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Abstract
Recent IoT proliferation has undeniably affected the way organizational activities and business procedures take place within 
several IoT domains such as smart manufacturing, food supply chain, intelligent transportation systems, medical care infra-
structures etc. The number of the interconnected edge devices has dramatically increased, creating a huge volume of trans-
ferred data susceptible to leakage, modification or disruption, ultimately affecting the security level, robustness and QoS 
of the attacked IoT ecosystem. In an attempt to prevent or mitigate network abnormalities while accommodating the cohe-
siveness among the involved entities, modeling their interrelations and incorporating their structural, content and temporal 
attributes, graph-based anomaly detection solutions have been repeatedly adopted. In this article we propose, a multi-agent 
system, with each agent implementing a Graph Neural Network, in order to exploit the collaborative and cooperative nature 
of intelligent agents for anomaly detection. To this end, against the propagating nature of cyber-attacks such as the Distributed 
Denial-of-Service (DDoS), we propose a distributed detection scheme, which aims to monitor efficiently the entire network 
infrastructure. To fulfill this task, we consider employing monitors on active network nodes such as IoT devices, SDN for-
warders, Fog Nodes, achieving localization of anomaly detection, distribution of allocated resources such as the bandwidth 
and power consumption and higher accuracy results. In order to facilitate the training, testing and evaluation activities of the 
Graph Neural Network algorithm, we create simulated datasets of network flows of various normal and abnormal distribu-
tions, out of which we extract essential structural and content features to be passed to neighbouring agents.

Keywords IoT cybersecurity · Graph inherent anomaly detection framework · Graph neural networks · DDoS attack 
detection · Decentralized detection · Synergistic detection · Multi-agent detection

1 Introduction

Smart IoT devices including sensors, processors, smart 
cameras, wearables, actuators, and smart vehicles have been 
rapidly spreading across several IoT application domains, 
such as smart home, medical and healthcare, transportation, 
building, industry 4.0 manufacturing, as well as agriculture, 
and food supply chain environments. Along with the evolv-
ing of the IoT ecosystems, adversarial activities have been 
expanding and becoming more severe, targeting the system’s 
robustness, thus affecting latency sensitive applications. 
Anomalies within the network context are seen as the utili-
zation of resources in an unusual, not abiding to the norm 
manner. Evidently, the urgent need to prevent or mitigate 
occurring anomalies and sustain the global stability, arises 
in conjunction with the need to enhance already existing 
techniques so as to address the challenges posed by the high 
complexity of the anomalies and lack of labeled data.
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Given the undergoing ascent of Artificial Intelligence 
(AI), Machine Learning (ML) algorithms have gained 
wide acceptance and have been extensively used to detect 
irregular network traffic patterns. Attempting to control the 
consequences of upcoming/undergoing cyber-attacks and 
equipment’s physical deficiency, Neural Networks (NN) 
have been employed to learn the patterns of the transmitted 
data, aiming to classify abnormal cases, thus ensuring great 
levels of trustworthiness. With the adoption of NN detection 
strategies, security breaches are depicted as non-typical data 
patterns which ultimately reveal the existence of a malware, 
botnet or an infrastructure failure when compared to the 
normal state.

Along with the incorporation of the latter techniques, 
graph-based anomaly detection studies have come into the 
limelight. In network-based anomalies, graphs constitute an 
effective way to represent inter-connectivities among the net-
work’s nodes and their inter-relations. Structural, behavioral 
and temporal data are associated to the nodes and edges 
of the network, creating patterns of behavior which define 
normal or deviating behavior in an attempt to protect the 
network’s seamless operation and the continuous provi-
sion of time-sensitive services as in the cases of critical IoT 
infrastructures.

This article, addresses the complexity of the underlying 
IoT network infrastructure, by employing a Graph Neural 
Network (GNN) model. We propose an anomaly detection 
solution with high detection accuracy, which takes into 
account the structural features and relations among neigh-
boring nodes and their attached edges, within the IoT ecosys-
tem. Furthermore, we address the resource constraints posed 
by the incorporation of the IoT devices, thus proposing an 
efficient detection scheme of low bandwidth and power-
consumption requirements. Against the challenge intro-
duced by the distributed nature of cyber-attacks, we deploy 
a distributed multi-agent system (MAS), thus addressing 
the problem of a compromised node being unaware of its 
infection, giving erroneous signs regarding its own status 
or going suddenly offline. The distributed MAS architecture 
will employ anomaly detection on active nodes of the IoT 
network, such as the Fog Nodes (FN) or SDN forwarders, 
engaging a GNN to accommodate the physical network’s 
representation. Information exchange among neighbouring 
agents will enable them to identify propagating distributed 
attacks and protect the network in a synergistic manner. The 
absence of a central Intrusion Detection System (IDS) to 
monitor and analyse all traffic transferred through the net-
work nodes, eliminates the additional overhead in terms of 
bandwidth and power consumption.

The rest of the article is organized as follows: Sec.2 pre-
sents background details concerning various architectures 
of Neural Networks, which have been used for Anomaly 
Detection. Sec.3 describes the proposed methodology of 

implementing the GNN-based anomaly detection method, 
the feature extraction process and presents the dataset we 
used in the experiments. Sec. 4 presents the evaluation 
results of the proposed method compared to traditional ML 
techniques and two state-of-the-art algorithms along with 
the generation of Infiltration and Worm attack propagation 
datasets. Sec. 5 elaborates on the application domains poten-
tially adopting the proposed approach and limitations posed 
by hardware requirements. Finally, Sec.6 concludes the arti-
cle and sets future plans and up-to-date considerations.

2  Related work

Following the prominence of NN and Deep Learning meth-
odologies, a lot of research has been conducted over the 
past few years towards, compbining and optimizing existing 
algorithms in order to discover the best detection approach. 
Apart from the latter, graph-based solutions have been pro-
posed to identify anomalies on the nodes and edges along 
with clustering techniques. Probabilistic methods taking into 
account historical data by utilizing Bayesian networks have 
been considered, as well. This sections reviews some of the 
most prominent recent anomaly detection techniques.

2.1  Hybrid NN‑based anomaly detection 
approaches

In Kim et al. (2016) J. Kim. et al. implemented a hybrid 
LSTM-RNN detection model in which they exchanged the 
RNN classifier by using an LSTM cell for the recurrent hid-
den layer. Another hybrid model was presented in Wang 
et  al. (2017), where a combination of CNN and LSTM 
model was proposed for learning Hierarchical Spatial-Tem-
poral Features (HAST-IDS). Validation of the proposed 
model proved the influence of the network packet size, the 
network flow size and the number of network packets on the 
chosen metrics of Accuracy, DR and FAR.

Cheng et al. (2016) proposed a Deep Learning (DL) 
model to analyze time series of traffic data upon the Border 
Gateway Protocol (BGP). Past feature values were utilized 
to perform current feature values classification, proposing 
an anomaly detection method combining Multi-Scale LSTM 
(MS-LSTM) and pre-processing steps.

S. M. Erfani et al. in Erfani et al. (2016) proposed a hybrid 
architecture of a Support Vector Machine (SVM) integrated 
with a Deep Belief Network (DBN) method to produce a 
model to alleviate the volume of high-dimensional data by 
extracting low dimensional features. SVM separated normal 
from malicious data, whereas the DBN was selected as the 
dimensionality reduction and feature extraction algorithm.

