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Abstract
Alzheimer’s disease (AD) is a neurological memory loss syndrome that eventually leads to incapacity to perform everyday 
chores and death. Since no known cure for this disease exists, it’s crucial to catch it early, before symptoms appear. This study 
used Florbetapir PET (specifically AV-45 PET scans) as a neuroimaging biomarker to develop a 3-Dimensional Ensemble 
Net for Alzheimer’s multi-class categorization. Our research is the first to examine the outcomes of three different feature 
extraction methods in depth (3D Subject, 3D Slice and 3D Patch Extraction Approach). Alzheimer detection through AV45 
PET scans and 3-Dimensional slice neuroimaging computation technique was further done using three distinct Slicing algo-
rithms (Subset Slice Algorithm (SSA), Uniform Slice Algorithm (USA), and Interpolation Zoom Algorithm (IZA). We tested 
the classification accuracy of a 3D patch-based technique with numerous patches varying from small to medium to huge 
dimensions. In this study, we used Amyloid- Positron Emission Tomography (AV45-PET) scans from the ADNI repository to 
create 3-Dimensional Ensemble Net model. Averaging, registering according to a standard template, and skull removal were 
used to pre-process the raw AV45-PET scans. The rotation method was used to augment these scans even more. Ensembling 
of two separate 3D-ConvNets was done for the 3D Subject-based computation technique. For the 3D Patch based comput-
ing approach, many non-overlapping patches ranging from 32, 40, 48, 56, 64, 72, 80, and 88 were retrieved and given to the 
Ensemble Net. Three unique algorithms were devised to extract slices from an AV45-PET scan and integrate them back to 
form a 3D volume in the 3D Slice based technique. Our results showed that (1) The three-class classification accuracy of our 
Ensemble Net model utilizing AV-45 PET images was 92.13% (maximum accuracy attained so far as per our knowledge). 
(2) The 3-Dimensional Patch extraction proposition was most accurate in Alzheimer’s categorization using Florbetapir PET 
images, followed by Subject-approach, then 3D Slice approach, with performance accuracy of 92.13, 91.01, and 90.44%, 
respectively. (3) The accuracy of the Ensemble Net network employing the 3D Patch computational approach was highest 
for larger patches (Dimensions as 72, 80, 88), next moderate patches (Dimensions as 56, 64, 48), and finally smaller patches 
(Dimensions as 32, 40). Higher dimension patches were classified correctly 92.13% of the time, whereas medium patches 
were correctly classified 80.89% of the time, and small patches were classified 74.63% of the time. (4) In terms of three-class 
classification accuracy, using 3D-Slice based approach, uniform slice extraction and interpolation zoom technique with 90.44 
and 88.2% accuracy outperformed subset slice selection, with 81.46% performance accuracy. Using the Ensemble Net model 
and a 3D patch-based feature extraction approach, we efficiently labeled Alzheimer’s disease in a three-class categorization 
using amyloid PET scans with an accuracy of 92.13. Accuracy. The proposed model is examined using several neuroimaging 
feature computation approaches, stating that 3D-patch based Ensemble Net outperforms 3D-subject based Ensemble Net 
model and 3D-slice level model in terms of performance accuracy. In addition, a series of experiments were conducted for 
3D-patch based approach with numerous patch dimensions varying from small to moderate to big sized patches in order to 
investigate impact of patch size on Alzheimer’s classification accuracy. While for 3D-Slice based approach, to determine 
which strategy was optimal, the slice-level technique was evaluated using three distinct algorithms revealing that uniform 
slice method and interpolation selection method outperforms subset slice method.
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1  Introduction

Alzheimer’s disease (AD) is a degenerative brain condi-
tion stepping towards memory loss over time. It is perhaps 
the leading cause of dementia, accounting for its 60–80% 
cases. It cannot be cured or treated to return to a normal 
state; only the progression of brain abnormalities can be 
delayed. People with Alzheimer’s disease may discover that 
routine tasks are becoming more difficult to complete than 
before. Symptoms include memory problems, trouble find-
ing the correct words for things, being confused about the 
time or location, struggling managing money or paying bills, 
mood, personality, or judgement changes, and misplacing or 
being unable to find items. As a result, Alzheimer’s patients 
require a considerable attention, time, and money. Around 
55 million people worldwide have Alzheimer’s disease, with 
the numbers expected to jump to approximately 139 million 
by 2050, with the cost of caring for these patients rising to 
2.8 trillion dollars (Alzheimer’s Disease International 2022).

Senile Plaques and neurofibrillary tangles are two forms 
of brain lesions that cause Alzheimer’s disease. In the human 
brain, an imbalance of Amyloid-Beta protein bundles to 
create unwanted fibers, resulting in senile plaques. These 
plaques accumulate in more and more sections of the brain 
as time goes on, affecting learning, memory, and other func-
tions. The aberrant buildup of Tau filaments in the cell leads 
to the formation of neurofibrillary tangles, which eventually 
lead to the neuron’s death. It can cause reading difficulties, a 
bad sense of direction, inattentiveness, short-term memory 
loss, poor object recognition, poor judgement, and impul-
sivity, among other symptoms. Many clinical trials aimed 
at lowering senile plaques have failed, and shrinking them 
isn’t enough to eliminate the condition. The question of 
whether of the two injuries occurs first in the brain is still 
being researched.

A number of biomarkers have been identified for Alz-
heimer’s identification including brain imaging, blood and 
urine tests, bio specimen, and genetic data (Khan 2016a, 
b). The brain’s morphology, functionality performed, and 
molecules found are used to classify neuroimaging biomark-
ers into three groups (Márquez and Yassa 2019). Functional 
and molecular imaging can identify an increase in Amyloid 
deposition, which contributes to Alzheimer’s disease (Perani 
2014; Shirbandi et al. 2021). One of the indicators that really 
can assist early diagnose Alzheimer’s disease advancement 
is the Florbetapir PET scans (Morris et al. 2016). This scan 
aids in the evolution of healthy control to moderate cognitive 
impairment, then Alzheimer’s disease.

Deep learning models, which can identify even micro-
scopic variations, offer a lot of potential in this case (Goenka 
and Sharma 2020; Yadav and Goenka 2021). Multiple 
researches have been conducted using deep learning to 

determine early Alzheimer’s diagnoses (Reith et al. 2020). 
Convolutional neural networks are rapidly employed in 
medical analysis domain to perform disease detection 
tasks, displacing manual feature extraction (Sharma et al. 
2022; Goenka and Tiwari 2021a). It is harder to diagnose 
AD by applying conventional hand-craft feature extraction 
approach from several biomarkers, and subject expertise is 
also required (Camus et al. 2012; Johnson et al. 2013).

We designed 3-Dimensional Ensemble Net Model for 
Alzheimer’s three-class categorization by leveraging Amy-
loid PET scans (AV45-PET) from the Alzheimer’s Disease 
Neuroimaging Initiative ADNI (ADNI Dataset 2022). This 
research has four valuable contributions.

	 i.	 To start, the 3D Ensemble Net framework was created 
by extracting patches from volumetric Amyloid PET 
scans for categorization of AD, NC (Normal Control), 
and MCI (Mild Cognitive Impairment), with the high-
est accuracy of 92.13% as per our knowledge.

	 ii.	 Next, on the same dataset, we tried numerous neuro-
imaging feature extraction algorithms, to find out the 
best (3-Dimensonal Subject, Patch, and Slice based 
approach) for Alzheimer classification.

	 iii.	 Furthermore, we used the Patch Feature extraction 
technique to investigate the impacts of using smaller, 
intermediate, and larger patches.

	 iv.	 Lastly, Slice-based algorithms such as USM, SSM, 
and ISM were employed to identify which was best 
for Alzheimer categorization.

