. It is defined by:

– Resource allocation index (Zhou et al. 2009). Con-
sidering a pair of nodes x and y that are not directly 
connected and assuming that the node x needs to give 
some resources to y with their common neighbors as 
transmitters, this measure is defined by:

– Node and Link Clustering coefficient (NLC) (Wu et al. 
2016a). This similarity method is based on the basic 
topological characteristic of a network called "Cluster-
ing Coefficient". Clustering coefficients of nodes and 
links are incorporated to calculate similarity score. 
This measure is defined as follows:

– Clustering Coefficient for Link Prediction (Wu et al. 
2016b). This method uses more information about the 
local link/triangle structure than the CAR index (Can-
nistraci et al. 2013), but costs less computation time. 
The key idea of the method is to exploit the value of 
links between other neighbors of common neighbors. 
It is defined as follows:

(1)SCN
xy

= |�(x) ∩ �(y)|

(2)SCN
xy

=
|�(x) ∩ �(y)|
|�(x) ∪ �(y)|

(3)SAA
xy

=
∑

Z∈�(x)∩�(y)

1

logk(z)

(4)SRA
xy

=
∑

Z∈�(x)∩�(y)

1

k(z)

(5)SNLC
xy

=
∑

Z∈𝚪(x)∩𝚪(y)

SCN
xz

kz − 1
∗ C(z) +

SCN
yz

kz − 1
∗ C(z)

(6)SCCLP
xy

=
∑

Z∈�(x)∩�(y)

tz

k(z)(k(z) − 1)∕2

such that: tz is the number of triangles passing through 
node z.

– Common neighbor plus preferential attachment 
(CN + PA) index (Zeng 2016). This method is pre-
sented to estimate the probability of existence of a 
link between two nodes. Based on the combination of 
the two methods Common neighbor and preferential 
attachment (Mitzenmacher 2004). It is defined as fol-
lows:

 where α is a parameter (e.g.: � = 0.01 ) and 
∑

z∈V ��(z)�
�V�  is 

equal to the mean degree⟨k⟩ of the network.
– Adaptive degree penalization for link prediction (ADP) 

(Martínez et  al. 2016). The measure finds that the 
degree of penalization which better obtains the results 
of the link prediction can be estimated by considering 
the clustering coefficient of the network. The predic-
tion technique automatically adapts to the network. It 
is defined as follows:

where c is the average clustering coefficient of the net-
work and β is a constant (e.g. β = 2.5).

– Fuzzy modeling for link prediction (Tuan et al. 2019). 
Let µΓ(x) and µΓ(y)be the membership degrees of the sets 
of common neighbors Γ(x)and Γ(y)of the node x and y 
respectively, then:

• The fuzzy common neighbor similarity score is 
defined as:

• The fuzzy Adamic–Adar Similarity Score is defined 
as:

  where the membership function is µΓ(z).
• The fuzzy Jaccard Coefficient is given by:

– Triangle Structure Index (TRA) (Bai et al. 2018). This 
method offers us a new similarity index, by combining 
the aforementioned triangle structure and the idea of the 
RA index. It is defined as follows:

(7)S𝐂𝐍+𝐏𝐀
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 where Δ is the number of triangles TRA formed by x, y 
and z, which is: Δ(x, y;z) = Δ(x, z) + Δ(y, z).

– Sam Similarity (Samad et al. 2019). This measure refers 
to the similarity of x to y as well as the similarity of y 
to x. It divides the similarity task computation into two 
parts. First, it determines how much x is similar to y. Sec-
ond, it computes the similarity between y and x. Finally, 
the measure is defined by using both outcomes, as fol-
lows:

– Common Neighbor to Degree (CN2D) (Mumin et al. 
2022). Consider two unconnected nodes a and b, and 
assuming that they have common neighbors between 
them. They are able to present and propagate some infor-
mation through these neighbors in their interaction. The 
total resources allocated to the target node pair is esti-
mated using the following equation:

with a parameter β between 0 and 1, (e.g. β = 0.01).

2.2  Similarity indices based on path methods

Paths between two nodes can also be used to compute simi-
larities between couples of nodes. Such methods are referred 
to as path-based metrics. The following are some of the most 
popular methods in this class:

– Common Neighbor and Distance index (Yang and 
Zhang 2016). This is an extension of common neigh-
bors. It is based on two properties of a complex net-
work, common neighbor and the distance between two 
nodes x and y.

where CNxy is the number of common nodes between 
node x and y and dxy is the distance between x and y.

– Newton’s Gravitational Law index (Ashraf et al. 2018). 
This measurement is inspired by Newton's law of uni-

(12)STRA
xy

=
∑
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1 + Δ(x, y;z)∕2

k(z)

(13)SSam
xy
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)

(15)SCND
xy

=

{ CNxy+1

2
Γ(x) ∩ Γ(y) ≠ ∅
1

dxy
otherwise

versal gravitation, which states that the force exerted 
between two masses is proportional to the product of 
these masses, and inversely proportional to the square 
of the distance between their centers. It is defined as fol-
lows:

where CD denotes the degree of centrality, SP is the 
shortest path.

– Local major path degree(LMPD) (Yang et al. 2018). 
Local path between two nodes is equal to the sum of 
the degrees of the intermediate nodes. The local path 
designates the paths of two and three stages between two 
nodes, and this method is defined as follows:

where LPDi =
∑ni

j=1
kj.

