
Vol.:(0123456789)1 3

Evolving Systems (2024) 15:303–320
https://doi.org/10.1007/s12530-023-09492-2

ORIGINAL PAPER

Fast approach for link prediction in complex networks based on graph
decomposition

Abdelhamid Saifi1,3  · Farid Nouioua2,3,4 · Samir Akhrouf1

Received: 4 May 2022 / Accepted: 15 February 2023 / Published online: 15 March 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Social networks such as Facebook, Twitter, etc. have dramatically increased in recent years. These databases are huge and
their use is time consuming. In this work, we present an optimal calculation in graph mining for link prediction to reduce
the runtime. For that purpose, we propose a novel approach that operates on the connected components of a network instead
of the whole network. We show that thanks to this decomposition, the results of all link prediction algorithms using local
and path-based similarity measure scan be achieved with much less amount of computations and hence within much shorter
runtime. We show that this gain depends on the distribution of nodes in components and may be captured by the Gini and
the variance measures. We propose a parallel architecture of the link prediction process based on the connected components
decomposition. To validate this architecture, we have carried out an experimental study on a wide range of well-known
datasets. The obtained results clearly confirm the efficiency of exploiting the decomposition of the network into connected
components in link prediction.

Keywords  Link prediction · Social network · Parallel computing · Graph mining · Local information · Interaction mining ·
Complex networks

1  Introduction

Interaction mining in complex networks has increasingly
attracted the attention of several researchers and has become
the subject of many branches of science. Various real-world
systems can be modeled as networks in evolving interactions

in the form of graphs (Newman 2003), such as computers,
neural networks; chemical as well as online social networks
(Zhou et al. 2009). In such networks, entities are represented
by nodes or vertices, while edges between pairs of nodes
describe interactions, associations, or relationships between
nodes (Liao et al. 2015). Several efforts have been made to
understand networks evolution (Albert and Barabasi 2002;
Dorogovtsev and Mendes 2002), their relationships with
both topologies and operation (Newman 2003; Boccaletti
et al. 2006), as well as network characteristics (Costa et al.
2007).

Another important area of research in complex networks
is interested in links between nodes and consists in study-
ing the persistence of existing links or the prediction of new
links when the networks evolves. Persistent links, also called
durable links, stable links or permanent links, are links that
exist in the past and will continue to exist in the future. On
the other side, link prediction is related to detecting links
that are missing in the past but that potentially will appear as
new links in the future (Liben-Nowell and Kleinberg 2007).

Link prediction can be used in a variety of contexts: it
has been used in bioinformatics to predict protein–protein
interactions (PPI) (Yu et al. 2021). It is also used in security

 *	 Abdelhamid Saifi
	 abdelhamid_saifi@yahoo.fr

	 Farid Nouioua
	 faridnouioua@gmail.com; farid.nouioua@lis-lab.fr

	 Samir Akhrouf
	 samir.akrouf@gmail.com

1	 Department of Computer Science, Mohammed Boudiaf
University of M’Sila, M’Sila, Algeria

2	 Department of Computer Science, Mohammed El
bachir El Ibrahimi University of Bordj Bou Arreridj,
Bordj Bou Arreridj, Algeria

3	 LMSE Laboratory, Mohamed El Bachir El Ibrahimi
University of Bordj Bou Arreridj, Bordj Bou Arreridj,
Algeria

4	 LIS Laboratory, UMR‑CNRS 7020, Aix-Marseille
University, Marseille, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-023-09492-2&domain=pdf
http://orcid.org/0000-0002-1615-4392

304	 Evolving Systems (2024) 15:303–320

1 3

applications to identify hidden groups of terrorists and crim-
inals (Hasan and Zaki 2011). It has been applied in health-
care to predict the spread of epidemic diseases (Kamath
et al. 2001) and in the development of strategies to immunize
potentially affected people to limit the spread of the epi-
demic. Link prediction has been used in the development of
road networks to improve routes (Liu et al. 2011), in online
connected community networks where future associations
can be suggested as probable friendships, which can help
the system to recommend new friends and thus increase their
reliability towards the service (Dorogovtsev and Mendes
2002). Another example of practical use of link prediction
is on Amazon, and Alibaba products, where recommended
movies on Netflix and advertisements are displayed to users
on Google AdWords and Facebook (Ibrahim and Chen
2015). Most link prediction algorithms that have been pro-
posed are similarity-based algorithms, i.e., they are based
on a similarity measure which assigns a score to each pair
of vertices in order to quantify its probability of existence.
Similarity based algorithms are widely used due to their pre-
diction accuracy and their computational efficiency (Yang
and Zhang 2016).Similarity-based algorithms can be classi-
fied into two types: Algorithms based on local information
of nodes (nearest neighbor) and algorithms based on global
path information (shortest path). However, since traditional
link prediction algorithms try to evaluate all the absent links
in a network, they generally cannot effectively handle large-
scale complex networks. It is necessary to look for new tech-
niques and approaches able to reduce the amount of compu-
tations during link prediction in such networks in order to
ensure a reasonable consumption of time and memory space.
The aim of the present paper is to address this problem and
propose such a new approach based on the decomposition
of the initial network into connected components. The idea
is that in similarity-based algorithms for link prediction, the
links between nodes belonging to different components do
not matter. Our approach only focuses on the calculation of
local links, i.e., links inside each component.

Moreover, from the observation that the components may
be treated separately, in our approach again, we propose a
parallel architecture for link prediction which distributes the
set of components on several processors.

The main contributions of this paper can be summarized
as follows.

–	 In the first part of our contribution, we show the impor-
tance of our approach and the gain we obtain by using
the decomposition into connected components instead
of working directly on the original graph. We formally
analyze this gain in terms of the reduction of the number
of calculated links. This gain is also illustrated experi-
mentally in terms of runtime. Moreover, a comparison
between the baseline approach, to which belong all pre-

vious works, and our approach has been done using the
same databases.

–	 The second part of our contribution is based on the
remark that the decomposition allows us to parallelize
the calculations. So, we have derived four variants of our
algorithm, according to: (1) the use or not of parallel-
ism and/or (2) the inclusion or not of the decomposition
step into the calculation process. The experimental study
shows that parallelization allows us to save additional
time.

The reminder of the paper is organized as follows. We
present in Sect. 2 an overview of various measures based
on local or neighborhood data as well as measures based on
the shortest paths between nodes. Section 3 gives a formal
description of the link prediction problem and highlights the
potential difficulties due to the large size of networks for link
prediction. Then, it discusses how the decomposition into
connected components can be very useful in reducing the
amount of computations. In Sect. 4 we present our proposed
architecture for a link prediction system based on the decom-
position of the network into its connected components. In
particular, the proposed architecture exploits the decomposi-
tion to ensure a parallel treatment by distributing the compo-
nents on several processors. In Sect. 5, we present the base-
line algorithm which does not use decomposition and four
variants of our proposed approach, based on decomposition,
depending on whether the decomposition step is included in
the scenario or not and whether the treatment is sequential
or parallel. Section 6 is devoted to an experimental study for
the validation of our proposal. Finally, in Sect. 7, we con-
clude our work and give some perspectives for future work.

2 � Related work

In many link prediction methods, scores are derived from the
class of immediate node neighborhoods. In other methods,
scores calculation is based on paths between nodes (Wang
et al. 2015; Lü and Zhou 2011). Several research works are
based on the use of these measures either to compare the
performance of new approaches (Li et al. 2020) or to mod-
ify them (Yang and Zhang 2016; Ahmad et al. 2020) and
propose new extensions (Aziz et al. 2020). Among these
measures which are still popularly used, we can quote the
following measures categorized in two classes: those based
on local information and those used in path methods.

2.1 � Similarity indices based on local information

There are numerous local similarity measures. They are
basically determined by the number of common neighbors
shared by two nodes, say x and y. Let us denote by Γ(x) the

305Evolving Systems (2024) 15:303–320	

1 3

set of x’s neighbors and by k(x) =|Γ(x)| the x’s degree. To
each link (x, y) a score is assigned which is denoted by Sxy.