The article is organized as: Framework adopted by previ-
ous researchers for Alzheimer’s identification using amyloid 
PET is discussed in Sect. 2. Section 3 introduces the Ensem-
ble Net architecture utilizing 3D-ConvNet using Florbetapir 
PET scans for Alzheimer’s categorization as NC vs. MCI 
vs. AD (three-class), as well as the dataset and various pre-
processing and augmentation procedures applied. Experi-
ment findings for Alzheimer’s multi-class and binary cat-
egorization using neuroanatomical computational approach 
are shown in Sect. 4. Section 5 includes a review of model’s 
methodologies, future scope, as well as conclusion.

2 � Related work

This segment of the paper will go over how Amyloid PET 
scans have been used in multiple studies for Alzheimer 
detection. It also looks at the several feature extraction meth-
ods researchers utilized for Alzheimer’s categorization.

Alzheimer’s identification began with a complex time-
gobbling manual feature extraction procedure using a vari-
ety of tools such as SPM toolbox (SPM 2022), Free Surfer 
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(FreeSurfer 2022), DARTEL (DARTEL Toolbox 2022), 
Registration (FLIRT 2022), FSL (FSL 2022), ANTS (ANTs 
2022), and others, which classified it as AD or NC. Arti-
ficial intelligence algorithms, neural networks, however, 
have surpassed this manual approach owing to its complex-
ity, domain expertise required, and availability of process-
ing capabilities (Kruthika et al. 2019; Haleem et al. 2019). 
However, due to its non-linearity properties, deep learn-
ing algorithms are taking the lead over machine learning 
algorithms(Qin and Tian 2018; Goenka et al. 2021).

To identify Alzheimer’s disease, several research use 
Deep Boltzmann machines (Suk et al. 2014), Convolutional 
Autoencoder (Hosseini-Asl et al. 2018), Gated Recurrent 
Units (Lee et al. 2019), Bi-LSTM (Bi-directional long short 
term memory) (El-sappagh et al. 2020), Convolutional Neu-
ral Networks (Wen et al. 2020), Attention Model (Zheng 
et al. 2022; Xiao et al. 2022), Generative Adversarial Net-
works (GAN) (Kang et al. 2021) and several other networks 
(Liu et al. 2015; Qiu et al. 2018). However, we concentrated 
on 3-Dimensional Convolutional Neural Networks (Li et al. 
2020; Huang et al. 2019) rather than 2-Dimensional Convo-
lutional Neural Networks (Janghel and Rathore 2020; Wang 
et al. 2018) in our research. As an outcome, the primary dif-
ference between 2-Dimensional and 3-Dimensional ConvNet 
is that the three dimensional network retains temporal details 
from the scans (Goenka and Tiwari 2021b). The 3D-Ensem-
bleNet combines two 3D-ConvNets to further convolve over 
voxels in a PET scan whilst also maintaining spatial features.

Yuan et al. (2018) used a 3-Dimensional CNN to dis-
criminate between Amyloid positive and negative scans and 
SUVr estimates using 1072 Florbetapir PET images taken 
from the ADNI database (Standard Uptake Value ratio). 178 
AD, 525 MCI, and 369 NC scans were spatially normalized 
to MNI (Montreal Neurological Institute) template space and 
fed into a deep learning architecture, producing 95% accu-
racy, 92% sensitivity, and 98% specificity.

Using 732 PET scans from the ADNI repository, Sahum-
baiev et al. (2018) designed a deep neural network. 237 AD, 
87 MCI, and 408 CN scans were pre-processed using differ-
ent normalization techniques, spatial co-registration using 
the AAL atlas (Automated Anatomical Labeling), and finally 
passed to a deep neural network with successive backward 
and forward propagation stages. Finally, the output layer’s 
softmax activation function yielded 90% sensitivity and 87% 
specificity.

Choi and Jin (2018) concatenated FDG and AV-45 PET 
images retrieved from the ADNI database after applying 
several pre-processing techniques such as co-registration, 
voxel standardization, smoothing, and rescaling. This fea-
ture volume was fed into a 3-Dimensional CNN that learned 
from Alzheimer’s binary classification data (AD versus NC) 
and correctly predicted MCI to AD conversion 84.2% of 
the time.

Ozsahin et al. (2019) used 500 AV-45 PET images to 
evaluate four distinct binary classifications by extracting 
several patches from the scans and feeding them into a back 
propagation neural network. 100 PET scans of AD, LMCI, 
EMCI, SMC, and NC were run through a pre-processing 
pipeline that included co-registration, averaging, standardi-
sation, and resolution before being fed into a neural network. 
The accuracy for AD vs. NC was 87.9%, 66.4% for NC vs. 
LMCI, 60.0% for NC vs. EMCI, and 52.9% for NC vs. SMC.

Using T1w-MRI (T1 weighted Magnetic Resonance 
Imaging) and AV-45 PET scans, Punjabi et al. (2019) cre-
ated a single-modality and multi-modality framework. The 
585 AV-45 PET images were first pre-processed by applying 
registration to the MNI152 template, then averaging numer-
ous scans from the same patient, and then skull stripping and 
sending them as a complete volume into a 3Dimensional 
convolutional neural network. The accuracy of our voxel-
based neuroanatomical method combined with 3D CNN for 
AD versus NC was 85.15%.

The work by Huang et al. (2019) focuses on Hippocam-
pus ROI feature extraction using 2145 T1w-MRI, FDG-PET 
images from 1211 subjects. The scans were pre-processed 
before being sent to 3D-CNN, namely VGG-Net. The two 
datasets namely, Segmented and Paired dataset, resulted in 
90.10% accuracy for AD versus NC, compared to 89.11% 
accuracy for PET scans and 81.19% accuracy for MRI scans.

Using MRI and PET scans taken through ADNI, Zhang 
and Shi (2020) put forth four-class categorization NC vs. 
pMCI vs. sMCI vs. AD with 86.15% classification accuracy. 
The pre-processed scans of 500 participants were fed into 
a deep multimodal fusion network, which uses a 2-Dimen-
sional CNN and an Attention model to collect low and high 
information and sMCI vs. pMCI accuracy was 89.79%, 
whereas AD vs. NC accuracy was 95.21%.

Peng et al. (2021) were able to distinguish amyloid posi-
tive and negative scans with 100% accuracy. MCDNet-2 
(Monte Carlo de-noising network and GAN (Generative 
Adversarial Networks)) was used to train Amyloid PET 
scans from 25 subjects, and the results were 100% accurate 
(Table 1).

Despite the fact that these studies focused on deep neural 
networks, no research has been done on the different aspects 
of brain structure computational approaches. The classifica-
tion accuracy of created models using 3-Dimensional Sub-
ject, Patch and Slice-based techniques varies whereas the 
prior studies employed only one method of feature extraction 
approaches. To assess suitability of these methodologies for 
a certain type of model, much research is necessary. Further-
more, binary and three-class classification accuracy must be 
improved. In addition, only a few studies looked at various 
feature extraction approaches.