– Relative-path-based algorithm for link prediction 
(RP) (Li et al. 2020). This method assumes that paths 
between nodes and neighbors provide basic similar-
ity characteristics. This method uses factorial infor-
mation about paths between nodes and neighbors, in 
addition to paths between pairs of nodes, in the simi-
larity calculation for link prediction. It is defined as 
follows:

where SDP2

x,y =
∑

z1 ,z2∈P2(x,y)
1

kz1
.kz2

 et SDP3

x,y =
∑
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1
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.kz2

, 

P2(x,y) et  P3(x,y)represent all intermediate nodes on paths 
of length 2 and 3 respectively between nodes x and y.

– Common neighbor centrality index (Ahmad et al. 2020). 
This measure is based on two vital properties of nodes, 
namely the number of common neighbors and their cen-
trality. Common neighbor refers to the common nodes 
between two nodes. Centrality refers to the prestige that 
a node enjoys in a network, it is defined by:

where α is a parameter that varies in the interval [0, 1] 
and dxy denotes the shortest distance between x and y.
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3  Using decomposition to improve link 
prediction performance

The aim of this section is to formally define the problem of 
link prediction and study the impact of using as input the 
connected components of a network instead of the whole 
network on the amount of necessary computation and con-
sequently on the runtime.

Definition 1 (Complex Network). A complex network is 
defined by a non-oriented graph G(V,E) where V is a set of 
nodes and E ⊆ V × V is a set of links between pairs of nodes.

We put n =|V| (number of nodes) and e =|E| (number of 
links) and we denote by E′ the set of absent links in the 
graph: E′ = {(x,y) ∈ V2|(x,y) ∉ E}.

Notice that if G is a complete graph (where there is a 
link between every pair of nodes), then the number of links 
is n.(n−1)/2.

In general, the size of E′ which represents the set of 
non-existing links in the network is n.(n−1)/2−e.

Existing link prediction algorithms based on local and 
path measure compute the scores for all the non-existing 
links belonging to E’ since they consider that any cur-
rent non existing link may become an actual link in the 
future. Accordingly, for very large datasets, the number 
of potential links to evaluate may be very important. For 
example, in twitter-dataset (Reza and Huan 2009), we have 
11.316.811 nodes and 85.331.846 links and then, the num-
ber of scores that should be calculated for non-existing 
links is more than 64 trillions!!

To overcome this problem, the solution we propose 
is based on the decomposition of our graph into its con-
nected components. Indeed, as it will be shown later, for 
all approaches based on local and path measures, we only 
need to compute scores between nodes that both belong 
to the same component. This allows one to save runtime 
by reducing the number of required calculation opera-
tions. Moreover, the fact that connected components can 
be treated independently, allows one to perform parallel 
computation by affecting to each available processor a sub-
set of components.

Definition 2  (Connected components). Let G = (V,E) be a 
graph representing a complex network.

A set C = {G1 =  (V1,E1),G2 =  (V2,E2),…,Gc =  (Vc,Ec)} 
such that each  Gi =  (Vi,Ei) is a sub-graph of G defines a 
decomposition of G into its connected components if:

• 
⋃c

i=1
Vi = V and

⋃c

i=1
Ei = E

• ∀i ∈ {1,… , c},∀x, y ∈ Vi there is a path relating x and y

• ∀i, j ∈ {1,… c}, such that i ≠ j,Vi ∩ Vj = ∅ and Ei ∩ Ej = ∅

Suppose that Γ(x) denotes the set of neighbors of the 
node x, i.e., nodes having direct links with x, pathsx,y 
denotes the set of all paths of links relating x and y, and 
dx,y denotes the distance between nodes x and y, i.e., the 
length of the shortest path between x and y. The following 
proposition states that nodes belonging to distinct com-
ponents do not share any neighbors and are not related by 
any paths.

Proposition 1  Let C = {G1 = (V1,E1),G2  =(V2,E2),…, 
Gc  = (Vc,Ec)} be the set of connected components of a com-
plex network G = (V,E). We have:

Proof For any x, y such that x ∈ Vi, y ∈ Vj and i ≠ j we have: 
Γ (x) ⊆ Vi and Γ(y) ⊆ Vj (all the neighbors of x (resp. y) are 
inside Vi (resp. Vj)). Then, since Vi ∩ Vj = ∅ . It follows that 
Γ(x) ∩ Γ(y) = ∅ . This immediately leads to the factthat 
|Γ(x) ∩ Γ(y)|= 0.

Now, if we suppose that there is a path relating x and 
y then there must be a path between some x′ and y′ such 
that x’ ∈ Vi and y’ ∈ Vj which is impossible since Vi ∩ Vj= ∅ 
and Ei ∩ Ej = ∅ . Hence we obtain pathsx,y = ∅ . Since there 
is no path between x and y, then it follows immediately that 
dxy = ∞..

Corollary 1 Given a local or a path-based similarity meas-
ure f we have:

Proof Follows immediately from Proposition 1 and the defi-
nitions of local and path-based similarity measures.

This corollary is important since it states that it suffices 
to only compute the similarity measure between couples of 
nodes belonging to the same component.

Now let Gain(G) be the gain obtained by using the 
decomposition of G into its connected components. Gain(G) 
is the number of couples of nodes (x,y) where x and y belong 
to two different components.

