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Abstract
This study presents an advanced computational Levenberg–Marquardt backpropagation (LMB) neural network for the novel 
third order (NTO) pantograph Emden–Fowler system (PEFS), i.e., (NTO-PEFS) together with its two forms. The designed 
novel NTO-PEFS is achieved using the pantograph system and standard form of the Emden–Fowler system. The detail of 
each form of the NTO-PEFS based on the singular points, pantographs and shape factors is also provided. The numerical 
performance using the LMB neural network is tested for three different variants of the model and obtained results will be 
compared through the designed dataset based exact solutions. To assess the approximate solutions of the NTO-PEFS for 
both forms of each example, the process of testing, authentication and training are implemented to reduce the mean square 
error (MSE) based on the LMB. One can find the values based absolute error are close to  10–04 to  10–08 for each problem to 
solve the NTO-PEFS using the stochastic computing paradigms. The relative studies and performance investigations for the 
error histograms, regression, correlation and MSE enhance the effectiveness as well as the exactness of the designed LMB 
neural network scheme.

Keywords Pantograph Emden–Fowler system · Shape factors · Neural networks · Singular points · Levenberg–Marquardt 
Backpropagation · Mean square error

1 Introduction

The ordinary form of the differential equations is consid-
ered very important for the researcher community due to 
the assortment of applications in technology, science, and 
engineering. The recent work is related to the nonlinear 
Emden–Fowler model (NEFM) known as a singular differ-
ential model, which is considered complicated because of 

its stiffer nature. The researchers applied many analytical 
and numerical tools in different decades to solve the NEFM. 
The NEFM has been programmatic in many areas of fluid 
dynamics, population growth, pattern creation system and 
chemical reactors. The NEFM is mathematically written as 
(Sabir 2020a, 2020b; Adel et al. 2020; Sabir et al. 2020a; 
Li et al. 2017):

where � is the value of the shape factor, for h(t) = 1 , the 
NEFM takes the form of Lane–Emden singular model 
(LESM), mathematically written as:

The celebrated LESM presented in the above Eq. (2) pre-
sented by a famous astrophysicists H. Lane along with R. 
Emden. This LESM is applied in the modeling of spheri-
cal gas cloud, mathematical physics, structure of polytropic 
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star, stellar configuration, self-gravitating gas clouds and in 
the modeling of cluster galaxies (Ahmad et al. 2017; Singh 
et al. 2019a; Abbas et al. 2019; Li et al. 2018). The func-
tion z(v) shows several forms of the LESM like as z(v) = vr 
is considered a most prominent form. It is perceived that 
the LESM is identified as a linear equation for the values 
of r = 0 and 1, else it depicts nonlinear performance. The 
LESM of second kind presents the isothermal gas sphere for 
z(v) = ev . Few other forms of z(v) express the nonlinearity, 
like sin v∕ cos v, sinh v and cosh v, etc. The LESM becomes 
white dwarf by taking z(v) =

(
v2 − C

)1.5 proposed by Chan-
drasekhar (Chandrasekhar 1967). The LESM has a variety 
of applications in dusty fluid models (Flockerzi and Sund-
macher 2011), physical sciences (Mandelzweig and Tabakin 
2001), gaseous star (Luo et al. 2016), electromagnetic theory 
(Khan et al. 2015), catalytic reactions (Rach et al. 2014), 
sublinear neutral factor (Dv{z}urina et al. 2020), isotropic 
continuous media (Radulescu and Repovs 2012), morpho-
genesis investigations (Ghergu and Radulescu 2007), quan-
tum/classical mechanics (Ramos 2003) and oscillating mag-
netic systems (Dehghan and Shakeri 2008).

