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Abstract
Artificial neural network (ANN) is one of the most successful tools in machine learning. The success of ANN mostly depends 
on its architecture and learning procedure. Multi-layer perceptron (MLP) is a popular form of ANN. Moreover, backpropaga-
tion is a well-known gradient-based approach for training MLP. Gradient-based search approaches have a low convergence 
rate; therefore, they may get stuck in local minima, which may lead to performance degradation. Training the MLP is 
accomplished based on minimizing the total network error, which can be considered as an optimization problem. Stochastic 
optimization algorithms are proven to be effective when dealing with such problems. Battle royale optimization (BRO) is 
a recently proposed population-based metaheuristic algorithm which can be applied to single-objective optimization over 
continuous problem spaces. The proposed method has been compared with backpropagation (Generalized learning delta rule) 
and six well-known optimization algorithms on ten classification benchmark datasets. Experiments confirm that, according 
to error rate, accuracy, and convergence, the proposed approach yields promising results and outperforms its competitors.

Keywords  Feed-forward neural network · Neural network training · Multilayer perceptron · Battle royale optimization · 
Metaheuristic

1  Introduction

The ultimate goal of human beings is to build machines 
with the ability to think, learn, and behave like humans. 
Therefore, understanding the structure and function of the 
human brain is necessary for brain-like processing (Zurada 
1992; Haykin 2007). The biological nervous system was 
first mathematically modeled by McCulloch and Pitts in 
1943 (McCulloch and Pitts 1943; Ojha et al. 2017). It is 
the groundwork for simulating the behavior of the neural 
system, which causes the emergence of Artificial Neural 
Networks (ANNs) and associated learning algorithms. With 
regard to adaptability, generalization, real-time procedure, 
and self-organizing capability, ANNs can be supposed as 
the most successful approach among other machine learning 

schemes in classification, clustering, pattern recognition, and 
regression problems (Karaboga et al. 2007; Schmidhuber 
2015; Chatterjee et al. 2017; Braik et al. 2008; Linggard 
et al. 2012). A simple schema of McCulloch and Pitts' model 
is illustrated in Fig. 1.

The success of machine learning algorithms mostly 
depends on the learning procedure. Generally learning algo-
rithms are divided into two main categories: supervised and 
unsupervised approaches. The mathematical model of neural 
neurons, introduced by McCulloch and Pitts, suffers from the 
lack of a learning strategy that tunes the neuron weights for 
solving a particular problem. In order to fill this gap, Hebb 
proposed an unsupervised rule-based learning strategy for 
tuning the connection weights of the network, in 1949 (Hebb 
1949). Later in 1958, Rosenblatt proposed a supervised 
learning mechanism called perceptron with the capability 
of linear classification. In this mechanism, the weights of the 
network are updated according to the input data when errors 
occur. This network is the simplest case which is so-called 
single-layer feed-forward neural network (FFNN); however, 
this model is not able to solve non-linear classification prob-
lems. Consequently, developing the network and associated 
learning method to deal with this challenge is thus needed.
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Researchers believe that increasing the number of hid-
den layers overcome this problem; however, it requires 
a training algorithm to train the multi-layer perceptron 
neural network (MLP). In 1984, Werbos, as the first 
researcher, proposed a back-propagation (BP) algorithm 
for training this network (Werbos 1989). Nonetheless, this 
was not popular until Rumelhart (McClelland et al. 1986) 
brought it up again. BP tunes the weights of the network 
layer by layer if the output of the network is not desired. 
As learning algorithms directly impact the performance 
of neural networks, a wide variety of studies have been 
conducted to effectively train the procedure. Supervised 
training methods are divided into two main categories: 
gradient-based and stochastic methods. As mentioned 
already, BP adjusts the weights with respect to distance 
from the minimum point of the lost function; however, 
because of the low convergence rate, it may get stuck in 
local minima. This problem arises from the fact that move-
ment follows the gradient descent. On the other hand, sto-
chastic algorithms are proven to be effective in dealing 
with such problems.