Proposition 2 Let C = {G1 =  (V1,E1),G2 =  (V2,E2),…,Gc =  (Vc
,Ec)} be the set of connected components of a social network 
G = (V,E). We put |V |= n, |Vi|=  ni for i ∈ {1,…,c} and |E|= e. 
We have:

(20)

∀i, j ∈ {1, ..., c}s.t.i ≠ j,∀x ∈ Vi,∀y ∈ Vj

⎧⎪⎪⎨⎪⎪⎩

Γ(x) ∩ Γ(y) ≠ 0 (hence �Γ(x) ∩ Γ(y)� = 0)

and

pathsx,y = ∅ (hence dxy = ∞)

(21)∀i, j ∈ {1, ..., c}s.t.i ≠ j,∀x ∈ Vi,∀y ∈ Vj ∶ f (x, y) = 0
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Proof Let NEval(G) (resp. NEval′(G)) be the num-
ber of evaluated potential links by using decompo-
sition (resp. without using decomposition). Then, 
Gain(G) = NEval′(G) − NEval(G).

It follows that:

Without using decomposition, all similarity indices 
based on local information and path methods calculate a 
score list (denoted scores′(G)) of all non-existent links in 
the graph:

The number of evaluated links is:

After decomposition, this score list (denoted scores (G)) 
becomes:

(22)Gain(G) =

c−1∑
i=1

c∑
j=i+1

(ni ∗ nj)

NEval(G) =

c∑
i=1

(
ni
(
ni − 1

)
2

− ei

)

=
1

2

c∑
i=1

ni
(
ni − 1

)
−

c∑
i=1

ei

=
1

2

c∑
i=1

(
n2
i
− ni

)
− e

NEval�(G) =
n(n − 1)

2
− e =

1

2

(
n2 − n

)
− e =

1

2

((
n1 +⋯ + nc

)2
−
(
n1 +⋯ + nc

))
− e

=
1

2

((
n2
1
+ n2

2
⋯ + n2

c
) + 2(n1n2 +⋯ n1nc + n2n3 +⋯ + nc−1nc

)
−
(
n1 +⋯ + nc

))
− e

=
1

2

(
c∑

i=1

n2
i
+ 2

c−1∑
i=1

c∑
j=i+1

ninj −

c∑
i=1

ni

)
− e

=
1

2

c∑
i=1

(n2
i
− ni) − e +

c−1∑
i=1

c∑
j=i+1

ninj = NEval(G) +

c−1∑
i=1

c∑
j=i+1

ninj

Gain(G) =

c−1∑
i=1

c∑
j=i+1

(ni ∗ nj)

(23)scores
�

(G) =
{(

x, y, smethod
xy

)
∕x, y ∈ Vand(x, y) ∉ E

}

(24)

|||E
� ||| = Gain (G) +

c∑
i=1

|||E
�

i

||| =
c−1∑
i=1

c∑
j=i+1

(
ni ∗ nj

)
+

c∑
i=1

|||E
�

i

|||

The number of evaluated links is:

For all the other non-existing links, the similarity measure 
is set to 0:

Let us consider some special cases:

– Case of one connected component (c = 1). In this case, 
the decomposition does not matter and Gain(G) = 0.

– Many components (c > 1). If there is more than one com-
ponent, the gain is strictly positive. We can distinguish the 
two following particular cases:

• Case where n1≈ n2≈ ··· ≈ nc ≈ nc.In this case the gain is 
maximal and it is given by:

• Case where n1 = (n − c + 1),n2 = n3 = …nc = 1. This 
case corresponds to the situation where each c − 1 
components contains one node, and one component 
contains all the remaining n − c + 1 nodes. In this 
case the gain is minimal, and is given by:

(25)

scores(G) =

c⋃
i=1

{(
x, y, smethod

xy

)
∕x, y ∈ Viand(x, y) ∉ Ei

}

(26)|||E
� ||| − Gain(G) =

c∑
i=1

|||E
�

i

|||

(27)∀i, js.t.i ≠ j,∀i ∈ Vi,∀j ∈ Vj, s
method
xy

= 0

Gainmax(G) =

c−1∑
i=1

c∑
j=i+1

(
n

c

)2

=
c(c − 1)

2

(
n

c

)2

=
n2(c − 1)

2c
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Example 1 Let us consider the graph G(V,E) depicted in 
Fig. 1a with |V|= n = 9 nodes and |E|= e = 8 edges. G con-
tains c = 3 connected components. Without using decompo-
sition, to predict future links, we need to calculate the score 
of all nonexistent links (28 links) as shown in Fig. 1b.

By using the decomposition of G into its connected 
components, instead of calculating the scores of the links 
that do not exist in the complete graph, we only calcu-
late the scores of the links that do not exist inside the 
three components (c1),(c2) and (c3) (see Fig.  1c). We 
have 0 links in (c1), 0 links in (c2) and 2 links in (c3). The 
obtained gain is 26.

Example 2 We assume that G(V, E) is a training graph with 
|V|= n = 9 nodes. The number of connected components is 
c = 3. Table 1 illustrates the different possible cases of the 
nodes distribution on the components and the gain associ-
ated with each of these distributions.

We can notice that the gain clearly depends on the 
distribution of the nodes in the connected components: 
the more the distribution is homogeneous, i.e., where the 
nodes are more uniformly distributed over the components, 
the greater is the gain. By contrast, heterogeneous distribu-
tions lead to less important gains.