This work is distinctive in these respects. To begin 
with, three-class classification accuracy has substantially 
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Table 1   Framework, feature extraction approach, modality, subject and image count for previous research works

Author(s) Neuroanatomi-
cal method

Data repository Modality Subject count Image count Framework Neural network

Yuan et al. 
(2018)

Not mentioned ADNI AV45-PET Total-1072
AD-178
MCI-525
NC-369

Total-1072
AD-178
MCI-525
NC-369

DL 3D CNN

Sahumbaiev 
et al. (2018)

Not mentioned ADNI AV45-PET
FDG-PET

Total-732
237-AD
87-MCI
408-CN

Total-732
237-AD
87-MCI
408-CN

DL Deep Neural 
Network

Choi and Jin 
(2018)

Voxel-Method ADNI AV45-PET
FDG-PET

Total-492
139-AD
171-MCI
182-CN

Total-492
139-AD
171-MCI
182-CN

DL 3D CNN

Ozsahin et al. 
(2019)

Patch-Method ADNI AV45-PET Total-500
NC-100
EMCI-100
AD-100
LMCI-100
SMC-100

Total-500
AD-100
LMCI-100
EMCI-100
SMC-100
NC-100

DL Back Propaga-
tion Neural 
Networks

Hao et al. (2019) ROI-Based ADNI MRI + FDG-
PET

Total-1115 Not mentioned Machine Learn-
ing

Machine Learning 
Algo

Liu et al. (2018) Patch-Based ADNI MRI + PET Total-397
AD-93
pMCI-76
sMCI-128
NC-100

Total-397
AD-93
pMCI-76
sMCI-128
NC-100

DL 3D CNN + 2D 
CNN

Janghel and 
Rathore 
(2020)

2D-Scans ADNI fMRI + PET Not mentioned Total-6367
AD-2817
NC-3550

DL 2D CNN

Liu et al. (2015) ROI Based ADNI MRI + PET Total-1089
AD-257
MCIc-227
MCInc-316
NC-289

Total-1089
AD-257
MCIc-227
MCInc-316
NC-289

DL SAE-MKSVM

Punjabi et al. 
(2019)

Voxel-Method ADNI MRI
AV45-PET

Total-723 1299-MRI
585-PET

DL 3D CNN

Huang et al. 
(2019)

ROI-Method ADNI MRI + FDG-
PET

Total-1211
731-NC
441-sMCI
326-pMCI
647-AD

2145 DL 3D CNN

Zhang and Shi 
(2020)

Slice-Method ADNI MRI + FDG-
PET

Total-500
119-AD
65-pMCI
153-sMCI
163-NC

500 DL 2D CNN + Atten-
tion Model

Peng et al. 
(2021)

Slice-Method ADNI AV45-PET Total-25
AD-13
NC-12

25* 126 Images DL Monte Carlo 
Denoising Net 
and GAN

Our framework Voxel-Method ADNI AV45-PET Total-381
27-AD
267-CN
87-MCI

Total-1776
99-AD
366-MCI
1311-CN

DL 3-Dimensional 
CNN

Our framework Patch-Method ADNI AV45-PET Total-381
27-AD
267-CN
87-MCI

Total-1776
99-AD
366-MCI
1311-CN

DL 3-Dimensional 
CNN
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improved. This, as far as we can tell, is the highest level of 
accuracy achieved. Second, the relevance of several neu-
roanatomical computing algorithms was proved using the 
same dataset. Third, multiple patch sizes have been evalu-
ated to determine which one gives the best results in terms 
of accuracy. Finally, three ways for demonstrating the best 
in a slice-based algorithm were applied.

3 � Materials and methods

3.1 � Methodology

In this section, the authors present the framework and algo-
rithm for Alzheimer’s detection, which includes the follow-
ing main components: Pipeline for pre-processing 2. Data 
Enhancement 3. Voxel-based method with 3D-EnsembleNet 
4. Patch-based method in 3D-EnsembleNet 5. Slice-based 
method using 3D-EnsembleNet. Figure 1 put forwards the 
framework for Alzheimer’s categorization using different 
neuroanatomy computational methodologies.

3.1.1 � Pre‑processing technique

The pre-processing pipeline’s objective is to lower various 
noises that may appear during acquisition of Amyloid PET 
scans. It is also no longer necessary for neural networks to 
rectify or ignore these biases. Further, the EnsembleNet will 

look for patterns in healthy scans, mildly impaired scans, 
and Alzheimer’s scans. The pre-processing method in pro-
posed framework includes averaging numerous PET images, 
registration using FLIRT and volumetric skull stripping 
using the BET tool.

3.1.1.1  Averaging PET scans  PET scans of Amyloid AV-45 
were taken 50 min after injecting 370 MBq 18F-florbeta-
pir in dynamic list mode for 20 min. The mean img func-
tion in the nilearn library was used to average the various 
PET scans collected for a single individual. Every subject’s 
averaged single PET scan was further pre-processed and 
employed in our 3D Ensemble Net architecture.

3.1.1.2  Rigid registration  FMRIB’s Linear Registration 
tool (FLIRT) (FLIRT 2022) is employed in our study to 
reduce spatial dissimilarities that arose during scanning. 
FLIRT assisted in the registration of Amyloid PET images 
to MNI152 T1 Template (Fonov et al. 2011) with 2 mm iso-
tropic spacing by conducting minor rotations and transla-
tions. For our pre-processing pipeline, we used 6 degrees of 
freedom (dof), a sinc-based interpolation approach, a corre-
lation ratio search cost. Equation 1 is mathematical formula 
with six degrees of freedom (Muschelli 2022b).

where P is 

(1)RigidTrans(v) = Pv + f

Table 1   (continued)

Author(s) Neuroanatomi-
cal method

Data repository Modality Subject count Image count Framework Neural network

Our framework Slice-Method ADNI AV45-PET Total-381
27-AD
267-CN
87-MCI

Total-1776
99-AD
366-MCI
1311-CN

DL 3-Dimensional 
CNN

Fig. 1   Proposed Alzheimer Detection Framework using AV45-PET scans
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rp
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, rp
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, rp

3
 are three rotation parameters.

The translation vector in the x, y, and z-axes is connected 
with three degrees of freedom f = (fx, fy, fz).

3.1.1.3  Skull stripping  The brain extraction tool (BET) 
(Smith 2002) of the FMRIB (Functional Magnetic Reso-
nance Imaging of the Brain) Software Library (FSL) extracts 
neck, bone, eyes etc. non-brain structures from the whole 
AV45 PET images. Using clustering approaches, BET iso-
lates voxels in amyloid scans and separates them to brain 
and non-brain tissues. We used fractions of 0.285 for this 
subdivision resulting in minimal characteristic loss (Goenka 
and Tiwari 2022).

Algorithm 1

The following algorithm (Muschelli 2022a) is used to extract 
the brain from the PET scan:

1.	 Calculate the second and ninety-eighth percentiles.
2.	 Using the formula (98th–2nd) * 0.10 + 2nd percentile, 

the threshold value is computed.
3.	 The background is cleared using this threshold value.
4.	 Centre of gravity is calculated using non-thresholded 

data.
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5.	 Brain’s radius and median intensity sites are computed.
6.	 Region growth and iteration are used to compute the 

brain surface.
7.	 The surface has been smoothed.
8.	 Finally, the surface is shrunk using median intensity.

The complete pre-processing workflow for Amyloid PET 
Scans acquisition till skull stripping is shown in Fig. 2. Fur-
thermore, three different feature extraction methods have 
been presented.

3.1.2 � Augmentation technique

One tripping issue for deep learning algorithms is a lack 
of dataset as the model accuracy increases only when huge 
amount of dataset is there since it leads to lesser chances 
of overfitting. As a consequence, multiple techniques like 
flipping, rotation, rescaling, shifting by various coordi-
nates, color correction, and others can be employed to 
augment the dataset. In our work, Scipy’s ndimage mod-
ule was used to conduct − 5° and 5° for rotations for 
each original scan. As a result, the dataset size is tripled, 
resulting in a considerable improvement in predictive 
performance.

Fig. 2   Pre-Processing pipeline of AV45-PET scans with distinct feature extraction approaches
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3.1.3 � Classification models

We investigated three neuroanatomy computational extrac-
tion approaches for Alzheimer’s binary and multi-class cat-
egorization as AD, CN and MCI:

(a)	 3-Dimensional Subject Based EnsembleNet
(b)	 3-Dimensional Patch Based EnsembleNet
(c)	 3-Dimensional Slice Based EnsembleNet

EnsembleNet is a hybrid of two 3-Dimensional Convolu-
tional Networks used in our research where multiple convo-
lution, batch normalization, pooling, dropout, and dense lay-
ers forms each Convolutional network. The 3-Dimensional 
convolutional layer takes 3-D Amyloid PET scans and con-
volves them through variety of filters to produce an output 
feature volume. In mathematical equation terms, Wlayer

nm  is the 
3-Dimensional kernel with size I × J × K in the layerth layer 
(Qu et al. 2020). This function is associated to former layer 
(layer-1) mth input feature volume Flayer−1

m  and Flayer
m  , the nth 

output volume as shown in Eq. 2.

