
Vol.:(0123456789)1 3

Evolving Systems (2022) 13:563–575
https://doi.org/10.1007/s12530-021-09401-5

ORIGINAL PAPER

Battle royale optimizer for training multi‑layer perceptron

Saeid Agahian1 · Taymaz Akan2,3 

Received: 29 January 2021 / Accepted: 11 August 2021 / Published online: 21 August 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Artificial neural network (ANN) is one of the most successful tools in machine learning. The success of ANN mostly depends
on its architecture and learning procedure. Multi-layer perceptron (MLP) is a popular form of ANN. Moreover, backpropaga-
tion is a well-known gradient-based approach for training MLP. Gradient-based search approaches have a low convergence
rate; therefore, they may get stuck in local minima, which may lead to performance degradation. Training the MLP is
accomplished based on minimizing the total network error, which can be considered as an optimization problem. Stochastic
optimization algorithms are proven to be effective when dealing with such problems. Battle royale optimization (BRO) is
a recently proposed population-based metaheuristic algorithm which can be applied to single-objective optimization over
continuous problem spaces. The proposed method has been compared with backpropagation (Generalized learning delta rule)
and six well-known optimization algorithms on ten classification benchmark datasets. Experiments confirm that, according
to error rate, accuracy, and convergence, the proposed approach yields promising results and outperforms its competitors.

Keywords  Feed-forward neural network · Neural network training · Multilayer perceptron · Battle royale optimization ·
Metaheuristic

1  Introduction

The ultimate goal of human beings is to build machines
with the ability to think, learn, and behave like humans.
Therefore, understanding the structure and function of the
human brain is necessary for brain-like processing (Zurada
1992; Haykin 2007). The biological nervous system was
first mathematically modeled by McCulloch and Pitts in
1943 (McCulloch and Pitts 1943; Ojha et al. 2017). It is
the groundwork for simulating the behavior of the neural
system, which causes the emergence of Artificial Neural
Networks (ANNs) and associated learning algorithms. With
regard to adaptability, generalization, real-time procedure,
and self-organizing capability, ANNs can be supposed as
the most successful approach among other machine learning

schemes in classification, clustering, pattern recognition, and
regression problems (Karaboga et al. 2007; Schmidhuber
2015; Chatterjee et al. 2017; Braik et al. 2008; Linggard
et al. 2012). A simple schema of McCulloch and Pitts' model
is illustrated in Fig. 1.

The success of machine learning algorithms mostly
depends on the learning procedure. Generally learning algo-
rithms are divided into two main categories: supervised and
unsupervised approaches. The mathematical model of neural
neurons, introduced by McCulloch and Pitts, suffers from the
lack of a learning strategy that tunes the neuron weights for
solving a particular problem. In order to fill this gap, Hebb
proposed an unsupervised rule-based learning strategy for
tuning the connection weights of the network, in 1949 (Hebb
1949). Later in 1958, Rosenblatt proposed a supervised
learning mechanism called perceptron with the capability
of linear classification. In this mechanism, the weights of the
network are updated according to the input data when errors
occur. This network is the simplest case which is so-called
single-layer feed-forward neural network (FFNN); however,
this model is not able to solve non-linear classification prob-
lems. Consequently, developing the network and associated
learning method to deal with this challenge is thus needed.

 *	 Taymaz Akan
	 taymaz.farshi@gmail.com

1	 Department of Computer Engineering, Erzurum Technical
University, Erzrum 25050, Turkey

2	 Faculty of Electrical Engineering and Informatics, University
of Pardubice, Pardubice, Czech Republic

3	 Software Engineering Department, Ayvansaray University,
Istanbul 34020, Turkey

http://orcid.org/0000-0003-4070-1058
http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-021-09401-5&domain=pdf

564	 Evolving Systems (2022) 13:563–575

1 3

Researchers believe that increasing the number of hid-
den layers overcome this problem; however, it requires
a training algorithm to train the multi-layer perceptron
neural network (MLP). In 1984, Werbos, as the first
researcher, proposed a back-propagation (BP) algorithm
for training this network (Werbos 1989). Nonetheless, this
was not popular until Rumelhart (McClelland et al. 1986)
brought it up again. BP tunes the weights of the network
layer by layer if the output of the network is not desired.
As learning algorithms directly impact the performance
of neural networks, a wide variety of studies have been
conducted to effectively train the procedure. Supervised
training methods are divided into two main categories:
gradient-based and stochastic methods. As mentioned
already, BP adjusts the weights with respect to distance
from the minimum point of the lost function; however,
because of the low convergence rate, it may get stuck in
local minima. This problem arises from the fact that move-
ment follows the gradient descent. On the other hand, sto-
chastic algorithms are proven to be effective in dealing
with such problems.