–	 Common neighbors (Liben-Nowell and Kleinberg
2007). This measure captures the common sense idea
that two nodes are more likely to have a link if they
have many common neighbors; this measure is defined
as follows:

–	 Jaccard index (Liben-Nowell and Kleinberg 2007). Jac-
card index normalizes the size of common neighbors.
This measure is defined by:

–	 Adamic Adar index (Adamic and Adar 2003). This meas-
ure is calculated by adding weights to the nodes that are
connected to both nodes x and y. It is defined by:

–	 Resource allocation index (Zhou et al. 2009). Con-
sidering a pair of nodes x and y that are not directly
connected and assuming that the node x needs to give
some resources to y with their common neighbors as
transmitters, this measure is defined by:

–	 Node and Link Clustering coefficient (NLC) (Wu et al.
2016a). This similarity method is based on the basic
topological characteristic of a network called "Cluster-
ing Coefficient". Clustering coefficients of nodes and
links are incorporated to calculate similarity score.
This measure is defined as follows:

–	 Clustering Coefficient for Link Prediction (Wu et al.
2016b). This method uses more information about the
local link/triangle structure than the CAR index (Can-
nistraci et al. 2013), but costs less computation time.
The key idea of the method is to exploit the value of
links between other neighbors of common neighbors.
It is defined as follows:

(1)SCN
xy

= |�(x) ∩ �(y)|

(2)SCN
xy

=
|�(x) ∩ �(y)|
|�(x) ∪ �(y)|

(3)SAA
xy

=
∑

Z∈�(x)∩�(y)

1

logk(z)

(4)SRA
xy

=
∑

Z∈�(x)∩�(y)

1

k(z)

(5)SNLC
xy

=
∑

Z∈𝚪(x)∩𝚪(y)

SCN
xz

kz − 1
∗ C(z) +

SCN
yz

kz − 1
∗ C(z)

(6)SCCLP
xy

=
∑

Z∈�(x)∩�(y)

tz

k(z)(k(z) − 1)∕2

such that: tz is the number of triangles passing through
node z.

–	 Common neighbor plus preferential attachment
(CN + PA) index (Zeng 2016). This method is pre-
sented to estimate the probability of existence of a
link between two nodes. Based on the combination of
the two methods Common neighbor and preferential
attachment (Mitzenmacher 2004). It is defined as fol-
lows:

	 where α is a parameter (e.g.: � = 0.01) and
∑

z∈V ��(z)�
�V� is

equal to the mean degree⟨k⟩ of the network.
–	 Adaptive degree penalization for link prediction (ADP)

(Martínez et al. 2016). The measure finds that the
degree of penalization which better obtains the results
of the link prediction can be estimated by considering
the clustering coefficient of the network. The predic-
tion technique automatically adapts to the network. It
is defined as follows:

where c is the average clustering coefficient of the net-
work and β is a constant (e.g. β = 2.5).

–	 Fuzzy modeling for link prediction (Tuan et al. 2019).
Let µΓ(x) and µΓ(y)be the membership degrees of the sets
of common neighbors Γ(x)and Γ(y)of the node x and y
respectively, then:

•	 The fuzzy common neighbor similarity score is
defined as:

•	 The fuzzy Adamic–Adar Similarity Score is defined
as:

	  where the membership function is µΓ(z).
•	 The fuzzy Jaccard Coefficient is given by:

–	 Triangle Structure Index (TRA) (Bai et al. 2018). This
method offers us a new similarity index, by combining
the aforementioned triangle structure and the idea of the
RA index. It is defined as follows:

(7)S𝐂𝐍+𝐏𝐀
xy

= �𝚪(x) ∩ 𝚪(y)� + �
�𝚪(x)� ∗ �𝚪(y)�

∑
z∈V �𝚪(z)�
�V�

(8)S���
xy

=
∑

Z∈�(x)∩�(y)

|�(z)|−c�

(9)SFCN
xy

=
∑

x∈�(x),y∈�(y)

(��(x)∩��(x))

(10)SFAA
xy

=
∑

Z∈�(x)∩�(y)

1

log(|��(z)|)

(11)S���
xy

=
∑

x∈�(x),y∈�(y)

��(�)∩��(�)

��(�)∪��(�)

306	 Evolving Systems (2024) 15:303–320

1 3

	 where Δ is the number of triangles TRA formed by x, y
and z, which is: Δ(x, y;z) = Δ(x, z) + Δ(y, z).

–	 Sam Similarity (Samad et al. 2019). This measure refers
to the similarity of x to y as well as the similarity of y
to x. It divides the similarity task computation into two
parts. First, it determines how much x is similar to y. Sec-
ond, it computes the similarity between y and x. Finally,
the measure is defined by using both outcomes, as fol-
lows:

–	 Common Neighbor to Degree (CN2D) (Mumin et al.
2022). Consider two unconnected nodes a and b, and
assuming that they have common neighbors between
them. They are able to present and propagate some infor-
mation through these neighbors in their interaction. The
total resources allocated to the target node pair is esti-
mated using the following equation:

with a parameter β between 0 and 1, (e.g. β = 0.01).

2.2 � Similarity indices based on path methods

Paths between two nodes can also be used to compute simi-
larities between couples of nodes. Such methods are referred
to as path-based metrics. The following are some of the most
popular methods in this class:

–	 Common Neighbor and Distance index (Yang and
Zhang 2016). This is an extension of common neigh-
bors. It is based on two properties of a complex net-
work, common neighbor and the distance between two
nodes x and y.

where CNxy is the number of common nodes between
node x and y and dxy is the distance between x and y.

–	 Newton’s Gravitational Law index (Ashraf et al. 2018).
This measurement is inspired by Newton's law of uni-

(12)STRA
xy

=
∑

Z∈�(x)∩�(y)

1 + Δ(x, y;z)∕2

k(z)

(13)SSam
xy

=

|�(x)∩�(y)|
�(x)

+
|�(x)∩�(y)|

�(y)

2

(14)

S��2�

xy
= |�(x) ∩ �(y)| + β

(
1

max(kx,ky)

∑
Z∈�(x)∩�(y)

|�(z)|
)

(15)SCND
xy

=

{ CNxy+1

2
Γ(x) ∩ Γ(y) ≠ ∅
1

dxy
otherwise

versal gravitation, which states that the force exerted
between two masses is proportional to the product of
these masses, and inversely proportional to the square
of the distance between their centers. It is defined as fol-
lows:

where CD denotes the degree of centrality, SP is the
shortest path.

–	 Local major path degree(LMPD) (Yang et al. 2018).
Local path between two nodes is equal to the sum of
the degrees of the intermediate nodes. The local path
designates the paths of two and three stages between two
nodes, and this method is defined as follows:

where LPDi =
∑ni

j=1
kj.

–	 Relative-path-based algorithm for link prediction
(RP) (Li et al. 2020). This method assumes that paths
between nodes and neighbors provide basic similar-
ity characteristics. This method uses factorial infor-
mation about paths between nodes and neighbors, in
addition to paths between pairs of nodes, in the simi-
larity calculation for link prediction. It is defined as
follows:

where SDP2

x,y =
∑

z1 ,z2∈P2(x,y)
1

kz1
.kz2

 et SDP3

x,y =
∑

z1,z2∈P3(x,y)
1

kz1
.kz2

,

P2(x,y) et P3(x,y)represent all intermediate nodes on paths
of length 2 and 3 respectively between nodes x and y.

–	 Common neighbor centrality index (Ahmad et al. 2020).
This measure is based on two vital properties of nodes,
namely the number of common neighbors and their cen-
trality. Common neighbor refers to the common nodes
between two nodes. Centrality refers to the prestige that
a node enjoys in a network, it is defined by:

where α is a parameter that varies in the interval [0, 1]
and dxy denotes the shortest distance between x and y.

(16)SNGLI
xy

=
CD(x) ∗ CD(y)

SP(x, y)

(17)SRP
xy

=
∑L2

�=1

1

(LPD�)
� +

∑L3

m=1

1

(LPDm)
�

(18)

SRP
xy

= �
SDP2

x,y

1

2

(
S
DP2

x,N2

x

+ S
DP2

y,N2

y

)
+ 1

+ �
SDP3

x,y

1

2

(
S
DP3

x,N3

x

+ S
DP3

y,N3

y

)
+ 1

(19)SCNC
xy

= �(|�(x) ∩ �(y)|) + (1 − �).
�

���

307Evolving Systems (2024) 15:303–320	

1 3

3 � Using decomposition to improve link
prediction performance

The aim of this section is to formally define the problem of
link prediction and study the impact of using as input the
connected components of a network instead of the whole
network on the amount of necessary computation and con-
sequently on the runtime.

