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Abstract
The paper introduces two modifications for the well-known PSO method to solve global optimization problems. The first 
modification deals with the termination of the method and the second with the bounding of the so-called velocity in order 
to prevent the method from creating particles outside the domain range of the objective function. The modified method was 
tested on a series of global optimization problems from the relevant literature and the results are reported.
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1 Introduction

The common problem of estimating the global minimum of 
a multi-dimensional function is given as

where S ⊂ Rn is defined by:

This problem appears in many scientific areas such as Yapo 
et al. (1998), Duan et al. (1992), chemistry Wales and Scher-
aga (1999), Pardalos et al. (1994), economics Gaing (2003) 
etc. During the past years many methods have been pro-
posed in the relevant literature to tackle the global optimiza-
tion problem. These methods usually are divided into two 
main categories: deterministic and stochastic. The first cat-
egory includes techniques such as interval methods Lin and 
Stadtherr (2004), the TRUST method Barhen et al. (1997), 
fuzzy optimization methods Angelov (1994) etc. Typically, 
the deterministic methods are more hard to implement than 
stochastic methods and in some cases they require a—priory 
knowledge of the objective function. On the other hand, the 
stochastic methods are more easy to implement and hence 
there are a great variety of stochastic optimization meth-
ods such as: Simulated Annealing Kirkpatrick et al. (1983), 

Controlled Random Search Price (1977), Genetic Algo-
rithms Goldberg (1989), Michaelewizc (1996) and Particle 
Swarm Optimization Kennedy and Eberhart (1999). The 
Particle Swarm Optimization method (PSO) is a , popu-
lation-based method. The method creates a population of 
candidate solutions (swarm of particles) that are evolved 
simulating the movement of actual particles. For that pur-
pose, each particle maintains its current position �⃗x and a 
corresponding velocity �⃗u . The PSO method has been applied 
with success in a wide area of problems such as problems 
from physics de Moura Meneses et al. (2009), Shaw and 
Srivastava (2007), medicine Wachowiak et al. (2004), Mari-
nakis (2008), economics Park et al. (2010), electronics Hos-
seini et al. (2019) etc. During the recent years, many modi-
fications of the original PSO method have been suggested 
such as hybrid techniques Liu et al. (2005), Shi et al. (2005), 
methods to improve the calculation of the parameters of the 
method (such as inertia, velocity) Tang and Fang (2015), 
Yasuda and Iwasaki (2004), Shahzad et al. (2009), methods 
that adapt the control parameters of the PSO in order to 
learn only feasible solutions Isiet and Gadala (2019), chaotic 
quantum-behaved particle swarm optimization techniques 
Mariani et al. (2012), Araujo and Coelho (2008) etc.

Hybrid methods tends to locate more accurately the 
global minimum but usually the required an additional 
amount of function calls. On the other hand, methods that 
used modified versions of the velocity tends to avoid the 
explosion problem of the PSO technique but in some cases 
they are trapped to a local minimum instead of locating the 
global one.

(1)x∗ = arg min
x∈S

f (x)

(2)S =
[
a1, b1

]
⊗

[
a2, b2

]
⊗…

[
an, bn

]
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This article proposes a new stopping rule specifically 
designed for PSO methods and a technique to bound the 
velocity avoiding calculation of the objective function out-
side of the domain definition S (Eq. 2). Various experiments 
were conducted on a series of well-known test functions 
from the relevant literature in order to demonstrated the 
efficiency of the proposed modifications and the results are 
listed.

The rest of this article is organized as follows: in Sect. 2 
the general description of the PSO method is provided as 
well as the proposed modifications, in Sect. 3 the test func-
tions are described with the conducted experiments and 
finally in Sect. 4 some conclusions are derived.

2  Method description

The general scheme of the PSO method is listed in Algo-
rithm 1. The algorithm has m particles and each particle has 
n elements where n is the dimension of the objective func-
tion. Each of the m particles is associated with two vectors: 
the position xi of the particle and the velocity ui of the par-
ticle. At every iteration a new position xi is calculated as a 
combination of the old position xi , the associated velocity ui , 
the previous best location of the particle pi and the best loca-
tion of all particle p best . The new point xi is updated using

In most cases the following scheme is used to update the j 
element of the velocity ui

(3)xi = xi + ui

where 

1. The variables r1, r2 are random numbers in the range 
[0,1].

2. The parameters c1, c2 are constant numbers usually in 
the range [1,2].

3. The variable � is called inertia and typically is in the 
range [0,1]. This article uses an update mechanism for 
the inertia proposed in Shi and Eberhart (1998) and it is 
given below: 

where k is the current number of iterations and k max 
the maximum number of allowed iterations. Also, 
�min, �max are user defined and for this article 
� min = 0.4, � max = 0.9.