A wide variety of stochastic optimization techniques,
including heuristic and metaheuristic algorithms, have
been applied to tackle this problem. Genetic Algorithm
(GA) (Holland 1992; Bhattacharjee and Pant 2019), Par-
ticle Swarm Optimization (PSO) (Eberhart and Kennedy
1995; R. K. 2020), Evolutionary Strategies (ES) (Schwefel
1984), Differential Evolution (DE) (Storn and Price 1997),
Ant Colony Optimization (ACO) (Dorigo and Caro 1999),
Artificial Bee Colony (ABC)(Karaboga and Basturk 2007),
Grey Wolf Optimization (GWO) (Mirjalili et al. 2014a),
whale optimization algorithm (Mirjalili and Lewis 2016),
Biogeography-Based Optimization (BBO) (Simon 2008),
Firefly Optimization Algorithm (FFA) (Yang 2009), Bat
Algorithm (BA) (Failed 2010), Cuckoo Search (CS) (Yang
and Deb 2009), Bird Mating Optimizer (BMO) (Askarzadeh
2014), etc. have been used for this purpose. A fair balance
between exploitation and exploration lets such algorithms
not only find an accurate solution but also escape from poor
local optima.

Montana and Davis (1989) proposed a modified ver-
sion of genetic algorithm to train FFNNs, where Zhang
et al. (2007) applied a hybrid PSO to tuning the weights
of FFNN;. Moreover, ES was utilized for optimizing the
system error of FFNN in Wienholt (1993); DE was applied
to optimize the learning mechanism of classifiers (Ilonen
et al. 2003; Failed 2008); and finally ACO was extended to
the continuous form for training the neural networks weights
(Blum and Socha 2005). In 2007, Karaboga et al. (2007)
used ABC to train the neural networks; later, the authors
improved their work by hybridized ABC with Levenberq-
Marquardt (Ozturk and Karaboga 2011). Mirjalili et al. pro-
posed a GWO-based algorithm for training MLPs to reduce
the system errors in FFNNs (Mirjalili 2015); the authors
also suggested BBO and WOA algorithms to overcome the
associated problem (Mirjalili et al. 2014b; Aljarah et al.
2018). Furthermore, FFA was utilized for FFNN in order to
facilitate swift learning and decrease computational com-
plexity (Nayak et al. 2016). Additionally, BA was utilized to
optimize the connection weights and structure of the FFNNs
for constructing a classifier. (Jaddi et al. 2015). An alter-
native optimization algorithm, namely CS, which has been
applied to optimize the FFNNs training for classification
problems (Nawi et al. 2013). Finally, for solving the clas-
sification problems, BMO was utilized to train the FFNNs
(Askarzadeh and Rezazadeh 2013).

The no-free-lunch (NFL) theorem (Wolpert and Mac-
ready 1997) emphasizes that an optimization algorithm
may not outperform other algorithms in solving all kinds
of optimization problems. Therefore, new approaches are
required to cope with new challenges. This issue motivated
us to utilize a new optimization method (BRO) that is proved
to perform as good as or sometimes superior to the existing
approaches for training FFNNs. In this paper, for training
the feed-forward ANNs, we used a recently proposed Battle
Royale Optimization (BRO) algorithm, which is proven to
be successful in solving continuous optimization problems
(Rahkar Farshi 2020). This paper is organized as follows:
Sect. 2 describes the concepts of MLP. Section 3 provides
a brief summary of BRO. BRO-based training algorithm
for MLP is described in Sect. 4. Section 5 includes experi-
mental results and discussion. Finally, Sect. 6 presents the
conclusions.

2 � Multi‑layer perceptron neural network

MLP is a specific model of FFNN which is able to solve the
non-linear classification and regression problems. Neurons
are considered as the processing elements in MLP. The neu-
rons are distributed in parallel form over each layer, where
the layers are stacked on each other. Moreover, the neurons
of each layer are fully connected to all other neurons in the

Fig. 1   McCulloch-Pitts neural model

565Evolving Systems (2022) 13:563–575	

1 3

next layer (Fig. 2). The first and last layers are respectively
named input and output. The layers between the input and
output, are hidden layers. The first layer feeds input variables
to the network (Zurada 1992; Haykin 2007). MLP arranges
neurons in one-directional mode. The neurons of the first
layer receive input from the outside while other layers' neu-
rons receive the inputs from the output of previous layers’
neurons.

The connections between the layers are associated with
weights to control the effect of related input on neurons.
Each neuron in MLP uses summation and activation func-
tions consecutively to produce the output, as illustrated in
Fig. 1. The summation function computes the weighted sum
of the inputs, see Eq. 1. Subsequently, the activation function
applies a threshold on the obtained weighted sum to generate
the output of the neuron.

where, n indicates the total number of inputs, xi denotes
the input variable i , bj is a bias value of jth neuron, and wji
implies the weight of the connection from the ith input to jth
neuron. The S-shaped sigmoid function is the most popular
one among several non-linear activation functions which is
broadly used in the MLP. This function is mathematically
calculated per:

By using this activation function over the weighted sum,
the output of a neuron is calculated by:

(1)netj =

n∑

i=1

wji.xi + bj,

(2)f (z) =
1

(1 + e−z)

Each classification or regression problem requires a spe-
cific network structure to be constructed. Consequently, for
tuning the network connection weights, the training algo-
rithm is triggered. Updating the weighting vectors is carried
out by minimizing the total error of the network (Karaboga
et al. 2007). The total error is estimated as follows:

where, E(W(t)) indicates the total error value at the tth itera-
tion where W(t) is the weights of the network connections
at the tth iteration; The desired and obtained output of kth
node are represented by dk and Ok , respectively; k and l
respectively indicate the number of output nodes and train
instances.