A wide variety of stochastic optimization techniques, 
including heuristic and metaheuristic algorithms, have 
been applied to tackle this problem. Genetic Algorithm 
(GA) (Holland 1992; Bhattacharjee and Pant 2019), Par-
ticle Swarm Optimization (PSO) (Eberhart and Kennedy 
1995; R. K. 2020), Evolutionary Strategies (ES) (Schwefel 
1984), Differential Evolution (DE) (Storn and Price 1997), 
Ant Colony Optimization (ACO) (Dorigo and Caro 1999), 
Artificial Bee Colony (ABC)(Karaboga and Basturk 2007), 
Grey Wolf Optimization (GWO) (Mirjalili et al. 2014a), 
whale optimization algorithm (Mirjalili and Lewis 2016), 
Biogeography-Based Optimization (BBO) (Simon 2008), 
Firefly Optimization Algorithm (FFA) (Yang 2009), Bat 
Algorithm (BA) (Failed 2010), Cuckoo Search (CS) (Yang 
and Deb 2009), Bird Mating Optimizer (BMO) (Askarzadeh 
2014), etc. have been used for this purpose. A fair balance 
between exploitation and exploration lets such algorithms 
not only find an accurate solution but also escape from poor 
local optima.

Montana and Davis (1989) proposed a modified ver-
sion of genetic algorithm to train FFNNs, where Zhang 
et al. (2007) applied a hybrid PSO to tuning the weights 
of FFNN;. Moreover, ES was utilized for optimizing the 
system error of FFNN in Wienholt (1993); DE was applied 
to optimize the learning mechanism of classifiers (Ilonen 
et al. 2003; Failed 2008); and finally ACO was extended to 
the continuous form for training the neural networks weights 
(Blum and Socha 2005). In 2007, Karaboga et al. (2007) 
used ABC to train the neural networks; later, the authors 
improved their work by hybridized ABC with Levenberq-
Marquardt (Ozturk and Karaboga 2011). Mirjalili et al. pro-
posed a GWO-based algorithm for training MLPs to reduce 
the system errors in FFNNs (Mirjalili 2015); the authors 
also suggested BBO and WOA algorithms to overcome the 
associated problem (Mirjalili et al. 2014b; Aljarah et al. 
2018). Furthermore, FFA was utilized for FFNN in order to 
facilitate swift learning and decrease computational com-
plexity (Nayak et al. 2016). Additionally, BA was utilized to 
optimize the connection weights and structure of the FFNNs 
for constructing a classifier. (Jaddi et al. 2015). An alter-
native optimization algorithm, namely CS, which has been 
applied to optimize the FFNNs training for classification 
problems (Nawi et al. 2013). Finally, for solving the clas-
sification problems, BMO was utilized to train the FFNNs 
(Askarzadeh and Rezazadeh 2013).

The no-free-lunch (NFL) theorem (Wolpert and Mac-
ready 1997) emphasizes that an optimization algorithm 
may not outperform other algorithms in solving all kinds 
of optimization problems. Therefore, new approaches are 
required to cope with new challenges. This issue motivated 
us to utilize a new optimization method (BRO) that is proved 
to perform as good as or sometimes superior to the existing 
approaches for training FFNNs. In this paper, for training 
the feed-forward ANNs, we used a recently proposed Battle 
Royale Optimization (BRO) algorithm, which is proven to 
be successful in solving continuous optimization problems 
(Rahkar Farshi 2020). This paper is organized as follows: 
Sect. 2 describes the concepts of MLP. Section 3 provides 
a brief summary of BRO. BRO-based training algorithm 
for MLP is described in Sect. 4. Section 5 includes experi-
mental results and discussion. Finally, Sect. 6 presents the 
conclusions.

2 � Multi‑layer perceptron neural network

MLP is a specific model of FFNN which is able to solve the 
non-linear classification and regression problems. Neurons 
are considered as the processing elements in MLP. The neu-
rons are distributed in parallel form over each layer, where 
the layers are stacked on each other. Moreover, the neurons 
of each layer are fully connected to all other neurons in the 

Fig. 1   McCulloch-Pitts neural model
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next layer (Fig. 2). The first and last layers are respectively 
named input and output. The layers between the input and 
output, are hidden layers. The first layer feeds input variables 
to the network (Zurada 1992; Haykin 2007). MLP arranges 
neurons in one-directional mode. The neurons of the first 
layer receive input from the outside while other layers' neu-
rons receive the inputs from the output of previous layers’ 
neurons.