A self-adaptive anomaly detection method was proposed 
in Maimó et al. (2018) with respect to 5G networks. The 
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authors proposed a DBN in conjunction with a Stacked Auto-
Encoders (SAE) hybrid model, to detect local abnormal 
traffic during a flexible time window and an LSTM Recur-
rent model to run afterwards on the component responsible 
for refining detection results. Another self-taught-learning 
(STL) model is proposed in Javaid et al. (2016) for network 
anomaly detection. In this study, they used a sparse auto-
encoder network with back-propagation. A similar approach 
is described in Al-Qatf et al. (2018), where the authors used 
hybrid model of sparse auto-encoders trained with the unla-
beled dataset, followed by an SVM to classify the examples.

A DL method for anomaly detection in a IEEE 802.11 
network scenario was the case in Thing (2017). The data-
set utilized by the authors contained real data traffic of a 
lab emulated SOHO infrastructure. Flooding, injection and 
impersonation attacks were classified by the developed Stack 
Auto-encoders model.

2.2  Deep learning approaches for anomaly 
detection in IoT network infrastructures

In Yavuz et al. (2018) F. Y. Yavuz et al. simulated an IoT 
network testbed, utilizing the Contiki operating system. 
They detected Routing Attacks, employing a DL method 
and extracting the data needed out of the sensors raw data 
with the combination of Random Decision Trees and Pear-
son coefficient correlation.

Intrusion detection for in-vehicle security using a Deep 
Neural Network method is described in Kang and Kang 
(2016). The authors proposed a model to identify mali-
cious packets injected into the vehicle Controller Area Net-
work (CAN) of the vehicle. The dataset was obtained by 
the Open Car Test-bed and Network Experiments generator 
(OCTANE).

IoT home environments were examined in Brun et al. 
(2018). DoS attacks for TCP/IP networks and Denial-of-
Sleep attacks for wireless network present the corresponding 
vulnerabilities of the IoT gateways. Following the analysis of 
packets captured from the PPP interface, samples of statisti-
cal data were extracted to synthesize the dataset and train a 
dense RNN.

DDoS attacks taking place in Software Defined Network-
ing (SDN) is the target of Tang et al. (2016). Attacks took 
either on the data or on the control plane. Multiple sparse 
auto-encoders are connected to each other to construct a 
Stacked Auto-Encoder (SAE) leading to the classification 
of real network data derived from private network testbed.

In Diro and Chilamkurti (2018), A. A. Diro et al. designed 
and implemented a distributed attack detection mechanism 
based on DL methods. Network implementation assumed 
Fog Computing architecture, having a coordinating master-
node responsible for collaborative parameter optimization. 
Training was performed in the Fog Nodes over the local 

traffic and inputs weights and biases were updated in par-
allel. The outputs were shared through a master node for 
global update and re-propagation.

As per (Meidan et al. 2018) Deep Auto-encoders were 
used to detect the executed malware behavior. For each IoT 
device they constructed an auto-encoder model and refine 
training parameters and hyper-parameters, to achieve opti-
mal results to unknown traffic behavior.

2.3  Graph‑based approaches

An initial effort in this area of research was acknowledged 
in Tran et al. (2014), where anomaly detection in web traf-
fic was realized. Patterns of normal and abnormal behav-
iour were extracted out of servers’ utilization. In this study 
graphs are modeling web requests and connections to the 
servers, whereas two features malicious-server-degree and 
abnormal-traffic-score, are extracted to point out probable 
malicious-clients intending to cause botnets or worm attacks.

A hybrid DL model constructed of Spectral Clustering 
and Deep Neural Network (SCDNN) was presented in Ma 
et al. (2016). Authors proposed spectral clustering to cat-
egorize KDD-CUP99 and NSL-KDD trainable datasets, to 
capture the significant features and diminish overall data 
processing complexity. Following dataset clustering into 
two to six groups, Ma, Tao et al utilized Denoising Auto-
encoders (DAE), to represent the features with a level of 
distortion compared to the input pattern.

Dynamic graph anomaly detection was performed in 
Zheng et al. (2019), where an Attention-based temporal 
Graph Convolutional Network (GCN) model was developed. 
In this study, anomalous edges of the graph were identified 
utilizing temporal features as the long and short term pat-
terns occurring within dynamic graphs.

Semi-supervised classification also involved the use of 
the GCN in a bordering approach proposed in Kipf and 
Welling (2016). Although the scope of this study did not 
involve anomaly detection, the approach of graph-structured 
data with hidden layer representations of both the graph 
formation and the nodes’ features was a basis for several 
research studies.

NetWalk (Yu et al. 2018) targets anomaly detection in 
dynamic networks. Following previous studies, they encoded 
the nodes of the network using vector representations and 
employed deep auto-encoders in conjunction with clustering 
techniques, thus managing to detect anomalies in real-time 
and address the network’s continuous evolving.

A novel mathematical framework was proposed in Battag-
lia et al. (2018), where relational inductive biases in the field 
of AI and deep learning, were studied and several different 
approaches concerning vision, language, control and decision 
making were unified. A common way to structure relations 
in a graph is proposed to assist learning about entities and 
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their interconnections. To this regard, the graph network is the 
new building block proposed by the authors, extending current 
GNN approaches, posing a way to manage structured data and 
their interrelations.

Anomaly detection using GNN was also the main contribu-
tion proposed in Chaudhary et al. (2019). In this study, outli-
ers, noise or deviations from the normal status are considered 
an anomaly. The adjacency matrix of the involved nodes is 
computed to depict their interconnections. Detection mecha-
nism is based on topological characteristics of the graph such 
as between centrality, Degree, and Closeness.

Anomalous edges detection is also proposed in Eswaran 
et al. (2018) and Shin et al. (2016), where the density of sub-
graphs is taken into account in order to determine a pattern 
of malicious edges. In the former study sudden deviations in 
the density of the sub-graphs are forming a potential anom-
aly, concerning structural, temporal and content features of 
the sub-graph, whereas in the latter, a density function was 
defined in dynamic bipartite graph which utilized a greedy 
search mechanism and structural graph features to perform 
anomaly detection.

A node-level anomaly detection model was proposed in 
Bars and Kalogeratos (2019). In this study the anomalous 
event is believed to generate a “clique” among the involved 
nodes. Thus, the authors introduce a probabilistic approach of 
detection, to infer the conditional probabilities of a “clique” 
generation in order to score a value of anomaly to each node. 
Real-world and synthetic sensor network data were utilized 
for the evaluation purpose. In Wu et al. (2019) an insightful 
survey has been conducted resulting in a valuable taxonomy of 
GNNs mechanisms applied in several application domains. A 
detailed overview of Recurrent, Convolutional, Auto-encoders, 
and Spatial-Temporal Graph neural network approaches was 
presented. The need to model the appropriate GNN model 
to have high classification accuracy and F1 score is justified, 
where several GNN models are evaluated against the same 
benchmark datasets. This is also evident (Garg et al. 2019) 
where DARPA’98 and KDD’99 benchmark datasets are used 
to evaluate a Hybrid Deep Learning-Based Model for Cloud 
Data-center Networks anomaly detection, against state-of-
the-art approaches. The article illustrates the method’s out-
performance againsth the comparative approaches, which in 
fact proves that adopting the optimal anomaly detection model 
results in superior detection accuracy values. Another study 
mentioning the significant added value of GNN’s adoption is 
conducted in Xu et al. (2018), where powerful discriminative 
capabilities of GNNs are discussed.