The singular systems are not easy to solve because of 
stiff nature and only a few numerical and analytic schemes 
found in the literature to solve these models. Some testi-
fied approaches to handle these models are the Adomian 
decomposition method proposed by Shawagfeh (Shawag-
feh 1993). Sabir et al. (2020) solved a  3rd singular func-
tional system using the differential transformation approach. 
Romas et al. (Ramos 2008) proposed the series scheme 
to solve the LESM analytically. Singh et al. (2019b) dis-
cussed Haar wavelet based collocation approach to solve the 
LESM. Saeed et al. (2017) implemented the Haar Adomian 
approach in order to solve the fractional nonlinear LESM. 
Dizicheh et  al. (2020) suggested the Legendre spectral 
wavelet approach to solve the nonlinear LESM. Hashemi 
et al. (Hashemi et al. 2017) proposed the LESM using the 
group preserving and reproduced kernel approaches. Bender 
et al. (Bender et al. 1989) derived a perturbative approach 
to evade the singular point difficulty. Nouh (Nouh 2004) 
discussed the singular models using the power series as well 
as Pade approximation schemes and many more (Angelov 
et al. Oct. 2018; Angelov and Gu 2019; Sabir et al. 2022a, 
2022b; Raja et al. 2018; Botmart et al. 2022).

The model based on the pantograph differential (PD) 
equation is considered significant due to its enormous sub-
missions in the variety of biological and scientific works, 
like as, dynamical population system, communication 
system, control problems, light absorption in the stellar 
matter, engineering, economical models, transport, elec-
tronic systems, quantum mechanics, propagation systems 
and infectious diseases (Li and Liu 2000; Kuang and ed., 
1993; Zhao 1995; Li et al. 2014; Niculescu 2001; Vanani 
et al. 2011). Many numerical and analytical tools have been 

implemented to solve such models, as the Direchlet series 
approach has been functional to solve the PD model ana-
lytically (Liu and Li 2004), differential transformation one-
dimensional approach has been implemented to solve the 
nonlinear higher order multiple PD system (Koroma et al. 
2013), the Taylor approximate polynomial has been used 
to solve the PD system (Sezer and Şahin 2008) and many 
other approaches have been introduced to solve PD system, 
see References (Keskin et al. 2007; Derfel and Iserles 1997; 
Abazari and Abazari 2009; Saadatmandi and Dehghan 2009; 
Benhammouda et al. 2014; Widatalla and Koroma 2012; 
Feng 2013).

The intension of the present research is to design a non-
linear third order (NTO) pantograph Emden–Fowler system 
(PEFS), i.e., (NTO-PEFS) together with its two forms. The 
solution of the designed system based equations have been 
proposed based Levenberg–Marquardt backpropagation 
(LMB) neural network. The system based on singular mod-
els has huge importance in the field of science and engineer-
ing, e.g., chemical reactor fields, theory of boundary layer, 
network flow in biology and optimization control (Shah, 
et al. 2020; Umar et al. 2020a; Umar et al. 2020b; Jadoon, 
et al. 2020; Jadoon 2020; Bukhari et al. 2020; Ahmad 2020; 
Mehmood et al. 2020; Raja et al. 2020).

The highlighted geographies of the current research are 
presented as:

• The design of a novel NTO-PEFS is presented with its 
two forms using the typical form of the NEFM and the 
PD model together with the details of the singular points, 
shape factors and pantographs.

• The solution of both the forms based novel NTO-PEFS 
have been numerically presented by applying the strength 
of the LMB neural network approach.

• A reference-based dataset using the exact solutions with 
the proposed neural network approach is conventional for 
each form of the novel NTO-PEFS.

• The matching/overlapping of the proposed outcomes 
establishes the worth of the LMB neural network 
approach to solve the novel NTO-PEFS.

• The LMB neural network approach performance using 
the comparative studies based on mean square error 
(MSE), correlation, error histograms (EHs) and regres-
sion metrics is also provided.

The other paper is planned as: The construction of NTO-
PEFS together with its both forms is given in Sect. 2. The 
design of the novel NTO-PEFS based problems are given 
in Sect. 3. The LMB neural network approach, essential 
description, and numerical solutions of the novel NTO-
PEFS via LMB neural network approach is given in Sect. 4. 
The final statements are provided in the final Sect.
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2  Structure of the novel NTO‑PEFS

Two different forms based on the novel NTO-PEFS are 
provided in this section. The novel NTO-PEFS structure is 
provided with the shape factors, pantographs and singular-
ity for both of the types. The boundary conditions (BCs) 
of the novel NTO-PEFS are found using the terminology 
of the typical NEFM. To derive the novel NTO-PEFS, the 
mathematical construction is provided as (Guirao et al. 
2020; Sabir et al. 2022c, 2020b):

where q1 and q2 are chosen as positive and real, h1(t) and 
h2(t) are the given values of the function, l(t) and m(t) are 
the forcing functions, � shows the pantographs, z1(u, v) and 
z2(u, v) are the functions of u and v. To construct the NTO-
PEFS, the values can be selected as:

The following possibilities can be chosen as:

Using the Eqs. (5) and (6), the system (3) is categorized 
in two forms as:

2.1  1st form of the novel NTO‑PEFS

System (3) takes the form by using the Eq. (5) is

The derivative form of the Eq. (7) is given as:

(3)
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Using the Eq. (8), the simplified form of the Eq. (7) is 
taken as:

The associated BCs are written as:

The system (9) and (10) shows the first form of the 
novel NTO-PEFS. For both u(t) and v(t), the parameters 
of the pantographs are noticed in the  1st,  2nd and  3rd factor 
and the singular points appeared twice at t = 0 and t2 = 0 . 
The shape factors are 2q1 and q1(q1 − 1) for u(t), while 
2q2 and q2(q2 − 1) for v(t) respectively. It is observed for 
q1 = q2 = 1 , the  3rd factor vanishes, and the shape factor 
value becomes 2.

2.2  2nd form of the novel NTO‑PEFS

System (3) takes the form by using the Eq. (6) is

The derivative form of the Eq. (11) is given as:

Using the Eq. (12), the simplified form of the Eq. (11) 
is taken as:

The associated BCs are written as:
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The system (13) and (14) shows the second form of the 
novel NTO-PEFS. q1 and q2 are the shape factor and panto-
graph expressions appear twice in the first and second terms 
of the Eq. (11). For both u(t) and v(t), the parameters of 
pantographs are noticed in the  1st and  2nd forms of novel 
NTO-PEFS, while the single singular point and shape fac-
tor are also noticed in other terms of presented NTO-PEFS.

3  Methodology

The methodology based on the LMB neural network 
approach consists of two stages; in the first stage, essential 
explanations are provided to create the dataset for the pro-
posed LMB neural network approach, whereas in the second 
stage, an execution procedure for the proposed LMB neural 
network approach is defined.

As compared to traditional deterministic numerical and 
analytical solution techniques, the intelligent computing 
based proposed LMB are recently introduced mythologies 
for solving the ODEs/PDEs based problems without even 
interfering in to simple system by the use transformation. 
Normally in these methods, whole solution starts from an 
element known as artificial neuron, which is responsible for 
picking up the input and then multiplying this input with 
the suitable weights to get the results continually adding 
them with the involvement of log-sigmoidal activation func-
tion. These solution approximation methodologies consist of 
three basic layers i.e., input layer, hidden layer and output 
layer.

Implementing/execution of these type of comput-
ing solvers is exploited in the presented study by utiliz-
ing the strength of LMB neural network to scrutinize the 
solution of novel nonlinear third order (NTO) pantograph 
Emden–Fowler system (PEFS), i.e., (NTO-PEFS) together 
with its two forms. These network models represent the 
highly nonlinear ODEs terms and with ease to handle the 
singularity as well as delay. Thus the proposed LMB based 
neural networks provides an alternate, precise and reliable 
solution methodology for NTO-PEFS. Also, the presented 
technique produces unmatched fast convergent outcomes 
with reliability and stability as compared to other exist-
ing traditional techniques due to nonlinearity, singularity 
and delays. The approximate solutions obtained by these 
methods are seem generally reliable, stable, and swift con-
vergence. The proposed neural networks methods proved 
to be accurate, reliable and robust having the capabilities 

(14)

⎧
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d2v(0)

dt2
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to predict the expected feature outcomes based on testing, 
training and validation processes. Recently, several research-
ers have been considering intelligent computing algorithms/
paradigms for solving nonlinear stiff systems arising in vari-
ety of domain of applied science and technology (Fig. 1).