The connections between the layers are associated with 
weights to control the effect of related input on neurons. 
Each neuron in MLP uses summation and activation func-
tions consecutively to produce the output, as illustrated in 
Fig. 1. The summation function computes the weighted sum 
of the inputs, see Eq. 1. Subsequently, the activation function 
applies a threshold on the obtained weighted sum to generate 
the output of the neuron.

where, n indicates the total number of inputs, xi denotes 
the input variable i , bj is a bias value of jth neuron, and wji 
implies the weight of the connection from the ith input to jth 
neuron. The S-shaped sigmoid function is the most popular 
one among several non-linear activation functions which is 
broadly used in the MLP. This function is mathematically 
calculated per:

By using this activation function over the weighted sum, 
the output of a neuron is calculated by:

(1)netj =

n∑

i=1

wji.xi + bj,

(2)f (z) =
1

(1 + e−z)

Each classification or regression problem requires a spe-
cific network structure to be constructed. Consequently, for 
tuning the network connection weights, the training algo-
rithm is triggered. Updating the weighting vectors is carried 
out by minimizing the total error of the network (Karaboga 
et al. 2007). The total error is estimated as follows:

where, E(W(t)) indicates the total error value at the tth itera-
tion where W(t) is the weights of the network connections 
at the tth iteration; The desired and obtained output of kth 
node are represented by dk and Ok , respectively; k and l 
respectively indicate the number of output nodes and train 
instances.

Training the MLP is accomplished according to mini-
mizing the total network error, which can be considered as 
an optimization problem. BP is a variation on the gradient 
search approach that is commonly used for training a net-
work; however, it suffers from the scaling problem, which 
may cause in rapid diminishing of the of BP performance in 
high-dimensional problems (Montana and Davis 1989). As 
complex spaces are multimodal, and they consists of several 
local minima around the global minimum, gradient-based 
search approaches may get stuck in local minima; therefore, 
performance degradation might be observed. Metaheuristic 
optimization techniques would be effective in dealing with 
such problems. The exploitation and exploration mecha-
nism of optimization algorithms not only prevent them from 

(3)oj = f
(
netj

)

(4)E(W(t)) =
1

l

l∑

j=1

k∑

k=1

(
dk − Ok

)2
,

Fig. 2   Multilayer perceptron 
neural network
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getting stuck in local optima but also provide a deep insight 
into the global optimum.

3 � Battle royale optimizer

This section briefly overviews the BRO algorithm proposed 
by Rahkar-Farshi in 2020 (Rahkar Farshi 2020). The basic 
concept of this algorithm was inspired by the battle royale 
game, which is a multiplayer video game genre that blends 
survival. Player unknown battlegrounds (PUBG) is the well-
known and most popular game among these kinds of games. 
Deathmatch is one of the well-played game modes of PUBG. 
In this mode, a player aims to kill as many other players as 
possible until a kill limit or a time limit is met. Generally, 
battles are fought on a specific battlefield map chosen by the 
players. Such an optimization problem space is considered 
as a game map in BRO. The game gets started by jumping 
the players from a plane onto the map. In this regard, the 
search agents of BRO are randomly initialized by uniform 
random initialization within the search space similar to many 
other population-based optimization algorithms. Through-
out the game, a player may be killed by other rivals which 
causes him to be respawned at a random zoon of the battle-
field. All players attempt to hurt other players by shooting. 
Players who take a more appropriate position, can damage 
their rivals. In this context, one may question who and how 
can shoot its opponent in the game? Actually, each search 
agent will be compared with the nearest agent according to 
the Euclidean distance. Players with a better cost function, 
therefore, cause damage to another one. The damage level of 
the player who gets damaged, will be increased by one and 
mathematically calculated per xi.damage = xi.damage + 1 , 
here xi.damage is the damage level of the ith soldier among 
the population. Then, the player randomly move to be pro-
tected from further injury. This movement is performed by 
moving the player toward the best position found so far. This 
operation causes the exploitation which is mathematically 
modeled as follows:

where r1, r2 are two random variables, uniformly distributed 
over the interval [0,1]. However, r1 is set to 1.  xdam,d indi-
cates the position of the damaged player in dimension d. 
Also, the level of damage for a damaged player will be reset 
to zero if it hurts another player. Furthermore, if a player gets 
damaged for a predetermined number of times (threshold 
value) in a row and the damaged level reaches the prede-
fined threshold value, the player gets killed and would be 