As shown in Eq. 3 the non-linear activation function �(.) 
gives, Flayer

i
 the output feature volume.

(2)

Vlayer
nm

(p, q, r) =

P∑

p�=1

Q∑

q�=1

R∑

r�=1

Flayer−1
m

(
p − p�, q − q�, r − r�

)

×Wlayer
nm

(
p�, q�, r�

)

(3)Flayer
n

= �

(
M∑

m=1

Vlayer
nm

+ biaslayer
n

)

Activation function ActFn[layer] works on input feature 
volume V [layer] , resulting into output feature volume IZ[layer] 
as shown in Eq. 4.

As depicted in Eq. 5, the pooling function PoolFn[layer] is 
applied to the ActFn[layer] , resulting in OutFv[lyr] , the output 
feature volume.

The batch normalization layer helps to standardize net-
work inputs that are either direct inputs or activations from 
preceding layers. The Global Average pooling layer (Lin 
et al. 2014) contributes in lowering the feature space of 
model parameters, advancing towards Alzheimer’s three-
class categorization due to mathematical equation of con-
verting H × W × D to 1 × 1 × D dimensions, leading to a 
single entry vector. The completely linked layer at the net-
work’s end assists in non-linear combinations of distinct 
characteristics, allowing us to categorize the data. The 
dropout layers help to regularize our recommended work-
flow method by detaching some visible and hidden nodes, 
mandating that no one node is accountable for predicting the 
Alzheimer’s disease.

The sub-sections below details the proposed frameworks 
for various feature extraction approaches in detail.

3.1.3.1  3‑Dimensional subject based Ensemble Net  By merg-
ing features from two 3-dimensional convolutional networks 
that operate on complete Florbetapir AV-45 PET images, 

(4)IZ[layer] = ActFn[layer]
(
V[layer]

)

(5)OutFv[layer] = PoolFn[layer]
(
ActFn[layer]

)

:
1.  import nibabel, scipy, os

2. Set pet_input_directory path

3. Set pet_output_directory path

4.  degreeOfRotation = n                          // n value will be +5 and -5

5.  counter=1

6. for loop (pet_input_directory):

7. org_volume = nibabel.load (pet_input_directory_file[i])    

8. rot_volume = org_volume.get_fdata()                     

9. rot_volume = ndimage.rotate(rot_volume, degreeOfRotation, reshape = false)  

10.     augmented_volume=nibabel.Nifti1Image(rot_volume, org_volume.affine) 

11.    nibabel.save(augmented_volume, pet_output_directory_file[i])    

12. counter++
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the 3D-Subject based Ensemble Net identifies Alzheimer’s 
disease. Before being sent to the Ensemble Net, Amyloid 
PET images are scaled to 128 × 128 × 64. In each ConvNet, 
we used 13 layers, including multiple convolutional layers, 
batch normalization, pooling layers (max and global aver-
age), and dense layers, as shown in Fig. 3. The features of 
these two models are amalgamated in the maximum layer, 
which is then transmitted to the dense layer. In three-class 
categorization, the penultimate fully connected layer with 
softmax activation function divides Alzheimer’s disease 
into AD, MCI, and NC, whereas sigmoid activation func-

tion distinguishes between MCI-AD, AD-NC, and NC-MCI 
in binary categorization.

3.1.3.2  3‑Dimensional patch based Ensemble Net  The 
3D-patch based Ensemble Net has a similar design to the 
3D-Subject based Ensemble Net, however the size of the 
Florbetapir AV-45 PET scan is different. The patch size 
determines the input scans dimensions in this feature extrac-
tion approach. The Fig. 4 below shows the architecture for 
Patch dimension 72, which uses PET scan patches of size 
72 × 72 × 72. The torch unfold function was used to con-

Fig. 3   3 Dimensional-Subject Based Ensemble Network Framework

Fig. 4   3-Dimensional Patch-Based Ensemble Network Framework
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struct patches out of complete scans, which were fabricated 
using non-overlapping technique. For ensuring that scans 
are divisible by patch size, we employed padding in our 
method (Goenka et al. 2022). Upon the extraction of blocks 
with unfold function, the reshape function is used to build 
a 3-Dimensional Patches, which are then passed to Ensem-
bleNet framework.

In addition, we investigated the impact of patch dimen-
sions on performance accuracy by using a variety of dimen-
sions scaling from small to medium to large with 32, 40, 
48, 56, 64, 72, 80, and 88 patch sizes employed in the 
experiments.

3.1.3.3  3‑Dimensional slice based Ensemble Net  Slices are 
extracted using three different approaches and infused to gen-
erate a 3D-volume to pass to the framework in the 3D-Slice 
based EnsembleNet. interpolated zoom technique (IZA) 
(Zunair et al. 2020), uniform slice method (USA), Subgroup 
slice method (SSA) (Zunair et al. 2019), were the three slice 
selection methods used in our study. The 3-Dimensional 
Slice based EnsembleNet (depicted in Fig. 5) varies from 
3-Dimensional Subject based EnsembleNet in that it con-
catenates slices retrieved using several techniques and sends 
them as input image instead of the whole scan. Furthermore, 
whereas 3D-Patch based covers may include the whole scan 
in separate patches, 3D-Slice based EnsembleNet does not 
capture the majority of information.

Subgroup slice algorithm (SSA): In this method, slices are 
extracted from Amyloid PET scan’s beginning, middle, and 
end positions. The middle slices are bagged by calculating 
half of the scan depth to preserve uniformity owing to depth 
variation. To achieve the desired input volume, the subsets 
are then layered depth wise.

Uniform slice algorithm (USA): The target depth DD, 
PET scan input depth PD are calculated using the uniform 
slice method. A spacing factor is calculated using the for-
mula SpaceFact = PD∕DD . The spacing factor SpaceFact 
is retained throughout the succession of slices in scan data 
for this sample.

Interpolated zoom algorithm (IZA): Each PET volume 
is magnified along z-axis by 1∕PD.GD , where PD is the 
PET input depth and GD is the goal depth size, using spline 
interpolation with order of three as interpolant. The PET 
volume is magnified or compressed here by duplicating the 
nearest pixel along depth. Because it uses spline interpola-
tion to compress or extend z-axis to the appropriate depth, 
it maintains a major characteristic from the PET input scan 
in comparison to the aforementioned alternatives.

3.2 � Metrics

A number of performance measures are used to evaluate 
the three Ensemble Nets built in this work for Alzheimer’s 

Fig. 5   3-Dimensional Slice Based Ensemble Network

Predicted
Alzheimer not 

detected

Alzheimer 

detected

Actual

Alzheimer not 

detected
TN FP

Alzheimer 

detected
FN TP

Fig. 6   Confusion Matrix
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detection utilizing different neuroanatomy computing meth-
odologies. For training, validation, and testing datasets, it 
includes performance accuracy and loss results. Confusion 
matrix, AUC, ROC, precision, sensitivity and f1-score are 
all calculated as well. Because of the importance of this sug-
gested framework in the medical domain, it is vital to point 
out the incorrect predictions.

True Positive (TP), True Negative (TN), False Positive 
(FP), and False Negative (FN) values are used in confusion 
matrix (Fig. 6).

Recall/Sensitivity is the classifier’s ability to find all the 
relevant cases within a dataset.

Precision is the total number of true positive cases 
divided by true positive and false positive cases.

Specificity is the total number of true negative cases 
divided by true negative and false positive cases.