2.4  Resource‑efficient anomaly detection 
approaches

In Lyu et al. (2017) the limitations posed by the IoT resource-
constraint environment are examined along with the anomaly 

detection proposed mechanism. They acknowledge the issue 
caused by sending all transformed data to a central Cloud, 
which consumes huge energy and bandwidth. Admittedly, 
designing low resource anomaly detection approaches, while 
remaining competitive in terms of accuracy is a challenge to 
overcome in the case of IoT networking. Towards this end, 
Sedjelmaci et al. (2016), proposes a light-weight detection 
mechanism for IoT sensor devices, while (Summerville et al. 
2015) makes an effort towards implementing a low-latency 
and high throughput deep packet anomaly detection tech-
nique. Another state-of-the-art approach addressing large 
memory, long training time and high classification latency 
is studied in Vargaftik et al. (2019). A Random Forest imple-
mentation utilizing Decision Tree-Based Ensemble Methods 
is attempting to alleviate drawbacks caused by the anomaly 
detection procedure in the most efficient way.

Towards optimizing the anomaly detection techniques, 
several significant approaches have emerged. In Angelov 
(2014) an extension to TEDA, a data analytics framework 
based on typicality and eccentricity, is presented. The 
authors propose a new condition for detecting anomalies 
which is independent of prior consumptions, as defined in 
TEDA. Within the proposed “ � gap” principle, the outlier is 
defined as a data point/sample that stands out and is differ-
ent from other data samples. Based on this condition, data 
samples are analyzed with respect to their eccentricity and 
not on their values, thus a “ � gap” in terms of data samples’ 
eccentricity, indicates an outlier.

3  Graph neural networks over a multi‑agent 
system

3.1  Overal approach

An IoT network might comprise thousands of heterogene-
ous devices communicating over the Internet and being 
potentially utilized by millions of different end-users. Such 
a network should be considered under direct threat of an 
imminent attack at any time. Therefore, a method which 
shall provide security through the cooperation among IoT 
infrastructure devices can lead to quicker and more effective 
threat detection and mitigation results. We propose an exten-
sion to the current architecture approaches, which can help 
achieving security in the IoT network infrastructure while 
ensuring low latency results by exploiting the merits of an 
in-graph representation.

The main contribution stands on the distributed nature 
of a Multi-agent System (MAS) empowered with the GNN 
technology. As shown in Sec. 2.3 the graph-network is able 
to recognize the complexity of relations among nodes opti-
mally, representing their inter-dependencies in a powerful 
way.
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In the proposed approach, IoT network structures engage 
GNNs to adapt to the dynamics of the referred agent graph 
and offer higher level of cooperation as well as sophisticated 
learning strategies when compared to existing NN meth-
ods. Observations are exchanged only between neighbor-
ing agents. In this regard, globally shared information, as 
achieved through a central authority, is not required. Hence, 
requirements for bandwidth and computational power are 
reduced. Key factor to the current effort is the ability to 
accurately detect attacks and malicious events and avoid 
their impact based on both the node’s and its neighboring 
nodes’ view of the environment. The integration of a NN 
model alleviates the burden of processing large amount of 
data within the IoT environment, in terms of edges’ and 
nodes’ content and structural features.

The MAS extends hybrid NN implementations, which 
emphasized only on detection results. We add value with 
low latency anomaly detection and incorporate the distrib-
uted performance achieved by the communication between 
directly attached nodes. Unlike similar existing techniques, 
the injection of a graph to represent the network’s links and 
also depict the agents, offers unique effectiveness concern-
ing fast retrieval of the attack incident even in cases when a 
number of nodes has been compromised.

We also try to fill the gap of GNN application field. 
GNNs’ have not been broadly used in IoT networking envi-
ronments and to the best of our knowledge have not been 
used to identify malicious sources or predict upcoming 
attack events. A network of IoT devices can be easily seen 
as a graph consisting of node devices and communication 
channels between them as edges while a GNN can directly 
operate on a graph structure. Exploiting this, we can extract 
many of the features that appear in the network and use them 
to classify nodes. Essentially, every node is associated with 
a label which describes the behaviour of the node in the 
graph. This representation of information held the initial 
approach. Considering SDN edge and core forwarders as 
nodes belonging to the graph and their underlying connec-
tions as the graph’s edges presents a natural way to achieve 
message passing over the interconnected entities. To sum-
marize the key points of the proposed approach:

– Local monitoring of nodes and attached devices exploit-
ing the underlying graph structure with the use of GNN 
networks is performed.

– “The complexity of IoT networks and the representation 
of the devices” interconnections in a formative, visual 
manner, suitable for various IoT application areas, is 
accommodated.

– Distributed anomaly detection ensuring lower bandwidth 
and power consumption measurements added by the pro-
posed method, also addressing the distributed nature of 
attack patterns is performed.

– GNNs in the application area of anomaly detection in the 
IoT networking ecosystems are introduced.

– Extensive experiments on the IoT network data to prove 
effectiveness of the proposed model against traditional 
and State-of-the-art methods are conducted.

– Synthetic datasets based on real-world online retrieved 
data, to accommodate the training and evaluation needs 
of the proposed algorithm, are generated.

3.2  Intelligent agents positioned in the IoT network

This section describes the IoT network infrastructure, upon 
which the current proposal is based. We describe a general 
IoT network infrastructure to support the MAS implemen-
tation, which could potentially fit to several IoT application 
domains. Upon this matter we elaborate further in Sec. 5.

We consider a three-layered IoT infrastructure consisting 
of IoT devices, Fog Nodes and the Cloud. As in most cases 
of IoT, management applications dealing with time-sensi-
tive data are running on the Fog Nodes, closer to the edge 
devices, avoiding the delays of transmitted vast amount of 
data to a central computational center. This in fact argues in 
favor of two distinct implementation scenarios of the MAS 
mechanism proposed. Therefore, implementing the agents 
either on the side of the Fog Nodes or on the SDN Edge For-
warders is considered. In the former case, the agent is seen 
as an application running on a virtual server or a container, 
while in the latter, Edge forwarders are able to support the 
agents’ applicability with a dedicated AI processor of low-
power. The SDN substrate in all cases is responsible for rout-
ing packets among the network entities, as core and edge 
forwarders are linked to the SDN control plane. A crucial 
aspect, which needs to be highlighted, is the localization of 
the traffic monitoring which is realized on each agent. Each 
agent is concerned with a subset of the overall transmit-
ted traffic, including its directly attached agents, that is its 
neighborhood.

An example of the proposed architecture is depicted in 
Fig. 1, consisted of IoT devices and Edge/Core forwarders. 
Forwarders are hosting the AI agents in order to enable traf-
fic monitoring , deriving from the IoT devices. SDN control-
ler passes to the agents the traffic flows as raw data using a 
known standard for traffic monitoring. Within the scope of 
the proposal, NetFlow/IPFIX statistics are considered the 
optimal enabler of network management. Having acquired 
the input data to feed the intelligent agents, we proceed to 
the Feature Extraction strategy.

3.3  Input data

As explained, flows of raw network traffic are fed to each 
agent. Therefore, pre-processing of the raw information is 
required, for relevant features to attribute the underlying 
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graph’s edges and vertices. Raw data flows comprise sev-
eral fields, describing network statistics and giving an 
insightful view of relevant information regarding protocols, 
IP addresses and their associated ports, along with more 
inspecting information as the total number of transferred 
bytes, packets, the duration, and the start time of each flow. 
With the term flow, we generally address the bidirectional 
connections among the IoT nodes. Examples can be easily 
collected by online IoT related datasets, widely used to train 
and test several anomaly detection algorithms.