In this study, Fig. 2 shows the process of the workflow 
and the reference results, i.e., datasets of LMB neural net-
work approach. Figure 3 represents a single neuron system 
in neural network approach, while the proposed LMB neural 
network approach is executed using ‘nftool’ in the Matlab 
software package along with the setting of suitable testing 
data, hidden neurons, validation/training data and learning 
schemes. The settings of parameter of the networks, i.e., 
percentage of 80, 10 and 10 of arbitrary selected samples 
for respective training, testing and validation sets, 10 num-
ber of hidden neurons, single input and two vectors, is done 
with care, exhaustive simulation, experience and knowledge 
of the solver as well as optimization paradigm. The best 
compromise between accuracy and complexity to avoid 
the over-fitting/under-fitting scenarios is incorporated for 
finding the solution NTO-PEFS with proposed LMB based 
neural networks. Additionally, the exact solution of NTO-
PEFS are used as reference dataset for LMB because of 
non-availability of numerical method that can simultaneous 
handle the nonlinearity, singularity as well as pantograph 
types of the delay.

4  Numerical interpretations

Six different variants of both the forms of the novel NTO-
PEFS treated numerically through the LMB neural network. 
The examples (1–3) show the first form, while the rest of the 
examples show the second form.

Example 1: Consider the doubly singular nonlinear third 
order pantograph Emden–Fowler system is shown as:

associated to the BCs

The true/exact form of the solution is 
[
1 + t3, 1 − t3

]
.

Example 2: Suppose the doubly singular third order panto-
graph Emden–Fowler system involving exponential function 
is shown as:

(15)
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Proposed dataset
Formula�on of the dataset based exact solu�ons for all examples of both categories the 3rd kind of nonlinear 

pantograph Emden-Fowler system
Intelligent computing

Mul�-layer structure of NNs combined with LMBA

Performance Error Histograms

Approximate LMB neural 
networks results together 
with the MSE, STs, EHs, 

regression and Fitness 
illustrations for 3rd kind of 

nonlinear pantograph 
Emden-Fowler system

Comparison AE

Result comparisons 
based on the LMB 

neural networks with 
the true solutions 

along with absolute 
error for the 3rd kind of 
nonlinear pantograph 
Emden-Fowler system

Fitness

Step 1.  Methodology

Step 2. Analysis of the Results 

Fig. 1  Workflow design of the LMB neural network for NTO-PEFS
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associated to the BCs

The true solutions of Eq. (16) are 
[
1 + t3et, 1 − t3et

]
.

Example 3: Consider the doubly singular nonlinear third 
order pantograph Emden–Fowler system having trigono-
metric function is shown as:

(16)
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associated to the BCs

The  exac t / t r ue  so lu t ion  o f  Eq .   (17 )  i s [
1 + t3 cos t, 1 − t3 cos t

]
.

Example 4: Consider a singular nonlinear third order panto-
graph Emden–Fowler system having trigonometric function 
is shown as:

(17)
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Fig. 2  Designed construction 
based on single neuron
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Fig. 3  LMB neural network for NTO-PEFS
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associated to the BCs

The exact/true solution of (18) is [1 + sin t, 1 − sin t].

Example 5: Consider a singular nonlinear third order panto-
graph Emden–Fowler system having exponential function 
is shown as:

associated to the BCs

The exact/true solution of (19) is 
[
1 + t + t3et, 1 + t − t3et

]
.

Example 6: Consider a singular nonlinear third order panto-
graph Emden–Fowler system having exponential function 
is shown as:

associated to the BCs

The exact/true solution of (19) is 
[
1 + t + t3, 1 + t − t3

]
.