3.3 � Implementation details

NVIDIA Volta GPU with 32 GB RAM, 5120 CUDA, and 
640 Tensor cores was utilized to compile and execute the 
EnsembleNet framework for Alzheimer’s detection. Keras 
(Chollet 2015) served as front-end while Tensor flow served 
as the back-end (Abadi et al. 2016) for this Alzheimer iden-
tification framework. Python was used as programming 
language with Anaconda navigator platform as IDE (Inte-
grated Development Environment). Adaptive moment esti-
mation (ADAM) optimizer with 0.0001 learning rate and 
cross entropy loss function was used for model compilation 
(Kingma and Ba 2015). As determined in Eqs. 9 and 10, 
Adam retains an exponentially declining average of prior 
gradients �t and past squared gradients νt . With values of 
0.9 and 0.999, �

1
 and �

2
 are relatively tiny decay rates. Epsi-

lon ε is a very tiny value introduced to prevent division by 
zero, with a value of 10–8.

These gradients �t and νt are further bias corrected as 
indicated in Eqs. 11 and 12, labelled as �̂t and ν̂t.

(6)Recall =
TP

TP + FN

(7)Precision =
TP

TP + FP

(8)Specificity =
TN

TN + FP

(9)�t = �
1
�t−1 +

(
1 − �

1

)
gt

(10)νt = �
2
νt−1 +

(
1 − �

2

)
g2
t

Eventually, as shown in Eq. 13, the weights �t+1 , �t  are 
changed using the following mathematical equation with � 
step size.

Early stopping also improved with validation accuracy 
and overfitting minimization whilst maintaining Epoch count 
at 100.

3.4 � Materials (dataset)

The data for the research was taken from ADNI reposi-
tory. Under the guidance of Dr. Michael W. Weiner, ADNI 
launched in 2004 as a public database. Its main purpose was 
to compile all biomarkers for early identification of Alzhei-
mer’s disease in a single repository. For this study, Amyloid 
PET (AV-45) scans from ADNI-3 were obtained which was 
released in 2016.

The data for this investigation included 593 scans from 
381 people (33 AD scans, 438 CN scans, and 122 MCI 
scans), which were separated in 3 classes as shown in 
Table 2: AD, CN, and MCI.

AD individuals were diagnosed with Alzheimer’s condi-
tion at beginning of the trial and they had same condition 
throughout until the data was extracted.

CN individuals were healthy from the start of the study 
and stayed that way throughout.

MCI Individuals, begun to acquire Alzheimer’s symp-
toms but had not yet fully transitioned to AD and were not 
as normal as CN individuals.

(11)�̂t =
�t

1 − 𝛽 t
1

(12)𝜈̂t =
νt

1 − 𝛽 t
2

(13)𝜃t+1 = 𝜃t −
𝜂

√
𝜈̂t + 𝜀

�̂t

Table 2   Subjects demographics information

Group Subjects Sessions Age Male Female

AD 27 33 74.97 17 10
CN 267 438 76.35 123 144
MCI 87 122 75.40 50 37
Total 381 593 76.08 190 191
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4 � Experiments and results

In the section below, the results of different feature extrac-
tion approaches for Alzheimer’s categorization (three-class 

and two-class) are listed. The pre-processed data was 
extracted, saved and augmented separately through distinct 
feature extraction algorithms in each of the experiments, 
which were performed as distinct pipelines.

4.1 � 3‑dimensional subject based EnsembleNet

With 1311 healthy, 99 Alzheimer, and 366 mild cognitive 
impairment scans divided into 1420 training, 178 testing, 
178 validation datasets, the 3-Dimensional Subject based 
Ensemble Net for Alzheimer’s categorization was built. 
As shown in Fig. 7, the 3-class performance accuracy was 
91.01%, with a training accuracy of 93.87, validation accu-
racy of 89.32%. The accuracy of binary classification was 
100% for NC vs. AD, 95.23% for MCI vs. NC, and 97.87% 
for MCI vs. AD.

Fig. 7   Performance Curves using 3-Dimensional Subject based EnsembleNet framework

Table 3   3-Dimensional subject based ensemble net model perfor-
mance metrics

Controls Precision Recall F-Score Support

AD 1.00 0.8 0.89 10
MCI 0.89 0.65 0.75 37
NC 0.90 0.98 0.94 131
Accuracy 0.90 178
Macro Avg 0.93 0.81 0.86 178
Weighted Avg 0.90 0.90 0.90 178

Fig. 8   Confusion Matrix and ROC curves using 3-Dimensional Subject based EnsembleNet framework
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The graphic shows the confusion matrix, which includes 
129 accurately determined healthy, 24 MCI, and 9 Alzhei-
mer’s scans. Table 3 below shows the recall, precision, and 
F-scores for three classes with the support scans count. 
Figure 8 depicts ROC curves for NC, MCI, and AD, along 

with ROC values of 0.93, 0.86 for the micro-average and 
macro-average.

4.2 � 3‑dimensional patch based EnsembleNet

The 3-Dimensional Patch based EnsembleNet framework 
for CN vs. AD vs. MCI classification was built using 1311 
normal, 99 Alzheimer’s, and 366 mildly impaired scans, 
which were separated into 1420 training, 178 testing, and 
178 validation datasets. The 3-class Alzheimer’s categori-
zation was 92.13% accurate, as shown in Fig. 9, with 96.26 
and 93.82% training and validation accuracy. The two-class 
categorization NC vs. AD was 97.87% accurate, MCI vs. NC 
95.23%, and MCI vs. AD was 100% accurate.

The confusion matrix is portrayed in Fig. 10 with 131 
accurately projected healthy controls, 29 MCI, and 4 

Fig. 9   Performance Curves using 3-Dimensional Patch based EnsembleNet framework

Fig. 10   Confusion Matrix and ROC curves for 3-Dimensional Patch Based EnsembleNet Framework

Table 4   3-Dimensional patch based ensemble net framework perfor-
mance metrics

Controls Precision Recall F1-Score Support

AD 1.00 0.40 0.57 10
MCI 1.00 0.78 0.88 37
NC 0.90 1.00 0.95 131
Accuracy 0.92 178
Macro Avg 0.97 0.73 0.80 178
Weighted Avg 0.93 0.92 0.91 178
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Alzheimer’s controls. Further the performance metrics for 
three classes are shown in Table 4, along with the scans that 
supports the projection. Figure 10 shows ROC curves for 
three classes, with micro and macro-average ROC values 
being 0.94 and 0.82, respectively.

Patch Size, Dataset Samples, Training, Testing and Vali-
dation Accuracy, and other performance metrics for three-
class categorization using various patch sizes are also shown 
in Table 5. As can be seen in the evaluation findings below, 
small patches like 32 and 40 have poor categorization accu-
racy. Large patches had the highest testing accuracy, with 
medium dimensionality patches (48, 56, and 64 dimensions) 
yielding greater performance accuracy than tiny patches (72, 
80).

In terms of binary classification results, small and 
medium patches performed fairly, with testing accuracy 
around 92%, while big patches achieved the highest accu-
racy, as shown in the Table 6. The accuracy of AV-45 PET 
patches of size 72 × 72 × 72 in distinguishing normal control 
from Alzheimer’s disease was found to be 97.87%, 95.23% 
in distinguishing mild cognitive impairment from normal 
controls, and 100% in distinguishing Alzheimer’s from 
mildly impaired scans.

4.3 � 3‑dimensional slice based EnsembleNet

The 3-Dimensional Slice based Ensemble Net framework 
for CN vs. MCI vs. AD classification was built using 366 
mild cognitive impairment scans, 1311 normal scans, and 99 
Alzheimer images. The USA, SSA, and IZA methods were 
used to draw out slices and combine to form the 3D scan. 
Slices with varying numbers, such as 8, 16, 24, 32, 40, 48, 
56, 64, 72, and 88 slices, were also used. The highest accu-
racy was attained using USA method with 48-slice count, 
with accuracies as 90.45% for testing dataset, 95.14 for train-
ing, and 88.20 for validation dataset. Talking about binary 
categorization accuracy, CN vs. AD was 92.90% correct, 
MCI vs. CN 77.97%, and MCI vs. AD 87.23% accuracy. 
Figures 11 and 12 demonstrate the performance accuracy 
and loss curves for Alzheimer’s three-class categorization.