Training the MLP is accomplished according to mini-
mizing the total network error, which can be considered as
an optimization problem. BP is a variation on the gradient
search approach that is commonly used for training a net-
work; however, it suffers from the scaling problem, which
may cause in rapid diminishing of the of BP performance in
high-dimensional problems (Montana and Davis 1989). As
complex spaces are multimodal, and they consists of several
local minima around the global minimum, gradient-based
search approaches may get stuck in local minima; therefore,
performance degradation might be observed. Metaheuristic
optimization techniques would be effective in dealing with
such problems. The exploitation and exploration mecha-
nism of optimization algorithms not only prevent them from

(3)oj = f
(
netj

)

(4)E(W(t)) =
1

l

l∑

j=1

k∑

k=1

(
dk − Ok

)2
,

Fig. 2   Multilayer perceptron
neural network

566	 Evolving Systems (2022) 13:563–575

1 3

getting stuck in local optima but also provide a deep insight
into the global optimum.

3 � Battle royale optimizer

This section briefly overviews the BRO algorithm proposed
by Rahkar-Farshi in 2020 (Rahkar Farshi 2020). The basic
concept of this algorithm was inspired by the battle royale
game, which is a multiplayer video game genre that blends
survival. Player unknown battlegrounds (PUBG) is the well-
known and most popular game among these kinds of games.
Deathmatch is one of the well-played game modes of PUBG.
In this mode, a player aims to kill as many other players as
possible until a kill limit or a time limit is met. Generally,
battles are fought on a specific battlefield map chosen by the
players. Such an optimization problem space is considered
as a game map in BRO. The game gets started by jumping
the players from a plane onto the map. In this regard, the
search agents of BRO are randomly initialized by uniform
random initialization within the search space similar to many
other population-based optimization algorithms. Through-
out the game, a player may be killed by other rivals which
causes him to be respawned at a random zoon of the battle-
field. All players attempt to hurt other players by shooting.
Players who take a more appropriate position, can damage
their rivals. In this context, one may question who and how
can shoot its opponent in the game? Actually, each search
agent will be compared with the nearest agent according to
the Euclidean distance. Players with a better cost function,
therefore, cause damage to another one. The damage level of
the player who gets damaged, will be increased by one and
mathematically calculated per xi.damage = xi.damage + 1 ,
here xi.damage is the damage level of the ith soldier among
the population. Then, the player randomly move to be pro-
tected from further injury. This movement is performed by
moving the player toward the best position found so far. This
operation causes the exploitation which is mathematically
modeled as follows:

where r1, r2 are two random variables, uniformly distributed
over the interval [0,1]. However, r1 is set to 1. xdam,d indi-
cates the position of the damaged player in dimension d.
Also, the level of damage for a damaged player will be reset
to zero if it hurts another player. Furthermore, if a player gets
damaged for a predetermined number of times (threshold
value) in a row and the damaged level reaches the prede-
fined threshold value, the player gets killed and would be

(5)xdam,d = r1xdam,d + r2
(
xbest,d − xdam,d

)
,

respawned at a random space of the problem. In this case,
the level of damage will reset to zero. Through trial and
error, it is determined that the value of threshold = 3 was
applicable for optimization benchmarks. This action pre-
vents early convergence and provides good quality of explo-
ration. Operations are mathematically calculated as:

 where lbd and ubd stand for the lower and upper bounds,
respectively. Furthermore, in every Δ step of the itera-
tion, the algorithm adaptively narrows the problem scale
towards the best solution. The initial value for Δ is assumed
as Δ =

MaxCicle

round(log10(MaxCicle))
 . Then, after each Δ step, Δ will be

updated as Δ = Δ + round(Δ∕2)) , if i ≥∆. This operation
provides both exploration and exploitation. Consequently,
the lbd and ubd will be updated as follows:

 where SD
(
xd
)
 indicates the standard deviation of all search

agents’ positions in dimension d and xbest,d represents the
position of the best-known solution. All these interactions
will be repeated until the termination conditions are met.

4 � BRO for training MLP

All kinds of non-linear optimization algorithms can be
employed for tuning FFNN weights. BRO is a population-
based approach that can be applied to single-objective optimi-
zation over continuous problem spaces. This section discusses
how to apply BRO to train FFNN whit a single hidden layer.
The intuition behind using a single hidden layer architecture
is ease of understanding. BRO maximizes or minimizes a real
objective function by systematically choosing values from a
possible set for each input variable and calculating the value
of the function. Integration of BRO whit MLP for generat-
ing a classifier is hinged on two important factors: encoding
the search agents and constructing the objective function. In
this work, each search agent (player) is encoded into a one-
dimensional vector, which corresponds to network connection
weights and neuron bias (see Fig. 3).

In order to evaluate the classification quality of each
search agent, an objective function is required over the
training set. To achieve this goal, a commonly used error
function, Mean Square Error (MSE), has been used herein.
The general form of MSE is mathematically calculated as
follows:

(6)xdam,d = r
(
ubd − lbd

)
+ lbd

(7)
lbd = xbest,d − SD

(
xd
)

ubd = xbest,d + SD
(
xd
)

567Evolving Systems (2022) 13:563–575	

1 3

where y indicates the actual value and y′ is the estimated
value. U indicates the total number of instances in the train-
ing set. The number of the input variable (length of search
agents’ vector) is computed by Eq. (9):

where Ni is the number of input variables; Nhl indicates
the number of hidden layers in the network; ||hi|| represents
the number of neurons in the ith hidden layer and No is the
number of the output layer’s neurons. For a network with one
hidden layer Eq. 9 can be replaced by:

For instance, using Eq. (10) for the given sample in
Fig. 3, the number of parameters to be tuned is calculated
per (2 + 1) × 3 + (3 + 1) × 2 = 17 . It can be observed that
we can readily estimate the vector size when Nhl = 1.