Now, we show that this idea may be captured by two 
further measures:

Gainmin(G) =

c−1∑
i=1

c∑
j=i+1

(
ninj

)

=

c∑
j=2

n1 ∗ 1 +

c−1∑
i=2

c∑
j=i+1

(1 ∗ 1)

=

c∑
j=2

(n − c + 1) +

c−1∑
i=2

c∑
j=i+1

(1)

= (c − 1)(n − c + 1) +
(c − 1)(c − 2)

2

=
(c − 1)(2n − c)

2

– The Gini coefficient is a measure that captures the 
inequality or the heterogeneity of a distribution. It 
used in different domains, namely in supervised learn-
ing for the construction of decision trees (Breiman 
et al. 1984; Daniya et al. 2020).For a decomposition 
C = {G1 = (V1,E1), G2 = (V2,E2),…,Gc = (Vc, Ec)} of a 
network G = (V,E), the Gini coefficient is defined by 
the following formula:

where P(ni) is the proportion of nodes present in the 
component Gi(Vi,Ei) and it is determined as follows: 

– The variance is a statistical measure of the dispersion 
of the values of a distribution. It is calculated as fol-
lows:

(28)Gini(G) = 1 −

c∑
i=1

p2(ni)

(29)p
(
ni
)
=

||Vi
||

|V| =
ni

n

(a) 

(c) 
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2 

Fig. 1  The gain in terms of the number of calculated links by using 
decomposition illustrated on a simple undirected network

Table 1  Various possible 
distributions of nodes on 
the components and their 
calculation results of Gain, Gini 
and Variance 

n° n1 n2 n3 Var VarNorm Gini GiniNorm Gain GainNorm

1 7 1 1 8.00 1.00 0.37 0.00 15 0.00
2 6 2 1 4.67 0.58 0.49 0.42 20 0.42
3 5 1 3 2.67 0.33 0.57 0.67 23 0.67
4 5 2 2 2.00 0.25 0.59 0.75 24 0.75
5 4 4 1 2.00 0.25 0.59 0.75 24 0.75
6 4 3 2 0.67 0.08 0.64 0.92 26 0.92
7 3 3 3 0.00 0.00 0.67 1.00 27 1.00
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where m is the mean value of the distribution, i.e., 
m = n/c.

The three measures (Gain, Gini and Variance) can be 
normalized to take their values in [0,1]. For that purpose, 
we use the following formula:

where X ∈ {Gain,Gini,Var}, Xnorm(resp. Xmax, Xmin) is the 
normalized (resp. maximal, minimal) value of X. Namely, 
we can check that:

Ginimax(G) = 1 −
1

c
 and Ginimin(G) = (c−1)(2n−c)

n2

Varmax(G) =
(c−1)(n−c)2

c2
 and Varmin(G) = 0

Gainmax(G) =
n2(c−1)

2c
 and Gainmin(G) = (c−1)(2n−c)

2

Table 1 gives the directed and normalized values of the 
three measures (Gain, Gini and Variance) for the different 
possible distributions in our example. Figure 2 graphi-
cally depicts the obtained results.

Interestingly enough, we can notice that the nor-
malized gain and the normalized Gini coefficient 
coincide (Gainnorm(G) = Gininorm(G)). In contrast, 
the normalized variance is inversely proportional to 
the normalized Gini and Gain, and more precisely: 
Varnorm(G) = 1 − Gainnorm(G).

4  The proposed architecture

In this paper, we propose an architecture for the link pre-
diction problem which is based on six main steps instead 
of four steps (Ying et al. 2014), namely: Data gathering, 
preprocessing, decomposition, parallelization, prediction 
and evaluation. Our architecture is depicted in Fig. 3.

– Data gathering. This step consists of preparing the data-
sets corresponding to a network, into training and test 
subsets, the complete dataset is divided according to one 
of the two following cases:

• The first principle relies on the evolution time of the 
dataset (Liben-Nowell and Kleinberg 2007). Since 
each interaction takes place in a particular instance, 
we define a training interval 

[
t0,t

′

0

]
 which in turn 

defines the subgraphGTr = (VTr,ETr) containing all the 
interactions performed between the instants t0, and 
t
′

0
 . Similarly, another test interval 

[
t1,t

′

1

]
 defines a test 

sub-graph GTs = (VTs,ETs) containing all the interac-
tions performed between the instants t1, and t′

1
 . This 

(30)Var(G) =

∑c

i=1
�ni − m�2
c

(31)Xnorm =
X − Xmin

Xmax − Xmin
∈ [0, 1]

principle is used to predict the likelihood of future 
links (in dynamic networks (Kumar et al. 2020)).

• Following the second principle, we randomly divide 
the set of links of the dataset into two subsets, 
namely, 90% (Lü and Zhou 2011; Xiao and Zhang 
2015; Wang et al. 2017; Daminelli et al. 2015) [80% 
(Ahmad et  al. 2020; Wu 2018), 70% (Sui et  al. 

Fig. 2  Gain, Gini and Variance rates according to the distribution of 
the nodes on the components

DataSets

GTrain GTest

GPred 6. Evalua�on

1. Data gathering

Gtc1 Gtc2 Gtcc

GPc1 GPc2 GPcc

4.Paralleliza�on

2. Preprocessing

5. Predic�on

3. Decomposi�on

GTrain GTest

Fig. 3  Parallel architecture for link prediction based on connected 
components decomposition
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2013)] of links in a training sub-graph GTr = (V Tr, 
ETr) and 10% (20%, 30%) of links in a test subset 
GTs = (V Ts, ETs) where E = ETr ∪ ETs and ETr ∩ ETs = ∅. 
This principle is used to find the missing links [in 
static networks (Kumar et al. 2020)].

– Preprocessing. This step consists of filtering some nodes 
of our network by:

• Eliminating the isolated nodes (Lu et al. 2009) since 
it is difficult to predict anything about isolated nodes 
because one has no network-based information.

• Discarding sometimes the low-degree nodes (Liben-
Nowell and Kleinberg 2007; Lu et al. 2009; Scripps 
et al. 2009) because one has too little information 
about them.

• Converting a directed network into an undirected one 
and subsequently, applying link prediction (Shibata 
et al. 2012).