Within the current approach, there is a certain require-
ment to extract features, in order to assign attributes to the 
nodes and the edges of the network, which in fact poses the 
need to reconstruct flow-level information into node-level. 
This activity should result in incorporating features directly 
related to anomalous characteristics, omitting all non-rele-
vant noise. To this regard, we highlight, the requirements of 
the proposed anomaly detection method, in terms of input 
data. Datasets need to include information with regard to 
the:

– Start time, which refers to starting timestamp of each 
connection (datetime object)

– Duration of each link measured in ms (int object)
– Protocol under which the connection is established (str/

int object)
– Source device initializing the communication (str object)
– Source IP address (str object)
– Target device receiving the transmitted data (str object)
– Destination IP IP address (str object)
– Direction of the link (str object)
– Total packets transmitted over the link (int object)
– Source bytes transmitted (int object)

– Total bytes transmitted over the link (int object)
– Label normal/abnormal annotation of the connection

General properties should exist, as well. The number of 
nodes participating in the network is expected to be large, 
in order to serve the purpose of graph formation and attri-
bution. Various attacks should be addressed such as DDoS, 
Eavesdropping, Manipulation of IoT devices, Malware, Bot-
net etc. The temporal extend of the dataset, which denotes 
the overall length of the monitoring traffic time, is expected 
to be long, so as to assist in the creation of normal and 
abnormal pattern distribution.

3.4  Feature extraction methodology

To extract relevant features which are correlated with the 
existence of abnormalities we utilize the information refer-
ring to  Timestamp, Source, Destination, Number of Packets, 
Number of Bytes , as well as Direction values. Information 
exchange in the dataset is depicted in the form of consecutive 
flows, in which source and destination entries are repeated 
describing numerous connections. To assign features spe-
cifically on each node and edge of the graph, we group the 
statistics to provide per node information, thus constructing 
a feature vector for nodes and for edges, separately.

Assuming j is the graph object we focus on, and i the 
specified time window, we define a feature vector as 
r
j

i
= [psi, pri, bsi, bri, duri] , containing records with multiple 

indices, where j can be either a node ( rnode
i

 ) or an edge ( redge
i

).
The vector contains the following records; ’ps’ (pack-

ets sent) that defines the number of packets sent from one 
node/edge to another in a certain period of time and ’pr’ 
(packets received), defining the number of packets received. 

Fig. 1  Multi-agent system 
architecture, comprising SDN 
forwarders as part of an IoT 
networking example, attached 
to corresponding IoT devices 
and intelligent agents associated 
with each of the SDN forward-
ers for anomaly detection 
employment
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Moreover, the value ’bs’ (bytes sent) defines the number 
of bytes sent from one node/edge to another in a certain 
period of time, while ’br’ (bytes received) shows the num-
ber of bytes received from a node. Furthermore, the value 
’dur’ (connection duration) depicts the connection time 
in which two nodes/edge exchange data and a timestamp 
which follows the Datetime format. Finally, �t ∈ [t1, t2] , R�t 
is defined as R�t = {r

j

i
Vtimestamp ∈ �t} , and N is defined as 

N = length(R�t) . Tables 1 and 2 contain the extracted groups 
of features (nodes’ and edges’) from raw network data, along 
with their mathematical explanation.

3.5  Integrating agents with graph neural networks

A graph is commonly used to process structural data, con-
sidering their inter-relations. A significant benefit of this 
topological distribution of load is in fact the reduction in 
data processing activity required for each node. However, 
despite this gain, computational complexity expands in cases 
needing to include data of a prior and subsequent neighbor 

into the processing task. In an attempt to address this chal-
lenge, and enhance message passing process, Graph Neural 
Networks were introduced suggesting the representation of a 
node’s vector as aggregated and transformed feature vectors 
of its neighbors.

The principles of Graph Networks GNN operation are 
described below, along with explanation regarding how 
GNN were adopted within the proposed methodology. Spe-
cifically, taking advantage of the GNN natural ability to 
separate distinct inputs, as repeatedly mentioned in litera-
ture, along with their capability to achieve message passing 
among the graph’s nodes, this mechanism proves to be a 
competitive classification mechanism and an ideal way to 
represent relations.

In the MAS, cooperation among agents is represented by 
their inter-relations, which in fact exploits adequately GNN’s 
inherent operation on a graph structure.

The basic computational block takes as input a graph 
and performing computational processes among the 
graph’s nodes and edges, outputs a new graph instance. 

Table 1  Node Feature Vector
Avg. number of Packets sent (aps)

f �t
aps

(j) =
∑N

1
psi

N

faps is the average number of packets sent
ps ∈ rnode

i
∀rnode

i
∈ R�t

Avg. number of Packets received (apr)
f �t
apr

(j) =
∑N

1
pri

N

fapr is the average number of packets received
pr ∈ rnode

i
∀rnode

i
∈ R�t

Avg. number of Bytes sent (abs)
f �t
abs

(j) =
∑N

1
bsi

N

fabs is the average number of bytes sent
br ∈ rnode

i
∀rnode

i
∈ R�t

Avg. number of Bytes received (abr)
f �t
abr

(j) =
∑N

1
bri

N

fbr is the average number of bytes received
ps ∈ rnode

i
∀rnode
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Avg connection duration (acd)
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1
duri
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∈ R�t

Table 2  Edge Feature Vector
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i
∀r

edge

i
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f �t
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(j) =
∑N

1
psi

N

faps is the average number of bytes sent

ps ∈ r
edge

i
∀r

edge

i
∈ R�t

Avg connection duration (acd)
f �t
acd

(j) =
∑N

1
duri

N

facs is the average connection duration

dur ∈ r
edge

i
∀r

edge

i
∈ R�t
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Let us denote nodes and edges which are the basic ele-
ments of the graph as vi , and ek , respectively.

We define a graph G as the tuple G = (V ,E) where 
V = {�i}i=1∶Nv is the set of nodes (of cardinality Nv ), and 
each �i is a node’s attribute while E = {�k}k=1∶Ne is the set 
of edges (of cardinality Ne ), where each �k is the edge’s 
attribute.

We adopt a modification of the framework constructed 
in Battaglia et  al. (2018) in order apply the proposed 
approach. To address message passing between network 
nodes, GNNs suggest the representation of a node’s vec-
tor as aggregated and transformed feature vectors of its 
neighboring nodes. Thus, iterations of this aggregation 
procedure capture the structural information within the 
network neighborhood including neighbors in a n-hops 
distance, where n is the number of iterations. Thus, the 
computational processes within a graph-block include 
“update” functions � , and “aggregation” functions, � , (r, 
s denote receivers and sender node indices)

where E�
i
=
{(

�
�
k
, rk, sk

)}

rk=i, k=1∶N
e , V � =

{

�
�
i

}

i=1∶Nv
 , and 

E� =
⋃

i E
�
i
=
��

�
�
k
, rk, sk

��

k=1∶Ne
 , �e computes edge-level 

updates whereas the �v computes node-level updates. � 
aggregates edge attributes per node. f determines what infor-
mation is required as input.