It should be noted that the parameter vector is commonly
initialized by a uniform distribution between [− 1, 1]. How-
ever, this range can be extended to a wider range. On the
other hand, in order to prevent the gradients to be vanished
or exploded too quickly, the weights should be set neither
much greater than 1 nor much smaller than − 1. (Ng et al.
2020).

(8)MSE =
1

U

U∑

u=1

(
yu − y�

u

)2
,

(9)

(Ni + 1) × ||hi|| +
Nhl∑

i=2

(||hi|| ×
(||hi−1|| + 1

))
+
(||hNhl|| + 1

)
× No

(10)(Ni + 1) × ||h1|| +
(
||h1

|| + 1
)
× No

5 � Experimental results and performance
evaluation

To assess the performance of the proposed approach, an
extensive experimental evaluation and comparison have
been carried out with backpropagation (Generalized learn-
ing delta rule) and six well-accepted population-based
metaheuristic algorithms: Genetic Algorithm (GA) (Holland

Fig. 3   Encoding MLP with a
single hidden layer to a search
agent vector

Table 1   The initial values of the parameters of optimization algo-
rithms

Algorithms Parameter Value

GA Crossover probability 0.9
Mutation probability 0.1
Selection mechanism Roulette wheel
Crossover type Whole Arithmetic Crossover
Mutation type Uniform mutation

PSO Inertia weights range [0.9, 0.6]
acceleration coefficients 2.1 and 2.1

ABC Limit 8
GSA � 20

Gravitational constant 100
Velocity range rand[0, 1]

WOA � linearly decrease from [2 to 0]
r rand[0, 1]

DE Crossover probability 0.9
Differential weight 0.5

568	 Evolving Systems (2022) 13:563–575

1 3

1992), Particle Swarm Optimization (PSO) (Eberhart and
Kennedy 1995), Artificial Bee Colony (ABC)(Karaboga
and Basturk 2007), Gravitational Search Algorithm (GSA)
(Rashedi et al. 2009), and Whale Optimization Algorithm
(WOA) (Mirjalili and Lewis 2016) Differential Evolution
(DE) (Price 1996). The control parameter of optimization
algorithms may significantly affect their performance. The
best control parameters for all algorithms were set based on
trial and error or directly taken from Aljarah et al. (2018).
These parameters are reported in Table 1. Both the number
of iterations and population size for all algorithms are set to
200. Also, the method has been compared with backpropaga-
tion (Generalized learning delta rule), such that the training
seek was taken as 200, � and � were 0.1 and 1, respectively.

As the heuristic algorithms are stochastic optimization
techniques, they can lead to different results. Therefore, all
the empirical results are achieved by taking the average of
20 independent runs for each dataset. All algorithms were
implemented in MATLAB and performed on a Core i7-7700
HQ 2.81 processor with 32 GB of RAM. In this study, ten
real-world benchmark classification datasets, namely, Iris,
Breast Cancer, Heart, Vertebral, Parkinson’s, Australian,
Tic_Tac_Toe, Ionosphere, and Wine datasets were used to
validate the methods. Table 2 shows the number of classes,
attributes, training samples, and test samples for each data-
set. Table 3 reports the associated network architecture and
the total number of the parameters for each dataset.

Additionally, in the case of scale invariance, the datasets
which consist of floating point feature values, are normalized
by min–max normalization method to the range [− 1, 1].

It should be noted that two different architectures of
MLP classifier were used for the 10th (Wine) dataset. In the
first one (10.1), one-hot encoding was used for labeling.
Hence, the number of output layer’s neurons equals the
number of class.

Accuracy is a well-known performance criterion in order
to evaluate the ability of a classifier. To assess the effect
of training algorithm on MLP classifier, an accuracy per-
formance measure was used in this paper. Accuracy is the
number of correctly classified instances over the total num-
ber of instances. The numerical comparisons are conducted
by taking the average of MSE and classification accuracy
over 20 independent runs. Besides, in order to evaluate the
stability of algorithms, standard deviation for both MSE and
classification accuracy is calculated and reported in Tables 4
and 5. In these tables, “Best” indicates the best feasible solu-
tion among all runs of each algorithm.

After taking the average over the ranks of each algorithm,
the highest averaged ranks are bolded in the last three rows
of Table 4 and Table 5. As can be seen in Table 4, the BRO-
based classifier ranked first in terms of classifier accuracy
according to the mean and best values. In this table, ABC,
DE, WOA, PSO, GA, BP, and GSA ranked second to eighth,
respectively, according to the mean value. Also, ABC, WOA,
DE, PSO, GA, GSA, and BP, correspondingly, with respect
to best value. Moreover, DE performed the best in terms
of the STD, whereas ABC, BRO, and BP ranked second to
forth. PSO ranked fifth alongside GA. Consequently, WOA,
and GSA ranked seventh to last, correspondingly. This table
indicates that none of the metaheuristic algorithms could
yield reasonable performance in the Heart dataset. This
may arise because the number of training data is not suf-
ficient, but too small compared to the number of test data.