Nevertheless, it is clear that Eq. 3 can produce elements that 
are not belong to set S. This article proposes in Sect. 2.3 a 
technique that can prevent such cases.

The PSO algorithm terminates when the termination 
criteria are hold. In these article two stopping criteria are 
used: a termination check based on the variance of the best 
discovered minimum that was also proposed in the previous 
work Tsoulos (2008) and a new termination check based on 
the changes of the best located positions. The first procedure 
is defined in Sect. 2.1 and the second in Sect. 2.2.

(4)uij = �uij + r1c1
(
pij − xij

)
+ r2c2

(
p best ,j − xij

)

(5)� = � max −
k

k max

(
� max − � min

)
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2.1  Termination rule based on variance

At every iteration k the variance of f
(
p best

)
 is measured. 

Denote this variance with �(k) . If there is no any new mini-
mum found for a number of generations, then it is highly 
possible that the algorithm has found the global minimum 
and hence it should terminate. The algorithm terminates 
when

where klast is the last iteration where a new minimum 
was found. As an example consider the function Rastrigin 
defined as

(7)�(k)
≤

�( klast )

2

The global minimum in the range [− 1, 1]2 is the value − 2.0 
Now consider a PSO with 100 particles and let the algorithm 
terminates when the current number of iterations k ≥ 200 . 
The progress of minimization for the Rastrigin function is 
outlined in Fig. 1. The algorithm located the global mini-
mum at the early stages of the run and before iteration 20. 
Now consider the plot of the variance of best located value 
at Fig. 2. The variance decreases very smoothly and hence 
it can be used as a criterion to terminate the algorithm and 
preventing unnecessary function calls.

f (x) = x2
1
+ x2

2
− cos

(
18x1

)
− cos

(
18x2

)
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2.2  Termination rule based on similarity

Let us denote with p(k) the table with the best locations of 
each particle at iteration k. Also set E = 0 at the beginning 
of the algorithm. At every iteration k > 1 we measure the 
quantity

If g < e , where e a small positive number, then E = E + 1 . In 
other words the similarity between the best location between 
two successive iterations is measured. The algorithm termi-
nates when E ≥ E max , where E max a small positive integer 
number. To outline the efficiency of this stopping rule con-
sider again the Rastrigin problem and the same test run with 
100 particles and Kmax = 200 as in Sect. 2.1 In Fig. 3 the 
graph of the quantity g is plotted against the number of itera-
tions. As it can be noticed the value of g very soon tends to 
zero and hence this quantity can be used as a stopping rule.

2.3  Velocity bound technique

A common problem of the PSO method is the production of 
points that are outside of the domain range of the objective 
function. This problem produced when the changes in the 
velocity performed without control and it is usually called 
explosion. The velocity bound technique suggested here is 
used to prevent this effect with some changes in the basic 
PSO algorithm.

(8)g =
‖
‖
‖
p(k) − p(k−1)

‖
‖
‖

The first change is performed when the velocities are 
initialized. The new procedure for velocity initialization is 
shown in Algorithm 2.3. This procedure ensures that at least 
for the first iteration of the PSO method every point xi ∈ S . 
The second change is to alter the Eq. 4 in order to ensure 
that every xi ∈ S . The proposed change for the update of the 
velocities is listed in algorithm 2.3. This algorithm does not 
perform any changes in the velocity that will responsible for 
producing points xi outside of the domain range.

Fig. 1  Plot of the progress of minimization for the Rastrigin function

Fig. 2  The plot of the variance of the Rastrigin function

Fig. 3  Similarity check plot for the Rastrigin function
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3  Experiments

In order to measure the efficiency of the proposed modifica-
tions a series of test functions provided in Ali et al. (2005) 
were used. These problems are listed in Table 1.