(5)xdam,d = r1xdam,d + r2
(
xbest,d − xdam,d

)
,

respawned at a random space of the problem. In this case, 
the level of damage will reset to zero. Through trial and 
error, it is determined that the value of threshold = 3 was 
applicable for optimization benchmarks. This action pre-
vents early convergence and provides good quality of explo-
ration. Operations are mathematically calculated as:

 where lbd and ubd stand for the lower and upper bounds, 
respectively. Furthermore, in every Δ step of the itera-
tion, the algorithm adaptively narrows the problem scale 
towards the best solution. The initial value for Δ is assumed 
as Δ =

MaxCicle

round(log10(MaxCicle))
 . Then, after each Δ step, Δ will be 

updated as Δ = Δ + round(Δ∕2)) , if i  ≥∆. This operation 
provides both exploration and exploitation. Consequently, 
the lbd and ubd will be updated as follows:

 where SD
(
xd
)
 indicates the standard deviation of all search 

agents’ positions in dimension d and xbest,d represents the 
position of the best-known solution. All these interactions 
will be repeated until the termination conditions are met.

4 � BRO for training MLP

All kinds of non-linear optimization algorithms can be 
employed for tuning FFNN weights. BRO is a population-
based approach that can be applied to single-objective optimi-
zation over continuous problem spaces. This section discusses 
how to apply BRO to train FFNN whit a single hidden layer. 
The intuition behind using a single hidden layer architecture 
is ease of understanding. BRO maximizes or minimizes a real 
objective function by systematically choosing values from a 
possible set for each input variable and calculating the value 
of the function. Integration of BRO whit MLP for generat-
ing a classifier is hinged on two important factors: encoding 
the search agents and constructing the objective function. In 
this work, each search agent (player) is encoded into a one-
dimensional vector, which corresponds to network connection 
weights and neuron bias (see Fig. 3).

In order to evaluate the classification quality of each 
search agent, an objective function is required over the 
training set. To achieve this goal, a commonly used error 
function, Mean Square Error (MSE), has been used herein. 
The general form of MSE is mathematically calculated as 
follows:

(6)xdam,d = r
(
ubd − lbd

)
+ lbd

(7)
lbd = xbest,d − SD

(
xd
)

ubd = xbest,d + SD
(
xd
)
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where y indicates the actual value and y′ is the estimated 
value. U indicates the total number of instances in the train-
ing set. The number of the input variable (length of search 
agents’ vector) is computed by Eq. (9):

where Ni is the number of input variables; Nhl indicates 
the number of hidden layers in the network; ||hi|| represents 
the number of neurons in the ith hidden layer and No is the 
number of the output layer’s neurons. For a network with one 
hidden layer Eq. 9 can be replaced by:

For instance, using Eq.  (10) for the given sample in 
Fig. 3, the number of parameters to be tuned is calculated 
per (2 + 1) × 3 + (3 + 1) × 2 = 17 . It can be observed that 
we can readily estimate the vector size when Nhl = 1.

It should be noted that the parameter vector is commonly 
initialized by a uniform distribution between [− 1, 1]. How-
ever, this range can be extended to a wider range. On the 
other hand, in order to prevent the gradients to be vanished 
or exploded too quickly, the weights should be set neither 
much greater than 1 nor much smaller than − 1. (Ng et al. 
2020).

(8)MSE =
1

U

U∑

u=1

(
yu − y�

u

)2
,

(9)

(Ni + 1) × ||hi|| +
Nhl∑

i=2

(||hi|| ×
(||hi−1|| + 1

))
+
(||hNhl|| + 1

)
× No

(10)(Ni + 1) × ||h1|| +
(
||h1

|| + 1
)
× No

5 � Experimental results and performance 
evaluation

To assess the performance of the proposed approach, an 
extensive experimental evaluation and comparison have 
been carried out with backpropagation (Generalized learn-
ing delta rule) and six well-accepted population-based 
metaheuristic algorithms: Genetic Algorithm (GA) (Holland 

Fig. 3   Encoding MLP with a 
single hidden layer to a search 
agent vector

Table 1   The initial values of the parameters of optimization algo-
rithms

Algorithms Parameter Value

GA Crossover probability 0.9
Mutation probability 0.1
Selection mechanism Roulette wheel
Crossover type Whole Arithmetic Crossover
Mutation type Uniform mutation

PSO Inertia weights range [0.9, 0.6]
acceleration coefficients 2.1 and 2.1

ABC Limit 8
GSA � 20

Gravitational constant 100
Velocity range rand[0, 1]