The confusion matrix as portrayed in the Fig. 13, with 
131 CN, 37 MCI, and 10 Alzheimer’s controls.

Accuracies and performance metrics for three-class cat-
egorization through numerous slice depths and algorithms—
Uniform Slice Algorithm (USA), Interpolation Zoom Algo-
rithm (IZA), and Subset Slice Algorithm (SSA) are also 

Table 5   Alzheimer’s three-class categorization accuracy (AD vs. NC vs. MCI), dataset controls and other metrics for several experiments 
employing numerous patch sizes

*Precision/Recall/F1-Score—NC/MCI/AD; **ROC (Micro-Avg./Macro-Avg.)

Patch size Data controls Test Acc. (%) Val Acc. (%) Train Acc (%) ROC Precision Recall F1-Score

32 AD-3330
MCI-12255
NC-43842

73.77 73.77 73.77 0.80/0.50 0.74/0.00/0.00 1.00/0.00/0.00 0.85/0.00/0.00

40 AD-1170
MCI-4320
NC-15474

74.63 76.86 81.53 0.81/0.62 0.79/0.53/0.44 0.91/0.33/0.19 0.85/0.41/0.26

48 AD-792
MCI-2928
NC-10488

80.89 80.76 91.19 0.85/0.67 0.80/0.79/0.82 0.97/0.29/0.40 0.88/0.42/0.54

56 AD-198
MCI-732
NC-2622

78.37 78.37 80.95 0.85/0.67 0.76/1.00/1.00 1.00/0.04/0.40 0.86/0.08/0.57

64 AD-198
MCI-732
NC-2622

77.52 80.05 81.47 0.83/0.56 0.77/1.00/0.50 1.00/0.18/0.05 0.87/0.30/0.09

72 AD-99
MCI-366
NC-1311

92.13 93.82 96.26 0.94/0.82 0.90/1.00/1.00 1.00/0.78/0.40 0.95/0.88/0.57

80 AD-99
MCI-366
NC-1311

89.32 88.76 94.71 0.92/0.78 0.88/0.96/1.00 1.00/0.65/0.40 0.94/0.77/0.57

88 AD-99
MCI-366
NC-1311

78.08 80.33 87.39 0.84/0.63 0.77/1.00/0.67 0.98/0.14/0.40 0.87/0.24/0.50
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shown in Tables 7, 8, and 9. The performance accuracy 
realized for smaller slices 8, 16, 24, 32 is relatively poor, 
as depicted in experiments results below. Despite the fact 
that more slices (40, 48, 56, 64, and 72) stemmed in accept-
able classification accuracy, the optimal slice depth was 48. 
Uniform slicing outperforms interpolation zoom and subset 
slicing when it comes to different techniques (Fig. 14).

4.4 � Performance comparison with existing state 
of art approaches

Table 10 further reveals that, when compared to the other 
two methodologies and previously published papers, our 
3D-Patch based feature extraction methodology had the 
highest accuracy. Yuan et al. (2018) worked on voxel based 
approach to discriminate between Amyloid positive and 
negative scans using Florbetapir PET images taken from the 
ADNI fed them into a deep learning architecture, producing 
95% accuracy, 92% sensitivity, and 98% specificity. Using 

732 PET scans from the ADNI repository, Ivan Sahumbaiev 
et al. (2018) designed a deep neural network with succes-
sive backward and forward propagation stages yielding 90% 
sensitivity and 87% specificity. Choi and Jin (2018) selected 
voxel based approach and correctly predicted MCI to AD 
conversion 84.2% of the time by concatenating FDG and 
AV-45 PET images retrieved from the ADNI database after 
applying several pre-processing techniques.

Ozsahin et  al. (2019) took patch based approach by 
extracting several patches from the 500 AV-45 PET scans 
and feeded them into a back propagation neural network. 
The author evaluated four distinct binary classifications and 
realized 87.9% accuracy for AD vs. NC, 66.4% for NC vs. 
LMCI, 60.0% for NC vs. EMCI, and 52.9% for NC vs. SMC. 
Using T1w-MRI and AV-45 PET scans, Punjabi et al. (2019) 
created a single-modality and multi-modality framework. 
The accuracy of voxel-based neuroanatomical method com-
bined with 3D CNN for AD versus NC was 92.34%. The 
work by Huang et al. (2019) focused on Hippocampus ROI 

Table 6   Alzheimer’s 2-class classification accuracy (AD vs. MCI, AD vs. NC and MCI vs. NC), dataset controls and other metrics for several 
demonstrations employing numerous patch sizes

Patch size Dataset NC/AD MCI/NC MCI/AD

Test accuracy (%) AUC​ Average 
precision

Test accuracy (%) AUC​ Average 
precision

Test accuracy (%) AUC​ Average 
precision

32 AD-3330
MCI-12255
NC-43842

92.92 0.50 0.07 78.05 0.50 0.22 85.37 0.68 0.85

40 AD-1170
MCI-4320
NC-15474

97.53 0.89 0.68 78.98 0.53 0.25 95.08 0.90 0.95

48 AD-792
MCI-2928
NC-10488

92.92 0.50 0.07 82.14 0.63 0.37 97.59 0.95 0.98

56 AD-198
MCI-732
NC-2622

92.90 0.50 0.07 89.28 0.77 0.62 97.87 0.95 0.97

64 AD-198
MCI-732
NC-2622

96.80 0.78 0.58 87.20 0.71 0.55 97.87 0.95 0.97

72 AD-99
MCI-366
NC-1311

97.87 0.85 0.72 95.23 0.89 0.83 100.00 1.00 1.00

80 AD-99
MCI-366
NC-1311

97.16 0.80 0.63 82.73 0.61 0.39 97.87 0.95 0.97

88 AD-99
MCI-366
NC-1311

95.03 0.65 0.35 84.52 0.65 0.45 97.87 0.95 0.97



815Evolving Systems (2023) 14:801–824	

1 3

feature extraction using 2145 T1w-MRI, FDG-PET images 
from 1211 subjects and passing to 3D-CNN, namely VGG-
Net realizing 90.10% accuracy for AD vs. NC, compared to 
89.11% accuracy for PET scans and 81.19% accuracy for 
MRI scans. Using MRI and PET scans taken through ADNI, 
Zhang and Shi (2020) put forth four-class categorization 
NC vs. pMCI vs. sMCI vs. AD with 86.15% classification 
accuracy, 89.79% for sMCI vs. pMCI, and 95.21% for AD 
vs. NC. Peng et al. (2021) were able to distinguish amyloid 
positive and negative scans with 100% accuracy.

With patch dimensions of 72*72*72, our proposed model 
with AV45-PET scans and a Patch-based neuroanatomical 
computational model achieved 92.13% three-class classifi-
cation accuracy. The slice-based technique, which used a 
uniform slicing algorithm and a 48-slice depth, achieved a 
classification accuracy of 90.45%. The accuracy of a sub-
ject-based method in which entire PET scans were sent to a 
3-Dimensional ensemble network was 91.01%.