NN function used in Eq. 2 can be implemented through sev-
eral neural network architectures. Exploiting this opportu-
nity, we implement a fully connected Multi-layer perceptron 
(MLP), to perform message passing from the edges to their 
corresponding node and subsequently to update nodes’ self 
attributes, respectively. The MLP architecture is chosen for 
faster execution and high accuracy results. We consider 
information exchange comprising succeeding steps and 
applied for each individual agent: 

1. Identify of neighboring agents and connections.
2. Update e1,e2,e3 edges’ attributes applying Neural Net-

work ( NNe ) taking as input each edge along with its 
corresponding nodes, generating the updated edges, e′

1
 , 

e′
2
 , e′

3
.

3. Update node’s v1 attributes applying Neural Networks 
( NNv ) on e′

1
,v1 inputs, generating the updated node v′

1
.

(1)
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Having exchanged information among neighboring agents, 
each agent uses the collected data to train and test the anom-
aly detection algorithm anomalies. Two types of anomalies 
are considered:

– The SDN forwarder is anomalous now, i.e. at time t
– The SDN forwarder will be infected by a malware that 

propagates in the network, i.e. infected at time t + �T

3.6  Graph multi‑layer perceptron model

This section elaborates on the architecture of the Agent’s 
GNN mechanism. We developed two separate models, for 
updating the nodes’ and their corresponding edges’ attrib-
utes, therefore introducing two consequent MLPs. Each 
of them results in classifying the nodes’ and edge’s status 
respectively. Hence, we succeed in implementing a commu-
nication channel and establishing a neighborhood of agents 
and information exchange within it. The number of input 
neurons represents four attributes of the edge’s MLP or five 
attributes of the node’s respectively. As the MLP belongs to 
the Feedforward Neural Network (FNN) family, neurons are 
connected via one-way links.

Fig. 2 gives a detailed view of the proposed GNN archi-
tecture, which is employed by each agent. Core blocks of the 
architecture are the edge and node MLPs.

The edge MLP is used to classify features and predict the 
probability of an anomaly on neighboring nodes whereas 
node MLP is used for node’s features update and results in 
the probability of his own abnormal status.

Examining in detail each block, we define input and out-
put. Assuming that we have node j and its neighboring nodes 
i = 1, 2… ,N , edge’s MLP input consist of the feature vec-
tor of a neighbor (denoted as Xi

t−1
 at time t − 1 ), his own 

information ( Xj

t−1
 ) along with neighbor’s corresponding edge 

features vector (denoted as ei
t−1

 ). Feature vectors are explic-
itly described in Table 1, 2. Concatenation is required before 
passing the data through the fully connected layers to output 
the updated edge feature vector ( e�i

t−1
 ). In the next step, the 

updated edge vector is used as input to a softmax classifier 
along with the node’s i features. After their passing through 
fully connected layers the probability of an anomalous node 
i (neighbor) is computed.

The node’s MLP similarly is responsible for updating 
node’s own feature representation based on the collected 
information. Concatenation result of Edges’ MLP ( e�i

t−1
 ) and 

the node’s own feature vector is passed through the fully 
connected layers, and is subsequently classified to produce 
the probability of node’s j (individual node) anomaly. We 
achieve exchange of information in an effective way justify-
ing the value of the multi-agent system compared to other 
centralized structures, in an attempt to achieve detection of 
attacks and their distribution over the network.
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We trained the GraphNET, the proposed structured 
model, using Adam optimizer (Kingma and Ba 2014) and 
the Binary Cross Entropy function (Rubinstein 2005). We 
trained the model in four different experiments against sev-
eral scenarios, derived from the generation of synthetic 
datasets, obtaining high accuracy results that can be shown 
in the following diagrams (Sec. 4.3). To produce normal 
and abnormal occasions out of the resulted probabilities, we 
considered a threshold value of 0.50. Using Pytorch (Paszke 
et al. 2017) and Pytorch Geometric (Fey and Lenssen 2019) 
libraries, the GNN implementation was performed with 
Python.

4  Performance evaluation

In this section we present experimental results for the 
GraphNET.We also describe the generated datasets. In a 
separate subsection we elaborate on the estimated values of 
bandwidth and power consumption overhead caused by the 
proposed method, in comparison to several Machine Learn-
ing algorithms and State-of-the-art methods developed.

At this point of implementation, we consider utilizing a 
pre-trained model, which having learned several patterns of 
network traffic is able to detect irregularities. However, the 
need to address the continuity of network traffic data can be 
addressed with the implementation of a buffer. This mecha-
nism can hold incoming streams during training.

4.1  Synthetic datasets generation

Although numerous online datasets, depicting normal and 
anomalous network traffic of various attacks (Malware, 
Spam, ClickFraud, Port Scan, UDP/ICMP DDoS, Com-
mand and Control P2P connection, HTTP traffic etc.) were 
retrieved, structural data to represent graph-based informa-
tion were not sufficiently gathered. Despite presenting realis-
tic networking scenarios, the aforementioned datasets lacked 

fields referring to the source, destination, traffic statistics, 
starting time of the connection or did not include annotated 
data. This was the case in CICIDS 2017 (Sharafaldin et al. 
2018), UNSWNB15 (Moustafa et al. 2018), ISCX-IDS-2012 
(Shiravi et al. 2012), NSL-KDD (Tavallaee et al. 2009), 
ISCX (Beigi et al. 2014), ADFA (Creech 2014).

To address this issue we generated data depicting struc-
tural relationships among IoT nodes and edges. We utilized 
CTU-13 (Garcia et al. 2014) instances, after determining 
the data distribution over normal and abnormal patterns, 
in order to set the basis of the synthetic data generation. 
All datasets produced followed the same distribution, while 
differentiating the total numbers of packets sent, received 
and their duration to acquire a broader view of the proposed 
method’s capabilities and experiment on various network 
traffic conditions. In Fig. 3a, b and c is presented the pack-
ets’ distribution of the generated datasets, fitting to the real-
world dataset’s (CTU-13) packets distribution.

4.1.1  CTU‑13 botnet dataset

To regenerate the exchange of data we thoroughly exam-
ined the present dataset, recorded in CTU University, Czech 
Republic, 2011. CTU-13 includes Botnet, Normal and 
Background traffic labels. It consists of 13 different attack 
scenarios. All cases define botnet instances sourced by a 
single malicious IP, that perform adversarial activities while 
exploiting various protocols. Each scenario was recorded in 
documents using the format .pcap [52] that was subsequently 
processed in order to obtain network flow data.

4.1.2  Generated worm attack dataset

We simulated a worm attack in the synthetic dataset.Its 
instances of network traffic flows are labeled as normal and 
abnormal. The network is made up of 30 forwarders and 170 
IoT devices that exchange data following the distribution 
met in the CTU13, in which we injected abnormal flows of 

Fig. 2  GraphNET - GNN 
architecture employed on each 
Intelligent Agent
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the Mirai (Kolias et al. 2017), (Hallman et al. 2017) botnet 
signature.

To better describe a DDoS attack taking place on an 
infected forwarder, we simulated offline state, resulting in 
null features vectors sent by maliciously affected forwarders. 

This also described the propagation impact. Examining this 
case of attack, we highlight the benefits of GNNs in detect-
ing an attack before widely spreading in the network. An 
example is presented in Fig. 4: where the agent of the edge 
forwarder has been attacked by a worm deriving from an 

Fig. 3  a) Total packets number 
of the propagating malware 
dataset, fitting in the Log 
logistics [3P] non-discrete 
distribution. b) Same metric 
of total packets number of the 
botnet CTU-13 dataset, fitting 
in the Log logistics [3P] non-
discrete distribution. c) Total 
Packets number of infiltration 
attack dataset, fitting in the 
Log logistics [3P] non-discrete 
distribution
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IoT surveillance camera. Showing abnormal behaviour the 
malware tries to propagate the infection further in the IoT 
network. Phase 2 of the propagation shows the contamina-
tion spreading to the attached forwarders.