WOA � linearly decrease from [2 to 0]
r rand[0, 1]

DE Crossover probability 0.9
Differential weight 0.5
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1992), Particle Swarm Optimization (PSO) (Eberhart and 
Kennedy 1995), Artificial Bee Colony (ABC)(Karaboga 
and Basturk 2007), Gravitational Search Algorithm (GSA)
(Rashedi et al. 2009), and Whale Optimization Algorithm 
(WOA) (Mirjalili and Lewis 2016) Differential Evolution 
(DE) (Price 1996). The control parameter of optimization 
algorithms may significantly affect their performance. The 
best control parameters for all algorithms were set based on 
trial and error or directly taken from Aljarah et al. (2018). 
These parameters are reported in Table 1. Both the number 
of iterations and population size for all algorithms are set to 
200. Also, the method has been compared with backpropaga-
tion (Generalized learning delta rule), such that the training 
seek was taken as 200, � and � were 0.1 and 1, respectively. 

As the heuristic algorithms are stochastic optimization 
techniques, they can lead to different results. Therefore, all 
the empirical results are achieved by taking the average of 
20 independent runs for each dataset. All algorithms were 
implemented in MATLAB and performed on a Core i7-7700 
HQ 2.81 processor with 32 GB of RAM. In this study, ten 
real-world benchmark classification datasets, namely, Iris, 
Breast Cancer, Heart, Vertebral, Parkinson’s, Australian, 
Tic_Tac_Toe, Ionosphere, and Wine datasets were used to 
validate the methods. Table 2 shows the number of classes, 
attributes, training samples, and test samples for each data-
set. Table 3 reports the associated network architecture and 
the total number of the parameters for each dataset.

Additionally, in the case of scale invariance, the datasets 
which consist of floating point feature values, are normalized 
by min–max normalization method to the range [− 1, 1].

It should be noted that two different architectures of 
MLP classifier were used for the 10th (Wine) dataset. In the 
first one (10.1), one-hot encoding was used for labeling. 
Hence, the number of output layer’s neurons equals the 
number of class.

Accuracy is a well-known performance criterion in order 
to evaluate the ability of a classifier. To assess the effect 
of training algorithm on MLP classifier, an accuracy per-
formance measure was used in this paper. Accuracy is the 
number of correctly classified instances over the total num-
ber of instances. The numerical comparisons are conducted 
by taking the average of MSE and classification accuracy 
over 20 independent runs. Besides, in order to evaluate the 
stability of algorithms, standard deviation for both MSE and 
classification accuracy is calculated and reported in Tables 4 
and 5. In these tables, “Best” indicates the best feasible solu-
tion among all runs of each algorithm.

After taking the average over the ranks of each algorithm, 
the highest averaged ranks are bolded in the last three rows 
of Table 4 and Table 5. As can be seen in Table 4, the BRO-
based classifier ranked first in terms of classifier accuracy 
according to the mean and best values. In this table, ABC, 
DE, WOA, PSO, GA, BP, and GSA ranked second to eighth, 
respectively, according to the mean value. Also, ABC, WOA, 
DE, PSO, GA, GSA, and BP, correspondingly, with respect 
to best value. Moreover, DE performed the best in terms 
of the STD, whereas ABC, BRO, and BP ranked second to 
forth. PSO ranked fifth alongside GA. Consequently, WOA, 
and GSA ranked seventh to last, correspondingly. This table 
indicates that none of the metaheuristic algorithms could 
yield reasonable performance in the Heart dataset. This 
may arise because the number of training data is not suf-
ficient, but too small compared to the number of test data. 

Table 2   Characteristics of used benchmark datasets

No Dataset No. of 
Classes

No. of 
attributes

No. of train-
ing samples

No. of 
test sam-
ples

1 Iris 3 4 130 20
2 Breast Cancer 2 9 599 100
3 Heart 2 22 80 187
4 Diabetes 2 8 506 262
5 Vertebral 2 6 204 106
6 Parkinson’s 2 22 128 67
7 Australian 2 14 455 235
8 tic_tac_toe 2 9 632 326
9 Ionosphere 2 33 231 120
10 Wine 3 13 117 61