• Restricting the analysis to nodes that are common 
to the train and test networks (Lu et al. 2009) and 
eliminating the other nodes.

– Decomposition. In this step we decompose the training 
graph G = (V,E) into its connected components:

– Parallelization. The connected components are distrib-
uted through several processors. Each processor receives 
one or more components. We use the term local nodes to 
denote the nodes that each processor receives.

C = {G1 =
(
V1,E1

)
,G2 =

(
V2,E2

)
,… ,Gc = (Vc,Ec)}.

– Prediction. Each component is locally evaluated with 
its local nodes, and a partial score list is established. At 
this stage, only one similarity measure is used. In most 
cases, we want to predict only new links, i.e., links that 
are not present in the training component. At the end of 
this operation, all the local list scores are merged into a 
global list score

– Evaluation. Finally, it becomes possible to evaluate the 
performance of the prediction results by comparing them 
with the test subsets. We use different thresholds, param-
eters and performance measures.

5  Algorithms

In this section we present and compare, in terms of runtime, 
different scenarios that can be obtained by considering dif-
ferent choice criteria: whether we exploit or not the decom-
position of the graph into connected component; whether 
the algorithm integrates the decomposition step, or directly 
receives as input the set of connected components, and 
whether the execution is sequential or parallel. This leads 
to five scenarios (Algo1-Algo5) explained in the following:

5.1  Without decomposition (Baseline method)

Algo 1. This algorithm corresponds to the baseline scenario, 
which corresponds to existing works, where the input is the 
whole graph, no decomposition is done, and of course the 
execution is sequential.

5.2  With decomposition (our approach)

In this part we propose four new variants of algorithms 
which exploit the decomposition (see Table 2): Algo2 is the 
basic algorithm of our approach which will be compared 
with the baseline algorithm (Algo1). The other algorithms 

(Algo3–Algo5) are improvements of our basic algorithm 
(Algo2). The proposed improvements are the following:

– Instead of considering the decomposition step inside the 
algorithm of link prediction, it suffices to perform it once 
and start the algorithm from the connected components. 
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This avoids the useless repetitive execution of the same 
decomposition step in several executions.

– Since each component may be handled separately from 
the others, one can parallelize the algorithm instead of 
using a sequential treatment.

Algo3 (resp. Algo4, Algo5) results from Algo2 by inte-
grating the first improvement (resp. second improvement, 
both improvements).

Algo2. This algorithm includes the decomposition of the 
input graph into connected components. Then, the predic-
tion task is sequentially executed on the set of connected 
components.

Algo3. This algorithm is similar to Algo2. but it does not 
include the decomposition step, but directly receives as input 
the set of connected components. The prediction task is then 

sequentially executed on the set of connected components 
too. Algo3. is obtained from Algo2. by modifying the input 
to be the set of connected components and by eliminating 
line 1.

Table 2  The four variants of algorithms derived from our decomposi-
tion-based approach

Type of execution With decomposition step

Included Not included

Sequential execution Algo2 Algo3
Parallel execution Algo4 Algo5
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Algo4. Now, this algorithm includes the decomposition 
of the input graph into connected components. Then, the 

prediction task is performed by a parallel execution on the 
set of connected components.

Table 3  Illustration of 
properties of 22 real world 
networks

|V| denotes the number of nodes, |E| is the number of edges, ⟨k⟩ denotes the average degree, C represents 
the clustering coefficient, ASPL is the average shortest path length, D is the graph density, His the hetero-
geneity indice and R s the assortativity degree

Name |v| |E| ⟨k⟩ C ASPL D H R

ADV 5155 39,285 15.24 0.25 3.22 9 5.4060 − 0.0951
BUP 105 441 8.40 0.49 3.08 7 1.4207 − 0.1279
CDM 16,264 47,594 5.85 0.64 5.82 18 2.2087 0.1846
CEG 297 2148 14.46 0.29 2.46 5 1.8008 − 0.1632
CGS 6158 11,898 3.86 0.49 3.62 14 3.9467 0.2426
EML 1133 5451 9.62 0.22 3.61 8 1.9421 0.0782
ERD 6927 11,850 3.42 0.12 3.78 4 12.6708 − 0.1156
FBK 4024 87,887 43.68 0.59 3.98 13 2.4320 0.0707
GRQ 5241 14,484 5.53 0.53 5.05 17 3.0523 0.6593
HMT 2426 16,630 13.71 0.54 3.15 10 3.1011 0.0474
HPD 8756 32,331 7.38 0.11 4.19 14 4.5133 − 0.0510
HTC 7610 15,751 4.14 0.49 5.68 19 2.0986 0.0293
INF 410 2765 13.49 0.46 3.63 9 1.3876 0.2258
KHN 3772 12,718 6.74 0.25 3.63 12 9.4220 − 0.1205
LDG 8324 41,532 9.98 0.31 4.37 16 6.1880 − 0.0997
NSC 1461 2742 3.75 0.69 2.59 17 1.8486 0.4616
PGP 10,680 24,316 4.55 0.27 7.49 24 4.1465 0.2382
SMG 1024 4916 9.6 0.31 2.98 6 3.9475 − 0.1925
UAL 332 2126 12.81 0.63 2.74 6 3.4639 − 0.2079
UPG 4941 6564 2.67 0.08 18.99 46 1.4504 0.0035
YST 2284 6646 5.82 0.13 4.29 11 2.8479 − 0.0991
ZWL 6651 54,182 16.29 0.32 3.85 10 2.5851 0.0006
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Algo5. This algorithm is similar to Algo4. but it does 
not include the decomposition step but directly receives as 
input the set of connected components. The prediction task 

is then executed in parallel on the m processors. Algo5. is 
obtained from Algo4. by modifying the input to be the set of 
connected components and by eliminating line 1.