The proposed modifications have been evaluated in terms 
of number of function calls and successful discover of global 
minimum using four different experiments: 

1. With the variance stopping rule only. In this test only the 
stopping rule that is based on variance was used. This 
test is denoted as VARIANCE in the experiments.

2. With the similarity stopping rule only, where only the 
stopping rule based on similarity was used. This test is 
denoted as SIMILARITY in the experiments.

3. A test that combines the variance stopping rule and the 
new bounding technique of velocities. This test is named 
as VBOUND in the experiments.

4. A test that combines both the similarity stopping rule 
and the new bounding technique. This test is named 
SBOUND in the experiments.

The parameters of the PSO method used in the relevant 
experiments are listed in Table 2. The results for the pre-
vious four experiments are listed in Table 3. The column 

FUNCTION represents the objective function. The numbers 
in cells stand for the average number of function calls from 
30 independent runs using different seeds for the random 
generator each time. The numbers in parentheses denote the 
fraction of runs where the global minimum was located. If 
this number is missing then the global minimum was discov-
ered in every independent run (100% success). The last row 
of the table contains the total number of function calls for all 
experiments as well as the average number of success rate. 
At the end of every run the local search optimization method 
BFGS of Powell Powell (1989) was applied.

Also, the original pso method using the similarity stop-
ping rule and the new bounding technique has been com-
pared with Quantum behaved PSO method Sun et al. (2006) 
for the above test functions. The results from this compari-
son are listed in Table 4. The proposed stopping rule of simi-
larity has been applied successfully in Quantum Pso method 
and as a consequence the method terminated successfully in 
the majority of cases. The Quantum PSO method requires 
less number of function calls for a series of optimization 
problems in two dimensions but for problems of higher 
dimension the proposed technique performs better.

From the conducted experiments it is clear that the 
SIMILARITY rule outperforms VARIANCE stopping 
rule in almost any test function in terms of function calls 
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and success rate. Also, the new bounding technique for the 
velocity reduces dramatically (in most cases) the number of 
required function calls for both stopping rules.

Table 1  Test functions used in 
the experiments

Name n Expression

AP 2 f (x) =
1

4
x4
1
−

1

2
x2
1
+

1

10
x1 +

1

2
x2
2

BF1 2 f (x) = x2
1
+ 2x2

2
−

3

10
cos

(
3�x1

)
−

4

10
cos

(
4�x2

)
+

7

10

BF2 2 f (x) = x2
1
+ 2x2

2
−

3

10
cos

(
3�x1

)
cos

(
4�x2

)
+

3

10

BRANIN 2
f (x) =

(
x2 −

5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10
(
1 −

1

8�

)
cos(x1) + 10

CAMEL 2 f (x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2

CB3 2
f (x) = 2x2

1
− 1.05x4

1
+

x6
1

6
+ x1x2 + x2

2

EXP8 8 f (x) = − exp
�
−0.5

∑8

i=1
x2
i

�

EXP32 32 f (x) = − exp
�
−0.5

∑32

i=1
x2
i

�

RASTRIGIN 2 f (x) = x2
1
+ x2

2
− cos(18x1) − cos(18x2)

CM 4 f (x) =
∑n

i=1
x2
i
−

1

10

∑n

i=1
cos

�
5�xi

�

Griewank2 2 f (x) = 1 +
1

200

∑2

i=1
x2
i
−
∏2

i=1

cos(xi)√
(i)

Hansen 2 f (x) =
∑5

i=1
i cos

�
(i − 1)x1 + i

�∑5

j=1
j cos

�
(j + 1)x2 + j

�

Rosenbrock8 8 f (x) =
∑n−1

i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2�

Rosenbrock32 32 f (x) =
∑n−1

i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2�

Gkls250 2 f(x) = Gkls(x,n,w) with n = 2,w = 50 local minima Gaviano et al. 
(2003)

Gkls350 3 f(x) = Gkls(x,n,w) with n = 2,w = 50 local minima Gaviano et al. 
(2003)