Table 3   MLP architect for datasets

No Dataset No. of 
attrib-
utes

MLP structure No. of variables

1 Iris 4 4–9-3 75
2 Cancer 9 9–19-1 210
3 Heart 22 22–45-1 1081
4 Diabetes 8 8–17-1 171
5 Vertebral 6 6–13-1 105
6 Parkinson’s 22 22–45-1 1081
7 Australian 14 14–29-1 465
8 tic_tac_toe 9 9–19-1 210
9 Ionosphere 33 33–67-1 2346
10.1 Wine (one-hot) 13 13–27-3 462
10.2 Wine (int-coding) 13 13–27-1 406
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However, BP outperformed others in this dataset according 
to all performance criteria. As it is clear from this table BP 
perform best only in two cases out of eleven. In most cases, 
the classifier accuracy of BP is much lower than the classi-
fier accuracy of metaheuristic-based methods. Also, in some 
cases, BP provides very different mean and best classifier 
accuracy values. For example, in Diabetes, the mean value 
is 0.69160, while the best value is 0.77862, and in Vertebral, 

although the mean value of classifier accuracy is 0.676415, 
the best try is 0.849056. Consequently, BP ranked worst in 
terms of STD due to unsatisfying results such as 0.076602 
and 0.128556. All these observations prove that BP may 
stuck in local optima.

Apart from classifier accuracy, for each dataset, algo-
rithms are also ranked according to the objective function. 
As Table 5 shows, the proposed method achieves the best 

Table 4   MLP classifier accuracy for each dataset

Dataset BRO GA PSO ABC GSA WOA DE BP

Iris Mean 0.9900 0.79800 0.82800 0.95800 0.60200 0.80600 0.9 0.7
Best 1 0.95000 0.95000 1 0.85000 1 0.95 0.75
STD 0.02500 0.11409 0.08548 0.05139 0.15577 0.15700 0.0359 0.05389

Breast Cancer Mean 0.95840 0.9836 0.9836 0.98280 0.97120 0.98520 0.9540 0.8535
Best 1 1 1 1 1 1 0.96 0.97
STD 0.01247 0.01113 0.01186 0.009797 0.01563 0.01045 0.0060 0.0929

Heart Mean 0.76131 0.73190 0.7274 0.7570 0.71550 0.74242 0.75098 0.9078
Best 0.80748 0.83422 0.8449 0.8021 0.87700 0.81818 0.80213 0.9197
STD 0.0196 0.0413 0.0736 0.03225 0.10322 0.042551 0.0311 0.00514

Diabetes Mean 0.79221 0.71145 0.76030 0.77664 0.69938 0.74305 0.7794 0.69160
Best 0.81679 0.76717 0.79007 0.80534 0.74809 0.77862 0.7977 0.77862
STD 0.01327 0.07046 0.03287 0.01739 0.02584 0.02107 0.0077 0.076602

Vertebral Mean 0.83773 0.78603 0.78792 0.84301 0.73811 0.80226 0.8165 0.676415
Best 0.86792 0.82075 0.84905 0.87735 0.82075 0.87735 0.8396 0.849056
STD 0.01441 0.02491 0.04662 0.01676 0.04282 0.03932 0.0195 0.128556

Parkinson’s Mean 0.92000 0.82746 0.86089 0.90268 0.81731 0.86268 0.8507 0.82089
Best 0.97014 0.89552 0.92537 0.97014 0.86567 0.92537 0.8955 0.82089
STD 0.02886 0.03109 0.03187 0.02243 0.01842 0.03187 0.0252 0

Australian Mean 0.88902 0.84289 0.87455 0.88357 0.78944 0.86604 0.8857 0.78063
Best 0.90212 0.87234 0.89361 0.89787 0.82978 0.89361 0.9106 0.84680
STD 0.00893 0.01679 0.00968 0.00841 0.02938 0.01867 0.0141 0.05037

tic_tac_toe Mean 0.67042 0.60552 0.58049 0.66687 0.59865 0.61631 0.6923 0.62883
Best 0.74539 0.64723 0.64110 0.72699 0.68404 0.67484 0.7239 0.62883
STD 0.02911 0.02750 0.05083 0.02640 0.45262 0.01951 0.0140 0

Ionosphere Mean 0.94900 0.86533 0.91066 0.88700 0.77066 0.82533 0.9629 0.64166
Best 0.97500 0.89166 95.0000 0.96666 0.83033 0.90833 0.9833 0.64166
STD 0.01564 0.02120 0.02145 0.33857 0.27859 0.04661 0.0144 0