Definition 1  (Complex Network). A complex network is
defined by a non-oriented graph G(V,E) where V is a set of
nodes and E ⊆ V × V is a set of links between pairs of nodes.

We put n =|V| (number of nodes) and e =|E| (number of
links) and we denote by E′ the set of absent links in the
graph: E′ = {(x,y) ∈ V2|(x,y) ∉ E}.

Notice that if G is a complete graph (where there is a
link between every pair of nodes), then the number of links
is n.(n−1)/2.

In general, the size of E′ which represents the set of
non-existing links in the network is n.(n−1)/2−e.

Existing link prediction algorithms based on local and
path measure compute the scores for all the non-existing
links belonging to E’ since they consider that any cur-
rent non existing link may become an actual link in the
future. Accordingly, for very large datasets, the number
of potential links to evaluate may be very important. For
example, in twitter-dataset (Reza and Huan 2009), we have
11.316.811 nodes and 85.331.846 links and then, the num-
ber of scores that should be calculated for non-existing
links is more than 64 trillions!!

To overcome this problem, the solution we propose
is based on the decomposition of our graph into its con-
nected components. Indeed, as it will be shown later, for
all approaches based on local and path measures, we only
need to compute scores between nodes that both belong
to the same component. This allows one to save runtime
by reducing the number of required calculation opera-
tions. Moreover, the fact that connected components can
be treated independently, allows one to perform parallel
computation by affecting to each available processor a sub-
set of components.

Definition 2  (Connected components). Let G = (V,E) be a
graph representing a complex network.

A set C = {G1 = (V1,E1),G2 = (V2,E2),…,Gc = (Vc,Ec)}
such that each Gi = (Vi,Ei) is a sub-graph of G defines a
decomposition of G into its connected components if:

•	
⋃c

i=1
Vi = V and

⋃c

i=1
Ei = E

•	 ∀i ∈ {1,… , c},∀x, y ∈ Vi there is a path relating x and y

•	 ∀i, j ∈ {1,… c}, such that i ≠ j,Vi ∩ Vj = ∅ and Ei ∩ Ej = ∅

Suppose that Γ(x) denotes the set of neighbors of the
node x, i.e., nodes having direct links with x, pathsx,y
denotes the set of all paths of links relating x and y, and
dx,y denotes the distance between nodes x and y, i.e., the
length of the shortest path between x and y. The following
proposition states that nodes belonging to distinct com-
ponents do not share any neighbors and are not related by
any paths.

Proposition 1  Let C = {G1 = (V1,E1),G2  =(V2,E2),…,
Gc  = (Vc,Ec)} be the set of connected components of a com-
plex network G = (V,E). We have:

Proof  For any x, y such that x ∈ Vi, y ∈ Vj and i ≠ j we have:
Γ (x) ⊆ Vi and Γ(y) ⊆ Vj (all the neighbors of x (resp. y) are
inside Vi (resp. Vj)). Then, since Vi ∩ Vj = ∅ . It follows that
Γ(x) ∩ Γ(y) = ∅ . This immediately leads to the factthat
|Γ(x) ∩ Γ(y)|= 0.

Now, if we suppose that there is a path relating x and
y then there must be a path between some x′ and y′ such
that x’ ∈ Vi and y’ ∈ Vj which is impossible since Vi ∩ Vj= ∅
and Ei ∩ Ej = ∅ . Hence we obtain pathsx,y = ∅ . Since there
is no path between x and y, then it follows immediately that
dxy = ∞..

Corollary 1  Given a local or a path-based similarity meas-
ure f we have:

Proof  Follows immediately from Proposition 1 and the defi-
nitions of local and path-based similarity measures.

This corollary is important since it states that it suffices
to only compute the similarity measure between couples of
nodes belonging to the same component.

Now let Gain(G) be the gain obtained by using the
decomposition of G into its connected components. Gain(G)
is the number of couples of nodes (x,y) where x and y belong
to two different components.

Proposition 2  Let C = {G1 = (V1,E1),G2 = (V2,E2),…,Gc = (Vc
,Ec)} be the set of connected components of a social network
G = (V,E). We put |V |= n, |Vi|= ni for i ∈ {1,…,c} and |E|= e.
We have:

(20)

∀i, j ∈ {1, ..., c}s.t.i ≠ j,∀x ∈ Vi,∀y ∈ Vj

⎧⎪⎪⎨⎪⎪⎩

Γ(x) ∩ Γ(y) ≠ 0 (hence �Γ(x) ∩ Γ(y)� = 0)

and

pathsx,y = ∅ (hence dxy = ∞)

(21)∀i, j ∈ {1, ..., c}s.t.i ≠ j,∀x ∈ Vi,∀y ∈ Vj ∶ f (x, y) = 0

308	 Evolving Systems (2024) 15:303–320

1 3

Proof  Let NEval(G) (resp. NEval′(G)) be the num-
ber of evaluated potential links by using decompo-
sition (resp. without using decomposition). Then,
Gain(G) = NEval′(G) − NEval(G).

It follows that:

Without using decomposition, all similarity indices
based on local information and path methods calculate a
score list (denoted scores′(G)) of all non-existent links in
the graph:

The number of evaluated links is:

After decomposition, this score list (denoted scores (G))
becomes:

(22)Gain(G) =

c−1∑
i=1

c∑
j=i+1

(ni ∗ nj)

NEval(G) =

c∑
i=1

(
ni
(
ni − 1

)
2

− ei

)

=
1

2

c∑
i=1

ni
(
ni − 1

)
−

c∑
i=1

ei

=
1

2

c∑
i=1

(
n2
i
− ni

)
− e

NEval�(G) =
n(n − 1)

2
− e =

1

2

(
n2 − n

)
− e =

1

2

((
n1 +⋯ + nc

)2
−
(
n1 +⋯ + nc

))
− e

=
1

2

((
n2
1
+ n2

2
⋯ + n2

c
) + 2(n1n2 +⋯ n1nc + n2n3 +⋯ + nc−1nc

)
−
(
n1 +⋯ + nc

))
− e

=
1

2

(
c∑

i=1

n2
i
+ 2

c−1∑
i=1

c∑
j=i+1

ninj −

c∑
i=1

ni

)
− e

=
1

2

c∑
i=1

(n2
i
− ni) − e +

c−1∑
i=1

c∑
j=i+1

ninj = NEval(G) +

c−1∑
i=1

c∑
j=i+1

ninj

Gain(G) =

c−1∑
i=1

c∑
j=i+1

(ni ∗ nj)

(23)scores
�

(G) =
{(

x, y, smethod
xy

)
∕x, y ∈ Vand(x, y) ∉ E

}

(24)

|||E
� ||| = Gain (G) +

c∑
i=1

|||E
�

i

||| =
c−1∑
i=1

c∑
j=i+1

(
ni ∗ nj

)
+

c∑
i=1

|||E
�

i

|||

The number of evaluated links is:

For all the other non-existing links, the similarity measure
is set to 0:

Let us consider some special cases:

–	 Case of one connected component (c = 1). In this case,
the decomposition does not matter and Gain(G) = 0.

–	 Many components (c > 1). If there is more than one com-
ponent, the gain is strictly positive. We can distinguish the
two following particular cases:

•	 Case where n1≈ n2≈ ··· ≈ nc ≈ nc.In this case the gain is
maximal and it is given by:

•	 Case where n1 = (n − c + 1),n2 = n3 = …nc = 1. This
case corresponds to the situation where each c − 1
components contains one node, and one component
contains all the remaining n − c + 1 nodes. In this
case the gain is minimal, and is given by:

(25)

scores(G) =

c⋃
i=1

{(
x, y, smethod

xy

)
∕x, y ∈ Viand(x, y) ∉ Ei

}

(26)|||E
� ||| − Gain(G) =

c∑
i=1

|||E
�

i

|||

(27)∀i, js.t.i ≠ j,∀i ∈ Vi,∀j ∈ Vj, s
method
xy

= 0

Gainmax(G) =

c−1∑
i=1

c∑
j=i+1

(
n

c

)2

=
c(c − 1)

2

(
n

c

)2

=
n2(c − 1)

2c

309Evolving Systems (2024) 15:303–320	

1 3

Example 1  Let us consider the graph G(V,E) depicted in
Fig. 1a with |V|= n = 9 nodes and |E|= e = 8 edges. G con-
tains c = 3 connected components. Without using decompo-
sition, to predict future links, we need to calculate the score
of all nonexistent links (28 links) as shown in Fig. 1b.