5 � Discussion

The purpose of this work was to find most promising method 
for distinguishing between Alzheimer’s disease, healthy sub-
jects and mildly impaired subjects, surpassing handcrafted 
manual feature extraction strategy. Gaining maximum accu-
racy for AD vs. MCI vs. NC categorization, thereby sup-
porting clinicians was a difficult challenge due to lack of 
data, complex and higher dimensional scans. We created a 
deep ensemble network approach with various regulariza-
tion algorithms to reduce overfitting and improve accuracy. 
Furthermore, our method employs complete volumetric PET 
scans as input and achieves the greatest 3-class classifica-
tion accuracy to our knowledge. The most notable result 
of this research is that we extensively investigated numer-
ous feature extraction strategies, finding that 3-Dimensional 
patch-based approach, as represented in Fig. 15, provides the 

Fig. 11   Performance Accuracy Curves using 3-Dimensional Slice based EnsembleNet framework for Alzheimer Categorization (i) USA (ii) IZA 
(iii) SSA (from left to right)
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Fig. 12   Performance Loss Curves using 3-Dimensional Slice based EnsembleNet framework for Alzheimer Categorization (i) USA (ii) IZA (iii) 
SSA (from left to right)

Fig. 13   Confusion Matrix using 3-Dimensional Slice based EnsembleNet Model (i) USA (ii) IZA (iii) SSA (from left to right)
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Table 7   Alzheimer’s classification accuracy (CN vs. MCI vs. AD) and other performance metrics using uniform slice algorithm—slice based 
approach

*Receiver Operating Characteristics (Micro/Macro Average); **NC/MCI/AD Precision/Recall/F-Score

Slice depth Algorithm Testing Acc. (%) Val. Acc. (%) Training Acc (%) ROC* Precision** Recall** F-Score**

8 USA 72.47 74.71 76.05 0.80/0.53 0.74/0.50/0.00 0.98/0.05/0.00 0.85/0.10/0.00
16 USA 82.58 87.07 96.47 0.87/0.76 0.88/0.68/0.71 0.94/0.57/0.50 0.91/0.62/0.59
24 USA 76.96 80.33 88.59 0.83/0.59 0.77/0.67/0.33 0.96/0.22/0.10 0.86/0.33/0.15
32 USA 82.58 79.21 85.00 0.87/0.64 0.82/0.89/0.00 0.99/0.46/0.00 0.90/0.61/0.00
40 USA 60.11 58.42 60.49 0.70/0.67 0.85/0.00/0.13 0.76/0.00/0.80 0.80/0.00/0.22
48 USA 90.45 88.20 95.14 0.93/0.77 0.91/0.91/0.50 0.98/0.84/0.10 0.95/0.87/0.17
56 USA 83.14 84.26 95.63 0.87/0.69 0.83/0.79/1.00 0.96/0.51/0.20 0.89/0.62/0.33
64 USA 75.28 75.28 77.46 0.81/0.52 0.75/1.00/0.00 1.00/0.08/0.00 0.86/0.15/0.00
72 USA 79.21 79.21 84.71 0.84/0.60 0.78/1.00/1.00 1.00/0.19/0.20 0.87/0.32/0.33

Table 8   Alzheimer’s classification accuracy (CN vs. MCI vs. AD) and other performance metrics using interpolation zoom algorithm—slice 
based approach

*Receiver Operating Characteristics (Micro/Macro Average); **NC/MCI/AD Precision/Recall/F-Score

Slice depth Algorithm Testing Acc. (%) Val Acc. (%) Training Acc. (%) ROC* Precision** Recall** F-Score**

8 IZA 80.33 74.71 80.98 0.85/0.66 0.82/0.65/0.00 0.95/0.46/0.00 0.88/0.54/0.00
16 IZA 82.58 78.08 88.52 0.87/0.72 0.84/0.69/0.75 0.95/0.49/0.30 0.90/0.57/0.43
24 IZA 82.58 79.21 83.45 0.87/0.71 0.81/0.92/1.00 0.99/0.30/0.60 0.89/0.45/0.75
32 IZA 78.08 80.33 86.54 0.82/0.70 0.81/0.89/0.38 0.96/0.22/0.50 0.88/0.35/0.43
40 IZA 80.33 76.96 87.67 0.86/0.65 0.82/0.79/0.50 0.98/0.41/0.10 0.89/0.54/0.17
48 IZA 70.78 71.34 72.74 0.78/0.50 0.74/0.20/0.00 0.95/0.05/0.00 0.83/0.09/0.00
56 IZA 88.20 88.76 91.83 0.91/0.73 0.85/1.00/1.00 1.00/0.59/0.20 0.92/0.75/0.33
64 IZA 78.08 79.21 78.09 0.84/0.58 0.77/1.00/1.00 1.00/0.19/0.10 0.87/0.32/0.18
72 IZA 74.71 78.65 86.54 0.83/0.78 0.89/0.94/0.32 0.95/0.41/0.70 0.92/0.57/0.44

Table 9   Alzheimer’s classification accuracy (CN vs. MCI vs. AD) and other performance metrics using subset slice algorithm—slice based 
approach

*Receiver Operating Characteristics (Micro/Macro Average); **NC/MCI/AD Precision/Recall/F-Score

Slice depth Algorithm Testing Acc. (%) Val Acc. (%) Training Acc. (%) ROC* Precision** Recall** F-Score**

8 SSA 74.15 73.59 75.07 0.80/0.55 0.74/1.00/0.00 1.00/0.03/0.00 0.85/0.05/0.00
16 SSA 75.84 76.40 80.35 0.81/0.59 0.78/0.50/0.00 0.94/0.27/0.00 0.85/0.35/0.00
24 SSA 73.59 74.15 73.80 0.80/0.50 0.74/0.00/0.00 1.00/0.00/0.00 0.85/0.00/0.00
32 SSA 79.77 78.08 87.25 0.85/0.78 0.95/0.52/1.00 0.79/0.92/0.30 0.87/0.66/0.46
40 SSA 81.46 85.95 90.21 0.86/0.66 0.82/0.71/1.00 0.97/0.41/0.20 0.89/0.52/0.33
48 SSA 73.59 73.59 73.73 0.80/0.50 0.74/0.00/0.00 1.00/0.00/0.00 0.85/0.00/0.00
56 SSA 79.21 81.46 86.33 0.85/0.65 0.78/0.88/1.00 0.00/0.19/0.40 0.88/0.31/0.57
64 SSA 81.46 79.77 81.33 0.86/0.67 0.79/1.00/0.80 0.99/0.24/0.40 0.88/0.39/0.53
72 SSA 74.71 74.15 73.87 0.81/0.54 0.74/0.00/1.00 1.00/0.00/0.20 0.85/0.00/0.33
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highest accuracy as compared to Subject and Slice-based 
approaches.

Further to that, while conducting experiments for non-
overlapping patch based methodology with patches of vari-
ous sizes extending from small to medium to large, the lat-
ter provides the highest performance accuracy, second by 
medium, and eventually smaller patches. Additionally, as 
shown in Fig. 16, classification accuracy does not improves 
with increasing patch size beyond certain dimensions (in our 
case, 72*72*72), but rather remains consistent.

To discover which slice-based algorithm was optimal for 
Alzheimer’s multi-class classification, researchers explored 
a variety of methods. Slices were extracted and concatenated 
using interpolation zoom, uniform slicing, and subset selec-
tion techniques to build a 3-Dimensional volume that could 
be fed to our proposed ensembled network. Figure 17 shows 
the comparisons of these methods, with the uniforms slicing 
strategy outperforming the other two.

Though the results are adequate for Alzheimer’s three-
class categorization, the framework may be investigated 
for Alzheimer’s four-class categorization, AD vs. pMCI vs. 
sMCI vs. CN (pMCI/sMCI denoting progressive and stable 
MCI, respectively). Then, by merging sMRI pictures with 

other scans like T1w-MRI, Tau-PET, T2w-MRI, DTI, PIB-
PET and so forth, multi-modality extension may be per-
formed. Numerous other biomarkers, such as bio specimen, 
genetic, and clinical profilers, can be used in conjunction 
with others to increase performance accuracy. Numerous 
cognitive scores, such as the CSD, NPD, ASD and others, 
should be combined to see the effect on classification accu-
racy. Additionally, our study examines only three feature 
extraction dimensions, namely 3-Dimensional Subject, 
Patch, and Slice-based, other techniques, such as 3-Dimen-
sional ROI, 2-Dimensional Slices, can be used to decide 
suitability of these approaches for detecting Alzheimer 
disease.