Wine
(one-hot)

Mean 0.94491 0.79213 0.85901 0.92196 0.59737 0.71344 0.99836 0.89262
Best 1 0.88524 0.96721 0.98360 0.78688 0.91803 1 0.95081
STD 0.07687 0.05924 0.05910 0.03003 0.09733 0.13335 0.0050 0.060051

Wine
(int. coding)

Mean 0.65770 0.57967 0.60655 0.62163 0.59540 0.62491 0.59590 0.67704
Best 0.72131 0.63930 0.62295 0.65573 0.60655 0.70491 0.60655 0.88524
STD 0.02473 0.03274 0.00473 0.01563 0.01028 0.02381 0.0080 0.013350

Ranks Mean 2.18181(1) 5.36363(6) 4.72727(5) 3.09090(2) 7.18181(8) 4.09090(4) 3.36363(3) 5.90909(7)
Best 2.09090(1) 5.27272(6) 3.81818(5) 2.81818(2) 6(7) 3.63636(3) 3.72727(4) 6.09090(8)
STD 3.72727(3) 5.18181(5) 5.18181(5) 3.36363(2) 6.09090(8) 5.63636(7) 2.27272(1) 4.45454(4)
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results in six cases out of eleven by means of means fitness 
values and DE follows it with four superiority out of eleven 
cases. According to Mean and best values, the BRO-based 
MLP classifier ranks first overall, where, DE, ABC, WOA, 
PSO, GA, and GSA ranked second to eighth, respectively, 
according to the mean values. Also, ABC, DE, WOA, PSO, 

GA, and GSA, correspondingly, with respect to the best 
value. Moreover, DE performed the best in terms of the 
STD, whereas BRO, ABC, PS, GA, GSA and WOA ranked 
second to last, respectively. Furthermore, the fitness values 
obtained by PSO and WOA are competitive. Also, the last 
row proves that the DE and BRO provide more stable results 

Table 5   Training results of MLP for each dataset (MSE)

Dataset BRO GA PSO ABC GSA WOA DE

Iris Mean 0.04247 0.31737 0.18236 0.04308 0.57529 0.22071 0.2430
Best 0.03188 0.17366 0.05637 0.02900 0.41204 0.06960 0.235402
STD 0.00797 0.06928 0.07437 0.00861 0.07892 0.12978 0.004360

Breast Cancer Mean 0.01587 0.03370 0.03153 0.02116 0.05114 0.02425 0.0198
Best 0.01068 0.02758 0.02662 0.01612 0.03873 0.01996 0.019338
STD 0.00228 0.00346 0.00253 0.00162 0.00890 0.00266 0.000291

Heart Mean 0.14622 0.18138 0.17476 0.16222 0.20443 0.16757 0.09622
Best 0.13513 0.16895 0.15315 0.15214 0.18730 0.11820 0.084854
STD 0.00467 0.00572 0.01163 0.00527 0.00820 0.02003 0.007392

Diabetes Mean 0.14496 0.18623 0.21070 0.16505 0.24037 0.18633 0.1465
Best 0.13774 0.16971 0.19960 0.15338 0.21083 0.15357 0.144447
STD 0.00556 0.00793 0.00714 0.00551 0.01296 0.02124 0.001210

Vertebral Mean 0.10549 0.14196 0.15236 0.10418 0.18080 0.13663 0.1363
Best 0.09001 0.12761 0.12745 0.09476 0.13935 0.11026 0.133074
STD 0.00719 0.00758 0.01020 0.00487 0.02029 0.01763 0.001414

Parkinson’s Mean 0.05191 0.11360 0.09739 0.06438 0.14913 0.09934 0.0869
Best 0.02601 0.07253 0.07031 0.03163 0.12362 0.07132 0.069535
STD 0.01313 0.01431 0.01086 0.01372 0.01309 0.01722 0.007465

Australian Mean 0.09383 0.11744 0.11565 0.10102 0.18149 0.11572 0.0932
Best 0.08414 0.10432 0.10109 0.07930 0.14000 0.08361 0.089914
STD 0.00594 0.00610 0.00507 0.00777 0.02408 0.01607 0.001668

tic_tac_toe Mean 0.20670 0.23523 0.25197 0.21067 0.28330 0.22982 0.2089
Best 0.18652 0.22008 0.23426 0.19375 0.24394 0.21557 0.207238
STD 0.00860 0.00659 0.01525 0.00603 0.01713 0.00837 0.000903