By using the decomposition of G into its connected
components, instead of calculating the scores of the links
that do not exist in the complete graph, we only calcu-
late the scores of the links that do not exist inside the
three components (c1),(c2) and (c3) (see Fig. 1c). We
have 0 links in (c1), 0 links in (c2) and 2 links in (c3). The
obtained gain is 26.

Example 2  We assume that G(V, E) is a training graph with
|V|= n = 9 nodes. The number of connected components is
c = 3. Table 1 illustrates the different possible cases of the
nodes distribution on the components and the gain associ-
ated with each of these distributions.

We can notice that the gain clearly depends on the
distribution of the nodes in the connected components:
the more the distribution is homogeneous, i.e., where the
nodes are more uniformly distributed over the components,
the greater is the gain. By contrast, heterogeneous distribu-
tions lead to less important gains.

Now, we show that this idea may be captured by two
further measures:

Gainmin(G) =

c−1∑
i=1

c∑
j=i+1

(
ninj

)

=

c∑
j=2

n1 ∗ 1 +

c−1∑
i=2

c∑
j=i+1

(1 ∗ 1)

=

c∑
j=2

(n − c + 1) +

c−1∑
i=2

c∑
j=i+1

(1)

= (c − 1)(n − c + 1) +
(c − 1)(c − 2)

2

=
(c − 1)(2n − c)

2

–	 The Gini coefficient is a measure that captures the
inequality or the heterogeneity of a distribution. It
used in different domains, namely in supervised learn-
ing for the construction of decision trees (Breiman
et al. 1984; Daniya et al. 2020).For a decomposition
C = {G1 = (V1,E1), G2 = (V2,E2),…,Gc = (Vc, Ec)} of a
network G = (V,E), the Gini coefficient is defined by
the following formula:

where P(ni) is the proportion of nodes present in the
component Gi(Vi,Ei) and it is determined as follows:

–	 The variance is a statistical measure of the dispersion
of the values of a distribution. It is calculated as fol-
lows:

(28)Gini(G) = 1 −

c∑
i=1

p2(ni)

(29)p
(
ni
)
=

||Vi
||

|V| =
ni

n

(a)

(c)

(b)

7

6 5

4

3 9

8

1
2

(c2)

(c3)

7

6 5

4

3 9

8

1
2

(c1)

7

6 5

4

3 9

8

1
2

Fig. 1   The gain in terms of the number of calculated links by using
decomposition illustrated on a simple undirected network

Table 1   Various possible
distributions of nodes on
the components and their
calculation results of Gain, Gini
and Variance 

n° n1 n2 n3 Var VarNorm Gini GiniNorm Gain GainNorm

1 7 1 1 8.00 1.00 0.37 0.00 15 0.00
2 6 2 1 4.67 0.58 0.49 0.42 20 0.42
3 5 1 3 2.67 0.33 0.57 0.67 23 0.67
4 5 2 2 2.00 0.25 0.59 0.75 24 0.75
5 4 4 1 2.00 0.25 0.59 0.75 24 0.75
6 4 3 2 0.67 0.08 0.64 0.92 26 0.92
7 3 3 3 0.00 0.00 0.67 1.00 27 1.00

310	 Evolving Systems (2024) 15:303–320

1 3

where m is the mean value of the distribution, i.e.,
m = n/c.

The three measures (Gain, Gini and Variance) can be
normalized to take their values in [0,1]. For that purpose,
we use the following formula:

where X ∈ {Gain,Gini,Var}, Xnorm(resp. Xmax, Xmin) is the
normalized (resp. maximal, minimal) value of X. Namely,
we can check that:

Ginimax(G) = 1 −
1

c
 and Ginimin(G) = (c−1)(2n−c)

n2

Varmax(G) =
(c−1)(n−c)2

c2
 and Varmin(G) = 0

Gainmax(G) =
n2(c−1)

2c
 and Gainmin(G) = (c−1)(2n−c)

2

Table 1 gives the directed and normalized values of the
three measures (Gain, Gini and Variance) for the different
possible distributions in our example. Figure 2 graphi-
cally depicts the obtained results.

Interestingly enough, we can notice that the nor-
malized gain and the normalized Gini coefficient
coincide (Gainnorm(G) = Gininorm(G)). In contrast,
the normalized variance is inversely proportional to
the normalized Gini and Gain, and more precisely:
Varnorm(G) = 1 − Gainnorm(G).

4 � The proposed architecture

In this paper, we propose an architecture for the link pre-
diction problem which is based on six main steps instead
of four steps (Ying et al. 2014), namely: Data gathering,
preprocessing, decomposition, parallelization, prediction
and evaluation. Our architecture is depicted in Fig. 3.

–	 Data gathering. This step consists of preparing the data-
sets corresponding to a network, into training and test
subsets, the complete dataset is divided according to one
of the two following cases:

•	 The first principle relies on the evolution time of the
dataset (Liben-Nowell and Kleinberg 2007). Since
each interaction takes place in a particular instance,
we define a training interval

[
t0,t

′

0

]
 which in turn

defines the subgraphGTr = (VTr,ETr) containing all the
interactions performed between the instants t0, and
t
′

0
 . Similarly, another test interval

[
t1,t

′

1

]
 defines a test

sub-graph GTs = (VTs,ETs) containing all the interac-
tions performed between the instants t1, and t′

1
 . This

(30)Var(G) =

∑c

i=1
�ni − m�2
c

(31)Xnorm =
X − Xmin

Xmax − Xmin
∈ [0, 1]

principle is used to predict the likelihood of future
links (in dynamic networks (Kumar et al. 2020)).

•	 Following the second principle, we randomly divide
the set of links of the dataset into two subsets,
namely, 90% (Lü and Zhou 2011; Xiao and Zhang
2015; Wang et al. 2017; Daminelli et al. 2015) [80%
(Ahmad et al. 2020; Wu 2018), 70% (Sui et al.

Fig. 2   Gain, Gini and Variance rates according to the distribution of
the nodes on the components

DataSets

GTrain GTest

GPred 6. Evalua�on

1. Data gathering

Gtc1 Gtc2 Gtcc

GPc1 GPc2 GPcc

4.Paralleliza�on

2. Preprocessing

5. Predic�on

3. Decomposi�on

GTrain GTest

Fig. 3   Parallel architecture for link prediction based on connected
components decomposition

311Evolving Systems (2024) 15:303–320	

1 3

2013)] of links in a training sub-graph GTr = (V Tr,
ETr) and 10% (20%, 30%) of links in a test subset
GTs = (V Ts, ETs) where E = ETr ∪ ETs and ETr ∩ ETs = ∅.
This principle is used to find the missing links [in
static networks (Kumar et al. 2020)].

–	 Preprocessing. This step consists of filtering some nodes
of our network by:

•	 Eliminating the isolated nodes (Lu et al. 2009) since
it is difficult to predict anything about isolated nodes
because one has no network-based information.

•	 Discarding sometimes the low-degree nodes (Liben-
Nowell and Kleinberg 2007; Lu et al. 2009; Scripps
et al. 2009) because one has too little information
about them.

•	 Converting a directed network into an undirected one
and subsequently, applying link prediction (Shibata
et al. 2012).

•	 Restricting the analysis to nodes that are common
to the train and test networks (Lu et al. 2009) and
eliminating the other nodes.

–	 Decomposition. In this step we decompose the training
graph G = (V,E) into its connected components:

–	 Parallelization. The connected components are distrib-
uted through several processors. Each processor receives
one or more components. We use the term local nodes to
denote the nodes that each processor receives.

C = {G1 =
(
V1,E1

)
,G2 =

(
V2,E2

)
,… ,Gc = (Vc,Ec)}.

–	 Prediction. Each component is locally evaluated with
its local nodes, and a partial score list is established. At
this stage, only one similarity measure is used. In most
cases, we want to predict only new links, i.e., links that
are not present in the training component. At the end of
this operation, all the local list scores are merged into a
global list score

–	 Evaluation. Finally, it becomes possible to evaluate the
performance of the prediction results by comparing them
with the test subsets. We use different thresholds, param-
eters and performance measures.