4.2  Bandwidth and power consumption 
estimations

The results with respect to Accuracy, Roc AUC score, Band-
width and Power Consumption are compared with those of 
centralised ML algorithms (SVM, Decision Tree, Random 
Forest), commonly used for anomaly detection, and two 
state-of-the-art implementations of Deep Auto-encoders 
proposed by Meidan et al. (2018), and a hybrid sequential 
proposed in Yavuz et al. (2018), to showcase the improved 
performance offered by the proposed initiative.

We estimated the additional Bandwidth and Power con-
sumption caused by the Anomaly Detection method in case 
of deploying a centralised and decentralised anomaly detec-
tion method. Having stated the number of SDN forwarders 
involved in the network traffic and the connection flows tak-
ing place in every second we estimated based on the follow-
ing mathematical equations (Vishwanath et al. 2014).

Centralized case: Bc = n ∗ Fn ∗ Fb + e ∗ Fe ∗ Fb , where 
n is the total number of forwarders, Fn is the forwarders’ 
feature number, Fb is the number of bits of a feature, e 
is the total number of communication links and Fe is the 
communication links’ feature number Distributed case: 
Bd = n ∗ a ∗ Fn ∗ Fb where n is the total number of for-
warders, a is the average number of forwarders’ neighbors, 
Fn is the forwarders’ feature number, Fb is the number of 
bits of a feature. Power consumption added by the anomaly 
detection method E = Eidle + Einc, bit ∗ B , where Eidle is 
the baseline energy consumption, Einc, bit is the incremental 
energy per bit and B is the bandwidth.

4.3  Evaluation results

We compared accuracy of detection and ROC score depicted 
in the ROC diagrams presented in Fig. 5, and Fig. 6 and the 
corresponding tables. Two attack scenarios were examined 
referring to the worm infiltration and worm propagation 
attack. Three traditional ML classifiers and two state-of-the-
art methods were trained and tested against the same datasets 
to be cross-evaluated along with the proposed method.

Results in Tables 3, 4, 5 and 6 show ROC score, accuracy, 
bandwidth and power consumption. In the corresponding 
diagrams, GNN’s yellow curve proves out-performance 
compared to the residual methods. Two sub-scenarios were 
also taken under consideration, describing the event in which 
three abnormal forwarders go offline during the attacks.

The fact that the proposed method surpasses overall 
computed accuracy proves that the multi-agent cooperation 
and their information exchange is crucial, in order for the 
directly attached healthy nodes to acknowledge the undergo-
ing attack on their neighbors. Distributed nature of the MAS 
is also yielding lower Bandwidth and Power Consumption 
results, since the feature vectors are only transferred between 
neighboring agents, through directly attached edges, thus 
avoiding the information burden and data processing on a 
single central node.

Tables 3 and 4, show that the GNN method presents the 
same high results of accuracy in both sub-scenarios of the 
infiltration attack, unlike the residual methods. In the case 
of the propagating attack, as depicted in Tables 5 and 6 the 
GNN method is also not affected by the offline compromised 
forwarders, proving that neighboring agents are aware of the 
abnormality.More specifically, in Table 3 detection perfor-
mance of the proposed GNN model is illustrated. Although 
all methods achieve high accuracy results, it is evident that 
the proposed approach outperforms the comparative meth-
ods in terms of Bandwidth and Power Consumption. This 
effect is justified by the minimization of distributed feature 
vectors transferred, among neighboring agents, unlike the 
massive message transfer to a central computational unit, 

Fig. 4  Worm attack is initiated on a Surveillance camera (Phase 1) 
and is subsequently propagated to the next hop connected SDN Edge 
forwarder (Phase 2)
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taking place in the centralized methods. This low-resource 
consumption is essential within the IoT environment.

Table 4 on the other hand shows out-performance of the 
proposed algorithm both in terms of resource consumption 
and accuracy results. The compromised forwarders have 
gone offline causing a drop in the transmitted traffic through-
out the network, as illustrated in Bandwidth and Power Con-
sumption values. However, the fact that a smaller number of 
monitors is now responsible for anomaly detection, drops the 
accuracy results for all centralized methods whereas GNN’s 
inter-connected agents remain unaffected.

Similarly, in Table 5 the results regarding the attack 
propagation scenario are illustrated. Since intelligent 
agents are exchanging features and are able to classify 
the probability of neighbor infection, propagating attack 
is identified accurately by the GNN method. This is not 
the case in the remaining algorithms were the spreading of 
attack sources is not efficiently recognized. This is justified 
by the fact that abnormal nodes are considered normal in 
the initial learning phase, since the attack has not been 
spread, yet.

Following the results of Table 5, in Table 6 accuracy 
scores drops further considering the centralized methods, 
while the GNN is again not affected by the DDoS caused 
by the worm propagation.

Simulated datasets presented diverse configurations. 
Therefore, the number of flows per dataset and the captured 

Fig. 5  Infiltration attack is initiated on a Surveillance camera and is 
propagated to the connected SDN Router

Table 3  Evaluation results against infiltration attack dataset

Method Roc AUC 
score

Accuracy Band-
width 
(Kbits/s)

Power 
Consumption 
(Watts)

GNN 0,99 0,99 0,45 1, 53 ∗ 10−6

Random 
Forest

0,99 0,99 33,98 1, 15 ∗ 10−4

SVM 0,95 0,95 33,98 1, 15 ∗ 10−4

Decision Tree 0,99 0,99 33,98 1, 15 ∗ 10−4

Meidan,Yair, 
et al.

0,70 0,70 33,98 1, 15 ∗ 10−4

Yavuz,FY, 
et al.

0,77 0,77 33,98 1, 15 ∗ 10−4

Fig. 6  Worm attack is initiated on a Surveillance camera and is prop-
agated to the connected Forwarder
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traffic duration are varying. This is depicted in the altered 
density of the attached edges among the nodes of the net-
work, per time-window, which in turn affects the complexity 
of the dataset and the time needed for the algorithm to be 
trained on it.

We have created two types of datasets describing two 
attack types, a distributed worm infiltration attack and a 
propagating case which follows the rootto-branches dissemi-
nation pattern. We extensively trained the developed algo-
rithm against all sub-scenarios. Thus, in Table 7 we present 
all gathered time measurements presenting the algorithms 
requirements, in terms of training against the different edges’ 
sparsity and monitoring duration values.Training was suc-
cessful for each dataset after a total of 200 epochs, along 
with parameterization of 0.01 learning rate and 5e-4 weight 
decay, selected after rigorous fine-tuning.

Training time is raised significantly when the captured 
traffic has high duration, since the processing time to com-
pute per node/edge features is increased. Data processing is 
more demanding when the number of flows mirroring the 
number of edges per node is increased, as well.

5  Discussion

This section presents several application domains, where 
the proposed method could be potentially deployed. We 
elaborate on hardware requirements and limitations posed 
by training the detection model on less flexible IoT network 
devices. Furthermore, we discuss extension paths to be fol-
lowed to evolve the proposed algorithm.