Ionosphere Mean 0.05030 0.11381 0.08387 0.10584 0.20787 0.16041 0.0370
Best 0.02250 0.08276 0.03896 0.05468 0.16524 0.08968 0.023807
STD 0.01494 0.01506 0.02378 0.02679 0.01924 0.03784 0.006240

Wine
(one-hot)

Mean 0.09106 0.42134 0.30738 0.16894 0.73536 0.47471 0.0546
Best 0.03911 0.29330 0.14980 0.05272 0.58589 0.24117 0.034945
STD 0.06572 0.06854 0.07619 0.05091 0.08033 0.14012 0.015217

Wine
(int. coding)

Mean 0.31782 0.32833 0.38554 0.32210 0.42724 0.35065 0.3622
Best 0.28448 0.26474 0.37534 0.28803 0.38064 0.31382 0.360500
STD 0.01358 0.02564 0.00500 0.01490 0.03904 0.01671 0.001012

Rank Mean 1.45454(1) 5.18181(6) 4.72727(5) 2.63636(3) 7(7) 4.63636(4) 2.36363(2)
Best 1.63636(1) 5.09090(6) 4.63636(5) 2.54545(2) 7(7) 3.90909(4) 3.27272(3)
STD 2.90909(2) 4.36363(5) 4.18181(4) 3.18181(3) 5.90909(6) 6.18181(7) 1.27272(1)
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than other compared algorithms. In contrast, the WOA ranks 
worst according to STD. Moreover, Fig. 4 illustrates how 
many times the algorithms have been ranked first in terms 
of accuracy and MSE over all data sets. As it is clear from 
Fig. 4, although DE offers better STD than BRO in terms of 
all performance metrics (accuracy and MSE), BRO outper-
forms DE in terms of the mean and best values. It indicates 
that DE may get stuck in local optima frequently.

In order to do a deep investigation, the convergence rate 
analysis was performed for BRO and its competitors. Fig-
ure 5 portrays convergence curves of the best fitness values 
among all solutions for each dataset. Almost in all cases, 
the convergence curve of BRO plunges rapidly, and Fig. 5 
proves that the BRO and DE have a faster overall conver-
gence rate compared to others in all datasets. On the other 
hand, in most cases, WOA ranked second and outperformed 
other compared algorithms. Also, the convergence rate of 
GA, PSO, and WOA are competitive., and they may have 
similar convergence curves. Finally, Fig. 5 also demonstrates 
that the GSA has the worst convergence rate, and never out-
performs other algorithms.

6 � Conclusion

In this paper a BRO-based MLP training algorithm has 
been proposed. The performance of BRO for training 
the MLP is compared with five well-known optimization 

algorithms. Also, ten most-used classification benchmark 
datasets are used to evaluate the performance of BRO and 
its competitors. The numerical comparisons were con-
ducted by taking the average of MSE and classification 
accuracy over 20 independent runs. BRO-based classi-
fier ranked first in terms of classifier accuracy and error 
according to the means and best values. Moreover, BRO 
respectively ranked third and second in STD according to 
accuracy and error rate. Furthermore, most cases, the con-
vergence curve of BRO and DE plunge rapidly; they have 
a faster overall convergence rate compared to others in all 
datasets. A good balance between exploitation and explo-
ration lets BRO not only find an accurate solution but also 
escape from poor local optima. Moreover, in some cases, 
BP provides very different mean and best classifier accu-
racy values due to getting stuck in local optima. Overall, 
experiments confirm that, according to error rate, accuracy, 
and convergence, the proposed approach yields promis-
ing results and outperforms its competitors Metaheuristic-
based learning algorithms may perform successfully for 
the MLP which includes a low number of hidden layers. 
The number of parameters to be optimized will increase 
exponentially by increasing the number of hidden layers. 
The BRO algorithm is no exception to this handicap. In 
the future work, it is planned to use hybrid BP and BRO 
to overcome the aforementioned handicap and extend the 
proposed algorithm for training the convolutional neural 
network.

Fig. 4   Winner chart of algorithm respect to a accuracy and b MSE
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Fig. 5   MSE convergence curves
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Fig. 5   (continued)
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