Table 4  Various possible distributions of nodes on the components and their calculation results of gain, Gini and variance

Datasets train Without Decomposition With Decomposition Gain1 Rate (Norm)

G |VTr| |ETr| |E’Tr| |C| ∑|E’c,Tr| Nb/link Rategain1% Gain2 Var Gini

BUP 105 352 5108 1 5108 0 – 0.00 0.00 0.00
CEG 297 1718 42,238 1 42,238 0 – 0.00 0.00 0.00
FBK 4024 70,310 8,023,966 27 7,867,859 156,107 1.95 0.01 0.99 0.01
INF 410 2212 81,633 5 80,003 1630 2.00 0.00 1.00 0.00
ZWL 6651 43,346 22,071,229 114 21,241,223 830,006 3.76 0.00 1.00 0.00
SMG 1024 3932 519,844 35 483,648 36,196 6.96 0.00 1.00 0.00
EML 1133 4360 636,918 48 583,711 53,207 8.35 0.00 1.00 0.00
LDG 8324 33,225 34,607,101 337 31,089,311 3,517,790 10.16 0.02 0.98 0.02
UAL 332 1701 53,245 14 47,764 5481 10.29 0.03 0.97 0.03
KHN 3772 10,175 7,101,931 218 6,123,668 978,263 13.77 0.03 0.97 0.03
ADV 5155 31,428 13,253,007 330 11,333,166 1,919,841 14.49 0.02 0.98 0.02
HPD 8756 25,865 38,303,525 669 31,436,609 6,866,916 17.93 0.04 0.96 0.04
YST 2284 5316 2,601,870 202 2,068,432 533,438 20.50 0.04 0.96 0.04
ERD 6927 9480 23,978,721 1045 17,245,416 6,733,305 28.08 0.00 1.00 0.00
CDM 16,264 38,075 132,212,641 1288 87,661,470 44,551,171 33.70 0.22 0.78 0.22
HMT 2426 13,304 2,928,221 201 1,907,080 1,021,141 34.87 0.23 0.77 0.23
PGP 10,680 19,453 57,006,407 1230 35,945,368 21,061,039 36.95 0.19 0.81 0.19
UPG 4941 5275 12,198,995 458 7,494,909 4,704,086 38.56 0.25 0.75 0.25
GRQ 5241 11,588 13,719,832 652 7,387,831 6,332,001 46.15 0.30 0.70 0.30
HTC 7610 12,601 28,939,644 1022 14,331,576 14,608,068 50.48 0.34 0.66 0.34
CGS 6158 9519 18,947,884 1305 5,437,329 13,510,555 71.30 0.54 0.46 0.54
NSC 1461 2193 1,064,337 329 61,890 1,002,447 94.19 0.90 0.10 0.90
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6  Experimental results

6.1  Datasets

We have performed our experiments on several datasets 
representing different real-world complex networks from 
different sources and application domains. This collection 
covers a wide range of properties, sizes, average degrees, 
clustering coefficients and heterogeneity indices (see 
Table 3). This collection is freely downloadable from the 
address: http:// noesis. ikor. org/ datas ets/ linkp redic tion

– UPG, (Watts and Strogatz 1998) is a power distribution 
network.

– HPD, (Peri et al. 2003), YST, (Bu et al. 2003) and CEG, 
(Watts and Strogatz 1998) are biological networks.

– ERD, KNH, LDG, SMG, ZWL, CGS, (Batagelj and 
Mrvar 2006), HTC, CDM, (Newman 2001), NSC, 
(Newman 2006) and GRQ, (Leskovec et al. 2007) are 
co-authorship networks for different fields of study.

– HMT, (Kunegis 2013), FBK, (McAuley and Leskovec 
2012), and ADV, (Massa et al. 2009) are social networks.

– UAL, (Massa et al. 2009) is an airport traffic network.
– EML, (Guimera et al. 2003) is a network of individuals 

who shared emails.
– PGP, (Boguña et al. 2004) is an interaction network of 

users of the Pretty Good Privacy algorithm.
– BUP, (Kunegis 2013) is a network of political blogs.
– Finally, INF, (Isella et al. 2011) is a network of face-to-

face contacts in an exhibition.

6.2  Results and discussion

To demonstrate the effectiveness of our idea on real-world 
datasets, we have randomly divided the existing links of each 
network into two sets: The training set and the test set repre-
senting 80% and 20% of the total links, respectively. We have 
used 22 different datasets in the experiments to evaluate the 
performance of the different methods proposed in this study.

All the calculations have been performed on a machine 
of type HP Z620Workstation with processor of model: 
Intel (R) Xeon (R) CPU E5-2620 v2 12cores of frequency 
2.10 GHz and a memory size of 128 GB.

6.2.1  Impact of decomposition on the number 
of calculated links in different datasets

The first part of our experiments is devoted to evaluate 
the gain obtained for the different used datasets. Table 4 

summarizes the obtained results. We notice that Gain1 
denotes the difference between the total number of links 
calculated without decomposition and those calculated 
by using decomposition. The gain is expressed in Table 4 
both in terms of the number of treated links and in terms 
of their rate with respect to the total number of links in 
the train input graph. The corresponding value are put in 
bold font:

and

Gain2 is the normalized gain contained in the interval 
[0,1]:

Notice that Var and Gini in Table 4 denote the normal-
ized values.