5.1  GNN‑based AI agents ‑ Areas of application

5.1.1  Smart electricity grid

The case of electricity grid has raised great research interest, 
so as to fit the quality standards, posed by the US Depart-
ment of Energy DOE’s Modern Grid Initiative, and exhibit 
characteristics of self-healing, attack resistance, ability to 
accommodate storage options, market enabling, power qual-
ity meeting the modern needs, asset optimization and effi-
cient operation. To satisfy these requirements, a distributed 
multi-agent system is best suited to allocate different tasks 
concerning system voltage monitoring, energy resources 
and system information storing, and monitoring electricity 
consumption, as considered in Logenthiran and Srinivasan 
(2015), Singh et al. (2018).

The need for resistance against cyber attacks, or the rec-
ognition of energy demand patterns and behaviors of the 
consumers, could be potentially met with the use of GNNs, 
which could best accommodate the large amount of trans-
ferred data and model the network of agents and their inter-
actions efficiently.

Assuming a probable case of DDoS attack in the Smart 
grid, compromised edge devices intend to produce a UDP 
flood on a part of the network and therefore render it unavail-
able. With the adoption of the proposed solution, agents will 

Table 4  Evaluation results against infiltration attack dataset - three 
compromised forwarders have gone offline

Method Roc AUC 
score

Accuracy Band-
width 
(Kbits/s)

Power 
Consumption 
(Watts)

GNN 0,99 0.99 0,40 1, 38 ∗ 10−6

Random 
Forest

0,95 0,95 32,67 1, 11 ∗ 10−4

SVM 0,88 0,88 32,67 1, 11 ∗ 10−4

Decision Tree 0,94 0,94 32,67 1, 11 ∗ 10−4

Meidan,Yair, 
et al.

0,68 0,68 32,67 1, 11 ∗ 10−4

Yavuz,FY, 
et al.

0,75 0,75 32,67 1, 11 ∗ 10−4

Table 5  Evaluation results against propagating Worm attack dataset

Method Roc AUC 
score

Accuracy Band-
width 
(Kbits/s)

Power 
Consumption 
(Watts)

GNN 0,99 0,97 15,1 5.134 ∗ 10−5

Random 
Forest

0,96 0,96 10.800 3, 6 ∗ 10−2

SVM 0,96 0,96 10.800 3, 6 ∗ 10−2

Decision Tree 0,96 0,96 10.800 3, 6 ∗ 10−2

Meidan,Yair, 
et al.

0,96 0,96 10.800 3, 6 ∗ 10−2

Yavuz,FY, 
et al.

0,97 0,97 10.800 3, 6 ∗ 10−2

Table 6  Evaluation results against propagating attack Worm dataset - 
three compromised forwarders have gone offline

Method Roc AUC 
score

Accuracy Band-
width 
(Kbits/s)

Power 
Consumption 
(Watts)

GNN 0,99 0,96 13,6 4, 624 ∗ 10−5

Random 
Forest

0,92 0,92 10.400 3, 5 ∗ 10−2

SVM 0,65 0,65 10.400 3, 5 ∗ 10−2

Decision Tree 0,92 0,92 10.400 3, 5 ∗ 10−2

Meidan,Yair, 
et al.

0,94 0,94 10.400 3, 5 ∗ 10−2

Yavuz,FY, 
et al.

0,89 0,89 10.400 3, 5 ∗ 10−2
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be collecting traffic data and observations of the neighboring 
environments, implementing a GNN to detect and mitigate 
the attack pattern.

An agent-node receives data packets belonging to its 
neighboring node containing information about the traffic 
flow. A set of relevant features will be extracted (Number of 
destination UDP ports per second). A GNN layer is aggre-
gating the feature vectors of the neighboring agents into 
an updated vector of features which is classified giving the 
probability of neighboring infection. Feature vector aggre-
gated with the agent’s own attributes, will be subsequently 
passed through the GNN’s layers to classify the agent’s own 
probability.

In such a complex IoT network structure, GNN is 
expected to both depict accurately the interconnections 
among the agents and to process the large amount of trans-
mitted data in parallel, thus taking advantage of the local 
computational processes performed by each node. The pro-
posed method, is the most suited approach to visualize struc-
tured data of such an IoT case, as proven previously by the 
adoption of learning with graphs in biological, and financial 
networks. An example of graph representation learning for 
biological networks depicting protein-protein inter-relations, 
is examined in Hamilton et al. (2017).

5.1.2  Internet of medical things

Being a vastly growing area of interest, Internet of Medical 
Things (IoMT) is willing to enable affordable and reliable 
health care services through the interconnection of devices 
and the provision of real-time solution to medical issues. 
To offer high QoS to the customers and stakeholders, it is 
crucial to ensure the privacy, confidentiality, integrity of the 
transmitted data such as vital sign measurements, labora-
tory test results, procedures, images and imaging reports, 
blood pressure, respiration, oxygen saturation measurements 
and authentication of users, striving against physical and 
cyber-threats.

In a network of interconnected devices, medical equip-
ment sensors and actuators are composing the lower level 
of the IoMT architecture (Irfan and Ahmad b). Interme-
diate layer also referred to as Gateway or Middleware, is 
constructed to handle the interaction of the heterogeneous 
medical devices through several communication protocols. 
To process big data flows and facilitate information sharing 

among the intermediate central devices, a distributed MAS 
implementation on the side of the intermediate layer devices, 
is certain to enhance remote users’ collaboration.

Integrating this IoMT implementation with the proposed 
algorithm, we consider employing the network of distrib-
uted AI agents on gateway devices. We are considering the 
presence of an anomaly, such as a blackhole attack, under 
which an actuator is dropping control input packets. Traffic 
data are gathered to the monitoring agents, and distributed 
classification procedures will be followed as defined by the 
proposed model architecture.

5.1.3  Food chain infrastructure

Food chain infrastructure comprises several intermediate 
processes and stakeholders. After being initiated at the food 
production points it proceeds to manufacturing, distribu-
tion and retail activities before ending up on the consumer’s 
table. Integration of the Food Chain with the IoT resulted in 
major transformations in the Food Industry and assisted in 
the food safety, optimized logistics and enhanced QoS. Con-
tinuous monitoring of all sequential procedures of produc-
tion, storing, shipping, and selling decreased the overall cost 
and risk and managed production quantities taking into con-
sideration consumers’ choices, to lower waste of products.

Given the fact that immediate response in emergency situ-
ations is cost-efficient, the implementation of a multi-agent 
system to run GNN on the IoT forwarders transmitting the 
information flow, is a promising scenario. The envisioned 
architecture includes IoT edge devices responsible for trans-
mitting information helping the durability of food products. 
IoT forwarders transfer data streams across the network. 
Therefor choosing the lighter path can support the network’s 
performance.

We assuming the network consists of multiple forwarding 
devices, on which AI agents are running. GNNs model the 
way agents are inter-connected.

5.1.4  Intelligent transportation system infrastructure

Vehicles and other transportation infrastructures are inter-
connected in the case of ITS. Similarly to all IoT sce-
narios described, a security mechanism is a key aspect of 
its seamless function. The purpose of ITS is to integrate 
computers, electronic devices, sensors, actuators to realize 

Table 7  Training execution time Dataset type/version Training time (sec) Number of flows Captured traffic total 
duration (sec)

Infiltration attack/1 90,54 19.135 5
Infiltration attack/2 89,69 17.693 5
Propagation attack/1 290,52 211.231 5
Propagation attack/2 168,92 40.463 300



33Evolving Systems (2021) 12:19–36 

1 3

the interconnection of vehicles and facilitate information 
exchange between them. Assuming that a security condi-
tion has been breached and a smart vehicle has violated a 
traffic light, it is a matter of safety for the residual intercon-
nected vehicles to acquire this information. The urgent need 
for fast transmission describes the network requirement for 
low latency. In this case, we assume the implementation of 
AI agents to run on IoT sensor-hub devices. Information 
deriving from the IoT edge devices (road-side units) will 
be gathered to the sensor-hub monitoring agents. Distrib-
uted anomaly detection will be performed since neighboring 
agents will exchange their view of the environment’s status.