Table 2   Characteristics of used benchmark datasets

No Dataset No. of
Classes

No. of
attributes

No. of train-
ing samples

No. of
test sam-
ples

1 Iris 3 4 130 20
2 Breast Cancer 2 9 599 100
3 Heart 2 22 80 187
4 Diabetes 2 8 506 262
5 Vertebral 2 6 204 106
6 Parkinson’s 2 22 128 67
7 Australian 2 14 455 235
8 tic_tac_toe 2 9 632 326
9 Ionosphere 2 33 231 120
10 Wine 3 13 117 61

Table 3   MLP architect for datasets

No Dataset No. of
attrib-
utes

MLP structure No. of variables

1 Iris 4 4–9-3 75
2 Cancer 9 9–19-1 210
3 Heart 22 22–45-1 1081
4 Diabetes 8 8–17-1 171
5 Vertebral 6 6–13-1 105
6 Parkinson’s 22 22–45-1 1081
7 Australian 14 14–29-1 465
8 tic_tac_toe 9 9–19-1 210
9 Ionosphere 33 33–67-1 2346
10.1 Wine (one-hot) 13 13–27-3 462
10.2 Wine (int-coding) 13 13–27-1 406

569Evolving Systems (2022) 13:563–575	

1 3

However, BP outperformed others in this dataset according
to all performance criteria. As it is clear from this table BP
perform best only in two cases out of eleven. In most cases,
the classifier accuracy of BP is much lower than the classi-
fier accuracy of metaheuristic-based methods. Also, in some
cases, BP provides very different mean and best classifier
accuracy values. For example, in Diabetes, the mean value
is 0.69160, while the best value is 0.77862, and in Vertebral,

although the mean value of classifier accuracy is 0.676415,
the best try is 0.849056. Consequently, BP ranked worst in
terms of STD due to unsatisfying results such as 0.076602
and 0.128556. All these observations prove that BP may
stuck in local optima.

Apart from classifier accuracy, for each dataset, algo-
rithms are also ranked according to the objective function.
As Table 5 shows, the proposed method achieves the best

Table 4   MLP classifier accuracy for each dataset

Dataset BRO GA PSO ABC GSA WOA DE BP

Iris Mean 0.9900 0.79800 0.82800 0.95800 0.60200 0.80600 0.9 0.7
Best 1 0.95000 0.95000 1 0.85000 1 0.95 0.75
STD 0.02500 0.11409 0.08548 0.05139 0.15577 0.15700 0.0359 0.05389

Breast Cancer Mean 0.95840 0.9836 0.9836 0.98280 0.97120 0.98520 0.9540 0.8535
Best 1 1 1 1 1 1 0.96 0.97
STD 0.01247 0.01113 0.01186 0.009797 0.01563 0.01045 0.0060 0.0929

Heart Mean 0.76131 0.73190 0.7274 0.7570 0.71550 0.74242 0.75098 0.9078
Best 0.80748 0.83422 0.8449 0.8021 0.87700 0.81818 0.80213 0.9197
STD 0.0196 0.0413 0.0736 0.03225 0.10322 0.042551 0.0311 0.00514

Diabetes Mean 0.79221 0.71145 0.76030 0.77664 0.69938 0.74305 0.7794 0.69160
Best 0.81679 0.76717 0.79007 0.80534 0.74809 0.77862 0.7977 0.77862
STD 0.01327 0.07046 0.03287 0.01739 0.02584 0.02107 0.0077 0.076602

Vertebral Mean 0.83773 0.78603 0.78792 0.84301 0.73811 0.80226 0.8165 0.676415
Best 0.86792 0.82075 0.84905 0.87735 0.82075 0.87735 0.8396 0.849056
STD 0.01441 0.02491 0.04662 0.01676 0.04282 0.03932 0.0195 0.128556

Parkinson’s Mean 0.92000 0.82746 0.86089 0.90268 0.81731 0.86268 0.8507 0.82089
Best 0.97014 0.89552 0.92537 0.97014 0.86567 0.92537 0.8955 0.82089
STD 0.02886 0.03109 0.03187 0.02243 0.01842 0.03187 0.0252 0

Australian Mean 0.88902 0.84289 0.87455 0.88357 0.78944 0.86604 0.8857 0.78063
Best 0.90212 0.87234 0.89361 0.89787 0.82978 0.89361 0.9106 0.84680
STD 0.00893 0.01679 0.00968 0.00841 0.02938 0.01867 0.0141 0.05037

tic_tac_toe Mean 0.67042 0.60552 0.58049 0.66687 0.59865 0.61631 0.6923 0.62883
Best 0.74539 0.64723 0.64110 0.72699 0.68404 0.67484 0.7239 0.62883
STD 0.02911 0.02750 0.05083 0.02640 0.45262 0.01951 0.0140 0

Ionosphere Mean 0.94900 0.86533 0.91066 0.88700 0.77066 0.82533 0.9629 0.64166
Best 0.97500 0.89166 95.0000 0.96666 0.83033 0.90833 0.9833 0.64166
STD 0.01564 0.02120 0.02145 0.33857 0.27859 0.04661 0.0144 0