The proposed results are calculated based LMB neural 
network in 0 to 1 with 0.01 step size for each problem of 
novel NTO-PEFS. LMB neural network is implemented to 
solve all examples of both forms of the novel NTO-PEFS 
given in the system (15–20) using ‘nftool’ with 80% train-
ing data, 10 neurons and 10% testing/validation based LMB 
optimization scheme. The designed neural network is obtain-
able in Fig. 3.
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The obtained numerical result through LMB neural 
network for all examples of both forms of the novel NTO-
PEFS are presented in Figs. Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18, 19 ,20. The NTO-PEFS results for 
the state of transition/ performance are plotted in Figs. 4 
and 5. The MSE for training, testing, best curve and vali-
dation are presented for each example of both the cat-
egories of the novel NTO-PEFS are drawn in Fig. 4. The 
best performances are calculated at epochs 364, 634, 72, 
204, 1000 and 453 are calculated around 2.8447 ×  10–10, 
4.7013 ×  10–09, 7.0144 ×  10–10, 7.4597 ×  10–12, 1.8709 ×  10–10 
and 3.7001 ×  10–10, respectively. The gradient and Mu 
value of LMB are performed for each example of both 
forms are [9.9733 ×  10–08, 9.9905 ×  10–08, 9.9014 ×  10–08, 
9.9279 ×  10–08, 3.8021 ×  10–07 and 9.9857 ×  10–08] and 
 [10–08,  10–08,  10–09,  10–11,  10–08 and  10–08] plotted in Fig. 5. 
These plots specify the correctness, as well as convergence 
of the LMB neural networks for each example of both form 
of the NTO-PEFS. Figures 6–11 authenticate the fitting plots 
for each example of both form of the NTO-PEFS. These 
Figures designate the results comparison obtained by the 
LMB neural network with the reference dataset of exact 
solutions for each example of both form of the NTO-PEFS. 
The testing/training and validation of the LMB neural net-
work lie around  10–04 to  10–06 each example of both form 
of the NTO-PEFS. Figure 12 shows the plots of the error 
histograms (EHs) to examine the error investigation using 
the input/output grids for each example of both form of the 
NTO-PEFS. The EHs with zero-line reference are calcu-
lated 8.90 ×  10–06, − 7.7 ×  10–07, -2.0 ×  10–06, −4.2 ×  10–07, 
− 5.3 ×  10–06 and 1.5 ×  10–05 for all examples of the novel 
NTO-PEFS.

The regression investigations are plotted in Figs. 13–18 
for each example of both form of the NTO-PEFS. These 
investigations via co-relation are applied to conduct the 
regression analysis. It is seen that correlation values (R) 
are found to be 1, that indicates the perfect system, which 
clearly shows the correctness of LMB-neural network for 
the novel NTO-PEFS. Furthermore, the MSE convergence 
is achieved for validation, training, testing, backpropaga-
tion procedures, performance executed epochs are shown in 
Tables 1 for NTO-PEFS.

The proposed results (LMB neural network) have 
been compared for all examples of both categories of the 
novel NTO-PEFS is given in Fig. 19. The first category 
results are provided based Examples 1–3 are provided 
in Fig. 19a–b, whereas the second form is provided in 
Fig.  19c–d. It is observed that the obtained outcomes 
overlapped to the exact solutions for both forms of the 
novel NTO-PEFS. This results comparison indicates the 
precision and excellence of the designed LMB neural net-
work scheme. The AE values for all examples of the novel 
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(a) MSE for Example-1 based category 1 (b) MSE for Example-2 based category 1

(c) MSE for Example-3 based category 1 (d) MSE for Example-1 based category 2

(e) MSE for Example-2 based category 2 (f) MSE for Example-3 based category 2

Fig. 4  Performance curves for MSE using the designed LMB neural network for both the categories of the third order nonlinear pantograph Emden–Fowler model
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(a) State transition for Example 1 based category 1 (b) State transition for Example 2 based category 1

(c) State transition for Example 3 based category 1 (d) State transition for Example 1 based category 2

(e) State transition for Example 2 based category 2 (f) State transition for Example 3 based category 2

Fig. 5  State transition for both the categories of the novel NTO-PEFS
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NTO-PEFS is plotted in Fig. 20. Examples 1–3 indicate 
the AE values are plotted in Fig. 20 (a-b), whereas Exam-
ples 4–6 are drawn in Fig. 20 (c-d). It is observed that 
AE values for Example 1–3 based form 1 for u(t) and v(t) 

lie in the interval  [10–04,  10–06]. Whereas the AE values 
for Example 1, 2 and 3 based form 1 for uinput  [10–04, 
 10–07]. These obtained outcomes improve the worth of the 
designed LMB neural network approach.