From Table 4, we can extract two graphs:

– In the first graph (see Fig. 4) we can observe that the 
value of the gain is zero for the first two datasets because 
they contain only one component and therefore the num-
ber of links calculated before and after the decomposi-
tion. Thereafter we have a gain progression which attains 
up to 94.19%of the number of links calculated without 
decomposition but ignored by using decomposition.

– The second graph (Fig. 5) illustrates the influence of 
the heterogeneity degree of nodes distribution through 
connected components on the obtained gain, captured 
equivalently by the Gini, the Variance or the direct gain 
normalized measures. We can notice that for the cases 
where there is only one component, the distribution has 
no meaning since all the measures (Gain, Gini and Vari-
ance) equal zero. When the number of components is 
greater than 1, The Figure confirms that the more (resp. 
less) the distribution is uniform the more (resp. less) 
important is the gain, i.e., the number of ignored links. 
This graph also confirms, on several real datasets, the 
relationships between normalized gain, Gini and variance 
measures already evoked in Sect. 3 on a small example.

(32)Gain1 =
|||E
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http://noesis.ikor.org/datasets/linkprediction


316 Evolving Systems (2024) 15:303–320

1 3

To conclude this section, we can notice that the decompo-
sition brings us for sure a gain as soon as the social network 
contains at least two connected components. This obtained 
gain is more important in the situations where the distri-
bution of nodes through the components is more uniform 
which allows us to considerably save runtime, especially for 
large datasets. The following section focuses on the study of 
the impact of decomposition on runtime.

6.2.2  Impact of decomposition on runtime

The aim of this section is to show how the decomposition of 
the training graph helps one to substantially shorten runtime. 
Saving runtime is ensured thanks to decomposition by two 
means: First as discussed above, the decomposition allows 
one to reduce the very amount of necessary computations 
to perform (first experiment). In addition, the decomposi-
tion allows one to save additional runtime by paralleling the 
link prediction process on several processors (second experi-
ment). Moreover, to have a global view, we give an overall 
comparison of all algorithms (the baseline algorithm and the 
different variants of our algorithms) by using four similarity 
measures and four datasets (third experiment).

– Experiment 1. Comparison between our basic algorithm 
and the baseline algorithm

In this first experiment, we use Jaccard index as a score 
measure. We execute all algorithms for 100 times on dif-
ferent synthetic datasets and we take the average runtime 
obtained for each synthetic dataset. We start from the BUP 
dataset (see Table 3) which contains one component and we 
generate new synthetic datasets by successively duplicat-
ing the initial one to obtain networks with 2 components, 
3 components and so on until10 components. Notice that 
the obtained datasets are perfectly homogeneous since all 
the components are identical and accordingly, the obtained 
gain is optimal (see Table 5 and  6). In Table 5, the number 
of links treated by Algo2 (after decomposition) as well as 
its run time are put in bold font to highlight the fact that 
these results obtained by Algo2 are always better than those 
obtained by Algo1. In Table 6, the best obtained results in 
terms of runtime appear in bold font.

We compare our basic proposed algorithm which uses 
decomposition and performs in sequential way (Algo2) with 
the baseline algorithm without decomposition which corre-
sponds to the existing approaches (Algo1). The aim of this 
comparison is to show the impact of exploiting decomposi-
tion into connected components on shortening runtime in 
link prediction.

Table 5 illustrates the results obtained from the first 
experiment. From Table 5, we can extract the graph depicted 
in Fig. 6.

From the graph depicted in Fig. 6 we can notice that our 
algorithm using decomposition (Algo2) clearly outperforms 
the basic algorithm which does not use decomposition 
(Algo1) with a very important gap, especially in the case of 
large graphs with an important number of components, so 
it is better to decompose the graph before the calculations.

– Experiment 2. Comparison between the variants of our 
proposed approach

We have demonstrated in Sect. 6.2.1 and Experiment 1 
above the necessity of decomposition to minimize the num-
ber of links and the runtime. In this second experiment, we 
limit the comparison to the four variants of our proposed 
approach (Algo2–Algo5). Recall that the four variants are 
based on decomposition and they vary according to: (1) the 
use or not of parallelism and/or (2) the inclusion or not of 
the decomposition step into the calculation process. Notice 
that in this experiment we use the same settings and follow 
the same steps as in Experiment 1.

Table 6 illustrates the results obtained from the second 
experiment. From Table 6, we can extract the graph depicted 
in Fig. 7.

On the one hand, we can observe that the necessary 
time to decompose the graph into connected components 
is almost negligible. Indeed we can see that the curve for 
the sequential (resp. parallel) algorithm Algo2 (resp. Algo4) 

Fig. 4  Comparison between the calculated number of links with and 
without decomposition

Fig. 5  Comparison between the Gain, Variance and Gini values on 
several datasets
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including the decomposition step is very close to that of 
the sequential (resp. parallel) algorithm Algo3 (resp. Algo5) 
which directly receives as input the decomposed graph. On 
the other hand, we can observe that the parallel algorithms 

Algo4 and Algo5 are much faster than the sequential algo-
rithms Algo2 and Algo3.

In summary, we can confirm the efficiency of using 
decomposition prior to link prediction. Indeed, this con-
siderably reduces the amount of required computations and 
consequently leads to a remarkable decrease in runtime.

Moreover, the parallelization of the link prediction pro-
cess, made possible thanks to the use of connected com-
ponents instead of a whole network as input, provides us 
with an additional gain in terms of runtime. The more the 
network is large, i.e. has a larger number of components and 
the distribution of nodes through the components is more 
homogeneous, the more important is the effect of paralleliza-
tion in reducing the runtime.