Wine
(one-hot)

Mean 0.94491 0.79213 0.85901 0.92196 0.59737 0.71344 0.99836 0.89262
Best 1 0.88524 0.96721 0.98360 0.78688 0.91803 1 0.95081
STD 0.07687 0.05924 0.05910 0.03003 0.09733 0.13335 0.0050 0.060051

Wine
(int. coding)

Mean 0.65770 0.57967 0.60655 0.62163 0.59540 0.62491 0.59590 0.67704
Best 0.72131 0.63930 0.62295 0.65573 0.60655 0.70491 0.60655 0.88524
STD 0.02473 0.03274 0.00473 0.01563 0.01028 0.02381 0.0080 0.013350

Ranks Mean 2.18181(1) 5.36363(6) 4.72727(5) 3.09090(2) 7.18181(8) 4.09090(4) 3.36363(3) 5.90909(7)
Best 2.09090(1) 5.27272(6) 3.81818(5) 2.81818(2) 6(7) 3.63636(3) 3.72727(4) 6.09090(8)
STD 3.72727(3) 5.18181(5) 5.18181(5) 3.36363(2) 6.09090(8) 5.63636(7) 2.27272(1) 4.45454(4)

570	 Evolving Systems (2022) 13:563–575

1 3

results in six cases out of eleven by means of means fitness
values and DE follows it with four superiority out of eleven
cases. According to Mean and best values, the BRO-based
MLP classifier ranks first overall, where, DE, ABC, WOA,
PSO, GA, and GSA ranked second to eighth, respectively,
according to the mean values. Also, ABC, DE, WOA, PSO,

GA, and GSA, correspondingly, with respect to the best
value. Moreover, DE performed the best in terms of the
STD, whereas BRO, ABC, PS, GA, GSA and WOA ranked
second to last, respectively. Furthermore, the fitness values
obtained by PSO and WOA are competitive. Also, the last
row proves that the DE and BRO provide more stable results

Table 5   Training results of MLP for each dataset (MSE)

Dataset BRO GA PSO ABC GSA WOA DE

Iris Mean 0.04247 0.31737 0.18236 0.04308 0.57529 0.22071 0.2430
Best 0.03188 0.17366 0.05637 0.02900 0.41204 0.06960 0.235402
STD 0.00797 0.06928 0.07437 0.00861 0.07892 0.12978 0.004360

Breast Cancer Mean 0.01587 0.03370 0.03153 0.02116 0.05114 0.02425 0.0198
Best 0.01068 0.02758 0.02662 0.01612 0.03873 0.01996 0.019338
STD 0.00228 0.00346 0.00253 0.00162 0.00890 0.00266 0.000291

Heart Mean 0.14622 0.18138 0.17476 0.16222 0.20443 0.16757 0.09622
Best 0.13513 0.16895 0.15315 0.15214 0.18730 0.11820 0.084854
STD 0.00467 0.00572 0.01163 0.00527 0.00820 0.02003 0.007392

Diabetes Mean 0.14496 0.18623 0.21070 0.16505 0.24037 0.18633 0.1465
Best 0.13774 0.16971 0.19960 0.15338 0.21083 0.15357 0.144447
STD 0.00556 0.00793 0.00714 0.00551 0.01296 0.02124 0.001210

Vertebral Mean 0.10549 0.14196 0.15236 0.10418 0.18080 0.13663 0.1363
Best 0.09001 0.12761 0.12745 0.09476 0.13935 0.11026 0.133074
STD 0.00719 0.00758 0.01020 0.00487 0.02029 0.01763 0.001414

Parkinson’s Mean 0.05191 0.11360 0.09739 0.06438 0.14913 0.09934 0.0869
Best 0.02601 0.07253 0.07031 0.03163 0.12362 0.07132 0.069535
STD 0.01313 0.01431 0.01086 0.01372 0.01309 0.01722 0.007465

Australian Mean 0.09383 0.11744 0.11565 0.10102 0.18149 0.11572 0.0932
Best 0.08414 0.10432 0.10109 0.07930 0.14000 0.08361 0.089914
STD 0.00594 0.00610 0.00507 0.00777 0.02408 0.01607 0.001668

tic_tac_toe Mean 0.20670 0.23523 0.25197 0.21067 0.28330 0.22982 0.2089
Best 0.18652 0.22008 0.23426 0.19375 0.24394 0.21557 0.207238
STD 0.00860 0.00659 0.01525 0.00603 0.01713 0.00837 0.000903

Ionosphere Mean 0.05030 0.11381 0.08387 0.10584 0.20787 0.16041 0.0370
Best 0.02250 0.08276 0.03896 0.05468 0.16524 0.08968 0.023807
STD 0.01494 0.01506 0.02378 0.02679 0.01924 0.03784 0.006240

Wine
(one-hot)

Mean 0.09106 0.42134 0.30738 0.16894 0.73536 0.47471 0.0546
Best 0.03911 0.29330 0.14980 0.05272 0.58589 0.24117 0.034945
STD 0.06572 0.06854 0.07619 0.05091 0.08033 0.14012 0.015217

Wine
(int. coding)

Mean 0.31782 0.32833 0.38554 0.32210 0.42724 0.35065 0.3622
Best 0.28448 0.26474 0.37534 0.28803 0.38064 0.31382 0.360500
STD 0.01358 0.02564 0.00500 0.01490 0.03904 0.01671 0.001012