Fig. 6  Comparison of LMB 
neural network of Example-1 
for novel NTO-PEFS based 
category 1

Fig. 7  Comparison of LMB 
neural network of Example-2 
for novel NTO-PEFS based 
category 1
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5  Conclusions

In this research study, a novel third order nonlinear pan-
tograph Emden–Fowler system is designed successfully 
along with its two forms. The descriptions of the shape 

factor, pantographs and singular points are also provided 
for the designed model. The singular systems are always 
difficult to solve due to the nature of singularity and when 
the pantograph term is involved with the singular models 
then it becomes more stiffer in nature, Therefore, stochas-
tic numerical schemes can be applied to solve such models 

Fig. 8  Comparison of LMB 
neural network of Example-3 
for novel NTO-PEFS based 
category 1

Fig. 9  Comparison of LMB 
neural network of Example-1 
for novel NTO-PEFS based 
category 2
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as these schemes are familiar to solve various difficult and 
harder nature problems. Three different examples of both 
forms are presented based on the designed model and 
numerically treated by using efficient designed LMB neu-
ral networks. The reference 80% data are used for training, 

while for both validation and testing outputs, the data are 
used 10% along with 10 hidden numbers of neurons. To 
check the precision and perfection, the matching of the 
achieved simulations from the proposed LMB neural net-
work scheme with the reference solutions is performed. 

Fig. 10  Comparison of LMB 
neural network of Example-2 
for novel NTO-PEFS based 
category 2

Fig. 11  Comparison of LMB 
neural network of Example-3 
for novel NTO-PEFS based 
category 2
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(a) Ehs: Example-1 based category 1 (b) Ehs: Example-2 based category 1

(c) Ehs: Example-3 based category 1 (d) Ehs: Example-1 based category 2

(e) Ehs: Example-2 based category 2 (f) Ehs: Example-3 based category 2

Fig. 12  EHs for LMB neural network of Example-3 for both the categories of the novel NTO-PEFS
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Fig. 13  Regression for Exam-
ple-1 based category 1

Fig. 14  Regression for Exam-
ple-2 based category 1
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Fig. 15  Regression for Exam-
ple-3 based category 1

Fig. 16  Regression for Exam-
ple-1 based category 2
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Fig. 17  Regression for Exam-
ple-2 based category 2

Fig. 18  Regression for Exam-
ple-3 based category 2
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One can prove the values based absolute error are close 
to  10–04 to  10–08 for each problem to solve the designed 
NTO-PEFS using the stochastic procedures. For conver-
gence processes, the values based on mean square error of 
training, testing, validation, and best curve are indicated 
for each example of the novel NTO-PEFS. The correla-
tion values are applied to form the regression studies are 

also examined. The gradient together with the LMB are 
considered for the novel NTO-PEFS. Furthermore, the 
precision is further verified using the numerical/graphi-
cal demonstrations of regression and convergence plots 
on MSE index.

In the future, various types of differential and frac-
tional singular systems (Fateh et al. 2019; Khan et al. 

Table 1  LMB neural network 
for both the categories of the 
novel NTO-PEFS

Example Mean square error Performance Gradient Mu Epoch Time

Training Validation Testing

1 1.148E−9 2.844E−9 5.113E−9 1.15 E−9 9.97 E−8 1 ×  10–8 364 2
2 1.000E−10 4.701E−9 1.402 E−10 1.00 E−10 9.99 E−8 1 ×  10–8 634 3
3 6.038E−10 7.01E−10 7.686 E−10 6.04 E−10 9.90 E−8 1 ×  10–9 72 1
4 1.905E−13 7.45E−12 4.209 E−13 1.91 E−13 9.93 E−8 1 ×  10–11 204 2
5 1.355E−10 1.87E−10 7.133 E−10 1.36 E−10 3.80 E−7 1 ×  10–8 1000 5
6 2.873E−10 3.70E−10 7.666 E−8 2.87 E−10 9.99 E−8 1 ×  10–8 453 4

(a) u(t) results for Examples 1-3 based category 1 (b) v(t) results for Examples 1-3 based category 1

(c) u(t) results for Examples 1-3 based category 2 (d) v(t) results for Examples 1-3 based category 2

Fig. 19  Result assessment through the LMB neural network for both the categories of the novel NTO-PEFS
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2021a, 2021b; Qureshi and Yusuf 2020; Sabir et  al. 
2022d; Umar et al. 2020c; Qureshi et al. 2020) can be 
assembled using the traditional Emden–Fowler system 
and solved by the strength of the supervised form of the 
neural networks.
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