5 � Algorithms

In this section we present and compare, in terms of runtime,
different scenarios that can be obtained by considering dif-
ferent choice criteria: whether we exploit or not the decom-
position of the graph into connected component; whether
the algorithm integrates the decomposition step, or directly
receives as input the set of connected components, and
whether the execution is sequential or parallel. This leads
to five scenarios (Algo1-Algo5) explained in the following:

5.1 � Without decomposition (Baseline method)

Algo 1. This algorithm corresponds to the baseline scenario,
which corresponds to existing works, where the input is the
whole graph, no decomposition is done, and of course the
execution is sequential.

5.2 � With decomposition (our approach)

In this part we propose four new variants of algorithms
which exploit the decomposition (see Table 2): Algo2 is the
basic algorithm of our approach which will be compared
with the baseline algorithm (Algo1). The other algorithms

(Algo3–Algo5) are improvements of our basic algorithm
(Algo2). The proposed improvements are the following:

–	 Instead of considering the decomposition step inside the
algorithm of link prediction, it suffices to perform it once
and start the algorithm from the connected components.

312	 Evolving Systems (2024) 15:303–320

1 3

This avoids the useless repetitive execution of the same
decomposition step in several executions.

–	 Since each component may be handled separately from
the others, one can parallelize the algorithm instead of
using a sequential treatment.

Algo3 (resp. Algo4, Algo5) results from Algo2 by inte-
grating the first improvement (resp. second improvement,
both improvements).

Algo2. This algorithm includes the decomposition of the
input graph into connected components. Then, the predic-
tion task is sequentially executed on the set of connected
components.

Algo3. This algorithm is similar to Algo2. but it does not
include the decomposition step, but directly receives as input
the set of connected components. The prediction task is then

sequentially executed on the set of connected components
too. Algo3. is obtained from Algo2. by modifying the input
to be the set of connected components and by eliminating
line 1.

Table 2   The four variants of algorithms derived from our decomposi-
tion-based approach

Type of execution With decomposition step

Included Not included

Sequential execution Algo2 Algo3
Parallel execution Algo4 Algo5

313Evolving Systems (2024) 15:303–320	

1 3

Algo4. Now, this algorithm includes the decomposition
of the input graph into connected components. Then, the

prediction task is performed by a parallel execution on the
set of connected components.

Table 3   Illustration of
properties of 22 real world
networks

|V| denotes the number of nodes, |E| is the number of edges, ⟨k⟩ denotes the average degree, C represents
the clustering coefficient, ASPL is the average shortest path length, D is the graph density, His the hetero-
geneity indice and R s the assortativity degree

Name |v| |E| ⟨k⟩ C ASPL D H R

ADV 5155 39,285 15.24 0.25 3.22 9 5.4060 − 0.0951
BUP 105 441 8.40 0.49 3.08 7 1.4207 − 0.1279
CDM 16,264 47,594 5.85 0.64 5.82 18 2.2087 0.1846
CEG 297 2148 14.46 0.29 2.46 5 1.8008 − 0.1632
CGS 6158 11,898 3.86 0.49 3.62 14 3.9467 0.2426
EML 1133 5451 9.62 0.22 3.61 8 1.9421 0.0782
ERD 6927 11,850 3.42 0.12 3.78 4 12.6708 − 0.1156
FBK 4024 87,887 43.68 0.59 3.98 13 2.4320 0.0707
GRQ 5241 14,484 5.53 0.53 5.05 17 3.0523 0.6593
HMT 2426 16,630 13.71 0.54 3.15 10 3.1011 0.0474
HPD 8756 32,331 7.38 0.11 4.19 14 4.5133 − 0.0510
HTC 7610 15,751 4.14 0.49 5.68 19 2.0986 0.0293
INF 410 2765 13.49 0.46 3.63 9 1.3876 0.2258
KHN 3772 12,718 6.74 0.25 3.63 12 9.4220 − 0.1205
LDG 8324 41,532 9.98 0.31 4.37 16 6.1880 − 0.0997
NSC 1461 2742 3.75 0.69 2.59 17 1.8486 0.4616
PGP 10,680 24,316 4.55 0.27 7.49 24 4.1465 0.2382
SMG 1024 4916 9.6 0.31 2.98 6 3.9475 − 0.1925
UAL 332 2126 12.81 0.63 2.74 6 3.4639 − 0.2079
UPG 4941 6564 2.67 0.08 18.99 46 1.4504 0.0035
YST 2284 6646 5.82 0.13 4.29 11 2.8479 − 0.0991
ZWL 6651 54,182 16.29 0.32 3.85 10 2.5851 0.0006

314	 Evolving Systems (2024) 15:303–320

1 3

Algo5. This algorithm is similar to Algo4. but it does
not include the decomposition step but directly receives as
input the set of connected components. The prediction task

is then executed in parallel on the m processors. Algo5. is
obtained from Algo4. by modifying the input to be the set of
connected components and by eliminating line 1.

Table 4   Various possible distributions of nodes on the components and their calculation results of gain, Gini and variance

Datasets train Without Decomposition With Decomposition Gain1 Rate (Norm)

G |VTr| |ETr| |E’Tr| |C| ∑|E’c,Tr| Nb/link Rategain1% Gain2 Var Gini

BUP 105 352 5108 1 5108 0 – 0.00 0.00 0.00
CEG 297 1718 42,238 1 42,238 0 – 0.00 0.00 0.00
FBK 4024 70,310 8,023,966 27 7,867,859 156,107 1.95 0.01 0.99 0.01
INF 410 2212 81,633 5 80,003 1630 2.00 0.00 1.00 0.00
ZWL 6651 43,346 22,071,229 114 21,241,223 830,006 3.76 0.00 1.00 0.00
SMG 1024 3932 519,844 35 483,648 36,196 6.96 0.00 1.00 0.00
EML 1133 4360 636,918 48 583,711 53,207 8.35 0.00 1.00 0.00
LDG 8324 33,225 34,607,101 337 31,089,311 3,517,790 10.16 0.02 0.98 0.02
UAL 332 1701 53,245 14 47,764 5481 10.29 0.03 0.97 0.03
KHN 3772 10,175 7,101,931 218 6,123,668 978,263 13.77 0.03 0.97 0.03
ADV 5155 31,428 13,253,007 330 11,333,166 1,919,841 14.49 0.02 0.98 0.02
HPD 8756 25,865 38,303,525 669 31,436,609 6,866,916 17.93 0.04 0.96 0.04
YST 2284 5316 2,601,870 202 2,068,432 533,438 20.50 0.04 0.96 0.04
ERD 6927 9480 23,978,721 1045 17,245,416 6,733,305 28.08 0.00 1.00 0.00
CDM 16,264 38,075 132,212,641 1288 87,661,470 44,551,171 33.70 0.22 0.78 0.22
HMT 2426 13,304 2,928,221 201 1,907,080 1,021,141 34.87 0.23 0.77 0.23
PGP 10,680 19,453 57,006,407 1230 35,945,368 21,061,039 36.95 0.19 0.81 0.19
UPG 4941 5275 12,198,995 458 7,494,909 4,704,086 38.56 0.25 0.75 0.25
GRQ 5241 11,588 13,719,832 652 7,387,831 6,332,001 46.15 0.30 0.70 0.30
HTC 7610 12,601 28,939,644 1022 14,331,576 14,608,068 50.48 0.34 0.66 0.34
CGS 6158 9519 18,947,884 1305 5,437,329 13,510,555 71.30 0.54 0.46 0.54
NSC 1461 2193 1,064,337 329 61,890 1,002,447 94.19 0.90 0.10 0.90

315Evolving Systems (2024) 15:303–320	

1 3

6 � Experimental results

6.1 � Datasets

We have performed our experiments on several datasets
representing different real-world complex networks from
different sources and application domains. This collection
covers a wide range of properties, sizes, average degrees,
clustering coefficients and heterogeneity indices (see
Table 3). This collection is freely downloadable from the
address: http://​noesis.​ikor.​org/​datas​ets/​linkp​redic​tion

–	 UPG, (Watts and Strogatz 1998) is a power distribution
network.

–	 HPD, (Peri et al. 2003), YST, (Bu et al. 2003) and CEG,
(Watts and Strogatz 1998) are biological networks.

–	 ERD, KNH, LDG, SMG, ZWL, CGS, (Batagelj and
Mrvar 2006), HTC, CDM, (Newman 2001), NSC,
(Newman 2006) and GRQ, (Leskovec et al. 2007) are
co-authorship networks for different fields of study.