– Experiment 3. Overall Comparison between all the algo-
rithms

Table 5  Results obtained by 
Algo1 (basic algorithm) and 
our algorithm Algo2 (with 
decomposition) on different 
synthetic datasets with Jaccard 
index

Datasets train Without decompo-
sition

With decomposition Gain

|C| |VTr| |ETr| |E’tr| Algo1
(s)

∑|E’c| Algo2 (s) Link Time

Diff Rate % Diff Rate %

1 105 353 5107 0.23 5107 0.23 0 0.00 0.00 0.00
2 210 706 21,239 0.95 10,214 0.46 11,025 51.91 0.49 51.58
3 315 1059 48,396 2.16 15,321 0.69 33,075 68.34 1.47 68.06
4 420 1412 86,578 3.84 20,428 0.91 66,150 76.41 2.93 76.30
5 525 1765 135,785 6.00 25,535 1.15 110,250 81.19 4.85 80.83
6 630 2118 196,017 8.68 30,642 1.38 165,375 84.37 7.30 84.10
7 735 2471 267,274 11.80 35,749 1.60 231,525 86.62 10.20 86.44
8 840 2824 349,556 15.46 40,856 1.82 308,700 88.31 13.64 88.23
9 945 3177 442,863 19.59 45,963 2.06 396,900 89.62 17.53 89.48
10 1050 3530 547,195 24.15 51,070 2.28 496,125 90.67 21.87 90.56

Table 6  Results obtained 
by our four algorithms with 
decomposition on connected 
components on different 
synthetic datasets with Jaccard 
index

Datasets train With decomposition

|C| |VTr| |ETr| ∑|E’c| Sequential execution Parallel execution

Algo2 (s) Algo3 (s) Algo4 (s) Algo5 (s)

1 105 353 5107 0.23 0.23 0.23 0.23
2 210 706 10,214 0.46 0.45 0.27 0.26
3 315 1059 15,321 0.69 0.67 0.28 0.27
4 420 1412 20,428 0.91 0.89 0.31 0.28
5 525 1765 25,535 1.15 1.12 0.33 0.30
6 630 2118 30,642 1.38 1.34 0.36 0.30
7 735 2471 35,749 1.60 1.57 0.38 0.35
8 840 2824 40,856 1.82 1.79 0.43 0.40
9 945 3177 45,963 2.06 2.01 0.45 0.40
10 1050 3530 51,070 2.28 2.23 0.47 0.42
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Fig. 6  Comparison between the basic algorithm (Algo2) and our pro-
posed algorithm (Algo2) in terms of runtime on synthetic datasets.
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In the third experiment we have applied the five algo-
rithms (Algo1-Algo5) on four real datasets: NSC, CGS, 
HTC, and GRQ. In addition, we have used for each data-
set four score measures: Jaccard index, Common Neighbor 
(CN),Adamic Adar index (AA) and Resource allocation 
index (RA). The implementation of these measures can be 
found in the networkx library.1]

The results are shown in the graphs of Fig. 8. According 
to these graphs:

• We can notice that the four variants of our proposed 
approach using decomposition (Algo2-Algo4) clearly 
outperform the baseline algorithm which does not use 
decomposition (Algo1) with significant gap, especially 
in the case of large graphs with an important number of 
components.

• It is also worth noting that the gain rate in terms of cal-
culation time between the baseline algorithm Algo1 and 
the other proposed algorithms varies according to the 
change in the variance (resp. Gini) rate: the lower (resp. 
higher) is the variance (resp. Gini) rate, the higher is the 
gain rate and vice versa.

7  Conclusion

In this paper, we presented an efficient approach for link 
prediction in large social networks which starts from the set 
of connected components of a network instead of the whole 
network itself. The key idea of our proposal is that in all 
algorithms based on local and path-based measures, it suf-
fices to evaluate links relating nodes of the same component. 
We have shown that this enables us to considerably save 
runtime by reducing the number of necessary calculations.

We have formally studied the gain obtained thanks to 
decomposition and shown both theoretically and experimen-
tally that this gain is more important when the distribution 

0

1

1

2

2

3

1 2 3 4 5 6 7 8 9 10

Ru
n�

m
e(

se
c)

Number of components
algo2 algo3 algo4 algo5

Figure  7  Comparison between the four ours algorithms (Algo2–
Algo5) using decomposition in terms of runtime on synthetic datasets
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Fig. 8  Comparison between all five algorithms on four datasets and 
using four similarity measures

1 https:// netwo rkx. org/ docum entat ion/ stable/ refer ence/ algor ithms/ 
link_ predi ction. html

https://networkx.org/documentation/stable/reference/algorithms/link_prediction.html
https://networkx.org/documentation/stable/reference/algorithms/link_prediction.html
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of nodes on the components of the considered network is 
homogeneous.

Moreover, we have also shown that using decomposition 
makes possible the parallelization of the link prediction pro-
cess by distributing the components on several processors. 
This may provide us with additional gain in terms of runt-
ime, especially for large networks, having a large number of 
components and where the distribution of nodes on compo-
nents is homogeneous.

As future work, we plan to develop a fast link predic-
tion library based on our idea of network decomposition 
and including all local information-based and path-based 
similarity indices. We plan also to develop a method for 
combining local and global information for the evaluation 
of inter-components links that are completely neglected in 
local and path-based methods, but may make sense in some 
practical contexts.

Data availability This collection is freely downloadable from the 
address: http:// noesis. ikor. org/ datas ets/ linkp redic tion.
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