Visualization techniques that may automatically detect 
problematic regions are another important topic that 
demands research, allowing medical practitioners to have 
more confidence in computational medical diagnosis. 
For emphasizing the anomalous area, many visualization 
approaches such as occlusion method Grad-CAM, Taylor 
decomposition, and local linear embedding among others, 
can be used.

Fig. 14   ROC Curves for 3-Dimensional Slice Approach EnsembleNet Model (from left to right). (i) USA (ii) IZA (iii) SSA
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Table 10   Comparison of our framework’s performance with existing state of art works

Author(s) Neuroana-
tomical 
approach

Neural network Results AUC/Sensitivity/Specificity

Yuan et al. (2018) Voxel-Based 3D CNN Amyloid positive vs nega-
tive—95%

Sensitivity—92%

Specificity—95%

Sahumbaiev et al. (2018) NA Deep Neural Network Not mentioned Sensitivity—90%

Specificity—78%

Choi and Jin (2018) Voxel-Based 3D CNN CN vs. AD—96%

MCI Conversion—84.2%

AUC​
AD vs NC—98%

MCI Conversion—89%

Sensitivity
AD vs NC—93.5%

MCI Conversion—81%

Specificity
AD vs NC—97.8%

MCI Conversion—87%

Ozsahin et al. (2019) Patch-Based Back Propagation Neural 
Networks

AD vs. NC—87.9%

NC vs. LCMI—66.4%

NC vs. EMCI—60.0%

NC vs. SMC—52.9%

Sensitivity
AD vs. NC—92.4%

NC vs. LCMI—62.9%

NC vs. EMCI—60.0%

NC vs. SMC—60.0%

Specificity
AD vs. NC—84.3%

NC vs. LCMI—70.0%

NC vs. EMCI—60.0%

NC vs. SMC—45.7%

Hao et al. (2019) ROI Based Machine Learning Algo ADNI-1
AD vs. NC—97.60%

MCI vs. NC—84.47%

MCI-C vs. MCI-NC—77.76%

ADNI-2
AD vs. NC—93.72%

LMCI vs. NC—78.47%

EMCI vs. LMCI—73.87%

Sensitivity
ADNI-1
AD vs. NC—98.43%

MCI vs. NC—94.04%

MCI-C vs. MCI-NC—67.44%

ADNI-2
AD vs. NC—95.17%

LMCI vs. NC—85.88%

EMCI vs. LMCI—90.55%

Liu et al. (2018) Patch-Based 3D CNN + 
2D CNN

AD vs. NC—93.26%

pMCI vs. NC—82.95%

sMCI vs. NC—64.04%

Sensitivity
AD vs. NC—92.55%

pMCI vs. NC—81.08%

sMCI vs. NC—63.07%

Specificity
AD vs. NC—93.94%

pMCI vs. NC—84.31%

sMCI vs. NC—67.31%

Janghel and Rathore (2020) 2D Scans 2D CNN fMRI
AD vs. NC—99.95%

PET
AD vs. NC—73.46%

Sensitivity
fMRI: AD vs. NC—99.94%

PET: AD vs. NC—84.4%

Specificity
fMRI: AD vs. NC—100 %
PET: AD vs. NC—60.35%

Liu et al. (2015) ROI Based SAE-MKSVM NC vs. AD—91.40%

NC vs. MCI—82.10%

NC vs. ncMCI vs. cMCI vs. 
AD—53.79%

Sensitivity
NC vs. AD—92.32%

NC vs. MCI—60.00%

NC vs. ncMCI vs. cMCI vs. 
AD—52.14%

Specificity
NC vs. AD—90.42%

NC vs. MCI—92.32%

NC vs. ncMCI vs. cMCI vs. 
AD—86.98%

Punjabi et al. (2019) Voxel-Based 3D CNN AD/NC-92.34% Not Mentioned
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6 � Conclusion and future work

In this section we present the conclusions to which we have 
arrived. We also enumerate a list of directions for further 
research.

7 � Conclusion

Using volumetric EnsembleNet and a 3D patch-based tech-
nique, we effectively classified Alzheimer’s, mildly cogni-
tive, and healthy PET images with 92.13% accuracy. The 
proposed model is tested using a variety of neuroanatomy 

computing methodologies, indicating that 3D-patch based 
EnsembleNet outperforms 3D-subject based EnsembleNet 
and 3D-slice based approaches in terms of accuracy. A 
number of trials were also carried out with different patch 
dimensions varying with small (32, 40, 48) to medium (56, 
64) to big (72, 80, 88) portraying the influence of patch 
size on model accuracy. Large patches with dimensions of 
72*72*72 had a classification accuracy of 92.13%, medium 
patches had an accuracy of 80.89%, and tiny patches had 
an accuracy of 74.63%, according to the findings. Uniform 
slicing algorithm exceeded Subset slicing and interpola-
tion algorithms, with a 90.45% Alzheimer’s three-class 
categorization.

Table 10   (continued)

Author(s) Neuroana-
tomical 
approach

Neural network Results AUC/Sensitivity/Specificity

Huang et al. (2019) ROI-Based 3D CNN PET
AD vs. NC—89.11%

MRI
AD vs. NC—81.19%

AUC-
NC vs. AD—90.84%

sMCI vs. pMCI—79.61%

pMCI vs. NC—87.61%

Sensitivity-
NC vs. AD—90.85%

sMCI vs. pMCI—68.15%

pMCI vs. NC—90.73%

Specificity-
NC vs. AD—89.21%

sMCI vs. pMCI—83.93%

pMCI vs. NC—80.61%

Zhang and Shi (2020) Slice-Based 2D CNN + Attention Model AD vs. CN—95.21%

pMCI/sMCI—89.79%

CN vs. pMCI vs. sMCI vs. 
AD-86.15%

AUC-
pMCI vs. sMCI—95.3%

NC vs. AD—99.4%

Sensitivity-
pMCI vs. sMCI—81.15%

AD vs. NC—93.56%

Specificity-
sMCI vs. pMCI—93.46%

AD vs. NC—97.48%

Peng et al. (2021) Slice-Based Monte Carlo Denoising Net and 
GAN

Amyloid positive vs nega-
tive—100%

Not Mentioned

Our model Voxel-Based 3D CNN NC vs. AD—98.58%

MCI vs. NC—95.23%

MCI vs. AD—97.87%

AD vs. NC vs. MCI—91.01%

AUC-
NC vs. AD—90%

MCI vs. NC—92%

MCI vs. AD—99%

AD vs. NC vs. MCI–86%
Our model Patch-Based 3D CNN AD vs. NC—97.87%

MCI vs. AD—100%

MCI vs. NC—95.23%

AD vs. NC vs. MCI—92.13%

AUC-
NC vs. AD—85%
MCI vs. AD—100%

MCI vs. NC—89%

AD vs. NC vs. MCI—82%

Our model Slice-Based 3D CNN AD vs. NC—92.90%

MCI vs. AD—87.23%

MCI vs. NC—77.97%

AD vs. NC vs. MCI—90.45%

AUC-
NC vs. AD—50%
MCI vs. AD—81%

MCI vs. NC—50%

AD vs. NC vs. MCI—77%
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8 � Present and future research

Despite the fact that these findings represent a step ahead 
in evolving Alzheimer’s computer-based identification, 
the study findings can also be applied in various domains. 
Combining other modalities with AV-45 PET and extend-
ing the work to a four-class classification scheme should 

provide more results. Additionally, our study examines only 
three feature extraction dimensions, namely 3-Dimensional 
Subject, Patch, and Slice-based, other techniques, such as 
3-Dimensional ROI, 2-Dimensional Slices, can be used to 
decide suitability of these approaches for detecting Alz-
heimer disease. Then, visualization strategies for that may 
automatically detect problematic regions in PET pictures 
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should be devised. These discoveries would be tremendously 
beneficial, and they would boost doctors’ confidence in com-
puter diagnostic tools.
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