–	 HMT, (Kunegis 2013), FBK, (McAuley and Leskovec
2012), and ADV, (Massa et al. 2009) are social networks.

–	 UAL, (Massa et al. 2009) is an airport traffic network.
–	 EML, (Guimera et al. 2003) is a network of individuals

who shared emails.
–	 PGP, (Boguña et al. 2004) is an interaction network of

users of the Pretty Good Privacy algorithm.
–	 BUP, (Kunegis 2013) is a network of political blogs.
–	 Finally, INF, (Isella et al. 2011) is a network of face-to-

face contacts in an exhibition.

6.2 � Results and discussion

To demonstrate the effectiveness of our idea on real-world
datasets, we have randomly divided the existing links of each
network into two sets: The training set and the test set repre-
senting 80% and 20% of the total links, respectively. We have
used 22 different datasets in the experiments to evaluate the
performance of the different methods proposed in this study.

All the calculations have been performed on a machine
of type HP Z620Workstation with processor of model:
Intel (R) Xeon (R) CPU E5-2620 v2 12cores of frequency
2.10 GHz and a memory size of 128 GB.

6.2.1 � Impact of decomposition on the number
of calculated links in different datasets

The first part of our experiments is devoted to evaluate
the gain obtained for the different used datasets. Table 4

summarizes the obtained results. We notice that Gain1
denotes the difference between the total number of links
calculated without decomposition and those calculated
by using decomposition. The gain is expressed in Table 4
both in terms of the number of treated links and in terms
of their rate with respect to the total number of links in
the train input graph. The corresponding value are put in
bold font:

and

Gain2 is the normalized gain contained in the interval
[0,1]:

Notice that Var and Gini in Table 4 denote the normal-
ized values.

From Table 4, we can extract two graphs:

–	 In the first graph (see Fig. 4) we can observe that the
value of the gain is zero for the first two datasets because
they contain only one component and therefore the num-
ber of links calculated before and after the decomposi-
tion. Thereafter we have a gain progression which attains
up to 94.19%of the number of links calculated without
decomposition but ignored by using decomposition.

–	 The second graph (Fig. 5) illustrates the influence of
the heterogeneity degree of nodes distribution through
connected components on the obtained gain, captured
equivalently by the Gini, the Variance or the direct gain
normalized measures. We can notice that for the cases
where there is only one component, the distribution has
no meaning since all the measures (Gain, Gini and Vari-
ance) equal zero. When the number of components is
greater than 1, The Figure confirms that the more (resp.
less) the distribution is uniform the more (resp. less)
important is the gain, i.e., the number of ignored links.
This graph also confirms, on several real datasets, the
relationships between normalized gain, Gini and variance
measures already evoked in Sect. 3 on a small example.

(32)Gain1 =
|||E

�

Tr

||| −
c∑

i=1

|||E
�

i,Tr

|||

(33)rateGain1 =

���E
�

Tr

��� −
∑c

i=1

���E
�

i,Tr

���
���E

�

Tr

���
=

Gain1
���E

�

Tr

���

(34)Gain2 =
Gain1 − Gainmin

Gainmax − Gainmin

http://noesis.ikor.org/datasets/linkprediction

316	 Evolving Systems (2024) 15:303–320

1 3

To conclude this section, we can notice that the decompo-
sition brings us for sure a gain as soon as the social network
contains at least two connected components. This obtained
gain is more important in the situations where the distri-
bution of nodes through the components is more uniform
which allows us to considerably save runtime, especially for
large datasets. The following section focuses on the study of
the impact of decomposition on runtime.

6.2.2 � Impact of decomposition on runtime

The aim of this section is to show how the decomposition of
the training graph helps one to substantially shorten runtime.
Saving runtime is ensured thanks to decomposition by two
means: First as discussed above, the decomposition allows
one to reduce the very amount of necessary computations
to perform (first experiment). In addition, the decomposi-
tion allows one to save additional runtime by paralleling the
link prediction process on several processors (second experi-
ment). Moreover, to have a global view, we give an overall
comparison of all algorithms (the baseline algorithm and the
different variants of our algorithms) by using four similarity
measures and four datasets (third experiment).

–	 Experiment 1. Comparison between our basic algorithm
and the baseline algorithm

In this first experiment, we use Jaccard index as a score
measure. We execute all algorithms for 100 times on dif-
ferent synthetic datasets and we take the average runtime
obtained for each synthetic dataset. We start from the BUP
dataset (see Table 3) which contains one component and we
generate new synthetic datasets by successively duplicat-
ing the initial one to obtain networks with 2 components,
3 components and so on until10 components. Notice that
the obtained datasets are perfectly homogeneous since all
the components are identical and accordingly, the obtained
gain is optimal (see Table 5 and 6). In Table 5, the number
of links treated by Algo2 (after decomposition) as well as
its run time are put in bold font to highlight the fact that
these results obtained by Algo2 are always better than those
obtained by Algo1. In Table 6, the best obtained results in
terms of runtime appear in bold font.

We compare our basic proposed algorithm which uses
decomposition and performs in sequential way (Algo2) with
the baseline algorithm without decomposition which corre-
sponds to the existing approaches (Algo1). The aim of this
comparison is to show the impact of exploiting decomposi-
tion into connected components on shortening runtime in
link prediction.

Table 5 illustrates the results obtained from the first
experiment. From Table 5, we can extract the graph depicted
in Fig. 6.

From the graph depicted in Fig. 6 we can notice that our
algorithm using decomposition (Algo2) clearly outperforms
the basic algorithm which does not use decomposition
(Algo1) with a very important gap, especially in the case of
large graphs with an important number of components, so
it is better to decompose the graph before the calculations.

–	 Experiment 2. Comparison between the variants of our
proposed approach

We have demonstrated in Sect. 6.2.1 and Experiment 1
above the necessity of decomposition to minimize the num-
ber of links and the runtime. In this second experiment, we
limit the comparison to the four variants of our proposed
approach (Algo2–Algo5). Recall that the four variants are
based on decomposition and they vary according to: (1) the
use or not of parallelism and/or (2) the inclusion or not of
the decomposition step into the calculation process. Notice
that in this experiment we use the same settings and follow
the same steps as in Experiment 1.

Table 6 illustrates the results obtained from the second
experiment. From Table 6, we can extract the graph depicted
in Fig. 7.

On the one hand, we can observe that the necessary
time to decompose the graph into connected components
is almost negligible. Indeed we can see that the curve for
the sequential (resp. parallel) algorithm Algo2 (resp. Algo4)

Fig. 4   Comparison between the calculated number of links with and
without decomposition

Fig. 5   Comparison between the Gain, Variance and Gini values on
several datasets

317Evolving Systems (2024) 15:303–320	

1 3

including the decomposition step is very close to that of
the sequential (resp. parallel) algorithm Algo3 (resp. Algo5)
which directly receives as input the decomposed graph. On
the other hand, we can observe that the parallel algorithms

Algo4 and Algo5 are much faster than the sequential algo-
rithms Algo2 and Algo3.

In summary, we can confirm the efficiency of using
decomposition prior to link prediction. Indeed, this con-
siderably reduces the amount of required computations and
consequently leads to a remarkable decrease in runtime.

Moreover, the parallelization of the link prediction pro-
cess, made possible thanks to the use of connected com-
ponents instead of a whole network as input, provides us
with an additional gain in terms of runtime. The more the
network is large, i.e. has a larger number of components and
the distribution of nodes through the components is more
homogeneous, the more important is the effect of paralleliza-
tion in reducing the runtime.