Shekel5 4 f (x) = −
∑5

i=1

1

(x−ai)(x−ai)
T+ci

Shekel7 4 f (x) = −
∑7

i=1

1

(x−ai)(x−ai)
T+ci

Shekel10 4 f (x) = −
∑10

i=1

1

(x−ai)(x−ai)
T+ci

Shubert 2 f (x) = −
∑2

i=1

∑5

j=1
j
�
sin((j + 1)xi) + 1

�

Test2n4 4 f (x) =
1

2

∑n

i=1
x4
i
− 16x2

i
+ 5xi

Test2n5 5 f (x) =
1

2

∑n

i=1
x4
i
− 16x2

i
+ 5xi

Test2n6 6 f (x) =
1

2

∑n

i=1
x4
i
− 16x2

i
+ 5xi

Sinu8 8 f (x) = −
�
2.5

∏n

i=1
sin

�
xi − z

�
+
∏n

i=1
sin

�
5
�
xi − z

���

Sinu32 32 f (x) = −
�
2.5

∏n

i=1
sin

�
xi − z

�
+
∏n

i=1
sin

�
5
�
xi − z

���

Potential3 9 The Lennard Jones potential Lennard-Jones (1924) for 3 atoms.
Potential5 15 The Lennard Jones potential Lennard-Jones (1924) for 5 atoms

Table 2  Parameters of the PSO 
method

Parameter Value

m 200
k max 200
Emax 3
c1 1
c2 1
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4  Conclusions

Two modifications for the general PSO method have been 
proposed in this article: a stopping rule and a bounding 
technique for the velocity of the particles. Both modifica-
tions are general enough and they can be incorporated in 
any PSO variant. These modifications does not require any 
additional information from the objective function and they 

do not affect the speed of the algorithm since they have small 
overhead in the computation time. The experimental results 
indicates that the new stopping rule outperforms another 
statistical based stopping rule used in the past years and also 
the conjunction of the new stopping rule with the bound-
ing technique reduces the number of function evaluations 
needed to discover the global minimum.

Table 3  Experiments with 
the two stopping rules and the 
bound technique

Function VARIANCE SIMILARITY VBOUND SBOUND

AP 29500.3 22026 13075.8 12426.6
BF1 28123.2(0.80) 23766.5 16634.5(0.77) 13465.5
BF2 24505.8(0.70) 23921.1 16617.5(0.77) 13502.7
BRANIN 26523.9 22682 8111.83(0.97) 7161.37
CAMEL 29538.1 22815.8 14639.6 11911.6
CB3 29439.5 21100.7 15804.6 11876.7
CM 36351.4(0.97) 19012.7 12042.7 6110.7
SHUBERT 26979.9(0.97) 27690.1 5861.37(0.90) 6049.8
EXP8 37692.1 19466.9 3460.23 2087.6
EXP32 30722 20464.33 19465.66 10644.33
GKLS250 28421.1 18933.5 10856.9 9585.53
GKLS350 36241.6 18969.7 11202.8 6090.43
GRIEWANK2 32053.7(0.80) 27391.1 14936.2(0.73) 14986.5
HANSEN 29347.4(0.97) 28303 6580.27 6013.17
RASTRIGIN 35609.1(0.97) 21319.5 16720.6(0.90) 10690.8
ROSENBROCK8 35542.9 25470.6 1747.07 1157.4
ROSENBROCK32 21912.4 10632.73 5829.53 3882.9
SINU8 36720.2 18602.2 1977.17(0.90) 1159.97(0.93)
SINU32 7962.27(0.30) 5526.53(0.10) 2701.54(0.67) 1701.67(0.67)
SHEKEL5 34806.7(0.50) 21014.1(0.50) 4588.8(0.43) 3423.13(0.43)
SHEKEL7 32809.9(0.63) 22194.8(0.63) 5544.13(0.60) 3934.77(0.60)
SHEKEL10 30857.6(0.67) 22985.8(0.77) 7392.1(0.67) 4475(0.67)
TEST2N4 35947.6(0.97) 20068 2805.2(0.90) 1823.97
TEST2N5 27065(0.80) 19911.9 2009.1(0.73) 1232.2(0.83)
TEST2N6 26430.2(0.73) 19555 5432.17(0.77) 3044.19(0.90)
POTENTIAL3 11190.9 25463.2 1848.7 1882.33
POTENTIAL5 5314.5 17200.6 1714.43 1721.93
Total 767608.27(0.88) 566488.39(0.93) 229510.5(0.88) 170042.76(0.93)
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