5.1.5  Computer vision domain

Anomaly detection regarding health image processing 
unveils another domain upon which tremendous progress 
has been made. In Angelov et al. (2011) an approach towards 
real-time detecting and tracking in video streams is pre-
sented. Specifically, an innovative method of video-analyt-
ics is proposed to process the frames in a one-pass manner 
using recursive calculations, thus canceling the requirement 
of information storage. The method introduces the recursive 
density estimation (RDE) technique for detecting the visual-
ized object and proposes an online learning method based on 
the evolving Takagi-Sugeno (eTS) fuzzy systems to predict 
and update the position of the object in the video stream. 
In other approaches, hybrid models of Deep Learning have 
been combined to deliver the most effective detection tech-
niques and simulate human’s vision and logical reasoning in 
malicious pattern recognition. Numerous literature research 
studies have been conducted within this application domain 
(Seeböck et al. 2019), (Chen et al. 2018), (Nair et al. 2020).

On the other hand, computer vision domain includes 
image classification area which has been integrated with 
GNN mechanism in state-of-the-art research thrusts. Spe-
cifically in Garcia and Bruna (2017) a collection of anno-
tated input images is fed to a GNN mechanism, proposing a 
generalized approach, of few-shot learning models. In Guo 
et al. (2018), Neural Graph Matching Networks (NGMN) 
are studied proposing a novel framework that can be trained 
to recognize previously unknown 3D actions by generating 
and matching graphs. In addition, in Liu et al. (2019) a novel 
GNN mechanism termed Prototype Propagation Network 
(PPN) is proposed. PPN is trained on few-shot tasks and 
coarse-label weakly-labeled data Developing a propaga-
tion mechanism it results in graph of prototypes attempting 
enhance the few-shot learning models. Finally, in Kawahara 
et al. (2017), health image processing area in integrated with 
the GNN approach. The study proposes a BrainNet Convo-
lution Neural Network (BrainNETCNN) to learn synthetic 
Diffusion Tensor Images (DTI) of preterm infants resulting 
in structural brain connectivity networks.

5.2  IoT hardware requirements

Along with the adoption of AI algorithms for anomaly detec-
tion, hardware requirements of the IoT devices are under 
inspection. That is to identify whether the IoT devices under 
learning and detecting activities, are in fact able to undertake 
the computational cost. In the case of Fog Nodes, where 
Virtual servers are implemented, several delay-sensitive 
applications are deployed. This solution is also adopted by 
autonomous vehicle infrastructure, where delays can be dis-
astrous. As presented in Zou et al. (2019), a lot of research 
has been conducted towards Edge and Fog side comput-
ing, following the enormous expansion of the IoT device, 
and the application of ML mechanisms to process the large 
amount of transferred data. To this end, the aforementioned 
study summarizes a number of low-power, State-of-the-art 
Machine Learning dedicated processors. At the same time, 
Intel is also developing customized processors for Deep 
Learning activities. Furthermore, IoT sensor hubs, process-
ing data closer to the edge, can support Machine Learn-
ing algorithms. Nvidia (2018) and Google (2018) present 
NVIDIA’s 7.5-watt supercomputer and Google’s purpose-
built ASIC both designed to run AI application on the edge.

6  Conclusion and future work

In this article, a method for the detection of anomalous 
events was presented. This method applies a GNN mecha-
nism and fully connected networks to create an edge and 
node classifier resulting in the probability of infection on a 
node and its corresponding vertices. Exploiting the graph 
representation we achieved information exchange within an 
agent’s neighborhood assisting in identifying abnormalities 
and security breach incidents based on their inter-relations. 
We took advantage of the view that a node has with regard 
to his neighboring nodes’ health status in order to solve the 
problem of inadequate number of monitors against distrib-
uted attack patterns, and compromised nodes being unaware 
of their infected condition. At the same time, we attempted 
to reduce resources such as the bandwidth and energy con-
sumption compared to centralized IDS. Each active node 
applied GNNs to the feature values concerning the inter-
connections in its local neighborhood. For the GNN to be 
trained and tested, we used real-world dataset’s normal traf-
fic patterns and additionally we generated data based on the 
Mirai’s abnormal distribution.

To set a solid basis for the proposed approach, in Sec. 2, 
we performed a broad review of the most recent methods 
with respect to anomaly detection, applied in separate IoT 
infrastructures, as in a centralised or decentralised or man-
ner. Furthermore we studied several graph-based approaches 
with respect to different network infrastructures. Most of 
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the methods used hybrid architectures to better process the 
acquired features, and the different use cases of network 
abnormal behaviour. The results proved the method is fea-
sible to be used to ensure stability in network’s seamless 
operation, showing high accuracy and low bandwidth and 
power consumption values against distributed attack scenar-
ios. Experiments were conducted with the use of generated 
datasets based on real traffic distributions, to contain mal-
ware instances within normal traffic data. Three residual ML 
classifiers (SVM, Decision Tree, Random Forest) along with 
a two state-of-the-art approaches were also implemented to 
be trained and tested against the same generated data and 
thus evaluate the accuracy scores of the GNN proposed 
method.

Blocking potential intruders and cyber-criminals is con-
ventionally achieved using encryption against unauthor-
ized access on the edge devices, whereas network security 
requires data encryption protocols. Integrity of personal and 
other sensitive data is ensured with the adoption of suitable 
security policies. The detection of attacks, malicious pat-
terns and irregular behavior, along with the required mitiga-
tion and avoidance mechanisms, has unfolded a promising 
topic of research.

6.1  Future work and extensions

Our future plans include several enhancements of the pro-
posed method, with respect to early forecast of attacks, with 
the use of time-series temporal features, and experiments on 
graph-RNN Neural Network architecture. We plan to incor-
porate the neighbors’ view of their environment, combining 
all opinions in way that not only directly attached, but also 
distant neighbors have a view on other nodes. Additionally, 
we plan to evaluate the proposed method against known 
IDSs and complete the security scheme with countermeas-
ures and mitigation actions to ensure the IoT’s system stabil-
ity and fast recovery. We plan an effort towards employing 
the GNN anomaly detection mechanism on network test-
beds, using Contiki and Mininet linux-based software, so 
as to measure accuracy, bandwidth and power consumption 
scores on real traffic scenarios were multiple IoT nodes are 
involved. Finally, in a separate scenario of implementation, 
the GNN method could be deployed in conjunction with 
a network infrastructure, such of Software Define Perim-
eter (SDP) (Moubayed et al. 2019). Since SDP is a secu-
rity architecture defining various modes of communication, 
(client-server, server-server, client-gateway, client-server-
client) it could provide the GNN with network data to be 
analyzed. SDP is attempting to authenticate hosts before 
enabling communication with the presence of a controller, 
hence partitioning the network to avoid unavailability or a 
single-point-of-failure, is crucial. In that case, GNN dis-
tributed monitoring could complement the attack resistance 

promoted by the SDP, by employing a light-weight anomaly 
detection, locally on the inter-connected gateways.
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