–	 Experiment 3. Overall Comparison between all the algo-
rithms

Table 5   Results obtained by
Algo1 (basic algorithm) and
our algorithm Algo2 (with
decomposition) on different
synthetic datasets with Jaccard
index

Datasets train Without decompo-
sition

With decomposition Gain

|C| |VTr| |ETr| |E’tr| Algo1
(s)

∑|E’c| Algo2 (s) Link Time

Diff Rate % Diff Rate %

1 105 353 5107 0.23 5107 0.23 0 0.00 0.00 0.00
2 210 706 21,239 0.95 10,214 0.46 11,025 51.91 0.49 51.58
3 315 1059 48,396 2.16 15,321 0.69 33,075 68.34 1.47 68.06
4 420 1412 86,578 3.84 20,428 0.91 66,150 76.41 2.93 76.30
5 525 1765 135,785 6.00 25,535 1.15 110,250 81.19 4.85 80.83
6 630 2118 196,017 8.68 30,642 1.38 165,375 84.37 7.30 84.10
7 735 2471 267,274 11.80 35,749 1.60 231,525 86.62 10.20 86.44
8 840 2824 349,556 15.46 40,856 1.82 308,700 88.31 13.64 88.23
9 945 3177 442,863 19.59 45,963 2.06 396,900 89.62 17.53 89.48
10 1050 3530 547,195 24.15 51,070 2.28 496,125 90.67 21.87 90.56

Table 6   Results obtained
by our four algorithms with
decomposition on connected
components on different
synthetic datasets with Jaccard
index

Datasets train With decomposition

|C| |VTr| |ETr| ∑|E’c| Sequential execution Parallel execution

Algo2 (s) Algo3 (s) Algo4 (s) Algo5 (s)

1 105 353 5107 0.23 0.23 0.23 0.23
2 210 706 10,214 0.46 0.45 0.27 0.26
3 315 1059 15,321 0.69 0.67 0.28 0.27
4 420 1412 20,428 0.91 0.89 0.31 0.28
5 525 1765 25,535 1.15 1.12 0.33 0.30
6 630 2118 30,642 1.38 1.34 0.36 0.30
7 735 2471 35,749 1.60 1.57 0.38 0.35
8 840 2824 40,856 1.82 1.79 0.43 0.40
9 945 3177 45,963 2.06 2.01 0.45 0.40
10 1050 3530 51,070 2.28 2.23 0.47 0.42

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Ru
n�

m
e(

se
c)

Number of components

algo1 algo2

Fig. 6   Comparison between the basic algorithm (Algo2) and our pro-
posed algorithm (Algo2) in terms of runtime on synthetic datasets.

318	 Evolving Systems (2024) 15:303–320

1 3

In the third experiment we have applied the five algo-
rithms (Algo1-Algo5) on four real datasets: NSC, CGS,
HTC, and GRQ. In addition, we have used for each data-
set four score measures: Jaccard index, Common Neighbor
(CN),Adamic Adar index (AA) and Resource allocation
index (RA). The implementation of these measures can be
found in the networkx library.1]

The results are shown in the graphs of Fig. 8. According
to these graphs:

•	 We can notice that the four variants of our proposed
approach using decomposition (Algo2-Algo4) clearly
outperform the baseline algorithm which does not use
decomposition (Algo1) with significant gap, especially
in the case of large graphs with an important number of
components.

•	 It is also worth noting that the gain rate in terms of cal-
culation time between the baseline algorithm Algo1 and
the other proposed algorithms varies according to the
change in the variance (resp. Gini) rate: the lower (resp.
higher) is the variance (resp. Gini) rate, the higher is the
gain rate and vice versa.

7 � Conclusion

In this paper, we presented an efficient approach for link
prediction in large social networks which starts from the set
of connected components of a network instead of the whole
network itself. The key idea of our proposal is that in all
algorithms based on local and path-based measures, it suf-
fices to evaluate links relating nodes of the same component.
We have shown that this enables us to considerably save
runtime by reducing the number of necessary calculations.

We have formally studied the gain obtained thanks to
decomposition and shown both theoretically and experimen-
tally that this gain is more important when the distribution

0

1

1

2

2

3

1 2 3 4 5 6 7 8 9 10

Ru
n�

m
e(

se
c)

Number of components
algo2 algo3 algo4 algo5

Figure 7   Comparison between the four ours algorithms (Algo2–
Algo5) using decomposition in terms of runtime on synthetic datasets

DataSet:CGS Varnorm=0.46/Gininorm=0.54

800,00

700,00

600,00

500,00

Jaccard CN AA RA

methods

Algo1 Algo2 algo3 algo4 algo5

DataSet:HTC Var =0.66/Gini =0.44norm norm

1200,00

1000,00

800,00

600,00

Jaccard CN AA RA

Algo1 Algo2 algo3 algo4 algo5

DataSet:GRQ Var =0.70/Gini =0.30norm norm

600,00

500,00

400,00

300,00

Jaccard CN AA RA

Methods

Algo1 Algo2 algo3 algo4 algo5

DataSet:NSC Var =0.10/Gini =0.90norm norm

45,00

40,00

35,00

30,00

Jaccard CN AA RA

Methods

a1 a2 a3 a4 a5

Ru
n�

m
e(
se
c)

Ru
n�

m
e(
se
c)

Ru
n�

m
e(
se
c)

Ru
n�

m
e(
se
c)

Fig. 8   Comparison between all five algorithms on four datasets and
using four similarity measures

1  https://​netwo​rkx.​org/​docum​entat​ion/​stable/​refer​ence/​algor​ithms/​
link_​predi​ction.​html

https://networkx.org/documentation/stable/reference/algorithms/link_prediction.html
https://networkx.org/documentation/stable/reference/algorithms/link_prediction.html

319Evolving Systems (2024) 15:303–320	

1 3

of nodes on the components of the considered network is
homogeneous.

Moreover, we have also shown that using decomposition
makes possible the parallelization of the link prediction pro-
cess by distributing the components on several processors.
This may provide us with additional gain in terms of runt-
ime, especially for large networks, having a large number of
components and where the distribution of nodes on compo-
nents is homogeneous.

As future work, we plan to develop a fast link predic-
tion library based on our idea of network decomposition
and including all local information-based and path-based
similarity indices. We plan also to develop a method for
combining local and global information for the evaluation
of inter-components links that are completely neglected in
local and path-based methods, but may make sense in some
practical contexts.

Data availability  This collection is freely downloadable from the
address: http://​noesis.​ikor.​org/​datas​ets/​linkp​redic​tion.

References

Adamic LA, Adar E (2003) Friends and neighbours on web. J Soc
Netw 25:211–230

Ahmad I, Akhtar MU, Noor S, Shahnaz A (2020) Missing link predic-
tion using common neighbor and centrality based parameterized
algorithm. Sci Rep 10:1–9

Albert R, Barabasi AL (2002) Statistical mechanics of complex net-
works. Rev ModPhys 74:47

Ashraf A, Budka M, Musial K (2018) Newton’s gravitational law for
link prediction in social networks. Springer, Berlin, pp 93–104.
https://​doi.​org/​10.​1007/​978-3-​319-​72150-7_8

Aziz F, Gul H, Uddin I, Gkoutos GV (2020) Path-based extensions
of local link prediction methods for complex networks. Sci Rep
10:1–11

Bai S, Li L, Cheng J, Xu S, Chen X (2018) Predicting missing links
based on a new triangle structure. Complexity 2018:e7312603.
https://​doi.​org/​10.​1155/​2018/​73126​03

Batagelj V, Mrvar A (2006) Pajek datasets. https://​vlado.​fmf.​uni-​lj.​
si/​pub/​netwo​rks/​data/

Boccaletti S, Latora V, Moreno Y, Chavez M, Huang D-U (2006) Bla
bla. Phys Rep 424:175

Boguña M, Pastor-Satorras R, Diaz-Guilera A, Arenas A (2004)
Models of social networks based on social distance attachment.
Phys Rev E 70:056122

Breiman L, Friedman J, Olshen RA, Stone CJ (1984) Classification
and regression trees (the wadsworth statistics and probability
series). CHAPMAN & HALL/CRC. https://​doi.​org/​10.​1201/​
97813​15139​470

Bu D, L.C., Y. Zhao, et al (2003) Topological structure analysis
of the protein-protein interaction network in budding yeast.
Nucleic Acids Res 31:2443–2450

Cannistraci C, Alanis-Lobato G, Ravasi T (2013) From link-pre-
diction in brain connectomes and protein interactomes to the
local-community-paradigm in complex networks. Sci Rep 1:1.
https://​doi.​org/​10.​1038/​srep0​1613

Costa LDF, Rodrigues FA, Travieso G, Boas PRU (2007) Charac-
terization of complex networks: a survey of measurements. Adv
Phys 56:167–242

Daminelli S, Thomas JM, Durán C, Cannistraci CV (2015) Common
neighbours and the local-community-paradigm for topological
link prediction in bipartite networks. New J Phys 17:113037

Daniya T, Geetha M, Dr SKK (2020) Classification and regression
trees with gini index. Adv Math Sci J 2020:1857–8438