Rank Mean 1.45454(1) 5.18181(6) 4.72727(5) 2.63636(3) 7(7) 4.63636(4) 2.36363(2)
Best 1.63636(1) 5.09090(6) 4.63636(5) 2.54545(2) 7(7) 3.90909(4) 3.27272(3)
STD 2.90909(2) 4.36363(5) 4.18181(4) 3.18181(3) 5.90909(6) 6.18181(7) 1.27272(1)

571Evolving Systems (2022) 13:563–575	

1 3

than other compared algorithms. In contrast, the WOA ranks
worst according to STD. Moreover, Fig. 4 illustrates how
many times the algorithms have been ranked first in terms
of accuracy and MSE over all data sets. As it is clear from
Fig. 4, although DE offers better STD than BRO in terms of
all performance metrics (accuracy and MSE), BRO outper-
forms DE in terms of the mean and best values. It indicates
that DE may get stuck in local optima frequently.

In order to do a deep investigation, the convergence rate
analysis was performed for BRO and its competitors. Fig-
ure 5 portrays convergence curves of the best fitness values
among all solutions for each dataset. Almost in all cases,
the convergence curve of BRO plunges rapidly, and Fig. 5
proves that the BRO and DE have a faster overall conver-
gence rate compared to others in all datasets. On the other
hand, in most cases, WOA ranked second and outperformed
other compared algorithms. Also, the convergence rate of
GA, PSO, and WOA are competitive., and they may have
similar convergence curves. Finally, Fig. 5 also demonstrates
that the GSA has the worst convergence rate, and never out-
performs other algorithms.

6 � Conclusion

In this paper a BRO-based MLP training algorithm has
been proposed. The performance of BRO for training
the MLP is compared with five well-known optimization

algorithms. Also, ten most-used classification benchmark
datasets are used to evaluate the performance of BRO and
its competitors. The numerical comparisons were con-
ducted by taking the average of MSE and classification
accuracy over 20 independent runs. BRO-based classi-
fier ranked first in terms of classifier accuracy and error
according to the means and best values. Moreover, BRO
respectively ranked third and second in STD according to
accuracy and error rate. Furthermore, most cases, the con-
vergence curve of BRO and DE plunge rapidly; they have
a faster overall convergence rate compared to others in all
datasets. A good balance between exploitation and explo-
ration lets BRO not only find an accurate solution but also
escape from poor local optima. Moreover, in some cases,
BP provides very different mean and best classifier accu-
racy values due to getting stuck in local optima. Overall,
experiments confirm that, according to error rate, accuracy,
and convergence, the proposed approach yields promis-
ing results and outperforms its competitors Metaheuristic-
based learning algorithms may perform successfully for
the MLP which includes a low number of hidden layers.
The number of parameters to be optimized will increase
exponentially by increasing the number of hidden layers.
The BRO algorithm is no exception to this handicap. In
the future work, it is planned to use hybrid BP and BRO
to overcome the aforementioned handicap and extend the
proposed algorithm for training the convolutional neural
network.

Fig. 4   Winner chart of algorithm respect to a accuracy and b MSE

572	 Evolving Systems (2022) 13:563–575

1 3

Fig. 5   MSE convergence curves

573Evolving Systems (2022) 13:563–575	

1 3

Fig. 5   (continued)

574	 Evolving Systems (2022) 13:563–575

1 3

Declarations 

Conflict of interest  Authors declares that they have no conflict of in-
terest.

References

Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights
in neural networks using the whale optimization algorithm. Soft
Computing 22(1):1–15

Andrew NG, Katanforoosh K, Mourri YB (2020) Neural networks and
deep learning. McGraw Hill, New York

Askarzadeh A (2014) Bird mating optimizer: an optimization algorithm
inspired by bird mating strategies. Commun Nonlinear Sci Numer
Simul 19(4):1213–1228

Askarzadeh A, Rezazadeh A (2013) Artificial neural network training
using a new efficient optimization algorithm. Applied Soft Com-
puting 13(2):1206–1213

Bhattacharjee K, Pant M (2019) Hybrid particle swarm optimization-
genetic algorithm trained multi-layer perceptron for classification
of human glioma from molecular brain neoplasia data. Cogn Syst
Res 58:173–194

Blum C and Socha K (2005) Training feed-forward neural networks
with ant colony optimization: an application to pattern classifi-
cation. In Fifth International Conference on Hybrid Intelligent
Systems (HIS'05), p 6.

Braik M, Sheta A, Arieqat A (2008) A comparison between GAs
and PSO in training ANN to model the TE chemical process
reactor. Proceedings of the AISB 2008 symposium on swarm
intelligence algorithms and applications, vol 11, pp 24–30.

Chatterjee S, Sarkar S, Hore S, Dey N, Ashour AS, Balas VE (2017)
Particle swarm optimization trained neural network for struc-
tural failure prediction of multistoried RC buildings. Neural
Comput Appl 28(8):2005–2016

Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-
heuristic. Proc Congr Evol Comput 2:1470–1477

Eberhart R and Kennedy J (1995) A new optimizer using particle swarm
theory. MHS'95. Proceedings of the Sixth International Sympo-
sium on Micro Machine and Human Science, pp. 39–43: IEEE.

Haykin S (2007) Neural networks: a comprehensive foundation.
Prentice-Hall, Inc., Upper Saddle River

Hebb DO (1949) The organization of behavior: a neuropsychological
theory. Wiley, New York

Holland JH (1992) Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and
artificial intelligence. MIT Press, London

Ilonen J, Kamarainen J-K, Lampinen J (2003) Differential evolution
training algorithm for feed-forward neural networks. Neural
Process Lett 17(1):93–105

Jaddi NS, Abdullah S, Hamdan AR (2015) Optimization of neural
network model using modified bat-inspired algorithm. Appl Soft
Comput 37:71–86

Karaboga D, Basturk B (2007) A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm. J Global Optim 39(3):459–471

Karaboga D, Akay B, Ozturk C (2007) Artificial bee colony (ABC)
optimization algorithm for training feed-forward neural net-
works. Springer, Berlin, pp 318–329

Linggard R, Myers D, Nightingale C (2012) Neural networks for
vision, speech and natural language. Springer, Berlin

McClelland JL, Rumelhart DE, Hinton GE (1986) The appeal of
parallel distributed processing. MIT Press, Cambridge, pp 3–44

McCulloch WS, Pitts W (1943) A logical calculus of the ideas imma-
nent in nervous activity. Bull Math Biophys 5(4):115–133

Mirjalili S (2015) How effective is the Grey Wolf optimizer in train-
ing multi-layer perceptrons. Appl Intell 43(1):150–161

Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv
Eng Softw 95:51–67

Mirjalili S, Mirjalili SM, Lewis A (2014a) Grey wolf optimizer. Adv
Eng Softw 69:46–61

Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-
based optimizer train your multi-layer perceptron. Inform Sci
269:188–209

Montana DJ, Davis L (1989) Training feedforward neural networks
using genetic algorithms. IJCAI 89:762–767

Nawi NM, Khan A, Rehman MZ (2013) A new back-propagation neu-
ral network optimized with cuckoo search algorithm. Springer,
Berlin, pp 413–426

Nayak J, Naik B, Behera HS (2016) A novel nature inspired firefly
algorithm with higher order neural network: performance analysis.
Eng Sci Technol Int J 19(1):197–211

Ojha VK, Abraham A, Snášel V (2017) Metaheuristic design of feed-
forward neural networks: a review of two decades of research,".
Engineering Applications of Artificial Intelligence 60:97–116

Ozturk C, Karaboga D (2011) Hybrid artificial bee colony algorithm for
neural network training. IEEE Congr Evol Comput 2011:84–88

Price KV (1996) Differential evolution: a fast and simple numerical
optimizer. In Proceedings of North American Fuzzy Information
Processing, pp. 524–527: IEEE.

Rahkar Farshi T (2020) Battle royale optimization algorithm. Neural
Comput Appl 33:1139–1157

Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: A Gravita-
tional search algorithm. Inform Sci 179(13):2232–2248

Schmidhuber J (2015) Deep learning in neural networks: an overview.
Neural Netw 61:85–117

Schwefel H-P (1984) Evolution strategies: a family of non-linear
optimization techniques based on imitating some principles of
organic evolution. Ann Oper Res 1(2):165–167

Simon D (2008) Biogeography-based optimization. IEEE Trans Evol
Comput 12(6):702–713

Storn R, Price K (1997) Differential evolution–a simple and effi-
cient heuristic for global optimization over continuous spaces.
J Global Optim 11(4):341–359

Wdaa ASI and Sttar A (2008) Differential evolution for neural networks
learning enhancement. Universiti Teknologi Malaysia

Werbos P (1989) Back-propagation and neurocontrol: a review and
prospectus. In: IEEE Proceedings of the International Joint Con-
ference on Neural Networks (IJCNN'89), pp. 1, I209-I216.

Wienholt W (1993) Minimizing the system error in feedforward neural
networks with evolution strategy. Springer, London, pp 490–493

Wolpert DH, Macready WG (1997) No free lunch theorems for opti-
mization. IEEE Trans Evol Comput 1(1):67–82

Yadav RK and Anubhav (2020) PSO-GA based hybrid with adam opti-
mization for ANN training with application in medical diagnosis.
Cogn Syst Res 64:191–199

Yang X-S (2009) Firefly algorithms for multimodal optimization. Inter-
national symposium on stochastic algorithms. Springer, Berlin,
pp 169–178

Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In:
González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds)
Nature Inspired Cooperative Strategies for Optimization (NICSO
2010). Springer, Berlin, pp 65–74

575Evolving Systems (2022) 13:563–575	

1 3

Yang X-S and Deb S (2009) Cuckoo search via Lévy flights. In 2009
World congress on nature & biologically inspired computing
(NaBIC), pp 210–214

Zhang J-R, Zhang J, Lok T-M, Lyu MR (2007) A hybrid particle swarm
optimization–back-propagation algorithm for feedforward neural
network training. Appl Math Comput 185(2):1026–1037

Zurada JM (1992) Introduction to artificial neural systems. West St.
Paul, New York

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Battle royale optimizer for training multi-layer perceptron
	Abstract
	1 Introduction
	2 Multi-layer perceptron neural network
	3 Battle royale optimizer
	4 BRO for training MLP
	5 Experimental results and performance evaluation
	6 Conclusion
	References