Dorogovtsev SN, Mendes JF (2002) Evolution of networks. Adv
Phys 51:1079–1187

Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A (2003)
Self-similar community structure in a network of human inter-
actions. Phys Rev E 68:065103(R)

Hasan MAA, Zaki MJ (2011) A survey of link prediction in social
networks. Soc Netw Data Anal 2011:243–275

Ibrahim NMA, Chen L (2015) Link prediction in dynamic social
networks by integrating different types of information. Appl
Intell 42:738–750

Isella L, Stehlé J, Barrat A, Cattuto C, Pinton JF, Broeck WVD
(2011) What’s in a crowd? Analysis of face-to-face behavioral
networks. J Theor Biol 271:166–180

Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau
TM, Kosberg CL, D’Amico G, Dickson ER, Kim WR (2001)
A model to predict survival in patients with end-stage liver
disease. Hepatology 33:464–470

Kumar A, Singh SS, Singh K, Biswas B (2020) Link prediction tech-
niques, applications, and performance: a survey. Phys Stat Mech
Its Appl 553:124289

Kunegis J (2013) KONECT—The Koblenz network collection. In:
Proc. Int. Conf. on World Wide Web Companion, pp 1343–1350

Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: den-
sification and shrinking diameters. ACM Trans Knowl Discov
Data TKDD 2007:1–2

Li S, Huang J, Liu J, Huang T, Chen H (2020) Relative-path-based
algorithm for link prediction on complex networks using a basic
similarity factor. Chaos Interdiscip J Nonlinear Sci 30:013104

Liao H, Zeng A, Zhang YC (2015) Predicting missing links via cor-
relation between nodes. Phys Stat Mech Its Appl 436:216–223

Liben-Nowell D, Kleinberg J (2007) The link-prediction problem
for social networks. J Am Soc Inf Sci Technol 58:1019–1031

Liu Z, Zhang Q-M, Lü L, Zhou T (2011) Link prediction in com-
plex networks: a local naïve Bayes model. EPL Europhys Lett
96:48007. https://​doi.​org/​10.​1209/​0295-​5075/​96/​48007

Lu L, Jin CH, Zhou T (2009) Similarity index based on local paths
for link prediction of complex networks. Phys Rev E 80:046122

Lü L, Zhou T (2011) Link prediction in complex networks: a survey.
Phys Stat Mech Its Appl 390:1150–1170

Martínez V, Berzal F, Cubero J-C (2016) Adaptive degree penalization
for link prediction. J Comput Sci 13:1–9

Massa P, Salvetti M, Tomasoni D (2009) Bowling alone and trust
decline in social network sites. In: Eighth IEEE international
conference on dependable, autonomic and secure computing
(DASC’09), pp 658–663

McAuley J, Leskovec J (2012) Learning to discover social circles in
ego networks. Adv Neural Inf Process Syst 2012:548–556

Mitzenmacher M (2004) A brief history of generative models for power
law and lognormal distributions. Internet Math 2004:1. https://​doi.​
org/​10.​1080/​15427​951.​2004.​10129​088

Mumin D, Shi L-L, Liu L (2022) An efficient algorithm for link pre-
diction based on local information: considering the effect of node
degree. Concurr Comput Pract Exp 34:e6289. https://​doi.​org/​10.​
1002/​cpe.​6289

Newman ME (2001) The structure of scientific collaboration networks.
Proc Natl Acad Sci 98:404–409

Newman ME (2003) The structure and function of complex networks.
SIAM Rev 45:167–256

http://noesis.ikor.org/datasets/linkprediction
https://doi.org/10.1007/978-3-319-72150-7_8
https://doi.org/10.1155/2018/7312603
https://vlado.fmf.uni-lj.si/pub/networks/data/
https://vlado.fmf.uni-lj.si/pub/networks/data/
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1038/srep01613
https://doi.org/10.1209/0295-5075/96/48007
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1002/cpe.6289
https://doi.org/10.1002/cpe.6289

320	 Evolving Systems (2024) 15:303–320

1 3

Newman ME (2006) Finding community structure in networks using
the eigenvectors of matrices. Phys Rev E 74:036104

Peri S, Amanchy R, Navarro JD et al (2003) Development of human
protein reference database as an initial platform for approaching
systems biology in humans. Genome Res 13:2363–2371

Reza Z, Huan L (2009) Social computing data repository at ASU,
Arizona State University, School of Computing, Informatics and
Decision Systems Engineering. http://​socia​lcomp​uting.​asu.​edu

Samad A, Qadir M, Nawaz I (2019) SAM: a similarity measure for link
prediction in social network. In: 13th International Conference on
Mathematics, Actuarial Science, Computer Science and Statistics
(MACS’2019), pp 1–9

Scripps J, Tan PN, Esfahanian AH (2009) Measuring the effects of
preprocessing decisions and network forces in dynamic network
analysis. In: Proceedings of the 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
pp 747–756

Shibata N, Kajikawa Y, Sakata I (2012) Link prediction in citation
networks. J Am Soc Inf Sci Technol 63:78–85

Sui X, Lee T, Whang JJ, Savas B, Jain S, Pingali K, Dhillon I (2013)
Parallel clustered low-rank approximation of graphs and its appli-
cation to link prediction. In: international workshop on languages
and compilers for parallel computing, pp 76–95

Tuan TM, Chuan PM, Ali M, Ngan TT, Mittal M, Son LH (2019)
Fuzzy and neutrosophic modeling for link prediction in social
networks. Evol Syst 10:629–634. https://​doi.​org/​10.​1007/​
s12530-​018-​9251-y

Wang P, Xu B, Wu Y, Zhou X (2015) Link prediction in social net-
works: the state-of-the-art. Sci China Inf Sci 58:1–38

Wang T, He XS, Zhou MY, Fu ZQ (2017) Link prediction in evolving
networks based on popularity of nodes. Sci Rep 7:1–10

Watts DJ, Strogatz SH (1998) Collective dynamics of small-
world’networks. Nature 393:440–442

Wu J (2018) A generalized tree augmented naive Bayes link prediction
model. J Comput Sci 27:206–217

Wu Z, Lin Y, Wan H, Jamil W (2016a) Predicting top-L missing links
with node and link clustering information in large-scale networks.
J Stat Mech Theory Exp 2016:083202

Wu Z, Lin Y, Wang J, Gregory S (2016b) Link prediction with node
clustering coefficient. Phys Stat Mech Its Appl 452:1–8

Xiao X, Zhang Z (2015) Web-age information management. Springer,
Berlin

Yang J, Zhang XD (2016) Predicting missing links in complex net-
works based on common neighbors and distance. Sci Rep 6:1–10

Yang X-H, Yang X, Ling F, Zhang H-F, Zhang D, Xiao J (2018) Link
prediction based on local major path degree. Mod Phys Lett B
32:1850348

Ying D, Ronald R, Dietmar W (2014) Measuring scholarly impact:
methods and practice. Springer, Berlin

Yu B, Chen C, Wang X, Yu Z, Ma A, Liu B (2021) Prediction of
protein–protein interactions based on elastic net and deep for-
est. Expert Syst Appl 176:114876. https://​doi.​org/​10.​1016/j.​eswa.​
2021.​114876

Zeng S (2016) Link prediction based on local information considering
preferential attachment. Phys Stat Mech Its Appl 443:537–542.
https://​doi.​org/​10.​1016/j.​physa.​2015.​10.​016

Zhou T, Lü L, Zhang YC (2009) Predicting missing links via local
information. Eur Phys J B71:623–630

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://socialcomputing.asu.edu
https://doi.org/10.1007/s12530-018-9251-y
https://doi.org/10.1007/s12530-018-9251-y
https://doi.org/10.1016/j.eswa.2021.114876
https://doi.org/10.1016/j.eswa.2021.114876
https://doi.org/10.1016/j.physa.2015.10.016

	Fast approach for link prediction in complex networks based on graph decomposition
	Abstract
	1 Introduction
	2 Related work
	2.1 Similarity indices based on local information
	2.2 Similarity indices based on path methods

	3 Using decomposition to improve link prediction performance
	4 The proposed architecture
	5 Algorithms
	5.1 Without decomposition (Baseline method)
	5.2 With decomposition (our approach)

	6 Experimental results
	6.1 Datasets
	6.2 Results and discussion
	6.2.1 Impact of decomposition on the number of calculated links in different datasets
	6.2.2 Impact of decomposition on runtime

	7 Conclusion
	References

